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Abstract

The quality of word embeddings depends
on the input corpora, model architec-
tures, and hyper-parameter settings. Us-
ing the state-of-the-art neural embedding
tool word2vec and both intrinsic and ex-
trinsic evaluations, we present a compre-
hensive study of how the quality of em-
beddings changes according to these fea-
tures. Apart from identifying the most
influential hyper-parameters, we also ob-
serve one that creates contradictory re-
sults between intrinsic and extrinsic eval-
uations. Furthermore, we find that bigger
corpora do not necessarily produce better
biomedical domain word embeddings. We
make our evaluation tools and resources
as well as the created state-of-the-art
word embeddings available under open li-
censes from https://github.com/
cambridgeltl/BioNLP-2016.

1 Introduction

As one of the main inputs of many NLP meth-
ods, word representations have long been a ma-
jor focus of research. Recently, the embedding
of words into a low-dimensional space using neu-
ral networks was suggested (Bengio et al., 2003;
Collobert and Weston, 2008; Turian et al., 2010;
Mikolov et al., 2013b; Pennington et al., 2014).
These approaches represent each word as a dense
vector of real numbers, where words that are se-
mantically related to one another map to similar
vectors. Among neural embedding approaches,
the skip-gram model of Mikolov et al. (2013a) has
achieved cutting-edge results in many NLP tasks,
including sentence completion, analogy and senti-
ment analysis (Mikolov et al., 2013a; Mikolov et
al., 2013b; Fernández et al., 2014).

Although word embeddings have been studied
extensively in recent work (e.g. Lapesa and Ev-
ert (2014)), most such studies only involve general
domain texts and evaluation datasets, and their re-
sults do not necessarily apply to biomedical NLP
tasks. In the biomedical domain, Stenetorp et al.
(2012) studied the effect of corpus size and do-
main on various word clustering and embedding
methods, and Muneeb et al. (2015) compared two
state-of-the-art word embedding tools: word2vec
and Global Vectors (GloVe) on a word-similarity
task. They showed that skip-gram significantly
out-performs other models and that its perfor-
mance can be further improved by using higher
dimensional vectors. The word2vec tool was also
used to create biomedical domain word represen-
tations by Pyysalo et al. (2013) and Kosmopoulos
et al. (2015).

Given that word2vec has been shown to achieve
state-of-the-art performance that can be further
improved with parameter tuning, we focus on
its performance on biomedical data with differ-
ent inputs and hyper-parameters. We use all
available biomedical scientific literature for learn-
ing word embeddings using models implemented
in word2vec. For intrinsic evaluation, we use
the standard UMNSRS-Rel and UMNSRS-Sim
datasets (Pakhomov et al., 2010), which enable
us to measure similarity and relatedness sepa-
rately. For extrinsic evaluation, we apply a neural
network-based named entity recognition (NER)
model to two standard benchmark NER tasks,
JNLPBA (Kim et al., 2004) and the BioCreative II
Gene Mention task (Smith et al., 2008).

Apart from showing that the optimization of
hyper-parameters boosts the performance of vec-
tors, we also find that one such parameter leads to
contradictory results between intrinsic and extrin-
sic evaluations. We further observe that a larger
corpus does not necessarily guarantee better re-
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Corpus Total tokens
PubMed 2,721,808,542

PMC 7,959,548,841
PubMed + PMC 10,681,357,383

Table 1: Corpus statistics

sults in our tasks. We hope that our results can
serve as a reference for researchers who use neu-
ral word embeddings in biomedical NLP.

2 Materials and Methods

2.1 Corpora and Pre-processing
We use two corpora to create word vectors: the
PubMed Central Open Access subset (PMC) and
PubMed. PMC is a digital archive of biomedi-
cal and life science literature, which contains more
than 1 million full-text Open Access articles. The
PubMed database has more than 25 million cita-
tions that cover the titles and abstracts of biomedi-
cal scientific publications. A version of PMC arti-
cles is distributed in text format1 whereas PubMed
is distributed in XML. Thus, we use a PubMed
text extractor2 to extract title and abstract texts
from the PubMed source XML. Both PubMed and
PMC were pre-processed with the Genia Sentence
Splitter (GeniaSS) (Sætre et al., 2007), which is
optimized for bio-medical text. We further tok-
enize the sentences with the Tree bank Word Tok-
enizer provided by the NLTK python library (Bird,
2006). The corpus statistics are shown in Table 1.

