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Abstract

Even a simple biological phenomenon
may introduce a complex network of
molecular interactions. Scientific litera-
ture is one of the trustful resources deliv-
ering knowledge of these networks. We
propose LitWay, a system for extract-
ing semantic relations from texts. Lit-
Way utilizes a hybrid method that com-
bines both a rule-based method and a ma-
chine learning-based method. It is tested
on the SeeDev task of BioNLP-ST 2016,
achieves the state-of-the-art performance
with the F-score of 43.2%, ranking first of
all participating teams. To further reveal
the linguistic characteristics of each eve-
nt, we test the system solely with syntac-
tic rules or machine learning, and differ-
ent combinations of two methods. We find
that it is difficult for one method to achieve
good performance for all semantic relation
types due to the complication of bio-events
in the literatures.

1 Introduction

Bio-events are founding blocks of bio-networks
depicting profound biological phenomena. Au-
tomatically extracting bio-events may assist re-
searchers while facing the challenge of growing
amount of biomedical information in textual form.
A bio-event carries more semantic information
biochemical reactions between entities, therefore,
is more informative for studying associations be-
tween bio-concepts, e.g. gene and phenotype (Li
et al., 2013).

A number of methods have been proposed to
process the automated extraction of biomedical
events including rule-based (Cohen et al., 2009;
Kilicoglu and Bergler, 2011; Bui and Sloot, 2011)

and machine learning-based (Miwa et al., 2012;
Hakala et al., 2013; Munkhdalai et al., 2015)
methods. Bui et al. (2013) presented a rule-based
method for bio-event extraction by using a dic-
tionary and patterns generated automatically from
annotated events. TEES (Björne and Salakoski,
2013) is a SVM based text mining system for the
extraction of events and relations from natural lan-
guage texts, it obtains good performance on a few
tasks in BioNLP-ST 2013 (Nédellec et al., 2013).
As a major type of biomedical events, a series
of methods concentrate on protein-protein interac-
tions (PPI) (Miyao et al., 2009; Papanikolaou et
al., 2015). Kernel-based methods are widely used
for relation extraction task and obtain good resu-
lts by leveraging lexical and syntactic information
(Airola et al., 2008; Miwa et al., 2009; Li et al.,
2015b). Peng et al. (2015) proposed Extended De-
pendency Graph (EDG) and evaluated it with two
kernels on some PPI datasets, obtained good im-
provements on F-value.

We previously use a set of basic features includ-
ing word embedding on a classifier for the BioNLP
2013 Genia (Kim et al., 2013) dataset, the result
is comparable to the state-of-the-art solution (Li
et al., 2015a). The system is built with flexibil-
ity in mind. It is designed to tackle more types
of bio-events. In this paper, we introduce LitWay,
which is based on the previous infrastructure and
uses a machine learning based method in combina-
tion with syntactic rules. The system is tested on a
completely different task, the SeeDev of BioNLP-
ST 2016. It achieves the best result among all par-
ticipants with an F-score of 43.2% (recall and pre-
cision are 44.8% and 41.7% respectively).

2 SeeDev Task

As a popular task in unstructured data mining
of biomedical interests, BioNLP has successfully
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Figure 1: Event relation examples. This sentence includes 4 events and 6 entities. For example, a
Environmental Factor Yeast one-hybrid and a Protein ABI5 form a event Interacts With. An entity could
participate in several events at the same time or none, such as AtEm6 promoter and lacZ. Noticeably
entity span overlap, like Gene AtEm6 and Promoter AtEm6 promoter.

held a series of biomedical event extraction tasks.
GE (Genia Event Extraction) is a classic task ini-
tiated since the beginning of BioNLP (Kim et al.,
2009), it attracts attention and leads to abundant
works (Kim et al., 2011; Kim et al., 2013). Be sim-
ilar to GE and others of BioNLP, SeeDev (Chaix
et al., 2016) is a new task proposed in BioNLP-
ST 2016, it dedicates to event extraction of genetic
and molecular mechanisms involved in plant seed
development. It is based on the knowledge model
Gene Regulation Network for Arabidopsis (GR-
NA)1. GRNA model defines 16 different types of
entities, and 22 event types that may be combined
in complex events. Table 1 shows these entities.
Event types are presented in following. Figure 1
gives some examples of event relations2.

