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Abstract

Document classification is an important
and common application in natural lan-
guage processing. Scaling classification
approaches to many targets faces a bot-
tleneck in acquiring gold standard labels.
In this work, we develop and evaluate
a method for using informed topic mod-
els to noisily label documents, creating a
noisy but usable set of labels for train-
ing discriminative classifiers. We inves-
tigate multiple ways to train this noisy
classifier, and the best performing method
uses Wikipedia-seeded topic models to ap-
proximately label training instances with-
out any supervision. We evaluate these
methods on the classification task as well
as in an active learning setting, in which
they are shown to improve learning rates
over traditional active learning.

1 Introduction

Document classification is a standard task in ma-
chine learning and natural language processing
which has been studied extensively (Joachims,
1999; Sebastiani, 2002). For many instances of
this problem, standard supervised machine learn-
ing methods are now sufficient, so that any given
document classification problem may be consid-
ered an application or engineering task rather than
an interesting research problem. Recent work re-
lated to this problem has come mainly from the
machine learning community and has focused on
a generalization of the task called multi-label clas-

sification, in which each instance has multiple cat-
egories that must be predicted (Tsoumakas and
Katakis, 2007; Read et al., 2011). That work has
been concerned with the problem of how to best
make use of correlations between the different la-
bels, and using that information to perform the
classifications non-independently.

In contrast, the work here is concerned with the
more practical problem of obtaining these labels,
and particularly the issue that ad hoc classification
targets require obtaining supervised training data
from scratch. This problem may arise in any ap-
plication area of natural language processing, but
in the clinical domain this problem is potentially
more pressing because expert annotators (physi-
cians) are expensive and traditional cost-saving
approaches such as crowdsourcing are not always
viable due to privacy concerns.

A common use case for clinical document clas-
sification is physicians mining patient notes for
diseases, then using genetic samples of that “vir-
tual cohort” to do phenotype-genotype correlation
studies. Billing codes have high recall but vary-
ing precision depending on the disease. Thus, ma-
chine learning and NLP applied to the narrative
text in the clinical record are now often used as a
solution to this problem.

Our approach to this task is to use the unsuper-
vised method of topic modeling, specifically La-
tent Dirichlet Allocation (LDA), which can learn
word probabilities for semantically coherent top-
ics, and by providing informed priors, we can steer
topics to categories of interest and use these word
lists like features in a classifier. As a first step, we
take advantage of the crowd-sourced knowledge
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contained in Wikipedia to build a representation
of the category of interest. We then use this cate-
gory representation as an informed prior to LDA.
This informed LDA algorithm then finds the top-
ics that best satisfy the data given the priors, in-
cluding both informed topics and traditional unin-
formed topics. In particular, we are able to guide
the topic model to learn separate topics for similar
categories if that is required by the categories we
are interested in for classification.

The ability to extract pre-specified topics of
varying granularity is interesting on its own, as it
could be used for more guided data explorations
of the kind that LDA is already in use for. But we
can also use the output of this process to gener-
ate classifiers, by treating the occurrence of these
topics in a document as a noisy label for that doc-
ument. Given these noisy labels, we can immedi-
ately train a classifier, which performs much better
than chance, without seeing a single gold standard
training example.

Finally, we show that this has potential appli-
cations to active learning by using our noisy clas-
sifier’s certainty estimates to select training exam-
ples, rather than first annotating a random seed set.
This method results in faster learning rates than
passive learning, standard active learning, and a
baseline method that uses the Wikipedia-trained
priors directly.

2 Background

2.1 Topic Modeling with Latent Dirichlet
Allocation

Latent Dirichlet Allocation (LDA) (Blei et al.,
2003) is a probabilistic unsupervised method for
grouping tokens into a set of corpus-wide clusters.
By setting parameters that constrain each docu-
ment to use a subset of the clusters, frequently co-
occurring words tend to get placed into the same
clusters, and since distributionally similar words
are often semantically similar, the result is that the
clusters are often semantically coherent topics.

