
Proceedings of the 1st Workshop on Evaluating Vector Space Representations for NLP, pages 19–23,
Berlin, Germany, August 12, 2016. c©2016 Association for Computational Linguistics

Evaluating Word Embeddings Using a Representative Suite of Practical
Tasks

Neha Nayak
Stanford University
Stanford, CA 94305

Gabor Angeli
Stanford University
Stanford, CA 94305

Christopher D. Manning
Stanford University
Stanford, CA 94305

{nayakne, angeli, manning}@cs.stanford.edu

Abstract

Word embeddings are increasingly used
in natural language understanding tasks
requiring sophisticated semantic informa-
tion. However, the quality of new embed-
ding methods is usually evaluated based
on simple word similarity benchmarks.
We propose evaluating word embeddings
in vivo by evaluating them on a suite of
popular downstream tasks. To ensure the
ease of use of the evaluation, we take care
to find a good point in the tradeoff space
between (1) creating a thorough evalua-
tion – i.e., we evaluate on a diverse set
of tasks; and (2) ensuring an easy and fast
evaluation – by using simple models with
few tuned hyperparameters. This allows
us to release this evaluation as a standard-
ized script and online evaluation, available
at http://veceval.com/.

1 Introduction

Many modern NLP systems, especially those
employing deep learning techniques, benefit
from word representations in the form of low-
dimensional word embeddings. This has led to a
burgeoning body of work focusing on improving
these representations. These word representations
are used either as features for a conventional statis-
tical classifier, or in a deep learning setup, where
they are tuned to a particular task through back-
propagation.

However, the quality of these unsupervised em-
beddings is often asserted on the basis of restricted
lexical semantics tasks, such as scoring word sim-
ilarity or linear relationships for analogies. These
intrinsic evaluations are carried out with little at-
tention paid to how performance correlates with
downstream tasks. We propose instead evaluat-

ing word embeddings using a standardized suite
of characteristic downstream tasks.

This has two advantages, which constitute the
main contributions of the paper. First, an improve-
ment in performance on these representative tasks
is more likely to generalize to real-world applica-
tions of the embedding, as compared to improve-
ments in performance on current word similarity
benchmarks. Therefore, this evaluation offers a
better metric to hill-climb on than current lexical
semantics tasks.

Second, this evaluation allows for higher fi-
delity qualitative assessment on the strengths and
weaknesses of an embedding method. For in-
stance, certain embeddings may excel at syntac-
tic tasks, or on sequence modeling tasks, whereas
others may capture the semantics of a word better,
or work better for classification tasks. We believe
this evaluation can facilitate consolidating and for-
malizing such insights, currently latent in the col-
lective consciousness of the NLP community.

2 Related work

Existing work on creating evaluations for word
embeddings has focused on lexical semantics
tasks. An example of such tasks is WordSim-353
(Finkelstein et al., 2001), in which a series of word
pairs are assigned similarity judgments by human
annotators, and these are compared to the similar-
ity scores obtained from word embeddings.

A thorough such lexical semantics evaluation
was created by Faruqui and Dyer (2014)1. This
website allows a user to upload a set of embed-
dings, and evaluates these embeddings on a se-
ries of word similarity benchmarks. We follow
the model presented in Faruqui and Dyer (2014),
but extend to a series of more realistic downstream
tasks.

1http://www.wordvectors.org

19



Schnabel et al. (2015) carried out both a thor-
ough intrinsic evaluation of word vectors, and a
limited extrinsic evaluation showing that an em-
bedding’s intrinsic performance did not necessar-
ily correlate with its real-world performance. This
finding is a key motivation for this work – we aim
to create a metric which does correlate with down-
stream performance.

3 Motivation

While extensive research has gone into the devel-
opment of meaningful intrinsic evaluation meth-
ods, extrinsic evaluation remains the de-facto
proving ground for novel word embedding meth-
ods (Pennington et al., 2014; Dhillon et al.,
2012). We aim to create an evaluation methodol-
ogy which is representative of real-world perfor-
mance, but nonetheless fast and easy to evaluate
against. These two criteria are somewhat at odds
with each other, which necessitates finding a good
point in a number of key tradeoffs:

Choice of Tasks Optimally, new embeddings
would be evaluated on as large a number of
tasks as possible. However, such an evaluation
would become prohibitively slow and impracti-
cal. Therefore, we limit our evaluation to 6 tasks
of moderate size, allowing models to be trained
and evaluated quickly while nonetheless covering
a range of NLP phenomena.