Entity type
Gene Protein Domain
Gene Family Hormone
Box Regulatory Network
Promoter Pathway
RNA Genotype
Protein Tissue
Protein Family Development Phase
Protein Complex Environmental Factor

Table 1: 16 different entity types.

3 Proposed Method

LitWays pipeline adopts a hybrid method that uses
a classifier or rule-based method for different eve-
nt types. Figure 2 shows the infrastructure of it.
The pipeline consists of 5 steps: pre-processing,
entity pair selection, feature extraction, classifier
prediction and rule-based filters.

In BioNLP-ST 2013, the top three event ex-
traction systems F-scores differ less than 0.3%

1See details at http://2016.bionlp-st.org/
tasks/seedev.

2From training dataset: SeeDev-binary-11489176-1.

Figure 2: Infrastructure of LitWay.

in number (Nédellec et al., 2013; Björne and
Salakoski, 2013). Differences of quantitative
and syntactic morphology of proteins and chem-
ical entities in the scientific literature might de-
mand different strategies of network extraction
to achieve a better performance. In this pa-
per, we utilize a flexible hybrid system to in-
vestigate a way to discriminatively treat event
types. We first pre-experiment on the develop-
ment data and divide all event types into two
sets: Event-Set-A and Event-Set-B. The events
showing better performance on SVM are classi-
fied into Event-Set-A, the others showing better
results on a rule-based method are classified into
Event-Set-B. Event-Set-A composes of minority
events, Event-Set-B composes of majority events
except two types: Composes Primary Structure
and Composes Protein Complex3. Two sets are
showed in Table 2. It is easier to create precise
and useful rules for majority events since there are
enough instances for analyzing. Compared with
using SVM for all events, better results are ob-
tained from the experiment by using the rules.

3After the analysis with experiment results, while
moving Composes Primary Structure and Compos-
es Protein Complex into Event-Set-A, a slightly better
F-score on all events could be obtained.
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Event-Set-A Number
Is Linked To 44
Regulates Accumulation 36
Transcribes Or Translates To 25
Is Involved In Process 23
Occurs In Genotype 18
Regulates Molecule Activity 16
Exists At Stage 15
Regulates Tissue Development 9
Occurs During 8

Event-Set-B Number
Regulates Process 436
Regulates Expression 201
Exists In Genotype 169
Is Localized In 107
Regulates Development Phase 106
Is Member Of Family 89
Has Sequence Identical To 62
Interacts With 62
Is Functionally Equivalent To 60
Binds To 60
Is Protein Domain Of 46
Composes Primary Structure 20
Composes Protein Complex 16

Table 2: Event-Set-A and Event-Set-B. This par-
tition was used during competition.

After pre-processing the raw text data, candi-
date entity pairs are constructed within each sen-
tence, and tested by a multiclass classifier. If the
classifier predicts that a candidate pair is a event
belonging to Event-Set-A, the predication stays.
Otherwise, a series of rules are used for deciding a
type in Event-Set-B.

3.1 Pre-processing

The pre-processing include tokenization, sentence
splitter, part-of-speech (POS) tagging, lemmatiza-
tion and syntactic parsing. Stanford CoreNLP tool
(Manning et al., 2014) is adopted for the opera-
tions.

3.2 Entity Pair Selection

The system aims to resolve semantic relation ex-
traction as expected by the SeeDev task. In the
task, each event has two arguments. We construct
two entities as a candidate pair each time and pre-
dict their relation type. Table 3 presents sentence
distance statistics of events on the training set,
nearly 96.5% of events span within one sentence.

Since most events occur within a sentence, we on-
ly choose entity pairs in the same sentence.

Except three event types Is Linked To,
Has Sequence Identical To, and
Is Functionally Equivalent To, in which two
arguments could be reversed, for the others they
are ordered. Therefore an entity pair (Entity1,
Entity2) is different from the reversed pair
(Entity2, Entity1). They should be treated as two
instances.