2.2 Word vectors
Factors that affect the performance of word repre-
sentations include the training corpora, the model
architectures, and the hyper-parameters. To assess
the effect of corpora, we generate three variants of
each set of word vectors: one from PubMed, one
from PMC, and one from the combination of the
two (PMC-PubMed). To study how preprocess-
ing affects word vectors, we create vectors from
the original text corpora, lower-cased variants, and
variants where sentences are shuffled in random
order. We further generate two sets of vectors, one
by applying the skip-gram model and one apply-
ing the CBOW model, built with the default hyper-
parameter values of word2vec. We first evaluate
these vectors to determine the better-performing
model architecture. Using the better model, we

1http://www.ncbi.nlm.nih.gov/pmc/
tools/ftp/#Data_Mining

2https://github.com/spyysalo/pubmed

Parameters Values
neg 1 / 2 / 3 / 5 / 8 /10 / 15

samp 0 / 1e-1 / 1e-2 / 1e-3 / 1e-4
1e-5 / 1e-6 / 1e-7 / 1e-8 / 1e-9

min-count 0 / 5 / 10 / 20 / 50 / 100 / 200
400 / 800 / 1000 / 1200 / 2400

alpha 0.0125 / 0.025 / 0.05 / 0.1
dim 25 / 50 / 100 / 200 / 400 / 500 / 800
win 1 / 2 / 4 / 5 / 8 / 16 / 20 / 25 / 30

Table 2: Hyper-parameters and tested values.
Default values shown in bold.

then build vectors by varying values of one hyper-
parameter (Table 2) and keeping others as default.
We repeat the process for every hyper-parameter
under examination. We then report the results of
these sets of vectors in our intrinsic and extrinsic
evaluations.

2.3 Hyper-parameters
We test the following key hyper-parameters:

Negative sample size (neg): the representation
of a word is learned by maximizing its predicted
probability to co-occur with its context words,
while minimizing the probability for others. How-
ever, the normalisation of this probability involves
a denominator deriving from co-occurrences be-
tween words and all their contexts in the corpus,
which is time-consuming to compute. To address
this issue, negative sampling only calculates the
probability with reference to a set number of other
randomly chosen negative words (neg).

Sub-sampling (samp): Sub-sampling refers to
the process of reducing occurrences of frequent
words. It selects words appearing with a ratio
higher than the threshold samp, and ignores each
occurrence with a given probability. The process
is used to minimise the effect of non-informative
frequent words in training. Very frequent words
(e.g. in) are less informative because they co-occur
with most words in the corpus. For example, a
model can benefit more from seeing an occurrence
of p16 with CDKN2 than an instance of the fre-
quent co-occurrence of p16 with in.

Minimum-count (min-count): The minimum-
count defines the minimum number of occurrences
required for a word to be included in the word vec-
tors. This parameter allows control the over the
size of the vocabulary and, consequently, the re-
sulting word embedding matrix.

Learning Rate (alpha): neural networks are
trained by gradually updating weight vectors
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Vector Token
PMC-PubMed (Pyysalo et al.) 5,487,486,225 (total)

PMC (Pyysalo et al.) 2,591,137,744 (total)
PubMed (Pyysalo et al.) 2,896,348,481 (total)

PubMed (Kosmopoulos et al.) 1,701,632 (distinct)

Table 3: Baseline word vectors

along a gradient to minimize an objective func-
tion. The magnitude of these updates is controlled
by the learning rate.

Vector dimension (dim): The vector dimension
is the size of the learned word vector. While a
higher dimension tends to capture better word rep-
resentations, their training is more computation-
ally costly and produces a larger word embedding
matrix.