A document in LDA is represented as a bag of
words. Each document has a probability distribu-
tion across K topic indices, and each topic is a
global probability distribution across V words in
the vocabulary. This leads to a generative story
where the topic distribution for a document is
drawn from a Dirichlet distribution, and each word
is generated by first drawing a topic from the topic
distribution, then drawing a word from the word

distribution indexed by that topic. One common
inference method for LDA is to use Markov Chain
Monte Carlo sampling, which is an iterative algo-
rithm where each variable of interest is sampled
probabilistically. In LDA, the standard sampling
algorithm is derived by integrating out the topic
and word distributions from the joint probability,
so that the only random variable left to sample is
the topic assignment for each word. Each topic as-
signment is typically randomly initialized, then at
each iteration a topic is sampled from the sampling
equation (from Griffiths and Steyvers (2004)):

p(zi = j|z−i,w) ∝ nwi
−i,j + β

n
(·)
−i,j + |V |β

· ndi
−i,j + α

ndi
−i,· + Tα

(1)
where i indexes words in the corpus and j is an
index into K topics. The first factor represents the
probability of the given word being selected for
this topic (nwi

−i,j is the count of the word at po-
sition i in topic j). The second factor represents
the probability of topic j being selected for a word
in this document (ndi

−i,j is the count of words in
the same document as wi with topic j). α and β
are the hyper-parameters from the Dirichlet priors
used to draw the probability distributions. While
the Dirichlet distribution accepts a vector of hyper-
parameters the size of the output distribution, in
most work these hyper-parameters are symmetri-
cal, and are set using intuition or experimentation.
Low values of these parameters (≤ 1) encourage
sparse distributions, and sparsity constraints give
rise to the clustering behavior typical of LDA.

One limitation of standard LDA in practice is
that it will not always make fine-grained distinc-
tions, even if they are known to exist in the data.
For example, in the 20 Newsgroups data set (de-
scribed in Section 4.2), there are different topics
for baseball and hockey, which share quite a bit of
terminology (teams, games, scores, etc.) but users
may wish or expect them to be separate. Run-
ning standard topic modeling on this corpus with
number of topics K = 25 using the Mallet topic
modeling framework (McCallum, 2002), we ob-
serve that one topic seems to have merged base-
ball and hockey terminology (top words in that
topic: game, team, year, play, games, hockey, sea-
son, players, ca, win, league, baseball, nhl). Sim-
ply increasing the number of topics may solve the
problem but will also have the general effect of
making categories more specific, which may ad-
versely affect other topics. This problem can also
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be addressed by hierarchical models, in which top-
ics that are higher in some hierarchy tend to model
more general terms and lower topics are more spe-
cific. Hierarchical topic models (Blei et al., 2003)
make use of a nested Chinese Restaurant Process
where a word is a sample from a mixture between
all the topics in a path from the root to a leaf node
in a topic tree. Higher-level nodes will tend to
be on more paths, and will thus be sampled more
often and contain higher probability words. This
method can then, for example, run on text with-
out stop words removed and recover them as the
top level of the hierarchy. One might imagine
that for the baseball and hockey example, a hierar-
chical model would recover a higher-level sports
topic with lower level topics specific to baseball
and hockey.

Another method, Pachinko Allocation
Model (Li and McCallum, 2006), general-
ized hierarchical topic models so that the topic
hierarchy did not need to be a tree. This retains
a hierarchy with higher and lower nodes corre-
sponding to more or less general topics, but also
allows for different words to be generated by
different topic paths. While these hierarchical
models have attractive properties, they are signif-
icantly more complex than standard LDA, which
means they have more parameters, may take
longer to train, and still may not recover topics of
interest to a user.

Some relevant recent work in topic modeling
has explored the importance of the prior values α
and β. Wallach et al. (2009) developed optimiza-
tion procedures for α and β and found that opti-
mization of the document-topic prior α led to im-
proved results, as measured by perplexity on held-
out data. Jagarlamudi et al. (2012) found that pri-
ors on both α and β allowed them to incorporate
information into the LDA inference, though they
found that a more complex model structure was
necessary to properly incorporate the information,
which requires a more complex inference proce-
dure.