Choice of Models Optimally, new embeddings
would be evaluated as components of a range of
different models. However, the addition of more
models – and in particular more sophisticated
models – slows down the evaluation. Therefore,
we opt to use uncontroversial off-the-shelf neural
models for each task. Although none of the mod-
els achieve state-of-the-art results, we only care
about relative scores between embeddings. Sim-
ple models are equally, if not more suitable for this
criterion.

Choice of hyperparameters The performance
of neural models often vary greatly depending on
the choice of hyperparameters. To be fair to ev-
eryone, we must either cross-validate for each em-
bedding, or aggressively minimize the number of
hyperparameters. For the sake of efficiency, we
opt for the latter.

Reproducibility To ensure reproducibility, we
release our evaluation script, and host a public

website where users can upload their embeddings
to be evaluated.

4 Tasks

The following are a selection of tasks to be in-
cluded in the benchmark suite. These were chosen
to be a representative – though certainly not ex-
haustive – sampling of relevant downstream tasks.

Two tasks are included to test syntactic proper-
ties of the word embeddings – part-of-speech tag-
ging and chunking. Part-of-speech tagging is car-
ried out on the WSJ dataset described in Toutanova
et al. (2003). In order to simplify the task and
avoid hand-coded features, we evaluate against the
universal part-of-speech tags proposed in Petrov et
al. (2012). For chunking, we use the dataset from
the CoNLL 2000 shared task (Tjong Kim Sang
and Buchholz, 2000), derived from the Wall Street
Journal.

Four tasks test the semantic properties of the
word embeddings. At the word level, we include
named entity recognition. We evaluate on a 4-
class Named Entity Recognition task: PERSON,
LOCATION, ORGANIZATION, and MISC, us-
ing the CoNLL 2003 dataset (Tjong Kim Sang and
De Meulder, 2003), and an IOB tagging scheme.
At the sentence level, we include two tasks – sen-
timent classification and question classification.
We implement binary sentiment classification us-
ing the Stanford Sentiment Treebank dataset, and
the coarse-grained question classification task de-
scribed in Li and Roth (2006).

Finally, above the word level, we test the abil-
ity of word embeddings to propagate the lexical
relation information they contain into representa-
tions of larger units of text. This involves the task
of phrase-level natural language inference, derived
from a dataset presented in Ganitkevitch et al.
(2013).

These tasks were selected so as to cover both
syntactic and semantic capabilities, but also as
they are fast to train, fulfilling another of the char-
acteristics put forward in Section 3.

5 Models

Our goal is to select the simplest possible mod-
els for each task, while maintaining respectable
performance. We therefore train straightforward
models using standard neural net layers.

For tasks with word-level labeling, we use a
window-based model akin to that in Collobert et

20



al. (2011). Features for each token in a sequence
are constructed by concatenating the word embed-
dings of a window of words centered on the token.
This is passed through a two-layer neural network,
followed by a softmax classifier.

For tasks with sentence-level labeling, sen-
tence representations are constructed using a basic
LSTM. Classification is then carried out by pass-
ing through a one-layer neural network, followed
by a softmax classifier.

Finally, the NLI task requires representations
for both the premise and hypothesis sequences.
Embeddings for each sequence are constructed as
described in the sentence embedding tasks, us-
ing two separate LSTMs. These embeddings are
concatenated, and similarly passed through a one-
layer neural network and softmax classifier. Our
implementations of these simple models are able
to train with a new set of embeddings and evaluate
the resulting model in a few hours.

Although these simplistic models do not
achieve state-of-the-art performance on any of the
tasks, they are faster and in many ways more ro-
bust to variations in training methodology than
more sophisticated models, maintaining a reduced
hyperparameter set. Furthermore, a valid compar-
ison between word vectors requires only that the
model is fair to each representation, not necessar-
ily that the models achieve state-of-the-art perfor-
mance, fulfilling our requirements from Section 3.

