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Introduction

This workshop deals with evaluating vector representations of linguistic units (morphemes, words,
phrases, sentences, documents, etc). What marks out these representations - which are colloquially
referred to as embeddings – is that they are not trained with a specific application in mind, but rather to
capture a characteristic of the data itself. Another way to view their usage is through the lense of transfer
learning; the embeddings are trained with one objective, but applied to assist some others. We therefore
do not discuss internal representations of deep models that are induced by and applied in the same task.

The Problem with Current Evaluation Methods

Since embeddings are trained in a generally unsupervised setting, it is often difficult to predict their
usefulness for a particular task a priori. The best way to assess an embedding’s utility is, of course, to
use it in a "downstream" application. However, this knowledge tends not to transfer well among different
tasks; for example, a 12

To avoid these issues, many papers have chosen to concentrate their evaluation on "intrinsic" (perhaps
the more appropriate word is "simple") tasks such as lexical similarity (see, for example: Baroni et al.,
2014; Faruqui et al., 2014; Hill et al., 2015; Levy et al., 2015). However, recent work (Schnabel et
al., 2015; Tsvetkov et al., 2015) has shown that, just like sophisticated downstream applications, these
intrinsic tasks are not accurate predictors of an embedding’s utility in other tasks.

One notable issue with current evaluation options is their lack of diversity; despite the large number of
intrinsic benchmarks (23 by some counts), and their many differences in size, quality, and domain, the
majority of them focus on replicating human ratings of the similarity or relatedness of two words. Even
the challenge of analogy recovery through vector arithmetic, which seemed like a more nuanced metric
(Mikolov et al., 2013), has been shown to be reducible to a linear combination of lexical similarities
(Levy and Goldberg, 2014). As a result, many other interesting linguistic phenomena that are inherent in
downstream applications have not received enough attention from the representation learning community.

Goals

New Benchmarks This workshop aims to promote new benchmarks or improvements to existing
evaluations that together can address the issues with the existing collection of benchmarks (e.g. lack
of diversity). Such benchmarks should fulfill the following criteria:

1. Be simple to code and easy to run

2. Isolate the impact of one representation versus another

3. Improvement in a benchmark should indicate improvement in a downstream application

Better Evaluation Practices The new benchmarks enabled by the workshop will lead to a well-defined
set of high quality evaluation resources, covering a diverse range of linguistic/semantic properties that
are desirable in representation spaces. Results on these benchmarks will be more easily understood and
interpreted by users and reviewers.

Better Embeddings In the long run, the new tasks presented, promoted, and inspired by this workshop
should act as a catalyst for faster both technological and scientific progress in representation learning and
natural language understanding in general. Specifically, they will drive the development of techniques
for learning embeddings that add significant value to downstream applications, and, at the same time,
enable a better understanding of the information that they capture.
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Abstract

The quality of word representations is fre-
quently assessed using correlation with
human judgements of word similarity.
Here, we question whether such intrinsic
evaluation can predict the merits of the
representations for downstream tasks. We
study the correlation between results on
ten word similarity benchmarks and tagger
performance on three standard sequence
labeling tasks using a variety of word vec-
tors induced from an unannotated corpus
of 3.8 billion words, and demonstrate that
most intrinsic evaluations are poor predic-
tors of downstream performance. We ar-
gue that this issue can be traced in part
to a failure to distinguish specific similar-
ity from relatedness in intrinsic evaluation
datasets. We make our evaluation tools
openly available to facilitate further study.

1 Introduction

The use of vector representations of words is now
pervasive in natural language processing, and the
importance of their evaluation is increasingly rec-
ognized (Collobert and Weston, 2008; Turian et
al., 2010; Mikolov et al., 2013a; Faruqui and Dyer,
2014; Chen et al., 2013; Schnabel et al., 2015).
Such evaluations can be broadly divided into in-
trinsic and extrinsic. The most common form of
intrinsic evaluation uses word pairs annotated by
humans to determine their degree of similarity (for
varying definitions of similarity). These are then
used to directly assess word representations based
on how they rank the word pairs. In contrast, in ex-
trinsic evaluation, word representations are used as
input to a downstream task such as part-of-speech
(POS) tagging or named entity recognition (NER).
Here, good models are simply those that provide

good performance in the downstream task accord-
ing to task-specific metrics. Intrinsic evaluations
are typically faster and easier to perform and they
are often used to estimate the quality of represen-
tations before using them in downstream applica-
tions. The underlying assumption is that intrinsic
evaluations can, to some degree, predict extrinsic
performance.

In this study, we demonstrate that this assump-
tion fails to hold for many standard datasets. We
generate a set of word representations with vary-
ing context window sizes and compare their per-
formance in intrinsic and extrinsic evaluations,
showing that these evaluations yield mutually in-
consistent results. Among all the benchmarks ex-
plored in our study, only SimLex-999 (Hill et al.,
2015) is a good predictor of downstream perfor-
mance. This may be related to the fact that it
stands out among other benchmark datasets in dis-
tinguishing highly similar concepts (male, man)
from highly related but dissimilar ones (computer,
keyboard).

2 Materials and Methods

2.1 Word Vectors

We generate word representations using the
word2vec implementation of the skip-gram model
(Mikolov et al., 2013a), which can be efficiently
applied to very large corpora and has been shown
to produce highly competitive word representa-
tions in many recent evaluations, such as sentence
completion, analogy tasks and sentiment analy-
sis. (Mikolov et al., 2013a; Mikolov et al., 2013b;
Fernández et al., 2014). We induce embeddings
with varying values of the context window size pa-
rameter ranging between 1 and 30, holding other
hyper-parameters to their defaults.1

1The default parameters are size=100, sample=0.001,
negative=5, min-count=5, and alpha=0.025.
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Name #Tokens Reference
Wikipedia 2,032,091,934 Wikipedia (2016)

WMT14 731,451,760 Bojar et al. (2014)
1B-word-LM 768,648,884 Chelba et al. (2014)

Table 1: Unannotated corpora (sizes before tok-
enization)

Name #Pairs Reference
Wordsim-353 353 Finkelstein et al. (2001)

WS-Rel 252 Agirre et al. (2009)
WS-Sim 203 Agirre et al. (2009)
YP-130 130 Yang and Powers (2006)
MC-30 30 Miller and Charles (1991)

MEN 3000 Bruni et al. (2012)
MTurk-287 287 Radinsky et al. (2011)
MTurk-771 771 Halawi et al. (2012)
Rare Word 2034 Luong et al. (2013)

SimLex-999 999 Hill et al. (2015)

Table 2: Intrinsic evaluation datasets

2.2 Corpora and Pre-processing

To create word vectors, we gather a large corpus
of unannotated English text, drawing on publicly
available resources identified in word2vec distri-
bution materials. Table 1 lists the text sources and
their sizes. We extract raw text from the Wikipedia
dump using the Wikipedia Extractor2; the other
sources are textual. We pre-process all text with
the Sentence Splitter and the Treebank Word Tok-
enizer provided by the NLTK python library (Bird,
2006). In total, there are 3.8 billion tokens (19 mil-
lion distinct types) in the processed text.

2.3 Intrinsic evaluation

We perform intrinsic evaluations on the ten bench-
mark datasets presented in Table 2. We follow the
standard experimental protocol for word similarity
tasks: for each given word pair, we compute the
cosine similarity of the word vectors in our rep-
resentation, and then rank the word pairs by these
values. We finally compare the ranking of the pairs
created in this way with the gold standard human
ranking using Spearman’s ρ (rank correlation co-
efficient).

2.4 Downstream Methods

We base our extrinsic evaluation on the seminal
work of Collobert et al. (2011) on the use of neu-
ral methods for NLP. In brief, we reimplemented
the simple window approach feedforward neural
network architecture proposed by Collobert et al.,
which takes as input words in a window of size

2http://medialab.di.unipi.it/wiki/
Wikipedia_Extractor

Name #Tokens (Train/Test)
PTB 337,195 / 129,892

CoNLL 2000 211,727 / 47,377
CoNLL 2003 203,621 / 46,435

Table 3: Extrinsic evaluation datasets

five, followed by the word embedding, a single
hidden layer of 300 units and a hard tanh activa-
tion leading to an output Softmax layer. Besides
the index of each word in the embedding, the only
other input is a categorical representation of the
capitalization pattern of each word.3

We train each model on the training set for
10 epochs using word-level log-likelihood, mini-
batches of size 50, and the Adam optimization
method with the default parameters suggested by
Kingma and Ba (2015). Critically, to emphasize
the differences between the different representa-
tions, we do not fine-tune word vectors by back-
propagation, diverging from Collobert et al. and
leading to somewhat reduced performance. We
use greedy decoding to predict labels for test data.

2.5 Extrinsic evaluation

To evaluate the word representations in down-
stream tasks, we use them in three standard se-
quence labeling tasks selected by Collobert et
al. (2011): POS tagging of Wall Street Jour-
nal sections of Penn Treebank (PTB) (Marcus et
al., 1993), chunking of CoNLL’00 shared task
data (Tjong Kim Sang and Buchholz, 2000),
and NER of CoNLL’03 shared task data (Tjong
Kim Sang and De Meulder, 2003). We use the
standard train/test splits and evaluation criteria for
each dataset, evaluating PTB POS tagging using
token-level accuracy and CoNLL’00/03 chunking
and NER using chunk/entity-level F -scores as im-
plemented in the conlleval evaluation script.
Table 3 shows basic statistics for each dataset.

3 Results

Tables 4 and 5 present the results of the intrinsic
and extrinsic evaluations, respectively. While the
different baselines and the small size of some of
the datasets make the intrinsic results challenging
to interpret, a clear pattern emerges when holding
the result for word vectors of window size 1 as the
zero point for each dataset and examining average
differences: the intrinsic evaluations show higher

3For brevity, we refer to Collobert et al. (2011) for further
details on this method.
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Window size
Dataset 1 2 4 5 8 16 20 25 30

WordSim-353 0.6211 0.6524 0.6658 0.6732 0.6839 0.6991 0.6994 0.7002 0.6981
MC-30 0.7019 0.7326 0.7903 0.7629 0.7889 0.8114 0.8323 0.8003 0.8141

MEN-TR-3K 0.6708 0.6860 0.7010 0.7040 0.7129 0.7222 0.7240 0.7252 0.7242
MTurk-287 0.6069 0.6447 0.6403 0.6536 0.6603 0.6580 0.6625 0.6513 0.6519
MTurk-771 0.5890 0.6012 0.6060 0.6055 0.6047 0.6007 0.5962 0.5931 0.5933
Rare Word 0.3784 0.3893 0.3976 0.4009 0.3919 0.3923 0.3938 0.3949 0.3953

YP130 0.3984 0.4089 0.4147 0.3938 0.4025 0.4382 0.4716 0.4754 0.4819
SimLex-999 0.3439 0.3300 0.3177 0.3144 0.3005 0.2909 0.2873 0.2811 0.2705

Table 4: Intrinsic evaluation results (ρ)

Window size
Dataset 1 2 4 5 8 16 20 25 30

CoNLL 2000 0.9143 0.9070 0.9058 0.9052 0.8982 0.8821 0.8761 0.8694 0.8604
CoNLL 2003 0.8522 0.8473 0.8474 0.8475 0.8474 0.8410 0.8432 0.8399 0.8374

PTB POS 0.9691 0.9680 0.9672 0.9674 0.9654 0.9614 0.9592 0.9560 0.9531

Table 5: Extrinsic evaluation results (F-score for CoNLL datasets, accuracy for PTB)
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Figure 1: Average difference to performance for
window size 1 for intrinsic and extrinsic metrics.

overall results with increasing window size, while
extrinsic performance drops (Figure 1).

Looking at the individual datasets, the prefer-
ence for the smallest window size is consistent
across all the three tagging tasks (Table 5) but only
one out of the eight intrinsic evaluation datasets,
Simlex-999, selects this window size, with the ma-
jority clearly favoring larger window sizes (Ta-
ble 4). To further quantify this discrepancy, we
ranked the word vectors from highest- to lowest-
scoring according to each intrinsic and extrinsic
measure and evaluated the correlation of each pair
of these rankings using ρ. The results are strik-
ing (Table 6): six out of the eight intrinsic mea-
sures have negative correlations with all the three
extrinsic measures, indicating that when select-
ing among the word vectors for these downstream
tasks, it is better to make a choice at random than
to base it on the ranking provided by any of the six
intrinsic evaluations.

CoNLL CoNLL PTB
2000 2003 POS

WordSim-353 -0.90 -0.75 -0.88
MC-30 -0.87 -0.77 -0.90

MEN-TR-3K -0.98 -0.83 -0.97
MTurk-287 -0.57 -0.29 -0.50
MTurk-771 0.28 0.37 0.27
Rare Word -0.57 -0.29 -0.50

YP130 -0.82 -0.93 -0.50
SimLex-999 1.00 0.85 0.98

Table 6: Correlation between intrinsic and extrin-
sic measures (ρ)

4 Discussion

Only two of the intrinsic evaluation datasets
showed positive correlation with the extrinsic eval-
uations: MTurk-287 (ρ 0.27 to 0.37) and SimLex-
999 (ρ 0.85 to 1.0). One of the differences
between the other datasets and the high-scoring
Simlex-999 is that it explicitly differentiates sim-
ilarity from relatedness and association. For ex-
ample, in the MEN dataset, the nearly synony-
mous pair (stair, staircase) and the highly asso-
ciated but non-synonymous pair (rain, storm) are
both given high ratings. However, as Hill et al.
(2015) argue, an evaluation that measures seman-
tic similarity should ideally distinguish these re-
lations and credit a model for differentiating cor-
rectly that (male, man) are highly synonymous,
while (film, cinema) are highly associated but dis-
similar.

This distinction is known to be relevant to the
effect of the window size parameter. A larger win-
dow not only reduces sparsity by introducing more
contexts for each word, but is also known to affect
the tradeoff between capturing domain similarity

3



Window Size
Dataset 1 2 4 5 8 16 20 25 30
WS-Rel 0.5430 0.5851 0.6021 0.6112 0.6309 0.6510 0.6551 0.6568 0.6514
WS-Sim 0.7465 0.7700 0.7772 0.7807 0.7809 0.7885 0.7851 0.7789 0.7776

Table 7: Intrinsic evaluation results for WS-Rel and WS-Sim (ρ)

vs. functional similarity: Turney (2012) notes that
with larger context windows, representations tend
to capture the topic or domain or a word, while
smaller windows tend to emphasize the learning
of word function. This is because the role/function
of a word is categorized by its proximate syntactic
context, while a large window captures words that
are less informative for this categorization (Tur-
ney, 2012). For example, in the sentence Aus-
tralian scientist discovers star with telescope, the
context of the word discovers in a window of size
1 includes scientist and star, while a larger context
window will include more words related by topic
such as telescope (Levy and Goldberg, 2014). The
association of large window sizes with greater top-
icality is discussed also by Hill et al. (2015) and
Levy et al. (2015).

This phenomenon provides a possible explana-
tion for the preference for representations created
using larger windows exhibited by many of the in-
trinsic evaluation datasets: as these datasets assign
high scores also to word pairs that are highly as-
sociated but dissimilar, representations that have
similar vectors for all associated words (even if
not similar) will score highly when evaluated on
the datasets. If there is no need for the represen-
tation to make the distinction between similarity
and relatedness, a large window has only bene-
fits. On the other hand, the best performance in
the extrinsic sequence labeling tasks comes from
window size 1. This may be explained by the
small window facilitating the learning of word
function, which is more important for the POS tag-
ging, chunking, and NER tasks than topic. Simi-
larly, given the emphasis of SimLex-999 on cap-
turing genuine similarity (synonyms), representa-
tions that assign similar vectors to words that are
related but not similar will score poorly. Thus, we
observe a decreasing trend with increasing win-
dow size for SimLex-999.