Context window size (win): The size of the con-
text window defines the range of words to be in-
cluded as the context of a target word. For in-
stance, a window size of 5 takes five words before
and after a target word as its context for training.

We refer to Mikolov et al. (2013a) and Levy et
al. (2015) for further details regarding these pa-
rameters.

2.4 Baseline Vectors

As baselines, we include the biomedical domain
vectors created by Pyysalo et al. (2013) and Kos-
mopoulos et al. (2015). Their corpus statistics are
shown in Table 3. All of these vectors are built
with the skip-gram model with the default param-
eter values (see Table 2).

2.5 Intrinsic Evaluation

A standardized intrinsic measure for word repre-
sentations in the biomedical domain is the UMN-
SRS word similarity dataset (Pakhomov et al.,
2010). We use its UMNSRS-Sim (Sim) and
UMNSRS-Rel (Rel) subsets as our references.
They have 566 and 587 word pairs for measuring
similarity and relatedness (respectively) whose de-
gree of association was rated by participants from
the University of Minnesota Medical School. In
UMNSRS, the human evaluation on every word
pair is converted to a score to determine its de-
gree of similarity, a higher score implying a more
similar pair. The range of the score is on an ar-
bitrary scale. While UMNSRS provides scores to
determine the degree of similarity for each word
pair, we will measure this by calculating the co-
sine similarity score for each word pair using the

learned word vectors. Afterwards, we compare
the two scores using Spearman’s correlation co-
efficient (ρ), which is a standard metric to com-
pare ranking between variables regardless of scale
in word similarity task. We systematically ignore
words that appear only in the reference but not in
our models.

2.6 Extrinsic Evaluation

Given that the ultimate evaluation for word vectors
is their performance in downstream applications,
we also assess the quality of the vectors by per-
forming NER using two well-established biomed-
ical reference standards: the BioCreative II Gene
Mention task corpus (BC2) (Smith et al., 2008)
and the JNLPBA corpus (PBA) (Kim et al., 2004).
Both of these corpora consist of approximately
20,000 sentences from PubMed abstracts manu-
ally annotated for mentions of biomedical entity
names. Following the window approach architec-
ture with word-level likelihood proposed by Col-
lobert and Weston (2008), we apply a tagger built
on a simple feed-forward neural network, with a
window of five words, one hidden layer of 300
neurons and a hard sigmoid activation, leading to
a Softmax output layer. Our word vectors are used
as the embedding layer of the network, with the
only other input being a low-dimensional binary
vector of word surface features.3 To emphasize the
effect of the input word vectors on performance,
we avoid fine-tuning the word vectors during train-
ing as well as introducing any external resources
such as entity name dictionaries. While this causes
the performance of the method to fall notably be-
low the state of the art, we believe this minimal
approach to be an effective way to focus on the
quality of the word vectors as they are created by
the tool (word2vec).4 For parameter selection, we
estimate the extrinsic performance of word vec-
tors on the development sets of the two corpora
using mention-level F-score. For the final exper-
iment with selected parameters we apply the test
sets and evaluation scripts of the two tasks in ac-
cordance with their original evaluation protocols.

3For example, whether a word starts or contains a capital
letter or number. For detailed reference, we make our imple-
mentation openly available.

4It is an interesting question for future work whether the
findings from our extrinsic evaluation apply also to state-of-
the-art taggers.
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PMC-PubMed PMC PubMed
Model Sim Rel Sim Rel Sim Rel

SG 0.54 0.488 0.507 0.453 0.446 0.497
CBOW 0.435 0.409 0.348 0.351 0.449 0.446
SG-S 0.555 0.515 0.54 0.49 0.551 0.502
SG-L 0.542 0.457 0.502 0.424 0.552 0.47
SG-SL 0.543 0.47 0.52 0.459 0.56 0.481
CBOW-S 0.415 0.403 0.434 0.424 0.43 0.414
CBOW-L 0.452 0.404 0.447 0.41 0.461 0.425
CBOW-SL 0.461 0.422 0.45 0.39 0.471 0.426