Sentence distance Number
0 1571
1 52
2 5

Table 3: Sentence distance statistics of events on
the training set.

3.3 Feature Extraction
The features are extracted and summarized in Ta-
ble 4, which shows two types of features, entity
features and entity pair features.

Entity feature Entity pair feature
Entity type Tree path
Words Tree path length
Lemmas Token distance
POSs Entity distance
Unigram word Middle lemmas
Unigram lemma
Unigram POS
Tree node depth
Average word embedding

Table 4: Features used in classifier. Entity features
are extracted from two entities, separately. Entity
pair features are extracted from a pair of entities.

Word, lemma, Part-Of-Speech (POS) are fea-
tures directly represent an entity’s lexical and
grammatical characteristics. Adjacent words’ fea-
tures are used to represent the entity’s contextual
characteristics. Therefore, basic features include
word, lemma, POS of entities, as well as the same
information of the unigram words.

Generally speaking, if two entities are closer,
they are more likely to be relative (Tikk et al.,
2013). Token distance and entity distance are used
here. Token distance is the number of tokens be-
tween two entities. Entity distance is the number
of entities in the middle of two entities.
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Syntactic parsing tree features are important
for semantic relation (Punyakanok et al., 2008;
D’Souza and Ng, 2012). Tree node depth, tree
path, tree path length are used in our experiment.
They are obtained from the syntactic parsing tree,
generated during the pre-processing. Tree node
depth is the distance between the corresponding
tree node of an entity and the root node of the sen-
tence. Tree path is the path between two entities.
Tree path length is the number of middle nodes
between two entities in their tree path.

Word embedding has demonstrated the ability
of well representing linguistic and semantic infor-
mation of a text unit (Mikolov et al., 2013; Tang
et al., 2014), e.g. POS and N-gram. We contin-
ue using it as a feature in our system. Specif-
ically, training, development and test datasets of
SeeDev are used to obtain word embedding by us-
ing word2vec tool (Mikolov et al., 2013) after sen-
tencization, tokenization and lemmatization on the
original text. Since the word number of an entity is
uncertain, we use the average value of all the word
embeddings of an entity (Chen et al., 2015; Wang
et al., 2015), i.e. average word embedding. Mid-
dle lemmas include all of the lemmas between two
entities, they are treated as a bag-of-word (BOW)
feature, some keyword information may be ob-
tained from it.

3.4 SVM Classifier Prediction
Support Vector Machine (SVM) (Cortes and Vap-
nik, 1995) and the C++ embodiment, LibSVM
(Chang and Lin, 2011), is employed for the classi-
fication in LitWay. Positive event instances are re-
trieved from gold annotations. Negative instances
are created by all of no-relation entity pairs within
each sentence.

Among predication, if the predicted result of an
entity pair belongs to Event-Set-A, it is taken as
the label. Otherwise, rule-based filters are applied.

3.5 Rule-based Filters
In Event-Set-B, different event types have differ-
ent rules. We summarize all rules in Table 5. We
consider the event types of Event-Set-B one by
one, according to their quantities on the training
set, as showed in Table 2. Once all rules of an
event type are satisfied, the entity pair label could
be determined, and the matching of the rest event
types could be stopped.

There are 6 types of rules: Event arguments
match, Entity structure rules, Sentence structure

rules, Token distance restriction, Keywords match
and Training set match. The details about these
rules are shown as following:
(1) Event arguments match: According to the
task description, the arguments of the event are
strongly typed, which means that all types of enti-
ties are not possible as event arguments. What is
more, according to the statistics of arguments of
different events on the training set, we only retain
those arguments that occur most times for each
special event type. This could efficiently reduce
false instances.
(2) Entity structure rules: Many entities have
complicated structure, an entity could span over
another entity. This results in that some entity
structures are less likely to be event arguments.
Such as, an entity with smaller span is not an argu-
ment, as it is often the modifier of the larger one.
Meanwhile, some event types have several fixed
special entity argument structures. We summarize
3 particular rules from the training set:

• (2a) Entity is not covered: An entity is not
covered by a larger one.

• (2b) Entity does not cover: An entity does
not contain smaller entities or overlap with
others.