Other relevant topic modeling work involves
the augmentation of LDA-style models for la-
beling documents with multiple topics. Labeled
LDA (Ramage et al., 2009) creates a topic for each
label in a multi-label setting, and takes advantage
of gold standard labels to learn topic distributions
for each label. In the author-topic model (Rosen-
Zvi et al., 2004), a document is generated by a set

of authors, and an author is a distribution over top-
ics. While both models are relevant to the multi-
label classification problem, they both require gold
standard labels, and we suspect that given gold
standard labels discriminative classifiers will be
superior.

3 Methods

Building on this existing work in topic modeling,
we propose an extension to the LDA model that is
able to find specific topics of interest, with mini-
mal human effort. We call this method informed
LDA, and the following sections will describe the
method and how it can be used to train classifiers.

3.1 Building Informed Priors

We first build models for each of the target labels
we are interested in. For this work, we use top-
ics from two corpora, the 20 Newsgroups dataset
mentioned above, as well as the 2008 i2b2 Chal-
lenge dataset1, a set of 730 clinical discharge sum-
maries labeled for multiple obesity-related dis-
eases. Table 2 shows the 14 i2b2 labels we used
for this work.

To build these models, we retrieved the
Wikipedia article closest in meaning to each la-
bel. For most labels, there was an article with the
exact title or a very similar title. We tokenized the
articles and then TF-IDF (term-frequency/inverse
document frequency) weighting was applied to
these tokens (for the clinical articles we used an
IDF derived from a sub-index of Wikipedia arti-
cles containing clinically relevant articles). The
purpose of the TF-IDF reweighting is to down-
weight commonly occurring words like those rep-
resenting broad terms (especially in the clinical
data, terms like ”disease” ”surgery” are not as in-
formative as they are generally).

While in the present work the step of identify-
ing the relevant Wikipedia article required a small
amount of manual effort, there are many ways that
it could be automated – for example, by querying
Wikipedia or the Web with the category name and
performing token counts over multiple retrieved
articles. Performing this step manually and ob-
taining high quality models of each category al-
lows for a purer evaluation of the more technically
challenging downstream steps.

1The i2b2 Challenge datasets are publicly available with
a Data Use Agreement at https://i2b2.org/NLP/DataSets/.
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3.2 Informed LDA
The standard LDA sampling equation, Equation 1,
has a single value of α and β, assuming symmetric
Dirichlet priors. A simple extension of the sam-
pling equation for arbitrary priors can be obtained
by vectorizing ~α and ~β:

p(zi = j|z−i,w) ∝ nwi
−i,j + βwi

n
(·)
−i,j +

∑|V |
i′=1 βi′

·

ndi
−i,j + αj

ndi
−i,· +

∑K
j′=1 αj′ (2)

Since each article has a different length, the
prior vectors are first normalized so that all in-
formed priors have equal strength. The ~β parame-
ters are then filled in by these normalized weights.
For token values that are not in the article, we use
a default value of 0.01 in the prior.

To do inference using this model, we modi-
fied the source code of Mallet (McCallum, 2002),
allowing for arrays of priors and modifying the
sampling equation as described above. The num-
ber of topics K was set to 30, as this value gave
reasonable results during preliminary experiments
with standard LDA. This means that, in contrast
to methods like Labeled LDA, not all topics are
associated with a label – 16 of our topics were in-
formed and the remaining 14 are uninformed, al-
lowing the model to fit other topics in the data that
we may not be currently interested in.

3.3 Creating a Bronze Standard
After running inference on the informed LDA
model, the output of interest is the empirical es-
timates of document-topic probability – frequen-
cies of each topic in each document. For exam-
ple, the output may say that in document 0, the
topic for asthma accounted for 3% of the tokens.
Our goal is to use these values to assign noisy la-
bels to each document for the value of that cluster
category. We call this set of labels a bronze stan-
dard, in contrast to the gold standard of expert-
generated labels.2

There are many ways one might go about con-
verting topic frequencies to labels. For binary
classification, as in the i2b2 data, one could set a
threshold value and give all documents with topic
frequencies above that threshold a positive label.

2Silver standard is already used to describe huge automat-
ically labeled datasets (Rebholz-Schuhmann et al., 2010).