Table 4: Intrinsic evaluation results for vectors
with different pre-processing: Original Text,

Sentence-shuffled (S), lowercased (L), and both
(SL)

PMC-PubMed PMC PubMed
Model BC2 PBA BC2 PBA BC2 PBA
SG 60.86 61.89 59.48 62.11 61.00 62.52
CBOW 55.11 56.97 54.93 58.10 54.25 58.48
SG-S 59.81 62.13 59.23 62.30 60.75 62.11
SG-L 60.52 62.19 59.93 61.64 60.51 62.64
SG-SL 61.33 62.58 60.23 62.05 61.11 61.65
CBOW-S 51.84 56.78 54.22 58.02 52.82 57.97
CBOW-L 53.72 57.09 54.57 57.51 52.65 57.41
CBOW-SL 52.89 57.15 52.63 56.80 53.21 58.41

Table 5: Extrinsic evaluation results for vectors
with different pre-processing: Original text,

Sentence-shuffled (S), lowercased (L), and both
(SL)

3 Results

3.1 Skip-grams vs. CBOW

Tables 4 and 5 (first 2 rows) show results compar-
ing the skip-gram and CBOW models with default
hyper-parameter values in intrinsic and extrinsic
evaluation, respectively. In general, the skip-gram
vector shows better results than CBOW in both
the word similarity task and in entity mention tag-
ging. In CBOW, the representations of a group of
context words are learned through predicting one
focus word, with the prediction back-propagated
averaged over all context words. By contrast, in
skip-gram, the representation of a focus word is
learned by predicting every other context word in
the window separately, with the prediction error
of each context word back-propagated to the tar-
get word. This may allow better vectors to be
learned as a focus word is trained over more data,
but with less smoothing over contexts. Our result
is consistent with that of many previous studies,
including that of Muneeb et al. (2015), who com-
pared model architectures on different vector di-
mensions and reported that skip-gram outperforms
CBOW in biomedical domain tasks.

0 5 10 15
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55

60

neg

Sim
Rel
BC2
PBA

Figure 1: Average intrinsic and extrinsic
evaluation results for negative sampling

(Unit: ρ: dashed line, F-score: solid line)

PMC-PubMed PMC PubMed
neg Sim Rel Sim Rel Sim Rel
1 0.52 0.483 0.453 0.405 0.505 0.483
2 0.545 0.493 0.489 0.439 0.511 0.475
3 0.539 0.488 0.506 0.447 0.532 0.482
5 0.538 0.487 0.498 0.444 0.54 0.494
8 0.545 0.501 0.497 0.446 0.543 0.507
10 0.543 0.494 0.517 0.459 0.553 0.499
15 0.542 0.498 0.514 0.457 0.542 0.491

Table 6: Intrinsic evaluation results for number of
negative samples (default = 5)

From Tables 4 and 5, we see that most vectors
benefit from lower-casing and shuffling the corpus
sentences. Since in word2vec, the learning rate
is decayed as training progresses, text appearing
early has a larger effect on the model. Shuffling
makes the effect of all text (roughly) equivalent.
On the other hand, lower-casing ensures that same
word but different cases, such as protein, Pro-
tein and PROTEIN are normalised (indexed as one
term) for training. Although the shuffled-lower
vectors perform better, in the following, we report
further results based on the unshuffled-text vector
to preserve the comparability of results.

3.2 Hyper-Parameters

We next show that four out of the six hyper-
parameters only improve performance notably in
the intrinsic task but not the extrinsic one, while
one boosts figures in both tasks to a great extent.
Lastly, one of them shows opposite effects on in-
trinsic and extrinsic evaluations.
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PMC-PubMed PMC PubMed
neg BC2 PBA BC2 PBA BC2 PBA
1 60.78 62.29 59.90 61.52 60.80 61.71
2 60.41 62.03 59.44 60.49 59.59 62.63
3 59.37 62.42 59.55 62.02 60.52 62.45
5 60.37 61.90 59.44 62.12 60.44 62.56
8 60.90 62.19 59.49 62.55 60.23 62.68
10 59.65 62.80 59.58 61.61 61.53 62.03
15 61.09 61.52 59.92 60.98 60.12 63.18