• (2c) Special entity structure: Some spe-
cial entity structure rules are summarized
from the dataset. Presumably an entity pair
(Entity1, Entity2) is within a sentence, Enti-
ty is another entity in the same sentence, the
special entity structures could be:

– (2c1) Entity1 (Entity2): Entity pair
should have such fixed special structure,
Entity2 follows Entity1 and is in brack-
ets.

– (2c2) Entity1 (Entity): If Entity1 is fol-
lowed by Entity and Entity is in brack-
ets, Entity1 is ignored.

– (2c3) Entity (Entity1): If Entity1 fol-
lows Entity and Entity1 is in brackets,
Entity1 is ignored.

– (2c4) Entity2 Entity1 (Entity): If Entity
follows Entity1 and Entity is in brack-
ets, while Entity1 also follows Entity2,
then Entity1 is kept.

– (2c5) Entity (Entity2): If Entity2 fol-
lows Entity and Entity2 is in brackets,
Entity2 is ignored.
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(3) Sentence structure rules: If two entities form
an event relation, the sentence structure presents
some syntactic characteristics. We summarize 3
sentence structure rules:

• (3a) No subordinate clause: Subordinate
clause is a complex sentence structure. If
there is event relation between a pair of enti-
ties, the syntactic tree path structure between
them is often simple and direct.

• (3b) Active or passive structure match: For
an event argument pair (Entity1, Entity2), it
should have such relation structure: Entity1-
influences-Entity2. While an entity pair has
two orders in a sentence: Entity1 is on the
left of Entity2, or right of Entity2. Different
orders should match different sentence struc-
ture rules. If Entity1 is on the left of Entity2,
their tree path is an active structure. Other-
wise it is a passive structure.

• (3c) Special entity pair order: Some events
usually have fixed order between their two
arguments, Entity1 is always on the left (or
right) of Entity2.

(4) Token distance restriction: Closer entities are
more likely to be relative. The rule restricts the
number of middle tokens between entities. It ig-
nores distant entity pairs.
(5) Keywords match: Some events are accompa-
nied by keywords, we record these keywords of
several different events, showed in following de-
tailed rules. They are useful for event identifica-
tion.
(6) Training set match: For some event types, we
compile the entity pairs from the training set into a
dictionary, since they are biologically more likely
to interact.

For an entity pair (Entity1, Entity2), we apply
the rules on Event-Set-B. Following labels (1) to
(6) correspond to 6 type rules introduced above,
None means nonuse of this rule:
Regulates Process
(1) Entity1∈{Genotype, Tissue, Gene, Protein,
Development Phase},
Entity2∈{Regulatory Network, Pathway}
(2) Entity1 is not covered
(3) No subordinate clause, Active or passive
structure match
(4) None
(5) None

(1) Event arguments match
(2) Entity structure rules
• (2a) Entity is uncovered
• (2b) Entity does not cover
• (2c) Special entity structure
(3) Sentence structure rules
• (3a) No subordinate clause
• (3b) Active or passive structure match
• (3c) Special entity pair order
(4) Token distance restriction
(5) Keywords match
(6) Training set match

Table 5: Summary of all rules.