To further assess whether this distinction can
explain the results for an intrinsic evaluation
dataset for representations using small vs. large
context windows, we studied the relatedness (WS-
Rel) and similarity (WS-Sim) subsets (Agirre et

al., 2009) of the popular WordSim-353 reference
dataset (included in the primary evaluation). Ta-
ble 7 shows the performance of representations
with increasing context window size on these sub-
sets. In general, both show higher ρ with an in-
creasing context window size. However, the per-
formance in the relatedness subset increases from
0.54 to 0.65 whereas that in similarity only in-
creases from 0.74 to 0.77. Thus, although the sim-
ilarity subset did not select a small window size,
the lesser preference for a large window compared
to the relatedness subset lends some support to the
proposed explanation.

5 Conclusion

One of the primary goals of intrinsic evaluation is
to provide insight into the quality of a representa-
tion before it is used in downstream applications.
However, we found that the majority of word simi-
larity datasets fail to predict which representations
will be successful in sequence labelling tasks, with
only one intrinsic measure, SimLex-999, showing
high correlation with extrinsic measures. In con-
current work, we have also observed a similar ef-
fect for biomedical domain tasks and word vec-
tors (Chiu et al., 2016). We further considered
the differentiation between relatedness (associa-
tion) and similarity (synonymy) as an explanatory
factor, noting that the majority of intrinsic evalua-
tion datasets do not systematically make this dis-
tinction.

Our results underline once more the impor-
tance of including also extrinsic evaluation when
assessing NLP methods and resources. To en-
courage extrinsic evaluation of vector space rep-
resentations, we make all of our newly intro-
duced methods available to the community under
open licenses from https://github.com/
cambridgeltl/RepEval-2016.
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Abstract

This paper aims to re-think the role of the
word similarity task in distributional se-
mantics research. We argue while it is a
valuable tool, it should be used with care
because it provides only an approximate
measure of the quality of a distributional
model. Word similarity evaluations as-
sume there exists a single notion of sim-
ilarity that is independent of a particular
application. Further, the small size and
low inter-annotator agreement of existing
data sets makes it challenging to find sig-
nificant differences between models.

1 Introduction

Distributional models of lexical semantics have re-
cently attracted considerable interest in the NLP
community. With the increase in popularity, the
issue of evaluation is becoming more important.
While extrinsic (task-based) evaluations are in-
creasingly common, the most frequently used fam-
ily of evaluation procedures (intrinsic evaluations)
attempt to directly measure the “inherent” qual-
ity of a word representation. This often takes the
form of computing the extent to which a model
agrees with human-provided word or phrase simi-
larity scores.

This paper highlights the theoretical and prac-
tical issues with the word similarity task, which
make it a poor measure of the quality of a dis-
tributional model. We investigate five commonly
used word similarity datasets, RG (Rubenstein
and Goodenough, 1965), MC (Miller and Charles,
1991), WS353 (Finkelstein et al., 2001), MEN
(Bruni et al., 2014) and SimLex (Hill et al.,
2015). Our contributions are as follows. We ar-
gue that the notion of lexical similarity is diffi-
cult to define outside of the context of a task and

without conflating different concepts such as “sim-
ilarity” or “relatedness”. We show inter-annotator
agreement at the word similarity task is consider-
ably lower compared to other tasks such as docu-
ment classification or textual entailment. Further-
more, we demonstrate that the quality of a model,
as measured by a given word similarity data set,
can vary substantially because of the small size
of the data set. Lastly, we introduce a simple
sanity check for word similarity data sets that
tests whether a data set is able to reliably iden-
tify corrupted word vectors. These findings can
be adopted as guidelines for designers of eval-
uation data sets. The code for our experiments
is available at github.com/mbatchkarov/
repeval2016.

2 Definition of Similarity

The notion of similarity is challenging to define
precisely. Existing word similarity data sets typ-
ically contain a broad range of semantic rela-
tions such as synonymy, antonymy, hypernymy,
co-hypernymy, meronymy and topical relatedness.
Earlier word similarity work such as WS353 does
not attempt to differentiate between those. In con-
trast, more recent work such as MEN and SimLex
distinguishes between “similarity” and “related-
ness” and provide human annotators with more
specific instructions as to what makes words simi-
lar.

However, all data sets considered in this pa-
per assume that there exists a single gold-standard
score for each pair of words, which can vary con-
siderably across data sets, depending on what no-
tion of similarity is used. For example, the pair
“chicken–rice” has a normalised score of 0.14 in
SimLex and 0.68 in MEN, while “man–woman”
scores 0.33 and 0.84 respectively.

We argue that every downstream application de-
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fines its own kind of similarity. Words are there-
fore not inherently similar or dissimilar. For exam-
ple, “good acting” and “cluttered set” are highly
dissimilar in terms of the sentiment they express
towards a theatrical play. However, they are very
similar in the context of detecting news items re-
lated to the theatre, as both phrases are highly in-
dicative of theatre-related content. It is often un-
clear what kind of similarity is useful for a down-
stream problem in advance. Indeed, it has been
shown that being able to learn the notion defined
by a particular word similarity task does not nec-
essarily translate to superior extrinsic performance
(Schnabel et al., 2015). This argument parallels
that of von Luxburg et al. (2012, p 2), who argue
that “[d]epending on the use to which a clustering
is to be put, the same clustering can either be help-
ful or useless”. The quality of an unsupervised al-
gorithm can therefore only be assessed in the con-
text of an application.

3 Subjectivity and task difficultly

When human judges annotate word pairs for simi-
larity, the distinctions in meaning they are asked
to make are often very subtle, especially in the
absence of context. For instance, the normalised
similarity scores provided by 13 annotators for the
pair “tiger–cat” range from 0.5 to 0.9 in WS353.
This results in low inter-annotator agreement even
between native speakers. This section analyses the
variation in similarity scores produced by different
annotators, and compares the agreement score for
the first 13 annotators of WS353 and the two au-
thors of MEN to typical agreements reported in the
NLP literature for tasks such as document classifi-
cation and textual entailment.

Figure 1 shows a kernel density estimate of the
distribution of similarity scores between judges for
MEN and WS3531. Both data sets exhibit unde-
sirable characteristics. The distribution of scores
assigned by both judges in MEN appears to be
bimodal, which suggests that the annotators are
operating on a three-point scale rather than on
a seven-point one. There is also a significant
amount of variation—the similarity assigned to a
word pair exceeds two points (out of seven) in
313 cases2 (10.4%) and can vary by as many as
six points. WS353 exhibits a strong bias towards

1The other data sets used in this study do not provide the
annotations of each individual subject.

2MEN contains a total of 3000 annotated pairs.
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Figure 1: Distribution of similarity scores between
annotators

high-similarity word pairs. However, individual
judges exhibit a bias towards similarity scores in
the middle of the spectrum. Variance is also high
— 535 individual annotations (10.3% of all cases)
for a given word pair differ by more than two
points (out of ten) from the mean score for that
pair3.

It is not possible to compare inter-annotator
agreement scores for word similarity and other
natural-language labelling tasks directly. Labels
in the former are on an ordinal scale, so agree-
ment is measured using Spearman’s rho (ρ). In
contrast, the labels in other tasks are often categor-
ical; agreement is typically measured using Co-
hen’s kappa (κ). To address this issue, we convert
word similarity scores to discrete labels by placing
the continuous scores into equally sized bins. For
example, the range of similarity scores in WS353

3WS353 contains 353 unique word pairs annotated by at
least 13 judges for a total of 5189 (word pair, annotation)
units.
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is [0, 10], and the bin boundaries are at [0, 5, 10]
when using two bins and at [0, 3.33, 6.66, 10]
when using three bins. The three-item continuous
labelling [2.1, 5.8, 7.9] is converted to [A,B,B]
when using two bins and to [A,B,C] when using
three bins.

This conversion process suffers from two draw-
backs. First, order information is lost, so misplac-
ing an item in bin A instead of in bin B is consid-
ered as severe an error as misplacing an item from
bin A into bin F . This is less of an issue when
the bin count is small. Second, the number of bins
is a free parameter ranging between 1 (all items
in the same bin) and 7 or 10 (all items in original
bins)4. κ is a decreasing function of the number
of bins because it becomes harder for annotators
to agree when there is a large number of bins to
choose from. This analysis is agnostic as to how
many bins should be used. We experiment with
values between 2 and 5.

The inter-annotator agreement of WS353 and
MEN (converted to Cohen’s κ) is shown in Fig-
ure 2. Because κ is only applicable when there
are exactly two annotators, we report an aver-
age κ over all pairwise comparisons5. A κ score
can be computed between each of the 91 pairs of
judges (“WS353-P”), or between each judge and
the mean across all judges (“WS353-M”) (as in
Hill et al. (2015, Section 2.3)). Mean agreement
ranges from κ = 0.21 to κ = 0.62.

For comparison, Kim and Hovy (2004) report
κ = 0.91 for a binary sentiment task. Gamon
et al. (2005) report a κ of 0.7–0.8 for a three-
way sentiment task. Wilson et al. (2005) report
κ = 0.72 for a four-class short expressions senti-
ment task, rising to κ = 0.84 if phrases marked as
“unsure” are removed. McCormick et al. (2008)
report κ = 0.84 for a five-way text classification
task. Stolcke et al. (2000) report κ = 0.8 for a
42-label dialogue act tagging task. Toledo et al.
(2012) achieve κ = 0.7 for a textual entailment
task, and Sammons et al. (2010) report κ = 0.8 to
κ = 1 for a domain identification task. All these κ
scores are considerably higher than those achieved
by WS353 and MEN.

4WS353 was annotated on a ten-point scale, whereas MEN
used a seven-point scale.

5Averaging is only needed for WS353, which has been
annotated by (at least) 13 judges. MEN only provides full
annotations for two judges.
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Figure 2: Inter-annotator agreement of WS353,
measured in Cohen’s κ. Shaded region shows the
mean and one standard deviation around it. A stan-
dard deviation is not shown for MEN as only the
annotation of a single pair of raters are available.

4 Size of data set

Another issue with existing word similarity data
sets is their small size. This ranges from 30
to 3000 data points (Miller and Charles, 1991;
Rubenstein and Goodenough, 1965; Landauer and
Dumais, 1997; Finkelstein et al., 2001; Hill et al.,
2015; Huang et al., 2012; Luong et al., 2013;
Bruni et al., 2014). Moreover, they only feature a
“tidy” subset of all naturally occurring words, free
of spelling variation, domain-specific terminology
and named entities. The focus is predominantly
on relatively high-frequency words, so the quality
of the model cannot be quantified fully. In con-
trast, typical distributional models “in the wild”
have a vocabulary of tens or hundreds of thousands
of types.

For practical applications, users need to under-
stand the entire distributional model, not just the
small fraction of it covered by an intrinsic eval-
uation. A side effect of using small evaluation
data sets is that the measured correlation scores
may vary significantly. However, variance is sel-
dom reported in the literature. To quantify it,
we train a word2vec model (Mikolov et al.,
2013) on a mid-2011 copy of English Wikipedia.
We use the CBOW objective with negative sam-
pling and a window size of 5, as implemented in
gensim (Řehůřek and Sojka, 2010). The model
is evaluated on five word similarity data sets—
MC, RG, WS353, SimLex and MEN. We compute
the empirical distribution of correlation with hu-
man scores by bootstrapping. Each data set is re-
sampled 500 times with replacement. The distri-
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butional model is evaluated on each sample (Efron
and Tibshirani, 1994). Results are shown in Table
1a. We also evaluate a baseline model that repre-
sents words as completely random vectors, sam-
pled from continuous uniform distribution U(0, 1)
(Table 1b).

Dataset Mean Std Min Max Size

MC 0.71 0.12 0.29 0.95 30
RG 0.72 0.06 0.50 0.87 65
WS353 0.64 0.04 0.53 0.75 353
SimLex 0.31 0.03 0.23 0.39 999
MEN 0.67 0.01 0.64 0.70 3000

(a) word2vec vectors

Dataset Mean Std Min Max Size

MC -0.01 0.19 -0.53 0.55 30
RG 0.08 0.11 -0.28 0.41 65
WS353 -0.08 0.05 -0.24 0.10 353
SimLex 0.01 0.03 -0.09 0.12 999
MEN -0.02 0.02 -0.08 0.04 3000

(b) Random vectors

Table 1: Distribution of Spearman ρ between
model predictions and gold standard data set.

The mean correlation is in line with values re-
ported in the literature. However, standard de-
viation is strongly dependent on the size of the
gold-standard data set. Even for MEN, which is
the largest word similarity data set in this study,
the measured correlation varies as much as 0.06.
However, this fact is not often addressed in the lit-
erature. For instance, the difference between the
recently proposed Swivel (Shazeer et al., 2016)
and word2vec with negative sampling is less
than 0.02 on WS353, SimLex and MEN. Table 1
suggests that these differences may well not be sta-
tistically significant.

5 Sensitivity to noise

In this section we propose a simple sanity check
for word similarity data sets, which we suggest is
used periodically while developing a data set. It
is based on the requirement that for a given eval-
uation method, good word representations should
perform measurably better than poor ones. One
method of reliably generating poor word vectors
is to start with a distributional model and decrease
its quality by adding random noise. The evalua-

tion framework should be able to detect the dif-
ference between the original and corrupted mod-
els. Model performance, as measured by the eval-
uation method, should be a monotonically de-
creasing function of the amount of noise added.
In the extreme case, a completely random dis-
tributional model should achieve a correlation of
zero with the human-provided intrinsic similarity
scores (Table 1b).

Figure 3 shows an application of our proposal
to MC, RG and MEN. We add uniform random noise
U(−n, n) to all elements of all word vectors from
Section 4, where n ∈ [0, 3]. This is a consider-
able perturbation as the word vectors used have
have a mean L2 norm of 2.4. RG and MC do not
sufficiently capture the degradation of vector qual-
ity as noise is added because ρ may increase with
n. The variance of the measurements is also very
high. Both datasets therefore fail the sanity check.
MEN’s performance is considerably better, with
smaller standard deviation and correlation tending
to zero as noise is added. WS353 and SimLex
exhibit similar behaviour to MEN, but have higher
variance.
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Figure 3: Word similarity noise test. Shaded
region shows one standard deviation around the
mean, which is estimated via bootstrapping.

6 Conclusion

This paper showed the word similarity task is con-
siderably more challenging for annotators than ex-
trinsic tasks such as document classification. Fur-
ther, the small size of existing word similarity data
sets results in high variance, making it difficult to
reliably differentiate between models. More fun-
damentally, the task assumes there exists a single
similarity score between a pair of words which is
independent of a particular application. These re-
sults challenge the value of intrinsic data sets as
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a gold standard. We argue that word similarity
still has a place in NLP, but researchers should
be aware of its limitations. We view the task as
a computationally efficient approximate measure
of model quality, which can be useful in the early
stage of model development. However, research
should place less emphasis on word similarity per-
formance and more on extrinsic results such as
(Batchkarov, 2015; Huang and Yates, 2009; Mi-
lajevs et al., 2014; Schnabel et al., 2015; Turian
et al., 2010; Weston et al., 2015).
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Abstract
The offset method for solving word analo-
gies has become a standard evaluation tool
for vector-space semantic models: it is
considered desirable for a space to repre-
sent semantic relations as consistent vec-
tor offsets. We show that the method’s re-
liance on cosine similarity conflates offset
consistency with largely irrelevant neigh-
borhood structure, and propose simple
baselines that should be used to improve
the utility of the method in vector space
evaluation.

1 Introduction

Vector space models of semantics (VSMs) repre-
sent words as points in a high-dimensional space
(Turney and Pantel, 2010). There is considerable
interest in evaluating VSMs without needing to
embed them in a complete NLP system. One such
intrinsic evaluation strategy that has gained in pop-
ularity in recent years uses the offset approach to
solving word analogy problems (Levy and Gold-
berg, 2014; Mikolov et al., 2013c; Mikolov et
al., 2013a; Turney, 2012). This method assesses
whether a linguistic relation — for example, be-
tween the base and gerund form of a verb (de-
bug and debugging) — is consistently encoded as
a particular linear offset in the space. If that is
the case, estimating the offset using one pair of
words related in a particular way should enable us
to go back and forth between other pairs of words
that are related in the same way, e.g., scream and
screaming in the base-to-gerund case (Figure 1).