Table 7: Extrinsic evaluation results for number
of negative samples (default = 5)
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Figure 2: Average intrinsic and extrinsic results
for sub-sampling (0 = None)

(Unit: ρ: dashed line, F-score: solid line)

3.2.1 Negative Sampling, Sub-sampling,
Min-count and Learning Rate

Intuitively, larger values of the neg parameter
could be expected to benefit the training process
by providing more (negative) examples, but we
can only see a benefit in the intrinsic result (Fig-
ure 1). The performance of word vectors on the
intrinsic task generally improves as neg increases
from 1 to 8 (Table 6), whereas extrinsic task per-
formance remains approximately the same (Ta-
ble 7). We refer to Levy et al. (2015) for further
analysis of the effect of the skip-gram parameter
in a general domain context.

Regarding sub-sampling, a lower threshold
gives more words a probability of being down-
sampled. From Figure 2, it appears that also sub-
sampling has a large effect on the intrinsic task,
where most figures increase substantially before
samp = 1e-6 (Table 8). After samp = 1e-7, fig-
ures in both measures drop dramatically. While
some extremely frequent words (e.g. the) are ef-
fectively non-informative, other common words
may be important for modeling word meaning.
Thus, when the sub-sampling threshold decreases

PMC-PubMed PMC PubMed
samp Sim Rel Sim Rel Sim Rel
None 0.529 0.476 0.465 0.419 0.514 0.451
1e-1 0.542 0.496 0.476 0.42 0.507 0.46
1e-2 0.521 0.464 0.471 0.418 0.513 0.471
1e-3 0.545 0.5 0.497 0.442 0.545 0.494
1e-4 0.56 0.506 0.521 0.459 0.578 0.54
1e-5 0.594 0.542 0.55 0.507 0.589 0.546
1e-6 0.601 0.558 0.511 0.491 0.546 0.528
1e-7 0.519 0.475 0.401 0.37 0.336 0.306
1e-8 0.09 0.055 0.074 -0.016 -0.061 -0.146
1e-9 -0.074 -0.166 -0.076 -0.183 0.078 0.147

Table 8: Intrinsic evaluation results for
sub-sampling (default = 1e-3)

PMC-PubMed PMC PubMed
samp BC2 PBA BC2 PBA BC2 PBA
None 60.46 61.76 58.83 61.35 60.51 62.00
1e-1 61.31 60.99 59.60 62.45 60.47 62.69
1e-2 60.01 62.51 59.86 61.63 60.29 62.92
1e-3 60.30 61.99 59.78 61.95 59.87 62.57
1e-4 60.93 62.73 59.87 60.91 60.51 62.22
1e-5 60.58 61.39 60.35 61.26 58.98 62.60
1e-6 60.00 61.67 57.94 60.31 59.02 61.35
1e-7 57.52 61.17 57.04 59.70 52.44 57.34
1e-8 47.35 50.41 44.22 47.23 31.23 32.15
1e-9 33.09 33.13 32.30 32.68 27.40 28.70

Table 9: Extrinsic evaluation results for
sub-sampling (default = 1e-3)
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Figure 3: Average intrinsic and extrinsic
evaluation results for min-counts

(Unit: ρ: dashed line, F-score: solid line)

continuously, a substantial amount of informative
frequent words are downsampled, leading to an in-
effective learning of the representation.

Words occurring fewer than min-count times
will be completely removed from the corpus, re-
sulting in fewer words in the word vectors. From
Figure 3, most of the results show limited effect
for this parameter, excepting a notable increase for
PubMed vectors in the intrinsic task (Table 10).
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PMC-PubMed PMC PubMed
min-count Sim Rel Sim Rel Sim Rel

0 0.543 0.498 0.512 0.444 0.505 0.462
5 0.534 0.485 0.492 0.437 0.544 0.494
10 0.536 0.487 0.528 0.485 0.557 0.521
20 0.531 0.499 0.531 0.492 0.574 0.531
50 0.551 0.523 0.535 0.49 0.581 0.534