(6) None
Regulates Expression
(1) Entity1∈{Tissue, Genotype, Protein, Devel-
opment Phase}, Entity2∈{Gene}
(2) Entity1 is not covered, Entity2 is not covered
(3) No subordinate clause
(4) None
(5) Keywords∈{function, target, repress, bind,
regulat-, exclude, activate, require, expression,
induce, detect, express, define, act, during, pli-
cate, observe, affect, defect, transcription, cease,
associate, restrict, modulate}
(6) None
Exists In Genotype
(1) Entity1∈{Gene, Gene Family, RNA, Protein,
Protein Family, Protein Domain}
Entity2∈{Genotype}
(2) Entity1 is not covered, Entity2 does not cover
(2c2) Entity1 (Entity): ignore Entity1
(2c4) Entity2 Entity1 (Entity): keep Entity1
(2c5) Entity (Entity2): ignore Entity2
(3) No subordinate clause
(4) None
(5) None
(6) None
Is Localized In
(1) Entity1∈{RNA, Protein, Protein Family,
Protein Complex, Protein Domain, Hormone}
Entity2∈{Tissue}
(2) Entity1 is not covered, Entity2 is not covered
(3) No subordinate clause
(4) None
(5) None
(6) None
Regulates Development Phase
(1) Entity1∈{Gene, Protein, Genotype,
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Gene Family}, Entity2∈{Development Phase}
(2) Entity1 is not covered, Entity2 is not covered
(2c2) Entity1 (Entity): ignore Entity1
(3) Entity1 is on the left of Entity2
(4) None
(5) None
(6) None
Is Member Of Family
(1) (Entity1, Entity2)∈{(Protein, Pro-
tein Family), (Gene, Gene Family)}
(2) Entity1 is not covered, Entity2 is not covered
(2c2) Entity1 (Entity): ignore Entity1
(3) No subordinate clause
(4) Token distance ≤ 10
(5) None
(6) None
Has Sequence Identical To
(1) Entity1 and Entity2 have same entity type
(2) (2c1) Entity1 (Entity2): Entity pair has this
structure
(3) None
(4) Token distance = 2
(5) None
(6) Training set match
Interacts With
(1) Entity1∈{Protein, Environmental Factor},
Entity2∈{Box, Promoter, Protein, Pro-
tein Family, Protein Complex, Protein Domain}
(2) Entity1 is not covered, Entity2 is not covered
(3) No subordinate clause
(4) None
(5) Keywords∈{interacts, interacted, interacting,
associate, associated, associates, associating}
(6) None
Is Functionally Equivalent To
(1) Entity1 and Entity2 have same entity type
(2) (2c1) Entity1 (Entity2): Entity pair has this
structure
(3) None
(4) Token distance = 2
(5) None
(6) Training set match
Binds To
(1) Entity1∈{Protein, Protein Family, Pro-
tein Domain}, Entity2∈{Box, Promoter, Protein,
Protein Family, Protein Complex}
(2) Entity1 is not covered, Entity2 is not covered
(3) No subordinate clause
(4) None
(5) Keywords∈{bind, binds, interact, physical,
direct}

(6) None
Is Protein Domain Of
(1) Entity1∈{Protein Domain},
Entity2∈{Protein, Protein Family}
(2) Entity1 is not covered, Entity2 is not covered
(2c2) Entity1 (Entity): ignore Entity1
(3) None
(4) None
(5) None
(6) None
Composes Primary Structure
(1) Entity1∈{Box}, Entity2∈{Gene, Box, Pro-
moter}
(2) None
(3) No subordinate clause
(4) None
(5) None
(6) None
Composes Protein Complex
(1) Entity1∈{Protein},
Entity2∈{Protein Complex}
(2) Entity1 is not covered, Entity2 is not covered
(3) No subordinate clause, Entity1 is on the left
of Entity2
(4) None
(5) None
(6) None

4 Results

To investigate the impact of different strategies
and their comparison with the hybrid method, we
test the system solely with machine learning, syn-
tactic rules, or different combinations of them.

We compared the proposed hybrid method with
the classifier-only based method on the develop-
ment dataset. Table 6 shows the experiment resu-
lts. All of the features are beneficial for the clas-
sifier, by using all of them we get the best SVM
based result with 31.5% F1. Tree features make
most improvement with 5.7% increase on F1, both
recall and precision are increased. Dist features
make only 0.2% F1 improvement and WM fea-
tures make 1.2% F1 improvement. They increase
precision with the loss of recall, while Tree fea-
tures mainly contribute to recall.