Possible thresholds include 0 and 1/K. We found
that thresholds allowed for too much variation, and
led to some severely skewed label distributions, so
that the next stage classifier may have only a few
positive examples to work with. Even if this ap-
proximates a true distribution, it is probably not
enough data points to find a signal in the features,
and so the resulting classifier probably will not be
useful.

Another option is, for each informed topic, sort
all documents by that topic’s frequency, and then
split the data at the median frequency value into
the true and false classes, so that the classifier gets
training data with no skew in its distribution. We
found that this method was the most reliable across
labels and does not require fitting any parameter.

For multi-way classification, as in the 20 News-
groups data, we use as the bronze label the topic
whose document-topic probability was the maxi-
mum of all the informed topics. To simplify fur-
ther, this is just the topic that accounts for the
greatest number of words in the document.

3.4 Building a Classifier
However bronze labels are obtained, they can now
be used in the typical way to train a classifier. The
feature representation may also be varied. We will
describe classifier settings in detail in the Evalua-
tion, but we experimented with a variety of classi-
fiers. The representation used here is bag of words
for a document.

3.5 Active Learning with Bronze and Gold
Labels

While this technique may have value as a low-cost
low-accuracy classifier, we suspect that it might
have additional value as an input to other systems.
One such potential application is as an input to an
active learning-based annotation system, as a way
of obtaining gold standard labels to achieve op-
timal classification performance. Active learning
is an annotation technique that has a classifier in
the loop – instead of labeling examples randomly,
examples are selected for labeling based on some
notion of usefulness, such as classifier uncertainty
(see Settles (2010) for an excellent overview of
active learning). To initialize the active learning
classifier, however, a small set of “seed” examples
are randomly selected to be labeled.

Here, instead of using a seed set, we use our un-
supervised classifiers from the start of the annota-
tion process. Using this bronze-trained classifier,
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we get a probability distribution across categories
for every instance in the training data. We use
uncertainty sampling to select the next instance,
which in the two-class case means selecting the
instance whose classification probability is closest
to 0.5. The bronze standard label is then replaced
with the gold standard label (simulating annota-
tion of the instance) and the classifier is re-trained.
This process repeats until every instance in the
training data has its gold label uncovered. To test
this method experimentally (as in Section 4), we
would also have a set of held out data, and every
time we train a classifier we would evaluate it on
this held out data.

The active learning method just described dif-
fers from standard active learning in that there is
no longer a breakdown into initial seed set and
a pool set from which examples are drawn, but
rather we have a mixed gold/bronze training set.
Since the gold labels are more reliable, we give
them a higher weight relative to the bronze labels,
so the classifier can treat them differently.

4 Evaluation

To evaluate the effectiveness of this method, we
will start with one brief qualitative evaluation to
inspect the topics found, and then proceed to two
quantitative evaluations. The first evaluation at-
tempts to get a preliminary look at how the in-
formed LDA method works on topics that are su-
perficially similar, to gauge how adding informa-
tion can guide the model to make difficult distinc-
tions. The first quantitative evaluation is a sim-
ple set of unsupervised classification experiments.
We build a bronze standard for the 20 Newsgroups
and i2b2 data sets, then train classifiers for each
category and evaluate the classifier. The second
quantitative evaluation examines the use case of
active learning. Our experiment uses the unsuper-
vised classifiers from the previous experiment to
evaluate whether active learning can be made even
faster by using those classifiers to select examples
at the start of the active learning procedure, when
the gold standard training data is still quite small.

4.1 Qualitative Inspection of Similar Topics

Table 1 shows the results of inspecting a few
sports-related topics from the 20 Newsgroups cor-
pus. This is to simply see if this method can ad-
dress the issue discussed in Section 2, the con-
flation of similar topics. The first column shows

LDA Baseball Hockey
game year team
team baseball game
year hit hockey
play san play

games win canada
hockey team games
season season toronto
players runs nhl

ca league cup
win game players

league won division
baseball lost season

nhl games gary

Table 1: Comparison of topic words in similar top-
ics with standard LDA (first column) and informed
LDA (last two columns).

the words in a sports-related topic using standard
LDA. It clearly finds words related to both hockey
and baseball, with no other topics containing any
significant amount of hockey or baseball content.