100 0.546 0.508 0.553 0.502 0.578 0.534
200 0.547 0.513 0.536 0.49 0.591 0.538
400 0.555 0.522 0.543 0.479 0.598 0.531
800 0.55 0.492 0.55 0.467 0.603 0.517
1000 0.551 0.503 0.529 0.443 0.622 0.515
1200 0.56 0.506 0.531 0.452 0.601 0.499
2400 0.565 0.485 0.517 0.405 0.616 0.504

Table 10: Intrinsic evaluation results for
min-count (default = 5)

PMC-PubMed PMC PubMed
min-count BC2 PBA BC2 PBA BC2 PBA

0 61.04 62.03 59.73 61.92 59.74 63.41
5 60.56 61.83 59.75 61.80 60.52 62.98
10 60.42 62.48 60.22 61.50 60.56 62.98
20 60.64 62.92 60.24 62.17 60.67 62.56
50 61.32 62.17 59.58 62.06 59.41 62.59

100 60.59 62.37 58.76 61.47 59.90 62.30
200 59.87 61.39 58.97 61.82 60.00 62.53
400 59.75 62.08 59.95 61.04 60.42 61.62
800 59.35 61.79 59.53 61.75 57.88 61.79
1000 59.98 62.08 58.54 60.98 58.67 62.16
1200 59.26 62.34 58.75 60.74 58.34 61.66
2400 59.49 62.44 58.58 61.54 57.11 60.70

Table 11: Extrinsic evaluation results for
min-count (default = 5)

However, our intrinsic evaluations, following the
standard protocol, ignore words that are excluded
by min-count. Hence, for PubMed vectors, when
min-count = 400, only about half of the assess-
ment items are used in intrinsic evaluation. This
implies that the result in min-count > 400 only
reflects the representation of frequent words. By
contrast, as the out-of-vocabulary rate in extrinsic
tasks is about 2.6%, its influence is less notable.

The learning process will be unstable if the
learning rate is too large and will be slow if it
is too small. From table 12 and table 13, alpha
= 0.05 appears to be an optimal value, for which
most of the vectors have their best or second best
results in both evaluations.

3.2.2 Vector Dimension (dim)
The effect of vector dimension on our vectors is
notable in all tasks (Figure 5). In Tables 14 and 15,
we see a large improvement in all evaluations
when the vector dimension grows. Although the
improvement for extrinsic measures stops when
dim > 200, it is evident that an increase from low
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Figure 4: Average intrinsic and extrinsic
evaluation results for learning rate

(Unit: ρ: dashed line, F-score: solid line)

PMC-PubMed PMC PubMed
alpha Sim Rel Sim Rel Sim Rel

0.0125 0.511 0.468 0.442 0.401 0.508 0.475
0.025 0.538 0.492 0.492 0.441 0.543 0.493
0.05 0.55 0.501 0.516 0.46 0.584 0.532
0.1 0.542 0.504 0.511 0.46 0.583 0.543

Table 12: Intrinsic evaluation results for learning
rate (default = 0.025)

PMC-PubMed PMC PubMed
alpha BC2 PBA BC2 PBA BC2 PBA

0.0125 60.03 61.41 60.24 62.04 60.57 63.29
0.025 59.57 61.86 59.86 62.16 59.83 62.68
0.05 59.80 62.86 59.54 61.25 60.77 62.65
0.1 60.41 62.38 60.40 61.94 60.30 62.64

Table 13: Extrinsic evaluation results for learning
rate (default = 0.025)

0 200 400 600 800

40
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Figure 5: Average intrinsic and extrinsic
evaluation results for vector dimension

(Unit: ρ: dashed line, F-score: solid line)

dim gives a very substantial improvement.
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PMC-PubMed PMC PubMed
dim Sim Rel Sim Rel Sim Rel
25 0.426 0.38 0.385 0.346 0.466 0.438
50 0.508 0.461 0.452 0.407 0.534 0.494
100 0.537 0.491 0.509 0.459 0.543 0.491
200 0.552 0.504 0.511 0.459 0.551 0.495
400 0.562 0.505 0.518 0.469 0.534 0.477
500 0.553 0.507 0.511 0.447 0.531 0.47
800 0.544 0.479 0.51 0.448 0.51 0.45