Since VSMs are typically continuous spaces,
adding the offset between debug and debugging to
scream is unlikely to land us exactly on any par-
ticular word. The solution to the analogy prob-
lem is therefore taken to be the word closest in

debug

debugging

scream

screaming?

Figure 1: Using the vector offset method to solve
the analogy task (Mikolov et al., 2013c).

cosine similarity to the landing point. Formally, if
the analogy is given by

a : a∗ :: b : (1)

where in our example a is debug, a∗ is debug-
ging and b is scream, then the proposed answer to
the analogy problem is

x∗ = argmax
x′

cos(x′, a∗ − a+ b) (2)

where
cos(v, w) =

v · w
‖v‖‖w‖ (3)

The central role of cosine similarity in this
method raises the concern that the method does
not only evaluate the consistency of the offsets
a∗− a and b∗− b but also the neighborhood struc-
ture of x = a∗−a+b. For instance, if a∗ and a are
very similar to each other (as scream and scream-
ing are likely to be) the nearest word to xmay sim-
ply be the nearest neighbor of b. If in a given set
of analogies the nearest neighbor of b tends to be
b∗, then, the method may give the correct answer
regardless of the consistency of the offsets (Figure
2).

In this note we assess to what extent the per-
formance of the offset method provides evidence
for offset consistency despite its potentially prob-
lematic reliance on cosine similarity. We use two
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debug

debugging

scream
screaming?

x
screams

sweating

kicking

sweats

moved

likes

Figure 2: When a∗ − a is small and b and b∗ are
close, the expected answer may be returned even
when the offsets are inconsistent (here screaming
is closest to x).

debug

debugging

scream?

screaming

Figure 3: Reversing the direction of the task.

methods. First, we propose new baselines that per-
form the task without using the offset a∗ − a and
argue that the performance of the offset method
should be compared to those baselines. Second,
we measure how the performance of the method is
affected by reversing the direction of each analogy
problem (Figure 3). If the method truly measures
offset consistency, this reversal should not affect
its accuracy.

2 Analogy functions

We experiment with the following functions. In all
of the methods, every word in the vocabulary can
serve as a guess, except when a, a∗ or b are explic-
itly excluded as noted below. Since the size of the
vocabulary is typically very large, chance perfor-
mance, or the probability of a random word in the
vocabulary being the correct guess, is extremely
low.

VANILLA: This function implements the offset
method literally (Equation 2).

ADD: The x∗ obtained from Equation 2 is of-
ten trivial (typically equal to b). In practice, most
studies exclude a, a∗ and b from consideration:

x∗ = argmax
x′ 6∈{a,a∗,b}

cos(x′, a∗ − a+ b) (4)

ONLY-B: This method ignores both a and a∗

and simply returns the nearest neighbor of b:

x∗ = argmax
x′ 6∈{a,a∗,b}

cos(x′, b) (5)

As shown in Figure 2, this baseline is likely to
give a correct answer in cases where a∗−a is small
and b∗ happens to be the nearest neighbor of b.

IGNORE-A: This baseline ignores a and returns
the word that is most similar to both a∗ and b:

x∗ = argmax
x′ 6∈{a,a∗,b}

cos(x′, a∗ + b) (6)

A correct answer using this method indicates
that b∗ is closest to a point y that lies mid-way be-
tween a∗ and b (i.e. that maximizes the similarity
to both words).

ADD-OPPOSITE: This function takes the logic
behind the ONLY-B baseline a step further – if the
neighborhood of b is sufficiently sparse, we will
get the correct answer even if we go in the opposite
direction from the offset a∗ − a:

x∗ = argmax
x′ 6∈{a,a∗,b}

cos(x′,−(a∗ − a) + b) (7)

MULTIPLY: Levy and Goldberg (2014) show
that Equation 2 is equivalent to adding and sub-
tracting cosine similarities, and propose replacing
it with multiplication and division of similarities:

x∗ = argmax
x′ 6∈{a,a∗,b}

cos(x′, a∗) cos(x′, b)
cos(x′, a)

(8)

REVERSE (ADD): This is simply ADD applied
to the reverse analogy problem: if the original
problem is debug : debugging :: scream : , the
reverse problem is debugging : debug :: scream-
ing : . A substantial difference in accuracy
between the two directions in a particular type
of analogy problem (e.g., base-to-gerund com-
pared to gerund-to-base) would indicate that the
neighborhoods of one of the word categories (e.g.,
gerund) tend to be sparser than the neighborhoods
of the other type (e.g., base).

REVERSE (ONLY-B): This baseline is equiva-
lent to ONLY-B, but applied to the reverse prob-
lem: it returns b∗, in the notation of the original
analogy problem.
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a a∗ n

Common capitals: athens greece 506
All capitals: abuja nigeria 4524
US cities: chicago illinois 2467
Currencies: algeria dinar 866
Nationalities: albania albanian 1599
Gender: boy girl 506
Plurals: banana bananas 1332
Base to gerund: code coding 1056
Gerund to past: dancing danced 1560
Base to third person: decrease decreases 870
Adj. to adverb: amazing amazingly 992
Adj. to comparative: bad worse 1332
Adj. to superlative: bad worst 1122
Adj. un- prefixation: acceptable unacceptable 812

Table 1: The analogy categories of Mikolov et al.
(2013a) and the number of problems per category.

3 Experimental setup

Analogy problems: We use the analogy dataset
proposed by Mikolov et al. (2013a). This dataset,
which has become a standard VSM evaluation set
(Baroni et al., 2014; Faruqui et al., 2015; Schn-
abel et al., 2015; Zhai et al., 2016), contains 14
categories; see Table 1 for a full list. A num-
ber of these categories, sometimes referred to as
“syntactic”, test whether the structure of the space
captures simple morphological relations, such as
the relation between the base and gerund form of
a verb (scream : screaming). Others evaluate the
knowledge that the space encodes about the world,
e.g., the relation between a country and its cur-
rency (latvia : lats). A final category that doesn’t
fit neatly into either of those groups is the relation
between masculine and feminine versions of the
same concept (groom : bride). We follow Levy
and Goldberg (2014) in calculating separate accu-
racy measures for each category.

Semantic spaces: In addition to comparing the
performance of the analogy functions within a sin-
gle VSM, we seek to understand to what extent
this performance can differ across VSMs. To this
end, we selected three VSMs out of the set of
spaces evaluated by Linzen et al. (2016). All three
spaces were produced by the skip-gram with nega-
tive sampling algorithm implemented in word2vec
(Mikolov et al., 2013b), and were trained on the
concatenation of ukWaC (Baroni et al., 2009) and
a 2013 dump of the English Wikipedia.

The spaces, which we refer to as s2, s5 and s10,
differed only in their context window parameters.
In s2, the window consisted of two words on ei-
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Figure 4: Accuracy of all functions on space s5.

ther side of the focus word. In s5 it included five
words on either side of the focus word, and was
“dynamic” – that is, it was expanded if any of the
context words were excluded for low or high fre-
quency (for details, see Levy et al. (2015)). Fi-
nally, the context in s10 was a dynamic window of
ten words on either side. All other hyperparame-
ters were set to standard values.

4 Results

Baselines: Figure 4 shows the success of all of
the analogy functions in recovering the intended
analogy target b∗ in space s5. In line with Levy
and Goldberg (2014), there was a slight advan-
tage for MULTIPLY over ADD (mean difference
in accuracy: .03), as well as dramatic variabil-
ity across categories (ranging from .13 to .90
in ADD). This variability cuts across the dis-
tinction between the world-knowledge and mor-
phological categories; performance on currencies
and adjectives-to-adverbs was poor, while perfor-
mance on capitals and comparatives was high.

Although ADD and MULTIPLY always outper-
formed the baselines, the margin varied widely
across categories. The most striking case is the
plurals category, where the accuracy of ONLY-B

reached .70, and even ADD-OPPOSITE achieved
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Space ADD ADD - IGNORE-A ADD - ONLY-B

s2 .53 .41 .42
s5 .6 .29 .36
s10 .58 .26 .33

Table 2: Overall scores and the advantage of ADD

over two of the baselines across spaces.

a decent accuracy (.45). Taking a∗ but not a into
account (IGNORE-A) outperformed ONLY-B in ten
out of 14 categories. Finally, the poor performance
of VANILLA confirms that a, a∗ and b must be ex-
cluded from the pool of potential answers for the
offset method to work. When these words were
not excluded, the nearest neighbor of a∗ − a + b
was b in 93% of the cases and a∗ in 5% of the cases
(it was never a).

Reversed analogies: Accuracy decreased in
most categories when the direction of the anal-
ogy was reversed (mean difference −0.11). The
changes in the accuracy of ADD between the orig-
inal and reversed problems were correlated across
categories with the changes in the performance
of the ONLY-B baseline before and after reversal
(Pearson’s r = .72). The fact that the performance
of the baseline that ignores the offset was a reliable
predictor of the performance of the offset method
again suggests that the offset method when applied
to the Mikolov et al. (2013a) sets jointly evaluates
the consistency of the offsets and the probability
that b∗ is the nearest neighbor of b.

The most dramatic decrease was in the US
cities category (.69 to .17). This is plausibly
due to the fact that the city-to-state relation is a
many-to-one mapping; as such, the offsets derived
from two specific city-states pairs — e.g., Sacra-
mento:California and Chicago:Illinois — are un-
likely to be exactly the same. Another sharp de-
crease was observed in the common capitals cate-
gory (.9 to .53), even though that category is pre-
sumably a one-to-one mapping.

Comparison across spaces: The overall accu-
racy of ADD was similar across spaces, with a
small advantage for s5 (Table 2). Yet the break-
down of the results by category (Figure 5) shows
that the similarity in average performance across
the spaces obscures differences across categories:
s2 performed much better than s10 in some of the
morphological inflection categories (e.g., .7 com-
pared to .44 for the base-to-third-person relation),
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Figure 5: Comparison across spaces. The leftmost
panel shows the accuracy of ADD, and the next
two panels show the improvement in accuracy of
ADD over the baselines.

whereas s10 had a large advantage in some of the
world-knowledge categories (e.g., .68 compared
to .42 in the US cities category). The advantage of
smaller window sizes in capturing “syntactic” in-
formation is consistent with previous studies (Red-
ington et al., 1998; Sahlgren, 2006). Note also that
overall accuracy figures are potentially misleading
in light of the considerable variability in the num-
ber of analogies in each category (see Table 1): the
“all capitals” category has a much greater effect on
overall accuracy than gender, for example.

Spaces also differed in how much ADD im-
proved over the baselines. The overall advantage
over the baselines was highest for s2 and lowest
for s10 (Table 2). In particular, although accuracy
was similar across spaces in the nationalities and
common capitals categories, much more of this
accuracy was already captured by the IGNORE-A

baseline in s10 than in s2 (Figure 5)

5 Discussion

The success of the offset method in solving word
analogy problems has been taken to indicate that
systematic relations between words are repre-
sented in the space as consistent vector offsets
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(Mikolov et al., 2013c). The present note has ex-
amined potential difficulties with this interpreta-
tion. A literal (“vanilla”) implementation of the
method failed to perform the task: the nearest
neighbor of a∗−a+b was almost always b or a∗.1

Even when those candidates were excluded, some
of the success of the method on the analogy sets
that we considered could also be obtained by base-
lines that ignored a or even both a and a∗. Finally,
reversing the direction of the analogy affected ac-
curacy substantially, even though the same offset
was involved in both directions.

The performance of the baselines varied widely
across analogy categories. Baseline performance
was poor in the adjective-to-superlative relation,
and was very high in the plurals category (even
when both a and a∗ were ignored). This sug-
gests that analogy problems in the plural category
category may not measure whether the space en-
codes the single-to-plural relation as a vector off-
set, but rather whether the plural form of a noun
tends to be close in the vector space to its singular
form. Baseline performance varied across spaces
as well; in fact, the space with the weakest over-
all performance (s2) showed the largest increases
over the baselines, and therefore the most evidence
for consistent offsets.

We suggest that future studies employing the
analogy task report the performance of the simple
baselines we have suggested, in particular ONLY-
B and possibly also IGNORE-A. Other methods for
evaluating the consistency of vector offsets may be
less vulnerable to trivial responses and neighbor-
hood structure, and should be considered instead
of the offset method (Dunbar et al., 2015).

Our results also highlight the difficulty in com-
paring spaces based on accuracy measures aver-
aged across heterogeneous and unbalanced anal-
ogy sets (Gladkova et al., 2016). Spaces with sim-
ilar overall accuracy can vary in their success on
particular categories of analogies; effective repre-
sentations of “world-knowledge” information are
likely to be useful for different downstream tasks
than effective representations of formal linguistic
properties. Greater attention to the fine-grained
strengths of particular spaces may lead to the

1A human with any reasonable understanding of the anal-
ogy task is likely to also exclude a, a∗ and b as possible re-
sponses, of course. However, such heuristics that are baked
into an analogy solver, while likely to improve its perfor-
mance, call into question the interpretation of the success of
the analogy solver as evidence for the geometric organization
of the underlying semantic space.

development of new spaces that combine these
strengths.
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Abstract

Word embeddings are increasingly used
in natural language understanding tasks
requiring sophisticated semantic informa-
tion. However, the quality of new embed-
ding methods is usually evaluated based
on simple word similarity benchmarks.
We propose evaluating word embeddings
in vivo by evaluating them on a suite of
popular downstream tasks. To ensure the
ease of use of the evaluation, we take care
to find a good point in the tradeoff space
between (1) creating a thorough evalua-
tion – i.e., we evaluate on a diverse set
of tasks; and (2) ensuring an easy and fast
evaluation – by using simple models with
few tuned hyperparameters. This allows
us to release this evaluation as a standard-
ized script and online evaluation, available
at http://veceval.com/.

1 Introduction

Many modern NLP systems, especially those
employing deep learning techniques, benefit
from word representations in the form of low-
dimensional word embeddings. This has led to a
burgeoning body of work focusing on improving
these representations. These word representations
are used either as features for a conventional statis-
tical classifier, or in a deep learning setup, where
they are tuned to a particular task through back-
propagation.

However, the quality of these unsupervised em-
beddings is often asserted on the basis of restricted
lexical semantics tasks, such as scoring word sim-
ilarity or linear relationships for analogies. These
intrinsic evaluations are carried out with little at-
tention paid to how performance correlates with
downstream tasks. We propose instead evaluat-

ing word embeddings using a standardized suite
of characteristic downstream tasks.

This has two advantages, which constitute the
main contributions of the paper. First, an improve-
ment in performance on these representative tasks
is more likely to generalize to real-world applica-
tions of the embedding, as compared to improve-
ments in performance on current word similarity
benchmarks. Therefore, this evaluation offers a
better metric to hill-climb on than current lexical
semantics tasks.

Second, this evaluation allows for higher fi-
delity qualitative assessment on the strengths and
weaknesses of an embedding method. For in-
stance, certain embeddings may excel at syntac-
tic tasks, or on sequence modeling tasks, whereas
others may capture the semantics of a word better,
or work better for classification tasks. We believe
this evaluation can facilitate consolidating and for-
malizing such insights, currently latent in the col-
lective consciousness of the NLP community.

2 Related work

Existing work on creating evaluations for word
embeddings has focused on lexical semantics
tasks. An example of such tasks is WordSim-353
(Finkelstein et al., 2001), in which a series of word
pairs are assigned similarity judgments by human
annotators, and these are compared to the similar-
ity scores obtained from word embeddings.

A thorough such lexical semantics evaluation
was created by Faruqui and Dyer (2014)1. This
website allows a user to upload a set of embed-
dings, and evaluates these embeddings on a se-
ries of word similarity benchmarks. We follow
the model presented in Faruqui and Dyer (2014),
but extend to a series of more realistic downstream
tasks.

1http://www.wordvectors.org
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Schnabel et al. (2015) carried out both a thor-
ough intrinsic evaluation of word vectors, and a
limited extrinsic evaluation showing that an em-
bedding’s intrinsic performance did not necessar-
ily correlate with its real-world performance. This
finding is a key motivation for this work – we aim
to create a metric which does correlate with down-
stream performance.