Comparing hybrid method with the best SVM
result in Table 6, we could see an obvious ad-
vantage. The F1 of the hybrid method is over
10% higher than the best SVM result, it greatly
improves recall with around 16%, and has 3.4%
precision increase. It’s interesting because adding
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Method F1 R P
(1) Word+POS+Lemma 0.244 0.206 0.300
(2) WPL+Dist 0.246 0.192 0.344
(3) WPL+Dist+Tree 0.303 0.267 0.348
(4) WPL+Dist+Tree+WM 0.315 0.264 0.390
(5) Hybrid 0.423 0.423 0.424

Table 6: Comparison between different features
for SVM on development dataset. Methods (1) to
(4) only use multiclass SVM with different fea-
ture selections, (5) is the hybrid method. WPL
are word, POS and lemma features. Dist are to-
ken distance and entity distance features. Tree are
tree node depth, tree path and tree path length fea-
tures. WM are average word embedding and mid-
dle lemmas features.

rules usually increase precision instead of recall.
To verify the effect of rule-based method for

different event types, we take the best SVM re-
sult as a basis, and then replace each event type
with rule-based method in turns. Event-Set-B us-
es specific rules introduced before. Event-Set-A
uses some frequent rules from Event-Set-B since
it is difficult to create precise rules for minority
class, they include:
(1) Event arguments match;
(2) Entity1 is not covered, Entity2 is not covered;
(3) No subordinate clause, active or passive struc-
ture match.

Table 7 presents the results. Except for
Composes Primary Structure and Compos-
es Protein Complex, F1 of Event-Set-B events
are increased by using rules instead of SVM.
While rules are not helpful for Event-Set-A, it
verifies the partition of two sets.

Since Composes Primary Structure and Com-
poses Protein Complex have better results in
SVM, we move them into Event-Set-A and in-
deed get a little better result in overall events after
the competition, it is showed in following.

Table 8 presents the details of SVM method and
hybrid method. Almost all the events of Event-
Set-B have better results in the hybrid method.
This demonstrates the effectiveness of it.

To investigate the rules used in the proposed
method, we take several experiments on the devel-
opment data by different rule combinations. Table
9 presents their results. All of these rules are bene-
ficial to the system more or less. Event arguments
match and entity structure rules have important in-

Method F1
WPL+Dist+Tree+WM 0.315
Regulates Process 0.334
Regulates Expression 0.315
Exists In Genotype 0.355
Is Localized In 0.323
Regulates Development Phase 0.325
Is Member Of Family 0.320
Has Sequence Identical To 0.328
Interacts With 0.323
Is Functionally Equivalent To 0.330
Binds To 0.316
Is Protein Domain Of 0.327
Composes Primary Structure 0.313
Composes Protein Complex 0.313
Is Linked To 0.248
Regulates Accumulation 0.289
Transcribes Or Translates To 0.315
Is Involved In Process 0.306
Occurs In Genotype 0.314
Regulates Molecule Activity 0.277
Exists At Stage 0.313
Regulates Tissue Development 0.302
Occurs During 0.310

Table 7: Replace each event type with rule-based
method in turns on the basis of SVM. Event-Set-
B is in italic.

fluences to the performance, result in around 10%
and 8% F1 decrease respectively. It is understand-
able because almost all kinds of event types in
Event-Set-B use these two rules, which makes
them important to the system, especially on the
precision. Sentence structure rules and keywords
match are also useful, around 3% to 3.5% F1 im-
provement could be obtained by using them. They
improve the performance by increasing the preci-
sion of the system with the loss of recall. Token
distance restriction and training set match have on-
ly 0.1% to 0.3% influences on F1 as they are mere-
ly used in one or two event types. Token distance
restriction could improve the precision while train-
ing set match improves the recall.

Table 10 is the official result of the SeeDev task
(Chaix et al., 2016). LitWay achieves the best re-
sult among all participating teams with 43.2% F1
showing significant advantage. The recall of Lit-
Way is 44.8%, which is comparable to the highest
recall 45.8%. Its precision 41.7% is the second
highest value, only lower than 53.3%.
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Event type WPL+Dist+Tree+WM Hybrid
F1 Recall Precision F1 Recall Precision