In contrast, the last two columns show the in-
formed topics for baseball and hockey using in-
formed LDA. In addition to the sport names there
are additional terms that are discriminative, in-
cluding hit, runs, and wins (a pitching statistic)
for baseball, and canada, nhl, and cup for hockey.
Informed LDA also did not have any other topics
containing significant amount of hockey or base-
ball content. This kind of evaluation is of limited
use, but it does verify that the algorithm is able to
find closely aligned topics.

4.2 Experimental Configuration

The data sets used for evaluation are the 20 News-
groups data set3 and the 2008 i2b2 Challenge data
set described above. The 20 Newsgroups data
set contains around 11,000 training documents,
partitioned into 20 topics, which are used as la-
bels for the documents. These include labels such
as alt.atheism for atheism-related conversations,
sci.crypt for cryptography-related discussions, and
so forth. While each document may have multiple
“topics” in the strict semantic sense, it will have
one topic label – in other words, a classifier must
choose a single category from 20 possibilities.

The 2008 i2b2 Challenge data consists of clin-

3This data set can be downloaded here:
http://qwone.com/ jason/20Newsgroups/
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ical discharge summaries from patients at an obe-
sity clinic. This data contains 730 notes in the
training set, with each note being labeled for 16
disease categories, with both textual and intuitive
labels.4 We use the more challenging intuitive la-
bel set, which did not require explicit confirmation
of a diagnosis in the text. We discard two labels,
hypertriglyceridemia and venous insufficiency, af-
ter preliminary work on the training set indicated
that those two labels could not be learned satisfac-
torily even with fully supervised approach. The
likely cause of the difficulty is that these two cate-
gories contained the fewest number of positive ex-
amples, an important issue but one we will have
to reserve for future work. In contrast to the 20
Newsgroups data, in the i2b2 data the labels are
not mutually exclusive, so we frame the task as 14
binary classification problems.

We used the Weka machine learning
toolkit (Hall et al., 2009) during develop-
ment, and evaluated many different classifiers on
both datasets, including Adaboost, support vector
machines, logistic regression, and naive bayes.
We use the Adaboost algorithm (Freund and
Schapire, 1996) with decision stumps as the weak
learner for the i2b2 data. For the 20 Newsgroups
data we used a support vector machine with
linear kernel for the classification experiment and
switched to Naive Bayes for the active learning
experiments for speed reasons. Besides being
relatively accurate, using boosting with decision
trees has the beneficial property that the models it
builds have some degree of transparency, which
clinical researchers appreciate.

For the first experiment we evaluate the effec-
tiveness of informed LDA on generating labels
that can train a classifier. We compare first to
a random labeling baseline (labeled RandL), that
generates a random labeling, trains a classifier
with those labels, and then uses it to classify the
training set. This is not intended to be a com-
petitive baseline, as much as it is a check to set
a lower bound on what kind of performance we
would get if informed LDA labeling had no signal
whatsoever. We also compare to a standard ran-
dom classifier (RandC) which is based on a recall
of 0.5 and a precision of the category’s prevalence.
This baseline is important for the binary classi-
fier to make sure our classifier is learning more

4In actuality, not every note is labeled for every category,
but most are.

than just how to do random guessing based on our
evenly split labels. In the main experimental con-
dition (Bronze), we use informed LDA to gener-
ate a bronze standard label set for the training data
as described in Section 3.3, train a classifier with
those labels and evaluate it on those same exam-
ples from the training set. The upper bound we
compare against is a 5-fold cross-validation of the
training set using gold labels.

The next experiment examines the usefulness of
these unsupervised classifiers in an augmented ac-
tive learning scheme described in Section 3.5. We
use the two baselines of passive learning and stan-
dard active learning. The passive learning baseline
is equivalent to just plotting a learning curve for a
machine learning problem with random ordering
of the instances. The active learning baseline uses
an initial seed set of 25 examples from within the
pool set. We use uncertainty sampling to select
the next example, which uses the example which
has the smallest difference in probability estimates
between the two most likely classes.