3 Motivation

While extensive research has gone into the devel-
opment of meaningful intrinsic evaluation meth-
ods, extrinsic evaluation remains the de-facto
proving ground for novel word embedding meth-
ods (Pennington et al., 2014; Dhillon et al.,
2012). We aim to create an evaluation methodol-
ogy which is representative of real-world perfor-
mance, but nonetheless fast and easy to evaluate
against. These two criteria are somewhat at odds
with each other, which necessitates finding a good
point in a number of key tradeoffs:

Choice of Tasks Optimally, new embeddings
would be evaluated on as large a number of
tasks as possible. However, such an evaluation
would become prohibitively slow and impracti-
cal. Therefore, we limit our evaluation to 6 tasks
of moderate size, allowing models to be trained
and evaluated quickly while nonetheless covering
a range of NLP phenomena.

Choice of Models Optimally, new embeddings
would be evaluated as components of a range of
different models. However, the addition of more
models – and in particular more sophisticated
models – slows down the evaluation. Therefore,
we opt to use uncontroversial off-the-shelf neural
models for each task. Although none of the mod-
els achieve state-of-the-art results, we only care
about relative scores between embeddings. Sim-
ple models are equally, if not more suitable for this
criterion.

Choice of hyperparameters The performance
of neural models often vary greatly depending on
the choice of hyperparameters. To be fair to ev-
eryone, we must either cross-validate for each em-
bedding, or aggressively minimize the number of
hyperparameters. For the sake of efficiency, we
opt for the latter.

Reproducibility To ensure reproducibility, we
release our evaluation script, and host a public

website where users can upload their embeddings
to be evaluated.

4 Tasks

The following are a selection of tasks to be in-
cluded in the benchmark suite. These were chosen
to be a representative – though certainly not ex-
haustive – sampling of relevant downstream tasks.

Two tasks are included to test syntactic proper-
ties of the word embeddings – part-of-speech tag-
ging and chunking. Part-of-speech tagging is car-
ried out on the WSJ dataset described in Toutanova
et al. (2003). In order to simplify the task and
avoid hand-coded features, we evaluate against the
universal part-of-speech tags proposed in Petrov et
al. (2012). For chunking, we use the dataset from
the CoNLL 2000 shared task (Tjong Kim Sang
and Buchholz, 2000), derived from the Wall Street
Journal.

Four tasks test the semantic properties of the
word embeddings. At the word level, we include
named entity recognition. We evaluate on a 4-
class Named Entity Recognition task: PERSON,
LOCATION, ORGANIZATION, and MISC, us-
ing the CoNLL 2003 dataset (Tjong Kim Sang and
De Meulder, 2003), and an IOB tagging scheme.
At the sentence level, we include two tasks – sen-
timent classification and question classification.
We implement binary sentiment classification us-
ing the Stanford Sentiment Treebank dataset, and
the coarse-grained question classification task de-
scribed in Li and Roth (2006).

Finally, above the word level, we test the abil-
ity of word embeddings to propagate the lexical
relation information they contain into representa-
tions of larger units of text. This involves the task
of phrase-level natural language inference, derived
from a dataset presented in Ganitkevitch et al.
(2013).

These tasks were selected so as to cover both
syntactic and semantic capabilities, but also as
they are fast to train, fulfilling another of the char-
acteristics put forward in Section 3.

5 Models

Our goal is to select the simplest possible mod-
els for each task, while maintaining respectable
performance. We therefore train straightforward
models using standard neural net layers.

For tasks with word-level labeling, we use a
window-based model akin to that in Collobert et
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al. (2011). Features for each token in a sequence
are constructed by concatenating the word embed-
dings of a window of words centered on the token.
This is passed through a two-layer neural network,
followed by a softmax classifier.

For tasks with sentence-level labeling, sen-
tence representations are constructed using a basic
LSTM. Classification is then carried out by pass-
ing through a one-layer neural network, followed
by a softmax classifier.

Finally, the NLI task requires representations
for both the premise and hypothesis sequences.
Embeddings for each sequence are constructed as
described in the sentence embedding tasks, us-
ing two separate LSTMs. These embeddings are
concatenated, and similarly passed through a one-
layer neural network and softmax classifier. Our
implementations of these simple models are able
to train with a new set of embeddings and evaluate
the resulting model in a few hours.

Although these simplistic models do not
achieve state-of-the-art performance on any of the
tasks, they are faster and in many ways more ro-
bust to variations in training methodology than
more sophisticated models, maintaining a reduced
hyperparameter set. Furthermore, a valid compar-
ison between word vectors requires only that the
model is fair to each representation, not necessar-
ily that the models achieve state-of-the-art perfor-
mance, fulfilling our requirements from Section 3.

This evaluation aims solely to test the properties
of word embeddings, and not phrase or sentence
embeddings. For the tasks that demand phrase
and sentence representations, we elect to construct
these from the word embeddings using an LSTM,
rather than to extend the evaluation to other types
of embeddings.

6 Evaluation metrics

Our goal is to distill performance on extrinsic tasks
into a short but comprehensive “report” that indi-
cates the strengths and weaknesses of a particu-
lar set of embeddings on a variety of downstream
tasks. For each set of embeddings tested, we re-
port results based on the metric most appropriate
for the task – F1 score for NER, and accuracy for
the rest of the tasks.

We use SVD as a baseline embedding method.
Using the hyperwords software of Levy et al.
(2015), we apply SVD to a PMI-transformed co-
occurrence matrix derived from the same pre-

Raw results on downstream tasks

POS
(Acc.)

Chunk
(Acc.)

NER
(F1)

Sentiment
(Acc.)

Questions
(Acc.)

NLI
(Acc.)

Fixed 93.30 91.20 96.30 87.40 82.10 48.40

(Baseline) 82.80 77.60 94.20 69.20 84.00 46.40

Fine-tuned 97.10 93.30 95.80 78.70 88.80 45.60

(Baseline) 96.90 92.80 96.10 76.70 84.40 43.90

Raw results on word similarity tasks

WordSim
Analogy
(Sem.)

Analogy
(Syn.)

Anonymous vectors 0.640 52.0 63.0

Baseline 0.560 38.0 48.0

Figure 1: An example of the type of result re-
port created by our evaluation. The first chart
shows the relative error reduction of the embed-
ding method compared to the SVD baseline, dis-
allowing backpropagation into the vectors. This
measures the extent to which the original vectors
capture linguistic phenomena. Values above 0 per-
form better than SVD on the task; the magnitude
of the improvement are on comparable scales be-
tween tasks. The second chart is identical to the
first chart, but allowing backpropagation into the
vectors. This measures how good the vectors are
as an initialization for neural network methods.
The first table shows the raw accuracy numbers
for each task. The second table shows the vectors’
result on the WordSim and Analogy tasks.
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scribed corpus, resulting in a set of SVD vectors.
We present a baseline for each task, which is the
F1 score or accuracy attained by the SVD vectors.

Due to the diversity of the tasks, it is difficult
to compare the raw values or differences over the
baseline. These measures, especially when ag-
gregated, tend to implicitly reward large improve-
ments over low-baseline tasks more than small
improvements over high-baseline tasks. To illus-
trate, whereas a 1% improvement on POS tagging
should be considered significant, the same 1% im-
provement on a task with a 80% baseline is less
impressive. As such, the primary metric we report
is not accuracy or F1, but rather the relative er-
ror reduction as compared to the SVD baseline.
This allows us to calculate a meaningful aggre-
gate, averaging relative error reduction over tasks.
For backwards compatibility with prior work, we
also report correlations on WordSim-353, as well
as precision at 1 for the analogy task presented in
Mikolov et al. (2013).

The figure shows an example report generated
by our evaluation, using arbitrary but realistic val-
ues. It can be seen that the relative error reduction
depicted in the charts enables a clearer representa-
tion of the relative performance on different tasks,
as compared to the raw values provided in the ta-
ble.

7 Experimental methodology

7.1 Training hyperparameters

Following Schnabel et al. (2015), we prescribe the
use of a fixed snapshot of Wikipedia (dated 2008-
03-01) for training the embeddings to be evalu-
ated. This corpus was selected to be as close
in time as possible to the corpus Collobert et al.
(2011)’s embeddings were trained on. It was
preprocessed by applying the Stanford tokenizer
(Manning et al., 2014), and replacing all digits
with zeros.

7.2 Avoiding bias

Since this method of evaluation involves training
a number of neural network models, there is a sig-
nificant danger of overfitting to the embeddings
used to find the hyperparameters. We attempt to
mitigate this in two ways.

First, we use simple models with standard neu-
ral net layers to limit the number of hyperparam-
eters tuned. We tune only the optimizer type, the
l2 coefficient for regularization, and the learning

rate. We set any additional hyperparameters to fast
yet reasonable defaults, which also facilitate short
training times. For example, in an LSTM layer,
we use a hidden layer size equal to the input vec-
tor size. Second, rather than optimizing for each
individual task, we select only two hyperparame-
ter settings – one for the sequence labelling tasks
(POS tagging, chunking and NER), and a separate
setting for the other tasks. This is necessitated by
the difference in model structure.

7.3 Fine-tuning

Most deep learning-based models backpropagate
into the word embeddings used so as to fine tune
them to the task at hand. This is a realistic setting
in which to examine the performance of word em-
beddings, in their capacity as an initialization for
the various tasks. In contrast, disallowing back-
propagation into the embeddings allows us to de-
termine the amount of syntactic or semantic infor-
mation inherently present in the embeddings. As
such, we propose reporting accuracies attained in
both these settings.

8 Practical details

Evaluation takes place on the web site http:
//www.veceval.com. It is assumed that the
user will train word embeddings to be evaluated,
using the corpus provided on the website. The sen-
tence and phrase embeddings used in the evalua-
tion are produced by composing these given word
embeddings. The user is required to prepare a
gzipped text file, containing the word embeddings
to be evaluated, in a simple format specified on the
website. When the file is uploaded to the website,
evaluation will begin. Once the evaluation is com-
plete, a link to a report of the embeddings’ perfor-
mance appears on the homepage.

It is expected that the evaluation will take a few
hours. For example, the best performing hyper-
parameters on the baseline embeddings result in a
running time of 4 hours and 24 minutes.

9 Conclusion

We have presented a proposal for a fair and repli-
cable evaluation for word embeddings. We plan to
make this evaluation available as a script, allowing
it to be run on new embeddings. It is our hope that
this benchmark will enable extrinsic evaluations to
be compared in a more interpretable way.

22



References
Ronan Collobert, Jason Weston, Léon Bottou, Michael
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Abstract

The main intrinsic evaluation for vec-
tor space representation has been focused
on textual similarity, where the task is
to predict how semantically similar two
words or sentences are. We propose a
novel framework, Story Cloze Evalua-
tor, for evaluating vector representations
which goes beyond textual similarity and
captures the notion of predicting what
should happen next given a context. This
evaluation methodology is simple to run,
scalable, reproducible by the community,
non-subjective, 100% agreeable by hu-
man, and challenging to the state-of-the-
art models, which makes it a promising
new framework for further investment of
the representation learning community.

1 Introduction

There has been a surge of work in the vector repre-
sentation research in the past few years. While one
could evaluate a given vector representation (em-
bedding) on various down-stream applications, it
is time-consuming at both implementation and
runtime, which gives rise to focusing on an in-
trinsic evaluation. The intrinsic evaluation has
been mostly focused on textual similarity where
the task is to predict how semantically similar two
words/sentences are, which is evaluated against
the gold human similarity scores.

It has been shown that semantic similarity tasks
do not accurately measure the effectiveness of an
embedding in the other down-stream tasks (Schn-
abel et al., 2015; Tsvetkov et al., 2015). Further-
more, human annotation of similarity at sentence-
level without any underlying context can be sub-
jective, resulting in lower inter-annotator agree-
ment and hence a less reliable evaluation method.

There has not been any standardized intrinsic eval-
uation for the quality of sentence and document-
level vector representations beyond textual simi-
larity1. There is therefore a crucial need for new
ways of evaluating semantic representations of
language which capture other linguistic phenom-
ena.

In this paper we propose a new proxy task,
Story Cloze Test, for measuring the quality of vec-
tor space representations for generic language un-
derstanding and commonsense reasoning. In this
task, given a four-sentence story (called the con-
text) and two alternative endings to the story, the
system is tasked with choosing the right ending.
We propose the following Story Cloze Evalua-
tor modules: (1) Given an embedding of a four-
sentence story (the context) and two alternative
ending sentences, this module rewards the system
if the embedding of the context is closer to the
right ending than the wrong ending. (2) Given the
embedding for each of the four sentences and each
of the two alternatives, this module uses the trajec-
tory of the four vectors to predict the embedding
of the fifth sentence. Then the system is rewarded
if the predicted vector is closer to the right ending
than the wrong ending.

A vector representation that achieves a high
score according to the Story Cloze Evaluator
is demonstrating some level of language and
narrative understanding. We describe the Story
Cloze Test in Section 2, where we show that
this test is scalable, non-subjective and 100%
agreeable by human. We further describe
our evaluation methodology in Section 3. As
with any evaluation framework, we expect the
setup to be modified over time, the updates
of which can be followed through http://

1Examples of this include the semantic relatedness
(SICK) dataset (Marelli et al., 2014), where given two sen-
tences, the task is to produce a score of how semantically
related these sentences are
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cs.rochester.edu/nlp/rocstories/
RepEvalPredictingTheNext/.

2 Story Cloze Test: Predicting What
Happens Next

Representation and learning of commonsense
knowledge is one of the foundational problems for
enabling deep language understanding. This issue
is the most challenging for understanding casual
and correlational relationships between events,
and predicting what happens next. A recent frame-
work for evaluating story and script2 understand-
ing (Schank and Abelson, 1977) is the ‘Story
Cloze Test’ (Mostafazadeh et al., 2016), where
given two alternative endings to a four-sentence
story (the context), a system is tasked with choos-
ing the right ending. Table 1 shows a few example
instances of the Story Cloze Test3.

Although the Story Cloze Test was initially pro-
posed to evaluate story understanding and script
learning capabilities of a system, we see it as a per-
fect fit for intrinsic evaluation of vector space rep-
resentation at sentence and paragraph level. The
Story Cloze Test is unique in requiring a system to
demonstrate generic commonsense understanding
about stereotypical causal and temporal relations
between daily events, making it a unique proxy
task for vector space representation at sentence
and paragraph level.

Story Cloze Test looks similar to language
modeling at sentence level. However, predict-
ing an ending to a story is less subjective and
more deterministic than only predicting the next
sentence. Experimental evaluation has shown
(Mostafazadeh et al., 2016) that huamn performs
100% on this task, which makes it a very reliable
test framework. Moreover, evaluation results have
shown that a host of state-of-the-art models strug-
gle to achieve a high score on this test 4, which
makes the task even more compelling for the rep-
resentation learning community to focus on.

2.1 Crowdsourcing Story Cloze Test
Story Cloze Test dataset can be easily scaled to
hundreds of thousands of instances by crowd-
sourcing. The crowdsourcing starts from sampling

2Scripts represent structured knowledge about stereotypi-
cal event sequences together with their participants, e.g., {X
kills Y, Y dies, X gets detained}.

3More examples can be found here: http://cs.
rochester.edu/nlp/rocstories/

4The best performing system based on Deep Structured
Semantic Model (DSSM) (Huang et al., 2013) performs with
the accuracy of 58%, where a random baseline achieves 50%.

complete five-sentence stories from the ROCSto-
ries corpus. This corpus is a collection of∼50,000
crowdsourced short commonsense everyday sto-
ries 5, each of which has the following major char-
acteristics: (1) is realistic and non-fictional, (2)
has a clear beginning and ending where something
happens in between, (3) does not include anything
irrelevant to the core story. These stories are full
of stereotypical causal and temporal relations be-
tween events, making them a great resource for
commonsense reasoning and generic language un-
derstanding.

The crowdsourcing process continues as fol-
lows: given a complete five-sentence story, the
fifth sentence is dropped and only the first four
sentences (the context) are shown to the crowd
workers. For each context, a worker was asked to
write a ‘right ending’ and a ‘wrong ending’. The
workers were prompted to write ‘wrong ending’
which satisfies two conditions: (1) The sentence
should follow up the story by sharing at least one
of the characters of the story, and (2) The sentence
should be entirely realistic and sensible when read
in isolation. These conditions make sure that the
Story Cloze Test cases are not trivial.