All 0.315 0.264 0.390 0.423 0.423 0.424
Regulates Process 0.437 0.447 0.428 0.511 0.520 0.503
Regulates Expression 0.416 0.387 0.448 0.432 0.360 0.541
Exists In Genotype 0.224 0.210 0.239 0.540 0.630 0.472
Is Localized In 0.433 0.447 0.420 0.518 0.617 0.446
Regulates Development Phase 0.182 0.136 0.276 0.333 0.424 0.275
Is Member Of Family 0.342 0.255 0.519 0.479 0.418 0.561
Has Sequence Identical To 0.514 0.429 0.643 0.807 0.735 0.893
Interacts With 0.080 0.063 0.111 0.301 0.344 0.268
Is Functionally Equivalent To 0.467 0.318 0.875 0.667 0.590 0.767
Binds To 0.177 0.125 0.300 0.256 0.208 0.333
Is Protein Domain Of 0.061 0.035 0.250 0.455 0.517 0.405
Composes Primary Structure NA 0 NA 0.238 0.667 0.145
Composes Protein Complex NA NA NA NA NA 0
Is Linked To 0.118 0.087 0.182 0.118 0.087 0.182
Regulates Accumulation 0.271 0.207 0.429 0.271 0.207 0.429
Transcribes Or Translates To 0.174 0.154 0.200 0.174 0.154 0.200
Is Involved In Process NA 0 0 NA 0 0
Occurs In Genotype NA 0 NA NA 0 NA
Regulates Molecule Activity NA NA NA NA NA NA
Exists At Stage NA 0 0 NA 0 0
Regulates Tissue Development NA 0 NA NA 0 NA
Occurs During NA 0 NA NA 0 NA

Table 8: Detailed results of SVM classifier and hybrid method on development dataset. NA in Recall
represents none of this class instance on the development data. NA in Precision represents none of this
class instance in the predicted results. 0 in Recall or Precision means none of True Positive (TP) instance
of this type is obtained in the predicted results. Event-Set-B is in italic.

We present two more additional exper-
iments after the competition by moving
Composes Primary Structure and Compos-
es Protein Complex into Event-Set-A. Table 11
shows the results. The result on development data
has 0.8% improvement on F1, while does not
show benefit on test data.

We analyse the results on development dataset
before and after the movement operation. Before
the movement, for Composes Primary Structure
there are 10 True Positive (TP) instances among 69
predicted instances (gold number is 15), for com-
poses Protein Complex there are 0 TP instance
among 8 predicted result (gold number is 0). After
the operation both of the two predicted numbers
are 0, i.e. we do not make any predictions of the
two event types. In this case, 10 right events are
lost, on the other hand 67 false events are success-
fully deleted. It brings more benefits than harm.

5 Conclusion

The paper presents a hybrid method system Lit-
Way, to resolve the biomedical semantic relations.
It achieves the best result in BioNLP-ST 2016
SeeDev task. It is built as a flexible way with
the awareness of that different bio-events have
different linguistic characteristics and are difficult
to be tackled by a single method.

Without much feature engineering nor complex
algorithm, LitWay obtains the state-of-the-art per-
formance on the official test data, with the highest
F-score 43.2%. A series of experiments of using
the methods and their combinations are carried out
to investigate the different linguistic characteris-
tics of different event types.

Here we extract relations within one sentence.
While a number of events still span across sen-
tences. By incorporating coreference technics in
the future, we expect to be able to interconnect
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Method F1 R P
(1) Hybrid 0.423 0.423 0.424
(2) No arguments match 0.325 0.484 0.244
(3) No entity rules 0.342 0.447 0.277
(4) No sentence rules 0.394 0.501 0.325
(5) No token distance 0.420 0.423 0.417
(6) No keywords 0.388 0.441 0.347
(7) No training match 0.422 0.420 0.424

Table 9: Hybrid experiment results with
different rules on development dataset. Meth-
ods (2) to (7) have been removed one type
rule separately on the basis of (1). Method
(2) only follows the event argument match
rules given by the SeeDev task (http://
2016.bionlp-st.org/tasks/seedev/
seedev-data-representation.), does
not filter event arguments that never or rarely
occur.

Method F1 Recall Precision
LitWay 0.432 0.448 0.417

UniMelb 0.364 0.386 0.345
VERSE 0.342 0.458 0.273

– 0.335 0.245 0.533
ULISBOA 0.306 0.256 0.379

LIMSI 0.255 0.318 0.212
DUTIR* – – –

Table 10: Official evaluation results on test data.

events at the same time improve the event extrac-
tion performance.
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