The condition we are testing is labeled Bronze.
This condition does not use a seed set, but starts
with a classifier trained on the entire bronze-
labeled pool set. Learning proceeds by finding ex-
amples in the pool set that the current iteration of
the classifier is uncertain about and uncovering the
gold label (i.e. simulating annotation). This means
that, in the active learning curve, the x-axis, which
traditionally indicates the size of the training data
used to train the classifier, now indicates the num-
ber of gold instances in the training data (the re-
maining instances still have bronze labels).

We give gold and bronze instances different
weights to reflect varying quality of the labels.
This weight is used in calculating the cost func-
tion during training – a higher weight on gold la-
bels means the classifier will try harder to get gold-
labeled instances correct. Here we use a weight of
0.1 for bronze-labeled instances and a weight of
1.0 for gold-labeled instances.

4.3 Results

Table 2 shows the results of the 14 binary classi-
fiers on the i2b2 data. The random labeling gives
rise to a classifier that never obtains an F1 score
better than 0.11. The bronze labeling, performs
much better than the RandL classifier, with a low
performance of 0.26 (for depression) and a high
performance of 0.83 (for diabetes). The bronze-
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Category RandL RandC Bronze CV
Asthma 0.02 0.20 0.47 0.91
CAD 0.05 0.54 0.66 0.91
CHF 0.07 0.50 0.75 0.86
Depression 0.07 0.29 0.26 0.77
Diabetes 0.06 0.58 0.83 0.95
Gallstones 0.02 0.22 0.33 0.83
GERD 0.04 0.33 0.39 0.77
Gout 0.05 0.21 0.42 0.88
HC 0.08 0.51 0.56 0.83
HTN 0.06 0.62 0.67 0.96
OA 0.10 0.26 0.27 0.66
Obesity 0.07 0.46 0.56 0.97
OSA 0.02 0.22 0.28 0.91
PVD 0.11 0.25 0.37 0.76

Table 2: F1 scores for traditional supervised clas-
sifier (CV) vs. unsupervised classifier trained us-
ing informed LDA (Bronze), classifiers trained
with random labels (RandL), and a classifier that
makes random guesses (RandC). (CAD=Coronary
Artery Disease, CHF=Congestive Heart Fail-
ure, GERD=Gastroesophageal Reflux Disease,
HC=Hypercholesterolemia, HTN=Hypertension,
OA=Osteoarthritis, OSA=Obstructive Sleep Ap-
nea, PVD=Peripheral Vascular Disease)

RL RC Bronze CV
Accuracy 0.05 0.05 0.64 0.85

Table 3: Multi-way classifier accuracy on the 20
Newsgroups dataset using random labels (RL),
a random classifier (RC), bronze labels obtained
from informed LDA (Bronze) and a supervised
cross-validation (CV).

trained classifier also outperforms the RandC ran-
dom classifier in 13 out of 14 categories, by an av-
erage of approximately 12 points F1 score. Cross-
validation using the gold standard can be very ac-
curate, ranging from 0.66 to 0.96.

There are a few interesting things to point out
from these results. First, our analysis of the er-
rors shows that the classifiers trained by the bronze
labeling did not systematically favor either preci-
sion or recall. A linear regression with the Gold
score as the independent variable and the Bronze
score as the dependent variable shows that the
Gold score is a statistically significant predictor of
the Bronze score (p = 0.01), but with so few data

Active Learning
Disease Passive Active Bronze
Asthma 469.6 486.1 500.1
CAD 455.5 462.7 469.6
CHF 415.3 422.3 435.1
Depression 371.7 414.5 410.4
Diabetes 491.7 503.2 510.8
Gallstones 400.7 450.8 457.0
GERD 317.3 350.0 360.2
Gout 477.4 506.1 519.1
HC 372.4 389.4 398.9
Hypertension 460.1 476.2 465.1
Osteoarthritis 305.6 328.7 349.9
Obesity 490.4 501.9 502.0
OSA 463.6 487.7 495.8
PVD 363.0 390.9 372.2
Average Curve 451.0 473.8 479.8

Table 4: Performance of augmented active learn-
ing on 14 categories from the 2008 i2b2 Challenge
data .