Quality Control. The accuracy of the Story
Cloze test set plays a crucial role in propelling the
research community towards the right direction. A
two-step quality control step makes sure that there
are no vague or boundary cases in the test set.
First, the initially collected Story Cloze Test cases
are compiled into two sets of full five-sentence
stories. Then for each five-sentence story, inde-
pendently, three crowd workers are tasked to ver-
ify whether or not the given sequence of five sen-
tences makes sense as a meaningful and coherent
story, rating within {-1, 0, 1}. Then, only the ini-
tial test cases which get three ratings of 1 for their
‘right ending’ compilation and three ratings of -1
for their ‘wrong ending’ compilation are included
in the final dataset. This process ensures that there
are no boundary case of vague, incoherent, or hard
to follow stories, making human performance of
100% accuracy possible.

Data Split. Any collection of Story Cloze Test
instances will be split into validation and test sets6,
where the test set will be blind and not accessi-
ble by the systems under evaluation. There is cur-

5These stories can be found via http://cs.
rochester.edu/nlp/rocstories

6We also consider providing a designated training set,
however, different models can choose to use any resources
for training.
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Context Right Ending Wrong Ending
Karen was assigned a roommate her first year of college.
Her roommate asked her to go to a nearby city for a concert.
Karen agreed happily. The show was absolutely exhilarat-
ing.

Karen became good friends
with her roommate.

Karen hated her roommate.

Sarah had been dreaming of visiting Europe for years. She
had finally saved enough for the trip. She landed in Spain
and traveled east across the continent. She didn’t like how
different everything was.

Sarah decided that she pre-
ferred her home over Eu-
rope.

Sarah then decided to move
to Europe.

Jim got his first credit card in college. He didn’t have a job
so he bought everything on his card. After he graduated he
amounted a $10,000 debt. Jim realized that he was foolish
to spend so much money.

Jim decided to devise a plan
for repayment.

Jim decided to open another
credit card.

Gina misplaced her phone at her grandparents. It wasn’t
anywhere in the living room. She realized she was in the
car before. She grabbed her dad’s keys and ran outside.

She didn’t want her phone
anymore.

She found her phone in the
car.

When I first moved into my house, I didn’t know my neigh-
bors. While mowing one day, I found a kickball in my yard.
I felt this was the perfect opportunity to meet my neighbors.
I grabbed the ball and went next door to return it.

They were very friendly and
appreciated it.

I threw the kickball through
their closed window.

Amber had a lot of things to do this Sunday. She made a list
of all the places she needed to go. She hurried to get ready.
She was worried that she would not have enough time.

Amber was so hurried that
she left the list at home.

Amber enjoyed a relaxing
two hour brunch.

Tim was entering a baking contest. He decided to make his
famous donuts. He made a big batch and entered them into
the contest. The judges thought they were delicious.

Tim won the baking contest. The judges vomited from the
taste of the donuts.

Table 1: Example Story Cloze Test instances.

rently 3,744 instances of Story Cloze Test7 that
showcase our desired quality for the larger dataset.

3 Story Cloze Evaluator

There are various ways we can use Story Cloze
Test for evaluating an embedding model at para-
graph and sentence level. We propose the follow-
ing alternatives.

3.1 Joint Paragraph and Sentence Level
Evaluator

For this evaluator, a system should have two dif-
ferent modules for embedding either an alternative
(a sentence) or a context (a paragraph), which ide-
ally should be trained jointly. The evaluator works
as follows: given the vector representations of the
two alternative endings and the four-sentence con-
text as a whole (Figure 1), it rewards the embed-
ding model if the context’s embedding is closer to
the right ending embedding than the wrong end-
ing. The closeness can be measured via cosine
similarity of the embeddings.

This method evaluates joint paragraph-level and
sentence-level vector representations, where all
the representations are projected into the same
vector space. Representing semantics of a para-
graph as a vector is a major unresolved issue in
the field, requiring its own detailed discussions.

7Accessible through http://cs.rochester.edu/
nlp/rocstories/.

Figure 1: Sentence-level stroy cloze evaluator.

Figure 2: Joint paragraph and sentence level story
cloze evaluator.

Here, we represent a paragraph according to what
should happen next, which can be beneficial for
various generic language comprehension frame-
works. Deferring the representation of the context
paragraph to the system under evaluation, makes
it possible to use various sequence modeling tech-
niques, among others, for representing the context.

26



3.2 Sentence-level Evaluator

For this evaluator, the embedding should be at
sentence-level. The evaluator works as follows:
given the vector representations for each of the
four sentences and the two alternative endings
(Figure 2), the evaluator component uses the tra-
jectory of the four sentences to predict the embed-
ding of the ending sentences. Then the embedding
model is rewarded if the predicted embedding is
closer to the right ending than the wrong ending.

Given that the evaluator module should be sim-
ple and deterministic, we do not want to use any
learning components inside the evaluator. Hence,
we need a simple and deterministic procedure for
predicting the ending embedding. There are dif-
ferent vector operations that can be used for this
purpose. Addition operation is one option, how-
ever, addition is commutative whereas the relative
temporal ordering of the sentences in a story is not.
Taking into account the temporal progression of a
story, we propose to use the distance vector be-
tween adjacent sentences: for a given context of
sentences a, b, c, d, we need to predict the distance
vector e− d which then predicts the ending vector
e. This can be achieved using a basic multivariable
curve fitting among the distance vectors of adja-
cent sentences, e.g., using linear least squares er-
ror. Of course the validity of this technique, or any
other ones trying to compose the sentence vectors
into one vector, requires large scale testing and a
comprehensive analysis. As with the other vec-
tor space evaluations such as word analogy, fur-
ther details about this evaluation setup should be
finalized after future experiments.

3.3 Baselines

We present preliminary results on evaluating basic
embedding models on Story Cloze Test. Here we
use the test set split of the available Story Cloze
Test dataset, comprising of 1,872 instances. We
experiment with the following models:
1. Word2Vec: Encodes a given sentence or
paragraph with its average per-word word2vec
(Mikolov et al., 2013) embedding.
6. Skip-thoughts Model: A Sentence2Vec em-
bedding (Kiros et al., 2015) which models the se-
mantic space of novels. This model is trained on
the ‘BookCorpus’ (Zhu et al., 2015) (containing
16 different genres) of over 11,000 books. We re-
trieve the skip-thoughts embedding for the two al-
ternatives and the four sentences, representing the
context as the average embedding of the four sen-

tences.
9. Deep Structured Semantic Model (DSSM):
This model (Huang et al., 2013) learns to project
two different inputs into the same vector space,
consisting of two separate embedding modules.
It is trained on ROCStories corpus, consisting of
49,255 stories. We retrieve the DSSM embedding
for the two alternatives and the context of four-
sentences.

For this evaluation we use the joint paragraph
and sentence level evaluator module (Section 3.1).
Table 2 shows the results, where ‘constant’ model
simply chooses the first alternative constantly. As
the results show, there is a wide-gap between hu-
man performance and the best performing base-
line, making this test a challenging new frame-
work for the community.
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Test Set 0.513 0.539 0.552 0.585 1.0

Table 2: The preliminary results on Story Cloze
Test.

4 Major Characteristics

Our proposed method for representation learning
captures the linguistic and semantic property of
scripts, which has not been captured by any of
the other many existing intrinsic benchmarks. Our
method goes beyond capturing human ratings of
the similarity of two words or sentences, and to-
wards a more interesting linguistic phenomena of
capturing ‘what is next’, which can potentially af-
fect many other downstream applications.

Our evaluation method is very simple to im-
plement and is based on a high quality resource
for accurate evaluation. The human agreement
on choosing the right ending of the Story Cloze
Test is 100%, making the evaluation schema re-
liable for making further meaningful progress in
the field. Story Cloze evaluation together with the
dataset are accurately reproducible by the com-
munity. Furthermore, hundreds of thousands of
Story Cloze instances can be crowdsourced to
non-expert workers in the crowd, making the eval-
uation scalable.

Although the embeddings models will be
trained for the specific application of predicting
the ending to a given short story, their impact is
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not isolated to narrative understanding since they
capture the generic characteristics of a sequence
of logically related sentences. Hence, we can hy-
pothesize that the context vector representations
which perform well on our method can be used
as features in other language understanding and
commonsense reasoning tasks, e.g., reading com-
prehension tests (Hermann et al., 2015; Weston
et al., 2015; Richardson et al., 2013) which often
require a system to infer additional events given
a premise paragraph. Of course, demonstrating
that this knowledge is indeed transferable well
among different language tasks will be the next
step. However, given that the Story Cloze Test
is designed as a test of a model’s ability to un-
derstand and reason with language in a fairly gen-
eral sense, it does seem plausible that success on
Story Cloze Test can translate into success in other
downstream language understanding tasks.

5 Conclusion

In this paper we propose a new method for vec-
tor representation evaluation which captures a
model’s capability in predicting what happens
next given a context. Our evaluation methodology
and the dataset are simple, easily replicable and
scalable by crowdsourcing for quickly expanding
the resource. Human performs with an accuracy
of 100% on this task, which further promises the
validity of benchmarking the progress in the field
using this evaluation method.

Representation learning community’s focus on
commonsense reasoning and inferential frame-
works can help the research community to make
further progress in this crucial area of NLP and
AI. We expect the embedding models which some-
how leverage commonsense knowledge, perhaps
in the form of narrative structures or other knowl-
edge resources, to perform better on our evalua-
tion framework. We believe that a vector repre-
sentation that achieves a high score according to
the Story Cloze Evaluator is demonstrating some
level of commonsense reasoning and deeper lan-
guage understanding.
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Abstract

Lacking standardized extrinsic evaluation
methods for vector representations of
words, the NLP community has relied
heavily on word similarity tasks as a proxy
for intrinsic evaluation of word vectors.
Word similarity evaluation, which corre-
lates the distance between vectors and hu-
man judgments of “semantic similarity”
is attractive, because it is computationally
inexpensive and fast. In this paper we
present several problems associated with
the evaluation of word vectors on word
similarity datasets, and summarize exist-
ing solutions. Our study suggests that the
use of word similarity tasks for evaluation
of word vectors is not sustainable and calls
for further research on evaluation meth-
ods.

1 Introduction

Despite the ubiquity of word vector representa-
tions in NLP, there is no consensus in the commu-
nity on what is the best way for evaluating word
vectors. The most popular intrinsic evaluation task
is the word similarity evaluation. In word similar-
ity evaluation, a list of pairs of words along with
their similarity rating (as judged by human annota-
tors) is provided. The task is to measure how well
the notion of word similarity according to humans
is captured by the word vector representations. Ta-
ble 1 shows some word pairs along with their sim-
ilarity judgments from WS-353 (Finkelstein et al.,
2002), a popular word similarity dataset.

Let a, b be two words, and a,b ∈ RD be their
corresponding word vectors in a D-dimensional
vector space. Word similarity in the vector-space
can be obtained by computing the cosine similar-

Word1 Word2 Similarity score [0,10]
love sex 6.77
stock jaguar 0.92
money cash 9.15
development issue 3.97
lad brother 4.46

Table 1: Sample word pairs along with their hu-
man similarity judgment from WS-353.

ity between the word vectors of a pair of words:

cosine(a,b) =
a · b
‖a‖ ‖b‖ (1)

where, ‖a‖ is the `2-norm of the vector, and
a · b is the dot product of the two vectors. Once
the vector-space similarity between the words is
computed, we obtain the lists of pairs of words
sorted according to vector-space similarity, and
human similarity. Computing Spearman’s cor-
relation (Myers and Well, 1995) between these
ranked lists provides some insight into how well
the learned word vectors capture intuitive notions
of word similarity.

Word similarity evaluation is attractive, because
it is computationally inexpensive and fast, lead-
ing to faster prototyping and development of word
vector models. The origin of word similarity tasks
can be tracked back to Rubenstein and Goode-
nough (1965) who constructed a list of 65 word
pairs with annotations of human similarity judg-
ment. They created this dataset to validate the
veracity of the distributional hypothesis (Harris,
1954) according to which the meaning of words
is evidenced by the context they occur in. They
found a positive correlation between contextual
similarity and human-annotated similarity of word
pairs. Since then, the lack of a standard evaluation
method for word vectors has led to the creation of
several ad hoc word similarity datasets. Table 2
provides a list of such benchmarks obtained from
wordvectors.org (Faruqui and Dyer, 2014a).
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Dataset Word pairs Reference
RG 65 Rubenstein and Goodenough (1965)

MC 30 Miller and Charles (1991)
WS-353 353 Finkelstein et al. (2002)
YP-130 130 Yang and Powers (2006)
MTurk-287 287 Radinsky et al. (2011)
MTurk-771 771 Halawi et al. (2012)
MEN 3000 Bruni et al. (2012)
RW 2034 Luong et al. (2013)
Verb 144 Baker et al. (2014)
SimLex 999 Hill et al. (2014)

Table 2: Word similarity datasets.

In this paper, we give a comprehensive analysis
of the problems that are associated with the eval-
uation of word vector representations using word
similarity tasks.1 We survey existing literature to
construct a list of such problems and also sum-
marize existing solutions to some of the problems.
Our findings suggest that word similarity tasks are
not appropriate for evaluating word vector repre-
sentations, and call for further research on better
evaluation methods

2 Problems

We now discuss the major issues with evaluation
of word vectors using word similarity tasks, and
present existing solutions (if available) to address
them.

2.1 Subjectivity of the task

The notion of word similarity is subjective and
is often confused with relatedness. For example,
cup, and coffee are related to each other, but not
similar. Coffee refers to a plant (a living organ-
ism) or a hot brown drink, whereas cup is a man-
made object, which contains liquids, often coffee.
Nevertheless, cup and coffee are rated more sim-
ilar than pairs such as car and train in WS-353
(Finkelstein et al., 2002). Such anomalies are also
found in recently constructed datasets like MEN
(Bruni et al., 2012). Thus, such datasets unfairly
penalize word vector models that capture the fact
that cup and coffee are dissimilar.

1An alternative to correlation-based word similarity eval-
uation is the word analogy task, where the task is to find the
missing word b∗ in the relation: a is to a∗ as b is to b∗, where
a, a∗ are related by the same relation as a, a∗. For example,
king : man :: queen : woman. Mikolov et al. (2013b)
showed that this problem can be solved using the vector off-
set method: b∗ ≈ b − a + a∗. Levy and Goldberg (2014a)
show that solving this equation is equivalent to computing
a linear combination of word similarities between the query
word b∗, with the given words a, b, and b∗. Thus, the results
we present in this paper naturally extend to the word analogy
tasks.

In an attempt to address this limitation, Agirre
et al. (2009) divided WS-353 into two sets con-
taining word pairs exhibiting only either similar-
ity or relatedness. Recently, Hill et al. (2014) con-
structed a new word similarity dataset (SimLex),
which captures the degree of similarity between
words, and related words are considered dissimi-
lar. Even though it is useful to separate the con-
cept of similarity and relatedness, it is not clear
as to which one should the word vector models be
expected to capture.

2.2 Semantic or task-specific similarity?
Distributional word vector models capture some
aspect of word co-occurrence statistics of the
words in a language (Levy and Goldberg, 2014b;
Levy et al., 2015). Therefore, to the extent these
models produce semantically coherent representa-
tions, it can be seen as evidence of the distribu-
tional hypothesis of Harris (1954). Thus, word
embeddings like Skip-gram, CBOW, Glove, LSA
(Turney and Pantel, 2010; Mikolov et al., 2013a;
Pennington et al., 2014) which are trained on word
co-occurrence counts can be expected to capture
semantic word similarity, and hence can be evalu-
ated on word similarity tasks.