Table 14: Intrinsic evaluation results for vector
dimension (default = 100)

PMC-PubMed PMC PubMed
dim BC2 PBA BC2 PBA BC2 PBA
25 56.33 59.14 55.38 58.06 55.77 60.26
50 59.03 61.38 57.24 61.40 57.57 61.75
100 60.81 62.39 60.84 62.17 60.38 62.88
200 61.22 63.04 60.13 62.27 61.24 62.68
400 61.17 61.57 60.18 61.61 60.54 62.50
500 60.89 62.21 60.81 62.38 61.03 62.36
800 61.00 62.30 60.43 62.34 60.59 62.92

Table 15: Extrinsic evaluation results for vector
dimension (default = 100)

1 8 16 30
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Figure 6: Average intrinsic and extrinsic
evaluation results for window size

(Unit: ρ: dashed line, F-score: solid line)

3.2.3 Context Window Size (win)
We find contradictory results from changing the
size of the context window parameter (Figure 6).
All three sets of vectors show a notable increase
in the intrinsic measures when the context win-
dow size grows (Table 16). However, the ex-
trinsic evaluation shows the opposite pattern (Ta-
ble 17): all results in extrinsic tasks have an early
perofmance peak with a narrow window (e.g. win
= 1), followed by a gradual decrease when win-
dow size increases. One possible explanation may
be that a larger window emphasizes the learning
of domain/topic similarity between words, while
a narrow context window leads the representa-

PMC-PubMed PMC PubMed
win Sim Rel Sim Rel Sim Rel
1 0.419 0.377 0.342 0.302 0.425 0.387
2 0.488 0.43 0.422 0.374 0.493 0.454
4 0.528 0.477 0.485 0.425 0.53 0.478
5 0.545 0.494 0.496 0.412 0.55 0.497
8 0.562 0.516 0.544 0.487 0.581 0.536
16 0.589 0.535 0.556 0.506 0.597 0.557
20 0.66 0.558 0.562 0.513 0.619 0.574
25 0.6 0.543 0.582 0.531 0.61 0.568
30 0.605 0.541 0.571 0.522 0.627 0.584

Table 16: Intrinsic evaluation results for context
window size (default = 5)

PMC-PubMed PMC PubMed
win BC2 PBA BC2 PBA BC2 PBA
1 61.28 62.23 60.18 62.44 60.93 62.70
2 60.81 61.74 60.83 61.59 61.11 63.01
4 61.29 62.45 60.43 61.43 60.74 62.86
5 59.87 62.25 60.08 62.51 59.47 62.80
8 59.52 61.83 58.78 61.26 60.40 62.74
16 59.82 61.41 59.40 61.30 60.18 62.62
20 59.54 60.80 59.92 60.92 60.02 61.76
25 58.86 60.86 58.91 61.41 58.98 62.79
30 57.83 61.28 57.61 60.53 59.22 62.83

Table 17: Extrinsic evaluation results for context
window size (default = 5)

Parameter Setting
Corpus PubMed

Architecture skip-gram
neg 10
dim 200

alpha 0.05
samp 1e-4
win 2, 30

min-count 5

Table 18: Settings selected for comparative
evaluation

tion to primarily capture word function (Turney,
2012). It is possible that for intrinsic evaluation
datasets such as UMNSRS it is more important
to model topical rather than functional similarity.
Conversely, it is intuitively clear that for tasks such
as named entity recognition the modeling of func-
tional similarity such as co-hyponymymy is cen-
trally important. For further discussion on the ef-
fect of the context window size parameter, we re-
fer to Hill et al. (2015) and Levy et al. (2015).