This evaluation aims solely to test the properties
of word embeddings, and not phrase or sentence
embeddings. For the tasks that demand phrase
and sentence representations, we elect to construct
these from the word embeddings using an LSTM,
rather than to extend the evaluation to other types
of embeddings.

6 Evaluation metrics

Our goal is to distill performance on extrinsic tasks
into a short but comprehensive “report” that indi-
cates the strengths and weaknesses of a particu-
lar set of embeddings on a variety of downstream
tasks. For each set of embeddings tested, we re-
port results based on the metric most appropriate
for the task – F1 score for NER, and accuracy for
the rest of the tasks.

We use SVD as a baseline embedding method.
Using the hyperwords software of Levy et al.
(2015), we apply SVD to a PMI-transformed co-
occurrence matrix derived from the same pre-

Raw results on downstream tasks

POS
(Acc.)

Chunk
(Acc.)

NER
(F1)

Sentiment
(Acc.)

Questions
(Acc.)

NLI
(Acc.)

Fixed 93.30 91.20 96.30 87.40 82.10 48.40

(Baseline) 82.80 77.60 94.20 69.20 84.00 46.40

Fine-tuned 97.10 93.30 95.80 78.70 88.80 45.60

(Baseline) 96.90 92.80 96.10 76.70 84.40 43.90

Raw results on word similarity tasks

WordSim
Analogy
(Sem.)

Analogy
(Syn.)

Anonymous vectors 0.640 52.0 63.0

Baseline 0.560 38.0 48.0

Figure 1: An example of the type of result re-
port created by our evaluation. The first chart
shows the relative error reduction of the embed-
ding method compared to the SVD baseline, dis-
allowing backpropagation into the vectors. This
measures the extent to which the original vectors
capture linguistic phenomena. Values above 0 per-
form better than SVD on the task; the magnitude
of the improvement are on comparable scales be-
tween tasks. The second chart is identical to the
first chart, but allowing backpropagation into the
vectors. This measures how good the vectors are
as an initialization for neural network methods.
The first table shows the raw accuracy numbers
for each task. The second table shows the vectors’
result on the WordSim and Analogy tasks.

21



scribed corpus, resulting in a set of SVD vectors.
We present a baseline for each task, which is the
F1 score or accuracy attained by the SVD vectors.

Due to the diversity of the tasks, it is difficult
to compare the raw values or differences over the
baseline. These measures, especially when ag-
gregated, tend to implicitly reward large improve-
ments over low-baseline tasks more than small
improvements over high-baseline tasks. To illus-
trate, whereas a 1% improvement on POS tagging
should be considered significant, the same 1% im-
provement on a task with a 80% baseline is less
impressive. As such, the primary metric we report
is not accuracy or F1, but rather the relative er-
ror reduction as compared to the SVD baseline.
This allows us to calculate a meaningful aggre-
gate, averaging relative error reduction over tasks.
For backwards compatibility with prior work, we
also report correlations on WordSim-353, as well
as precision at 1 for the analogy task presented in
Mikolov et al. (2013).

The figure shows an example report generated
by our evaluation, using arbitrary but realistic val-
ues. It can be seen that the relative error reduction
depicted in the charts enables a clearer representa-
tion of the relative performance on different tasks,
as compared to the raw values provided in the ta-
ble.

7 Experimental methodology

7.1 Training hyperparameters

Following Schnabel et al. (2015), we prescribe the
use of a fixed snapshot of Wikipedia (dated 2008-
03-01) for training the embeddings to be evalu-
ated. This corpus was selected to be as close
in time as possible to the corpus Collobert et al.
(2011)’s embeddings were trained on. It was
preprocessed by applying the Stanford tokenizer
(Manning et al., 2014), and replacing all digits
with zeros.

7.2 Avoiding bias

Since this method of evaluation involves training
a number of neural network models, there is a sig-
nificant danger of overfitting to the embeddings
used to find the hyperparameters. We attempt to
mitigate this in two ways.

First, we use simple models with standard neu-
ral net layers to limit the number of hyperparam-
eters tuned. We tune only the optimizer type, the
l2 coefficient for regularization, and the learning

rate. We set any additional hyperparameters to fast
yet reasonable defaults, which also facilitate short
training times. For example, in an LSTM layer,
we use a hidden layer size equal to the input vec-
tor size. Second, rather than optimizing for each
individual task, we select only two hyperparame-
ter settings – one for the sequence labelling tasks
(POS tagging, chunking and NER), and a separate
setting for the other tasks. This is necessitated by
the difference in model structure.