Word vector representations which are trained
as part of a neural network to solve a particular
task (apart from word co-occurrence prediction)
are called distributed word embeddings (Collobert
and Weston, 2008), and they are task-specific in
nature. These embeddings capture task-specific
word similarity, for example, if the task is of POS
tagging, two nouns cat and man might be consid-
ered similar by the model, even though they are
not semantically similar. Thus, evaluating such
task-specific word embeddings on word similarity
can unfairly penalize them. This raises the ques-
tion: what kind of word similarity should be cap-
tured by the model?

2.3 No standardized splits & overfitting
To obtain generalizable machine learning mod-
els, it is necessary to make sure that they do not
overfit to a given dataset. Thus, the datasets are
usually partitioned into a training, development
and test set on which the model is trained, tuned
and finally evaluated, respectively (Manning and
Schütze, 1999). Existing word similarity datasets
are not partitioned into training, development and
test sets. Therefore, optimizing the word vectors
to perform better at a word similarity task implic-

31



itly tunes on the test set and overfits the vectors
to the task. On the other hand, if researchers de-
cide to perform their own splits of the data, the
results obtained across different studies can be in-
comparable. Furthermore, the average number of
word pairs in the word similarity datasets is small
(≈ 781, cf. Table 2), and partitioning them further
into smaller subsets may produce unstable results.

We now present some of the solutions suggested
by previous work to avoid overfitting of word vec-
tors to word similarity tasks. Faruqui and Dyer
(2014b), and Lu et al. (2015) evaluate the word
embeddings exclusively on word similarity and
word analogy tasks. Faruqui and Dyer (2014b)
tune their embedding on one word similarity task
and evaluate them on all other tasks. This ensures
that their vectors are being evaluated on held-out
datasets. Lu et al. (2015) propose to directly evalu-
ate the generalization of a model by measuring the
performance of a single model on a large gamut of
tasks. This evaluation can be performed in two
different ways: (1) choose the hyperparameters
with best average performance across all tasks, (2)
choose the hyperparameters that beat the baseline
vectors on most tasks.2 By selecting the hyper-
parameters that perform well across a range of
tasks, these methods ensure that the obtained vec-
tors are generalizable. Stratos et al. (2015) divided
each word similarity dataset individually into tun-
ing and test set and reported results on the test set.

2.4 Low correlation with extrinsic evaluation

Word similarity evaluation measures how well the
notion of word similarity according to humans
is captured in the vector-space word representa-
tions. Word vectors that can capture word simi-
larity might be expected to perform well on tasks
that require a notion of explicit semantic similar-
ity between words like paraphrasing, entailment.
However, it has been shown that no strong corre-
lation is found between the performance of word
vectors on word similarity and extrinsic evalua-
tion NLP tasks like text classification, parsing,
sentiment analysis (Tsvetkov et al., 2015; Schn-
abel et al., 2015).3 An absence of strong corre-
lation between the word similarity evaluation and
downstream tasks calls for alternative approaches

2Baseline vectors can be any off-the-shelf vector models.
3In these studies, extrinsic evaluation tasks are those tasks

that use the dimensions of word vectors as features in a ma-
chine learning model. The model learns weights for how im-
portant these features are for the extrinsic task.

to evaluation.

2.5 Absence of statistical significance
There has been a consistent omission of statisti-
cal significance for measuring the difference in
performance of two vector models on word sim-
ilarity tasks. Statistical significance testing is im-
portant for validating metric gains in NLP (Berg-
Kirkpatrick et al., 2012; Søgaard et al., 2014),
specifically while solving non-convex objectives
where results obtained due to optimizer instabil-
ity can often lead to incorrect inferences (Clark et
al., 2011). The problem of statistical significance
in word similarity evaluation was first systemati-
cally addressed by Shalaby and Zadrozny (2015),
who used Steiger’s test (Steiger, 1980)4 to com-
pute how significant the difference between rank-
ings produced by two different models is against
the gold ranking. However, their method needs ex-
plicit ranked list of words produced by the models
and cannot work when provided only with the cor-
relation ratio of each model with the gold ranking.
This problem was solved by Rastogi et al. (2015),
which we describe next.

Rastogi et al. (2015) observed that the im-
provements shown on small word similarity task
datasets by previous work were insignificant. We
now briefly describe the method presented by
them to compute statistical significance for word
similarity evaluation. LetA andB be the rankings
produced by two word vector models over a list of
words pairs, and T be the human annotated rank-
ing. Let rAT , rBT and rAB denote the Spearman’s
correlation between A : T , B : T and A : B
resp. and r̂AT , r̂BT and r̂AB be their empirical
estimates. Rastogi et al. (2015) introduce σr

p0
as

the minimum required difference for significance
(MRDS) which satisfies the following:

(rAB < r)∧(|r̂BT−r̂AT | < σr
p0

) =⇒ pval > p0

(2)
Here pval is the probability of the test statistic un-
der the null hypothesis that rAT = rBT found us-
ing the Steiger’s test. The above conditional en-
sures that if the empirical difference between the
rank correlations of the scores of the competing
methods to the gold ratings is less than σr

p0
then

either the true correlation between the competing
methods is greater than r, or the null hypothesis
of no difference has p-value greater than p0. σr

p0

4A quick tutorial on Steiger’s test & scripts: http://
www.philippsinger.info/?p=347
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depends on the size of the dataset, p0 and r and
Rastogi et al. (2015) present its values for com-
mon word similarity datasets. Reporting statisti-
cal significance in this way would help estimate
the differences between word vector models.

2.6 Frequency effects in cosine similarity
The most common method of measuring the sim-
ilarity between two words in the vector-space is
to compute the cosine similarity between the cor-
responding word vectors. Cosine similarity im-
plicitly measures the similarity between two unit-
length vectors (eq. 1). This prevents any biases in
favor of frequent words which are longer as they
are updated more often during training (Turian et
al., 2010).

Ideally, if the geometry of embedding space is
primarily driven by semantics, the relatively small
number of frequent words should be evenly dis-
tributed through the space, while large number of
rare words should cluster around related, but more
frequent words. However, it has been shown that
vector-spaces contain hubs, which are vectors that
are close to a large number of other vectors in
the space (Radovanović et al., 2010). This prob-
lem manifests in word vector-spaces in the form
of words that have high cosine similarity with a
large number of other words (Dinu et al., 2014).
Schnabel et al. (2015) further refine this hubness
problem to show that there exists a power-law re-
lationship between the frequency-rank5 of a word
and the frequency-rank of its neighbors. Specif-
ically, they showed that the average rank of the
1000 nearest neighbors of a word follows:

nn-rank ≈ 1000 · word-rank0.17 (3)

This shows that pairs of words which have sim-
ilar frequency will be closer in the vector-space,
thus showing higher word similarity than they
should according to their word meaning. Even
though newer datasets of word similarity sample
words from different frequency bins (Luong et al.,
2013; Hill et al., 2014), this still does not solve the
problem that cosine similarity in the vector-space
gets polluted by frequency-based effects. Differ-
ent distance normalization schemes have been pro-
posed to downplay the frequency/hubness effect
when computing nearest neighbors in the vector
space (Dinu et al., 2014; Tomašev et al., 2011),

5The rank of a word in vocabulary of the corpus sorted in
decreasing order of frequency.

but their applicability as an absolute measure of
distance for word similarity tasks still needs to in-
vestigated.

2.7 Inability to account for polysemy

Many words have more than one meaning in a lan-
guage. For example, the word bank can either cor-
respond to a financial institution or to the land near
a river. However in WS-353, bank is given a sim-
ilarity score of 8.5/10 to money, signifying that
bank is a financial institution. Such an assump-
tion of one sense per word is prevalent in many of
the existing word similarity tasks, and it can in-
correctly penalize a word vector model for captur-
ing a specific sense of the word absent in the word
similarity task.

To account for sense-specific word similarity,
Huang et al. (2012) introduced the Stanford con-
textual word similarity dataset (SCWS), in which
the task is to compute similarity between two
words given the contexts they occur in. For ex-
ample, the words bank and money should have a
low similarity score given the contexts: “along
the east bank of the river”, and “the basis of all
money laundering”. Using cues from the word’s
context, the correct word-sense can be identified
and the appropriate word vector can be used. Un-
fortunately, word senses are also ignored by ma-
jority of the frequently used word vector mod-
els like Skip-gram and Glove. However, there
has been progress on obtaining multiple vectors
per word-type to account for different word-senses
(Reisinger and Mooney, 2010; Huang et al., 2012;
Neelakantan et al., 2014; Jauhar et al., 2015;
Rothe and Schütze, 2015).

3 Conclusion

In this paper we have identified problems associ-
ated with word similarity evaluation of word vec-
tor models, and reviewed existing solutions wher-
ever possible. Our study suggests that the use of
word similarity tasks for evaluation of word vec-
tors can lead to incorrect inferences and calls for
further research on evaluation methods.

Until a better solution is found for intrinsic eval-
uation of word vectors, we suggest task-specific
evaluation: word vector models should be com-
pared on how well they can perform on a down-
stream NLP task. Although task-specific evalu-
ation produces different rankings of word vector
models for different tasks (Schnabel et al., 2015),
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this is not necessarily a problem because different
vector models capture different types of informa-
tion which can be more or less useful for a partic-
ular task.
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Miloš Radovanović, Alexandros Nanopoulos, and Mir-
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Abstract

This paper presents an analysis of exist-
ing methods for the intrinsic evaluation of
word embeddings. We show that the main
methodological premise of such evalua-
tions is “interpretability” of word embed-
dings: a “good” embedding produces re-
sults that make sense in terms of tradi-
tional linguistic categories. This approach
is not only of limited practical use, but also
fails to do justice to the strengths of dis-
tributional meaning representations. We
argue for a shift from abstract ratings of
word embedding “quality” to exploration
of their strengths and weaknesses.

1 Introduction

The number of word embeddings is growing every
year. A new model is typically evaluated across
several tasks, and is considered an improvement if
it achieves better accuracy than its predecessors.
There are numerous real-use applications that can
be used for this purpose, including named entity
recognition (Guo et al., 2014), semantic role la-
beling (Chen et al., 2014), and syntactic parsing
(Chen and Manning, 2014).

However, different applications rely on differ-
ent aspects of word embeddings, and good per-
formance in one application does not necessarily
imply equally good performance on another. To
avoid laborious evaluation across multiple extrin-
sic tests a number of intrinsic tasks are used. Ide-
ally they would predict how a model performs in
downstream applications. However, it has been
shown that intrinsic and extrinsic scores do not al-
ways correlate (Tsvetkov et al., 2015; Schnabel et
al., 2015).

This study discusses the methodology behind
several existing intrinsic evaluations for word em-

beddings, showing that their chief premise is “in-
terpretability” of a model as a measure of its
quality. This approach has methodological is-
sues, and it also ignores the unique feature of
word embeddings - their ability to represent flu-
idity and fuzziness of meaning that is unattain-
able by traditional linguistic analysis. We argue
for a shift from absolute ratings of word embed-
dings towards more exploratory evaluations that
would aim not for generic scores, but for iden-
tification of strengths and weaknesses of embed-
dings, thus providing better predictions about their
performance in downstream tasks.

2 Existing Intrinsic Evaluations

2.1 Word Similarity and Relatedness Tests

The term “semantic relatedness” is used to refer to
any kind of semantic relation between words. The
degree of semantic relatedness reflects the degree
to which two words share attributes (Turney et al.,
2010, p. 149). Similarity is defined by Turney
as co-hyponymy (e.g. car and bicycle), whereas
Hill et al. (2015) define it as “the similarity rela-
tion is exemplified by pairs of synonyms; words
with identical referents” (e.g. mug and cup).

The widely used relatedness test sets include
WordSim-353 (Finkelstein et al., 2002) and MEN
(Bruni et al., 2014)1. The former contains 353
word pairs, and the latter - 3,000 word pairs with
their relatedness ratings by human annotators. On
the other hand, SimLex999 (Hill et al., 2015) spe-
cializes on semantic similarity.

The task in cases of both semantic relatedness
and semantic similarity is to rate the semantic
proximity of two words, usually with the cosine
similarity metric. The “best” model is the one

1Note that both of these sets also include semantically
similar words as a subset of semantic relatedness, e.g. “cathe-
dral, church” in MEN and “football, soccer” in WordSim.
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that comes closest to the ratings of human annota-
tors. Therefore these tests directly assesses inter-
pretability of the model’s output - to what extent it
mimics human judgments of semantic relations.

The immediate problem with the similarity and
relatedness tests is that distributional similarity
conflates not only semantic similarity and related-
ness, but also morphological relations and simply
collocations, and it is not clear whether a model
should generally score higher for preferring either
of them. Specializing on one of these relations
(Kiela et al., 2015) is certainly useful for specific
downstream applications, but it would not make a
word embedding either generally “good” or uni-
versally applicable.

Another concern is, traditionally, the
(un)reliability of human linguistic judgements,
which are subject to over 50 potential linguistic,
psychological, and social confounds (Schutze,
1996). With Amazon Mechanical Turk, typically
used to collect ratings, it is impossible to ensure
that the participants are native speakers, to get
accurate timing, or to control the environment in
which they provide responses. Inter-annotator
agreement provides an estimate of uniformity of
the data, but, if there is a general problem, we
would not detect it.

Semantic relatedness is particularly confusing
to rate. Consider WordSim scores for hyponymy
and hypernymy: “money, dollar” (8.42) vs “tiger,
mammal” (6.85). There is no theoretical ground
for rating either semantic relation higher; subjects
are likely to rank based on frequency, prototypi-
cality, and speed of association, and not “semantic
relatedness” per se.

It is also worth mentioning that word embed-
dings vary in the amount of frequency information
that they encode, and frequency can confound es-
timates of relatedness (Schnabel et al., 2015; Wil-
son and Schakel, 2015). Thus, depending on the
embedding, results of tests such as WordSim need
to be considered in the context of the corpus.

2.2 Comparative Intrinsic Evaluation

The comparative intrinsic evaluation for word
embeddings was introduced by Schnabel et al.
(2015). Several models are trained on the same
corpus, and polled for the nearest neighbors of
words from a test set. For each word, human raters
choose the most “similar” answer, and the model
that gets the most votes is deemed the best.

The advantage of this method is the possibility
to compare first, second, etc. nearest neighbors in
different models. However, it inherits the problem
with human interpretation of distributional simi-
larity, which we discussed above. Consider the
examples2 in table 1:

Target word GloVe SVD

1 phone telephone mobile
2 coffee tea drinks
3 grammar vocabulary grammatical
4 cohesiveness cohesion inclusiveness

Table 1: Examples of nearest neighbors in GloVe
and SVD

Subjects asked to choose the most “similar”
word would presumably prefer synonyms (word 1
in table 1), if any were present (thus the “best”
model would be the one favoring similarity over
relatedness). They would easily exclude the
clearly unrelated words (word 4 for SVD model).
But they would provide less reliable feedback on
“related” options, where the choice would be be-
tween different semantic relations (words 2,3).
Many answers would be subjective, if not random,
and likely to reflect frequency, speed of associ-
ation, and possibly the order of presentation of
words - rather than purely semantic factors that we
are trying to evaluate.

2.3 “Coherence” of Semantic Space
Schnabel et al. (2015) also suggested that a “good”
word embedding should have coherent neighbor-
hoods for each word vector. The test they pro-
posed consists in choosing two nearest neighbors
of a test word, and adding a random word. A hu-
man rater should be able to identify the “intruder”.
For example, in our GloVe the nearest neighbors
of true are indeed and fact; they are more seman-
tically related to each other than to a random word
taxi.