3.3 Comparative evaluation

Based on the parameter selection experiments cov-
ering three corpora (PMC, PubMed and both), var-
ious preprocessing options (normal-text, sentence-
shuffled text, lower-cased text), two model archi-
tectures (skip-gram vs. CBOW) and six hyper-
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Sim Rel BC2 PBA
PubMed, win 2 (ours) 0.56 0.507 76.89 64.13
PubMed, win 30 (ours) 0.652 0.601 75.51 63.15
Pyysalo et al. (PMC-PubMed) 0.523 0.48 77.01 63.6
Pyysalo et al. (PMC) 0.453 0.396 75.48 63.66
Pyysalo et al. (PubMed) 0.549 0.506 76.47 63.66
Kosmopoulos et al. (BioASQ) 0.589 0.509 75.51 62.85

Table 19: Intrinsic and extrinsic evaluation with
comparison to baseline vectors

parameters, we selected the best-performing op-
tions for comparative evaluation against the base-
line vectors (Table 18). Since the size of the con-
text window (win) showed contradictory results
between the intrinsic and extrinsic tasks, we cre-
ated vectors for two different values of this param-
eter. Note that for this comparative evaluation we
use the test sets and test evaluation scripts of the
two extrinsic tasks.

Table 19 summarizes the results of the compara-
tive evaluation. For our intrinsic tasks, our vectors
with win = 30 show the best performance, clearly
outperforming the baselines as well as our other-
wise identically created vectors with win = 2. This
further supports the suggestion that a higher con-
text window facilitates the learning of domain sim-
ilarity for the intrinsic task. For extrinsic tasks,
while the difference to the baselines is smaller,
our vectors with win = 2 show the best results for
JNLPBA and the second best in BC2GM, while
the vectors with win = 30 are clearly less compet-
itive.

The comparative evaluation on test set data thus
confirms the indications from parameter selection
that the context window size has opposite effects
on the intrinsic and extrinsic metrics and indicates
that our experiments have succeeded in creating a
pair of word embeddings that show state-of-the-art
performance when applied to tasks appropriate for
each.

3.4 Discussion

In this study, we have created vectors with
PubMed, PMC and the combination of the two
with a large variety of different model, prepro-
cessing and parameter combinations. While in
theory a larger corpus is expected to benefit the
learning of word representations, we find that
in many cases this does not hold, in particular
with the combination of PubMed and PMC show-
ing lower results than PubMed alone. We offer
two possible explanations for this surprising find-

ing, which contradicts some prior in-domain re-
sults. First, we used PMC texts recently intro-
duced by PubMed Central using an incompletely
documented extraction process, and preliminary
examination suggests that the proportion of non-
prose text in this material may be quite high, po-
tentially affecting learning. An alternative expla-
nation may be that the word2vec implementation
has a (somewhat hidden) “reduce-vocab” function
that triggers rare-word removal when the size of
the corpus crosses certain thresholds: the larger
the corpus size, the more aggressive the trimming.
Preliminary results suggests that this functional-
ity may have affected PMC-PubMed, our largest
corpus, to a larger extent than the other corpora.
We leave the resolution of this question for future
work.

4 Conclusion and future work

In this study, we show how the performance of
word vectors changes with different corpora, pre-
processing options (normal text, sentence-shuffled
text, lower-cased text), model architectures (skip-
gram vs. CBOW) and hyper-parameter settings
(negative sampling, sub sample rate, min-count,
learning rate, vector dimension, context window
size). For corpora, sentence-shuffled PubMed
texts appear to produce the best performance, ex-
ceeding that of the notably larger combination
with PMC texts.

For hyper-parameter settings, it is evident that
performance can be notably improved over the de-
fault parameters, but the effects of the different
hyper-parameters on performance are mixed and
sometimes counterintuitive. We have previously
found a similar result in general domain work
(with Wikipedia text) (Chiu et al., 2016).

Several directions remain open for future work.
First, in addition to tuning individual parameters
in isolation, we can study the effect of tuning two
or more parameters simultaneously. In addition,
the number of training iterations was not consid-
ered in the experiments here, and careful tuning
of this parameter both separately and jointly with
associated parameters such as alpha may offer fur-
ther opportunities for improvement.
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