7.3 Fine-tuning

Most deep learning-based models backpropagate
into the word embeddings used so as to fine tune
them to the task at hand. This is a realistic setting
in which to examine the performance of word em-
beddings, in their capacity as an initialization for
the various tasks. In contrast, disallowing back-
propagation into the embeddings allows us to de-
termine the amount of syntactic or semantic infor-
mation inherently present in the embeddings. As
such, we propose reporting accuracies attained in
both these settings.

8 Practical details

Evaluation takes place on the web site http:
//www.veceval.com. It is assumed that the
user will train word embeddings to be evaluated,
using the corpus provided on the website. The sen-
tence and phrase embeddings used in the evalua-
tion are produced by composing these given word
embeddings. The user is required to prepare a
gzipped text file, containing the word embeddings
to be evaluated, in a simple format specified on the
website. When the file is uploaded to the website,
evaluation will begin. Once the evaluation is com-
plete, a link to a report of the embeddings’ perfor-
mance appears on the homepage.

It is expected that the evaluation will take a few
hours. For example, the best performing hyper-
parameters on the baseline embeddings result in a
running time of 4 hours and 24 minutes.

9 Conclusion

We have presented a proposal for a fair and repli-
cable evaluation for word embeddings. We plan to
make this evaluation available as a script, allowing
it to be run on new embeddings. It is our hope that
this benchmark will enable extrinsic evaluations to
be compared in a more interpretable way.

22



References
Ronan Collobert, Jason Weston, Léon Bottou, Michael

Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. The Journal of Machine Learning Re-
search, 12:2493–2537.

Paramveer Dhillon, Jordan Rodu, Dean Foster, and
Lyle Ungar. 2012. Two step cca: A new spec-
tral method for estimating vector models of words.
arXiv preprint arXiv:1206.6403.

Manaal Faruqui and Chris Dyer. 2014. Community
evaluation and exchange of word vectors at word-
vectors. org. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Lin-
guistics: System Demonstrations. Association for
Computational Linguistics.

Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias,
Ehud Rivlin, Zach Solan, Gadi Wolfman, and Ey-
tan Ruppin. 2001. Placing search in context: The
concept revisited. In Proceedings of the 10th inter-
national conference on World Wide Web, pages 406–
414. ACM.

Juri Ganitkevitch, Benjamin Van Durme, and Chris
Callison-Burch. 2013. PPDB: The paraphrase
database. In HLT-NAACL.

Omer Levy, Yoav Goldberg, and Ido Dagan. 2015. Im-
proving distributional similarity with lessons learned
from word embeddings. Transactions of the Associ-
ation for Computational Linguistics, 3:211–225.

Xin Li and Dan Roth. 2006. Learning question clas-
sifiers: the role of semantic information. Natural
Language Engineering, 12(03):229–249.

Christopher D Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J Bethard, and David Mc-
Closky. 2014. The stanford corenlp natural lan-
guage processing toolkit. In Proceedings of 52nd
Annual Meeting of the Association for Computa-
tional Linguistics: System Demonstrations, pages
55–60.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for
word representation. Proceedings of the Empiricial
Methods in Natural Language Processing (EMNLP
2014), 12:1532–1543.

Slav Petrov, Dipanjan Das, and Ryan McDonald. 2012.
A universal part-of-speech tagset. In Proceedings of
LREC, May.

Tobias Schnabel, Igor Labutov, David Mimno, and
Thorsten Joachims. 2015. Evaluation methods for
unsupervised word embeddings. In Proceedings of

the Conference on Empirical Methods in Natural
Language Processing (EMNLP).

Erik F Tjong Kim Sang and Sabine Buchholz.
2000. Introduction to the CoNLL-2000 shared task:
Chunking. In CoNLL.

Erik F Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
HLT-NAACL.

Kristina Toutanova, Dan Klein, Christopher D Man-
ning, and Yoram Singer. 2003. Feature-rich part-of-
speech tagging with a cyclic dependency network.
In Proceedings of the 2003 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics on Human Language Technology-
Volume 1, pages 173–180.

23