This test still relies on human interpretation, but
it is more likely to produce reliable results than the
methods discussed above. However, to apply it on

2Unless specified otherwise, the examples cited in this
study are derived from 2 word embeddings: GloVe (Pen-
nington et al., 2014) and SVD, trained at 300 dimensions,
window size 10. GloVe parameters: 100 iterations, xmax=
100, a = 3/4. The SVD (Singular Vector Decomposition)
model was built with Pointwise Mutual Information (PMI),
a = 1, using the co-occurrence extraction kernel by Drozd et
al. (2015). The 5B web-corpus combines Wikipedia (1.8B to-
kens), Araneum Anglicum Maius (1.2B) (Benko, 2014) and
ukWaC (2B) (Baroni et al., 2009).
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a large scale we would need to establish the size
of neighborhoods that should be coherent. This
number differs between words (see examples in ta-
ble 2), and a “better” model should recognize that
beautiful has more “good” neighbors than knob.
But it is hard to tell the exact number a priori, and
independently of a particular corpus.

beautiful write knob

lovely, 0.81 writing, 0.75 knobs, 0.60
gorgeous, 0.77 read, 0.72 gearshift, 0.48
wonderful, 0.64 written, 0.65 toggle, 0.41
magnificent, 0.63 want, 0.64 dials, 0.40
elegant, 0.61 wish, 0.62 dashboard, 0.38

Table 2: Nearest neighbors of beautiful, write and
knob in GloVe

2.4 Alignment with Linguistic Features
Tsvetkov et al. (2015) proposed the QVec sys-
tem that evaluates how well the dimensions of a
word embedding can be aligned with dimensions
of “linguistic” vectors (constructed from a seman-
tically annotated corpus)3. This system does not
involve human raters, but it still focuses on the
“interpretability”, as any linguistic categories are
themselves a product of a certain theoretical inter-
pretation of the language system.

The core assumption of QVec is that dimen-
sions of word embeddings correspond to linguis-
tic features (in this case, 41 supersenses of Word-
Net (Miller and Fellbaum, 1998) such as food or
motion). Each linguistic feature can be mapped
onto several dimensions of the word embedding,
but each dimension of the word embedding can be
mapped onto at most one linguistic feature. This
assumption could be challenged: it is not clear
why one dimension could not encode several lin-
guistic features, or even that a certain cluster or
pattern of dimensions could not correspond to one
or several linguistic features.

Crucially, the authors report that the correla-
tion of QVec with performance on different tasks
varies with vector dimensionality (0.32 for 50 di-
mensions, 0.78 for 300 and 0.60 for 1000 on the
sentiment analysis task). Such variation could be
explained by the intuition that in smaller word em-
beddings dimensions have to be multi-functional,

3See also (Faruqui et al., 2015) for decomposition of word
embeddings into sparse vectors to increase their correspon-
dence to linguistic features. Such vectors are reported to be
more “interpretable” to human annotators in the word intru-
sion task.

and in larger embeddings more complex patterns
of correspondence could be expected to occur.
And increasingly complex patterns are likely to
make decreasing amount of sense to humans.

3 General Methodological Concerns

3.1 Do Dimensions Have to Be Interpretable?

Although both people and word embeddings ac-
quire the meanings of words from context, there
are many important differences between human
semantic knowledge and what can be expected
from word embeddings. The latter depend on
corpora that are static, noisy, and small. Co-
occurrence frequencies do not mirror the frequen-
cies of events that give rise to natural language se-
mantics (e.g. “dog bites man” is less likely to be
mentioned than “man bites dog”) (Erk, 2016).

Thus even the most perfect word embedding is
unlikely to have exactly the same “concepts” as
us, or that their structure would mirror the cate-
gories of some linguistic theory. QVec proves that
to some extent the dimensions of the vector space
are indeed interpretable, but the point we would
like to make is this: by focusing on the structures
that we expect the word embeddings to have, we
might be missing the structures that they actually
have.

Figure 1 compares the overlap of dimensions
for 10 random words and 10 co-hyponyms in 300-
dimensional GloVe vectors (darker dimensions in-
dicate overlap between more words in the sam-
ple). It is clear that there are hundreds of fea-
tures relevant for felines. We could hypothesize
about them (“animal”? “nounhood”? “catness”?),
but clearly this embedding has more “feline” fea-
tures thanwhat we could find in dictionaries or
elicit from human subjects. Some of such fea-
tures might not even be in our conceptual inven-
tory. Perhaps there is a dimension or a group
of dimensions created by the co-occurrences with
words like jump, stretch, hunt, and purr - some
“feline behavior” category that we would not find
in any linguistic resource.

Distributional models are gradient by nature.
This makes them less interpretable, but also more
similar to connectionist cognitive models (Lenci,
2008). We do not know to what extent word em-
beddings are cognitively plausible, but they do of-
fer a new way to represent meaning that goes be-
yond symbolic approaches. We would be missing
the point if we were only seeking features that we
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10 felines: cat, lion, tiger, leopard, cougar, cheetah, lynx, 
bobcat, panther, puma

10 random words: emergency, bluff, buffet, horn, human, 
like, american, pretend, tongue, green

0

-0.5

0.5

0

-0.5

0.5

DimensionsDimensions

Figure 1: Heatmap histogram of 10 random words and 10 co-hyponyms in GloVe

know from traditional linguistics.

3.2 Polysemy: the Elephant in the Room

Another general problem with all evaluations dis-
cussed above stems from the (lack of) treatment
of polysemy in word-level word embeddings. Do
we expect the vector for apple to be closer to com-
puter or to pear? The cosine similarity-based tests
choose only the “strongest” sense of a word in a
given corpus. Therefore the accuracy of the cur-
rent intrinsic evaluation methods also depends on
whether the relations in the test word pairs match
the distribution of senses of these words in a par-
ticular corpus. “Apple, pear” could be rated low,
and “apple, computer” - high, but preference for
either pair would say nothing about quality of the
word embedding itself.

One way to deal with this problem is to ex-
clude ambiguous words from tests, as it is done
in BLESS; but this would be hard to guarantee for
all corpora, it would significantly limit the tests
(as more frequent words tend to be more polyse-
mous), and it would avoid the issue rather than
deal with it. Alternatively, we could attempt word
sense disambiguation (Neelakantan et al., 2014;
Bartunov et al., 2015); but the accuracy would be
hard to guarantee, and we would need to provide
the mapping from the word senses in the test to the
word senses in the corpus.

The alternative is to embrace ambiguity as an
intrinsic characteristic of word embeddings. We
are looking for interpretable dimensions because
we are used to discrete linguistic features, and
similarly we are trying to bring meaning repre-
sentations in word embeddings down to neat lists
of word senses in dictionaries that we are used
to. But anyone who has done lexicographic work

knows that dictionaries are only an abstraction,
never complete or free of inconsistencies and sub-
jectivity. The distributional approach offers us a
novel way to capture the full continuum of mean-
ing (Erk, 2009). From this perspective, the prob-
lem with polysemy in tests for word embeddings
is not the polysemy itself, but the fact that we are
ignoring it with out-of-context test words and co-
sine similarity.

4 Back to the Drawing Board

4.1 What We Should Start Thinking About
To sum up, all intrinsic evaluations of word em-
beddings discussed above are based on the idea
of interpretability by humans, and suffer from the
problem of word ambiguity. We argue that both
problems stem from the underlying methodolog-
ical principle - the attempt to transfer the tradi-
tional lexicographic model of discrete word senses
and linguistic features onto the continuous seman-
tic space.

The reason that this methodology is so
widespread is that linguistics does not yet offer an
alternative, and finding one would require a lot of
(collaborative) work by both theoretical and com-
putational linguists. We will need to think of an-
swers to some very basic questions. For exam-
ple, how granular do we want our semantics to
be? (individual word senses? lexical groups?)
Should embeddings aim at separating word groups
as neatly as possible, or rather at blending them by
giving more weight to cases that would puzzle hu-
man annotators? The former would be easier to
work with from the point of view of downstream
applications; the latter would arguably provide a
truer model of language for the linguists.

With respect to “interpretability” of word em-
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beddings, the biggest question is the nature of
those potentially non-interpretable dimensions.
We can continue ignoring them and work only
with the ones we can understand (which could
prove to be enough for certain applications). The
alternative is to accept that from now on we will
not really understand our semantics, and delegate
the interpretation to machine learning algorithms.

4.2 What Can We Do Right Now?

The above discussion does not yet offer any al-
ternatives to current evaluations of word embed-
dings, but it does offer some insights about their
interpretation. Things that we can learn from ex-
isting tests include:

• the degree to which a word embedding en-
codes frequency information, and is likely to
be biased by it (Schnabel et al., 2015; Wilson
and Schakel, 2015);

• the richness of representations for rare words
(Wartena, 2014);

• performance on different size of corpora
(while more data is mostly better, we also
need “good” word embeddings for low-
resource languages);

• specialization for a particular type of relation
in distributional similarity, if any.

The last option is explored in such test sets as
BLESS (Baroni and Lenci, 2011) and EVALu-
tion (Santus et al., 2015). They include pairs of
words with different kinds of relations, such as
synonymy and meronymy, but no annotator rat-
ings. The word embeddings are queried on sim-
ilarity between these pairs of words. The distribu-
tion of similarity ratings across different relations
shows what linguistic relations are “favored” by
the given embedding. This approach can be fruit-
fully extended to other types of linguistic relations,
such as derivational morphology and frame rela-
tions.

Ideally, evaluations of a new model would also
include publishing results of systematic tests for
different parameters (Levy et al., 2015; Lai et al.,
2015) and types of context (Melamud et al., 2016),
as well as different types of linguistic relations
(Gladkova et al., 2016). This kind of data is of-
ten viewed as something simply to be used for
choosing a model for a particular task - but it does

also offer insights into its nature, and could help us
understand the deeper properties of word embed-
dings, which could eventually lead to new types of
tests.

None of these above-mentioned characteristics
of word embeddings provides a one-number an-
swer about how “good” a model is. But we can
take a more exploratory approach, identifying the
properties of a model rather than aiming to estab-
lish its superiority to others.

Lastly, when evaluating word embeddings we
should not forget that the result of any evaluation
is down to not only the embedding itself, but also
the test, the corpus, and the method of identify-
ing particular relations. Thus we cannot interpret,
e.g., a low score on analogy test as evidence that a
given model does not contain some linguistic fea-
ture: all it means is that we could not detect it with
a given method, and perhaps a different method
would work better (Drozd and Matsuoka, 2016).

5 Conclusion

This paper discusses the current methods of intrin-
sic evaluation of word embeddings. We show that
they rely on “interpretability” of the model’s out-
put or structure, and we argue that this might not
be the best approach, as it ignores the key features
of distributional semantics, and does not always
yield good predictions for how a word embedding
would perform on a downstream application. We
suggest focusing not on absolute ratings of ab-
stract “quality” of embeddings, but on exploration
of their characteristics.

We hope to draw attention of both compu-
tational and theoretical linguists to the need of
working together on new models of language that
would help us make better sense, and better use,
of word embeddings.
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Abstract

We present a new framework for an intrin-
sic evaluation of word vector representa-
tions based on the outlier detection task.
This task is intended to test the capabil-
ity of vector space models to create se-
mantic clusters in the space. We carried
out a pilot study building a gold standard
dataset and the results revealed two im-
portant features: human performance on
the task is extremely high compared to the
standard word similarity task, and state-
of-the-art word embedding models, whose
current shortcomings were highlighted as
part of the evaluation, still have consider-
able room for improvement.

1 Introduction

Vector Space Models have been successfully used
on many NLP tasks (Turney and Pantel, 2010)
such as automatic thesaurus generation (Crouch,
1988; Curran and Moens, 2002), word similar-
ity (Deerwester et al., 1990; Turney et al., 2003;
Radinsky et al., 2011) and clustering (Pantel and
Lin, 2002), query expansion (Xu and Croft, 1996),
information extraction (Laender et al., 2002), se-
mantic role labeling (Erk, 2007; Pennacchiotti et
al., 2008), spelling correction (Jones and Martin,
1997), and Word Sense Disambiguation (Navigli,
2012). These models are in the main based on the
distributional hypothesis of Harris (1954) claim-
ing that words that occur in the same contexts tend
to have similar meanings. Recently, more com-
plex models based on neural networks going be-
yond simple co-occurrence statistics have been de-
veloped (Mikolov et al., 2013; Pennington et al.,
2014) and have proved beneficial on key NLP ap-
plications such as syntactic parsing (Weiss et al.,
2015), Machine Translation (Zou et al., 2013), and

Question Answering (Bordes et al., 2014).

Word similarity, which numerically measures
the extent to which two words are similar, is gen-
erally viewed as the most direct intrinsic evalua-
tion of these word vector representations (Baroni
et al., 2014; Levy et al., 2015). Given a gold stan-
dard of human-assigned scores, the usual evalu-
ation procedure consists of calculating the corre-
lation between these human similarity scores and
scores calculated by the system. While word sim-
ilarity has been shown to be an interesting task
for measuring the semantic coherence of a vec-
tor space model, it suffers from various prob-
lems. First, the human inter-annotator agreement
of standard datasets has been shown to be rela-
tively too low for it to be considered a reliable
evaluation benchmark (Batchkarov et al., 2016).
In fact, many systems have already surpassed the
human inter-annotator agreement upper bound in
most of the standard word similarity datasets (Hill
et al., 2015). Another drawback of the word sim-
ilarity evaluation benchmark is its simplicity, as
words are simply viewed as points in the vector
space. Other interesting properties of vector space
models are not directly addressed in the task.

As an alternative we propose the outlier detec-
tion task, which tests the capability of vector space
models to create semantic clusters (i.e. clusters of
semantically similar items). As is the case with
word similarity, this task aims at evaluating the
semantic coherence of vector space models, but
providing two main advantages: (1) it provides
a clear gold standard, thanks to the high human
performance on the task, and (2) it tests an inter-
esting language understanding property of vector
space models not fully addressed to date, and this
is their ability to create semantic clusters in the
vector space, with potential applications to various
NLP tasks.
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2 Outlier Detection Task

The proposed task, referred to as outlier detec-
tion henceforth, is based on a standard vocabu-
lary question of language exams (Richards, 1976).
Given a group of words, the goal is to identify the
word that does not belong in the group. This ques-
tion is intended to test the student’s vocabulary
understanding and knowledge of the world. For
example, book would be an outlier for the set of
words apple, banana, lemon, book, orange, as it
is not a fruit like the others. A similar task has
already been explored as an ad-hoc evaluation of
the interpretability of topic models (Chang et al.,
2009) and word vector dimensions (Murphy et al.,
2012; Fyshe et al., 2015; Faruqui et al., 2015).

In order to deal with the outlier detection task,
vector space models should be able to create se-
mantic clusters (i.e. fruits in the example) compact
enough to detect all possible outliers. A formal-
ization of the task and its evaluation is presented
in Section 2.1 and some potential applications are
discussed in Section 2.2.

2.1 Formalization
Formally, given a set of words W =
{w1, w2, . . . , wn, wn+1}, the task consists of
identifying the word (outlier) that does not belong
to the same group as the remaining words. For
notational simplicity, we will assume that w1, ...
, wn belong to the same cluster and wn+1 is the
outlier. In what follows we explain a procedure
for detecting outliers based on semantic similarity.

We define the compactness score c(w) of a
word w ∈ W as the compactness of the cluster
W \{w}, calculated by averaging all pair-wise se-
mantic similarities of the words in W \ {w}:

c(w) =
1
k

∑
wi∈W\{w}

∑
wj∈W\{w}

wj 6=wi

sim(wi, wj) (1)

where k = n(n−1). We propose two measures for
computing the reliability of a system in detecting
an outlier given a set of words: Outlier Position
(OP) and Outlier Detection (OD). Given a set W
of n+1 words, OP is defined as the position of the
outlier wn+1 according to the compactness score,
which ranges from 0 to n (position 0 indicates the
lowest overall score among all words in W , and
position n indicates the highest overall score). OD
is, instead, defined as 1 if the outlier is correctly

detected (i.e. OP (wn+1) = n) and 0 otherwise.
To estimate the overall performance on a dataset
D (composed of |D| sets of words), we define the
Outlier Position Percentage (OPP) and Accuracy
measures:

OPP =

∑
W∈D

OP (W )
|W |−1

|D| × 100 (2)

Accuracy =
∑

W∈D OD(W )
|D| × 100 (3)

The compactness score of a word may be ex-
pensive to calculate if the number of elements in
the cluster is large. In fact, the complexity of cal-
culatingOP andOD measures given a cluster and
an outlier is (n+1)×n×(n−1) = O(n3). How-
ever, this complexity can be effectively reduced to
(n+1)×2n = O(n2). Our proposed calculations
and the proof are included in Appendix A.