Passive Active Bronze
ALC 7203 7469 7678

Table 5: Performance of augmented active learn-
ing on 20-way classifier for 20 Newsgroups data.
Unit is Area Under the Learning curve (ALC).

points the exact nature of this effect is not clear.
Table 3 shows the results of the three classifiers

on the Newsgroups data. For this multi-category
experiment we use accuracy as the metric instead
of F1 score. Here the accuracy of the RandL and
RandC are both quite low, at 0.05. Bronze label-
ing can train a classifier that attains an accuracy of
0.64. The Gold labeling gives us an approximate
ceiling performance of 0.85.

Table 4 shows the area under the active learning
curve (ALC) for 14 categories in the i2b2 data un-
der three conditions. Both the active learning and
the bronze-augmented active learning outperform
passive learning on all 14 categories. In 11 of the
14 categories the bronze-augmented version is su-
perior to traditional active learning. We also aver-
aged the curves together and computed the average
learning curve, for which the bronze-augmented
algorithm is again optimal.

Figure 1 shows the average learning curve
across i2b2 category labels. The x-axis has been
truncated at 100 instances to clarify the region
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Figure 1: Average active learning curve across 14
disease categories.
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Figure 2: Active learning plot for 20 Newsgroups
data.

where there is a clear distinction. Qualitatively,
the distinction between passive and active is quite
clear – this much is not surprising, given previous
success in active learning. While the bronze curve
shows an advantage up to maybe 30 instances, it
quickly converges with the active curve.

Table 5 shows the Area Under the Learning
curve (ALC) results of active learning on the 20
Newsgroups data. Active learning again beats pas-
sive learning, and the augmented version using
bronze labels performs best. The learning curves
for all three conditions are in Figure 2, truncated
to 5000 examples to highlight the area showing the
most difference. Here the bronze label-based ver-
sion of active learning seems to have a clearer ad-
vantage than in the i2b2 corpus.

4.4 Discussion and Future Work

One aspect that deserves further mention is that of
class prevalence and skew. The decision to assign
bronze labels on the i2b2 corpus with an even class
distribution was vastly superior to any threshold-
ing that was attempted. However, we should note
that in the i2b2 data we used, the prevalence is rel-
atively high for most categories. Diabetes, for ex-
ample, is present in 70% of the patients here, while
gout is present in 13%.

Evaluating unsupervised methods on super-

vised tasks is tricky. Our experiments here fo-
cused on the training set of each corpus rather
than following the default train/test splits. Our pri-
mary concerns here were evaluating whether this
method had any promise at all, and that it was
applicable to more than one corpus. One could
argue that future work should develop and tune
the methods on the training data and then evalu-
ate them on the test set. However, the very nature
of this method breaks the traditional training/test
model because tuning on the training data is al-
ready cheating relative to how the method would
actually be applied on unlabeled data.

We are not sure that this problem has any per-
fect solutions, but we suggest that evaluating on as
many different corpora as possible will be the best
validation for this method. In this work, we tried
to do that by starting on i2b2 data and then moving
to the 20 Newsgroups data. Doing this helped us
understand how informed priors need to be modi-
fied based on the size of the corpus.

One sticking point to portability with this
method is the choice of classifier. We could have
chosen a single classifier to stick with across cor-
pora but then if one is particularly weak for a given
corpus (e.g., SVM performed poorly on i2b2), it is
less clear how much credit to assign the bronze la-
bels for the performance. One possible solution
to this issue is to require a much smaller sample
of gold-labeled validation set if validated perfor-
mance is strictly necessary.

One final point is that the classifier trained on
bronze training labels probably would not gener-
alize to a new corpus very well. This is not much
of a problem, because the idea of the method is
that for a new corpus one should generate new
bronze labels using informed LDA on that data set.
This does raise the question of what the difference
would be between two classifiers trained on dif-
ferent corpora but with the same topic label, and
whether there is some way of extracting additional
information from comparing the decisions of these
different classifiers on new data.

5 Conclusion

This work has shown that informed topic models
seeded with topic information from Wikipedia can
be used to train classifiers that perform much bet-
ter than random. These classifiers are given no
gold standard information and yet obtain results
that may be useful in some applications. We show

90



that in active learning this method can improve
learning rate for many categories. This method
may be beneficial in domains where a large num-
ber of classifiers are required and state of the art
performance is not necessary.
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