2.2 Potential applications
In this work we focus on the intrinsic semantic
properties of vector space models which can be
inferred from the outlier detection task. In addi-
tion, since it is a task based partially on seman-
tic similarity, high-performing models in the out-
lier detection task are expected to contribute to
applications in which semantic similarity has al-
ready shown its potential: Information Retrieval
(Hliaoutakis et al., 2006), Machine Translation
(Lavie and Denkowski, 2009), Lexical Substitu-
tion (McCarthy and Navigli, 2009), Question An-
swering (Mohler et al., 2011), Text Summariza-
tion (Mohammad and Hirst, 2012), and Word
Sense Disambiguation (Patwardhan et al., 2003),
to name a few. Furthermore, there are other NLP
applications directly connected with the semantic
clustering proposed in the outlier detection task.
Ontology Learning is probably the most straight-
forward application, as a meaningful cluster of
items is expected to share a common hypernym,
a property that has already been exploited in re-
cent studies using embeddings (Fu et al., 2014;
Espinosa-Anke et al., 2016). In fact, building on-
tologies is a time-consuming task and generally re-
lies on automatic or semi-automatic steps (Velardi
et al., 2013; Alfarone and Davis, 2015). Ontolo-
gies are one of the basic components of the Se-
mantic Web (Berners-Lee et al., 2000) and have al-
ready proved their importance in downstream ap-
plications like Question Answering (Mann, 2002),

44



Big cats European
football teams

Solar System
planets Months

Cluster
elements

tiger FC Barcelona Mercury January
lion Bayern Munich Venus March

cougar Real Madrid Earth May
jaguar AC Milan Mars July
leopard Juventus Jupiter September
cheetah Atletico Madrid Saturn November
wildcat Chelsea Uranus February

lynx Borussia Dortmund Neptune June
1st Outlier dog Miami Dolphins Sun Wednesday

2nd Outlier mouse McLaren Moon winter
3rd Outlier dolphin Los Angeles Lakers Triton date
4th Outlier shark Bundesliga Comet Halley year
5th Outlier savanna football eclipse astrology
6th Outlier jungle goal astronaut birthday
7th Outlier day couch lunch ball
8th Outlier car fridge window paper

Table 1: First four clusters (including outliers) of the 8-8-8 outlier detection dataset.

which in the main rely on large structured knowl-
edge bases (Bordes et al., 2014).

In this paper we do not perform any quantita-
tive evaluation to measure the correlation between
the performance of word vectors on the outlier de-
tection task and downstream applications. We ar-
gue that the conclusions drawn by recent works
(Tsvetkov et al., 2015; Chiu et al., 2016) as a
result of measuring the correlation between stan-
dard intrinsic evaluation benchmarks (e.g. word
similarity datasets) and downstream task perfor-
mances are hampered by a serious methodological
issue: in both cases, the sample set of word vectors
used for measuring the correlation is not represen-
tative enough, which is essential for this type of
statistical study (Patton, 2005). All sample vec-
tors came from corpus-based models1 trained on
the same corpus and all perform well on the con-
sidered intrinsic tasks, which constitute a highly
homogeneous and not representative sample set.
Moreover, using only a reduced selected set of ap-
plications does not seem sufficient to draw gen-
eral conclusions about the quality of an intrinsic
task, but rather about its potential on those spe-
cific applications. Further work should focus on
these issues before using downstream applications
to measure the impact of intrinsic tasks for evalu-
ating the quality of word vectors. However, this is
out of the scope of this paper.

1In the case of Chiu et al. (2016) all word vectors in
the sample come from the Skip-Gram model of Word2Vec
(Mikolov et al., 2013).

3 Pilot Study

We carried out a pilot study on the outlier detec-
tion task. To this end, we developed a new dataset,
8-8-8 henceforth. The dataset consisted of eight
different topics each made up of a cluster of eight
words and eight possible outliers. Four annotators
were used for the creation of the dataset. Each an-
notator was asked to first identify two topics, and
for each topic to provide a set of eight words be-
longing to the chosen topic (elements in the clus-
ter), and a set of eight heterogeneous outliers, se-
lected varying their similarity to and relatedness
with the elements of the cluster2. In total, the
dataset included sixty-four sets of 8 + 1 words for
the evaluation. Tables 1 and 2 show the eight clus-
ters and their respective outliers of the 8-8-8 out-
lier detection dataset.

When we consider the time annotators had to
spend creating the relatively small dataset for this
pilot study, the indications are that building a
large-scale dataset may not need to be very time-
consuming. In our study, the annotators spent
most of their time reading and understanding the
guidelines, and then thinking about suitable topics.
In fact, with a view to constructing a large-scale
dataset, this topic selection step may be carried out
prior to giving the assignments to the annotators,
providing topics to annotators according to their

2We release the full dataset and guidelines for the
creation of the topics at http://lcl.uniroma1.it/
outlier-detection
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IT companies German car
manufacturers

Apostles of
Jesus Christ

South American
countries

Cluster
elements

Apple Mercedes Benz Peter Brazil
Foxconn BMW Andrew Colombia
Amazon Audi James Argentina

HP Opel John Peru
Microsoft Volkswagen Thaddaeus Venezuela

IBM Porsche Bartholomew Chile
Google Alpina Thomas Ecuador
Sony Smart Matthew Bolivia

1st Outlier Opel Michelin Noah Bogotá
2nd Outlier Boeing Bridgestone Mary Rio de Janeiro
3rd Outlier Nestlé Boeing Pope Benedict XVI New York
4th Outlier Adidas Samsung Ambrose Madrid
5th Outlier computer Michael Schumacher crucifixion town
6th Outlier software Angela Merkel church government
7th Outlier chair Capri airplane bottle
8th Outlier plant pineapple Microsoft telephone

Table 2: Last four clusters (including outliers) from the 8-8-8 outlier detection dataset.

expertise. The time spent for the actual creation of
a cluster (including outliers) was in all cases less
than ten minutes.

3.1 Human performance

We assessed the human performance of eight an-
notators in the task via accuracy. To this end,
each annotator was given eight different groups
of words, one for each of the topics of the 8-8-
8 dataset. Each group of words was made up of
the set of eight words comprising the cluster, plus
one additional outlier. All the words were shuf-
fled and given to the annotator without any addi-
tional information (e.g. annotators did not know
the topic of the cluster). The task for the annota-
tors consisted of detecting the outlier in each set of
nine words. To this end, each annotator was asked
to provide two different answers: one without any
external help, and a second one in which the anno-
tator could use the Web as external help for three
minutes before giving his answer. This human
performance in the outlier detection task may be
viewed as equivalent to the inter-annotator agree-
ment in word similarity, which is used to measure
the human performance in the task.

The results of the experiment were the follow-
ing: an accuracy of 98.4% for the first task in
which annotators did not use any external help,
and an accuracy of 100% for the second task
in which annotators were allowed to use exter-
nal help. This contrasts with the evaluation per-
formed in word similarity, which is based on

human-assigned scores with a relatively low inter-
annotator agreement. For example, the inter-
annotator agreements in the standard WordSim-
353 (Finkelstein et al., 2002) and SimLex-999
(Hill et al., 2015) word similarity datasets were,
respectively, 0.61 and 0.67 according to average
pair-wise Spearman correlation. In fact, both
upper-bound values have already been surpassed
by automatic models (Huang et al., 2012; Wieting
et al., 2015).

3.2 Word embeddings performance

We tested the performance of three standard word
embedding models in the outlier detection task:
the CBOW and Skip-Gram models of Word2Vec
(Mikolov et al., 2013) and GloVe (Pennington et
al., 2014). We report the results of each of the
models trained on the 3B-words UMBC webbase
corpus 3 (Han et al., 2013), and the 1.7B-words
English Wikipedia4 with standard hyperparame-
ters5. For each of the models, we used as multi-
word expressions the phrases contained in the pre-
trained Word2Vec word embeddings trained on the
Google News corpus. The evaluation was per-
formed as explained in Section 2.1, using cosine

3http://ebiquity.umbc.
edu/blogger/2013/05/01/
umbc-webbase-corpus-of-3b-english-words/

4We used the Wikipedia dump of November 2014.
5The dimensionality of the vectors was set to 300 for the

three models. Context-size 5 for CBOW and 10 for Skip-
Gram and GloVe; hierarchichal softmax for CBOW and neg-
ative sampling for Skip-Gram and GloVe.
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Model Corpus OPP Acc.

CBOW
UMBC 93.8 73.4

Wikipedia 95.3 73.4

Skip-Gram
UMBC 92.6 64.1

Wikipedia 93.8 70.3
Google News 94.7 70.3

GloVe
UMBC 81.6 40.6

Wikipedia 91.8 56.3

Table 3: Outlier Position Percentage (OPP) and
Accuracy (Acc.) of different word embedding
models on the 8-8-8 outlier detection dataset.

as similarity measure (sim in Equation 1).
Table 3 shows the results of all the word embed-

ding models on the 8-8-8 outlier detection dataset.
Outliers, which were detected in over 40% of
cases by all models, were consistently given high
compactness scores. This was reflected in the
OPP results (above 80% in all cases), which
proves the potential and the capability of word
embeddings to create compact clusters. All the
models performed particularly well in the Months
and South American countries clusters. However,
the best model in terms of accuracy, i.e. CBOW,
achieved 73.4%, which is far below the human
performance, estimated in the 98.4%-100% range.

In fact, taking a deeper look at the output we
find common errors committed by these models.
First, the lack of meaningful occurrences for a
given word, which is crucial for obtaining an ac-
curate word vector representation, seems to have
been causing problems in the cases of the wildcat
and lynx instances of the Big cats cluster, and of
Alpina from the German car manufacturers clus-
ter. Second, the models produced some errors on
outliers closely related to the words of the clus-
ters, incorrectly considering them as part of the
cluster. Examples of this phenomenon are found
in the outliers Bundesliga from the European foot-
ball teams cluster, and software from the IT com-
panies cluster. Third, the ambiguity, highlighted
in the word Smart from the German car manufac-
turers cluster and in the Apostles of Jesus Christ
cluster, is an inherent problem of all these word-
based models. Finally, we encountered the issue
of having more than one lexicalization (i.e. syn-
onyms) for a given instance (e.g. Real, Madrid,
Real Madrid, or Real Madrid CF), which causes
the representations of a given lexicalization to be
ambiguous or not so accurate and, in some cases,

to miss a representation for a given lexicalization
if that lexicalization is not found enough times
in the corpus6. In order to overcome these am-
biguity and synonymy issues, it might be inter-
esting for future work to leverage vector repre-
sentations constructed from large lexical resources
such, as FreeBase (Bordes et al., 2011; Bordes
et al., 2014), Wikipedia (Camacho-Collados et
al., 2015a), or BabelNet (Iacobacci et al., 2015;
Camacho-Collados et al., 2015b).

4 Conclusion

In this paper we presented the outlier detection
task and a framework for an intrinsic evaluation
of word vector space models. The task is in-
tended to test interesting semantic properties of
vector space models not fully addressed to date.
As shown in our pilot study, state-of-the-art word
embeddings perform reasonably well in the task
but are still far from human performance. As op-
posed to the word similarity task, the outlier de-
tection task achieves a very high human perfor-
mance, proving the reliability of the gold stan-
dard. Finally, we release the 8-8-8 outlier detec-
tion dataset and the guidelines given to the anno-
tators as part of the pilot study, and an easy-to-
use Python code for evaluating the performance
of word vector representations given a gold stan-
dard dataset at http://lcl.uniroma1.it/
outlier-detection.
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A Proposition 1

The complexity for calculating OP (w) can be re-
duced to 2n by calculating the following pseudo-
inverted compactness score7 p(w) instead of the
compactness score c(w) of Equation 1, and defin-
ing OPp(w) as the position of the outlier in W ac-
cording to the inverted pseudo-inverted compact-
ness score:

p(w) =
1
k′
( ∑

wi∈W
wi 6=w

sim(wi, w)+
∑

wi∈W
wi 6=w

sim(w,wi)
)

(4)
where k′ = 2(|W | − 1).

Proof. Since OP (w) is given by the position of
c(w) with respect to the remaining words in W
and ≤ represents a relation of total order, we only
have to prove the following statement:

c(w) ≤ c(w′)⇔ p(w′) ≤ p(w),∀w,w′ ∈W
(5)

Given any w ∈W , we can calculate the sum of all
pair-wise similarities of the words in W (i.e. µ) as
follows:

µ =
∑

wi∈W\{w}

∑
wj∈W\{w}

wj 6=wi

sim(wi, wj)+

+
∑

wi∈W\{w}
sim(wi, w) +

∑
wi∈W\{w}

sim(w,wi)

= k · c(w) + k′ · p(w)
(6)

where k = (|W | − 1)(|W | − 2). Therefore,

µ = k · c(w) + k′ · p(w),∀w ∈W (7)

Since k, k′ (being both k and k′ positive values)
and µ are all fixed values only depending on W ,
we can trivially infer the following statement from
Equation 7 given any w,w′ ∈W :

c(w) ≤ c(w′)⇔ p(w′) ≤ p(w) (8)
7In this proposition we do not assume any special prop-

erty to the function sim(., .) for generalization. If sim(., .)
were symmetrical (e.g. cosine similarity is symmetrical), we
could simply define the pseudo-inverted compactness score
as p(w) =

∑
wi∈W sim(wi, w), which would lead to a com-

plexity of n.

Hence, we have proved the proposition.
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Abstract

If lexical similarity is not enough to reli-
ably assess how word vectors would per-
form on various specific tasks, we need
other ways of evaluating semantic repre-
sentations. We propose a new task, which
consists in extracting semantic differences
using distributional models: given two
words, what is the difference between their
meanings? We present two proof of con-
cept datasets for this task and outline how
it may be performed.

1 Introduction

All similar pairs of words are similar in the same
way: they share a substantial number of seman-
tic properties (although properties themselves may
belong to different groups, i.e. visual, functional,
etc.). Cosine of two feature vectors in a distri-
butional semantic space is a formalization of this
idea, standardly used as a measure of semantic
similarity for the evaluation of distributional mod-
els (Baroni et al., 2014a; Landauer and Dumais,
1997). While similarity tasks have become the
standard in the evaluation of distributional models,
the validity of those tasks has been put into ques-
tion: inter-annotator agreement tends to be low,
the small size of some of the most popular datasets
is a concern, and subjective similarity scores have
limitations when it comes to task-specific appli-
cations (Faruqui et al., 2016; Batchkarov et al.,
2016). In contrast to similarity, the nature of se-
mantic difference between two (related) words can
vary greatly. Modeling difference can help capture
individual aspects of meaning; similarity alone
may be too simple a task to assess semantic rep-
resentations in all their complexity, and therefore
insufficient for driving the progress of computa-
tional models. Our project is related to previous

work that attempts to predict the discriminative
features of referents, using natural images to rep-
resent the input objects (Lazaridou et al., 2016).
Attributes have also been used to simulate simi-
larity judgements and concept categorization (Sil-
berer and Lapata, 2014). On a more abstract level,
our work is related to previous attempts at using
offset vectors to capture lexical relations without
explicit supervision (Mikolov et al., 2013), which
have been shown to be able to generalise well to a
range of relations (Vylomova et al., 2015).

We created two proof of concept datasets for the
difference task: a small dataset of differences as
feature oppositions and a bigger one with differ-
ences as presence vs. absence of a feature.

2 The Small Dataset

We used a random sample of seed words from
the BLESS dataset (Baroni and Lenci, 2011)
along with their semantic neighbors to create
word pairs that were in some ways similar and
denoted concrete objects. For each word pair,
one or more pair(s) of discriminating attributes
were assigned manually. For example, the word
pair [scooter, moped] received two pairs
of attributes: [big, small] and [fast,
slow]. Some word pairs were also added manu-
ally to further exemplify specific differences, such
as [horse, foal] for the age properties. The
resulting dataset contains 91 items. To get a sim-
ple unsupervised baseline on the detection of dif-
ference direction, we calculated a similarity score
for each item, using the cooccurrence counts of the
best count-based configuration presented in Ba-
roni et al. (2014b), which were extracted from the
concatenation of the web-crawled ukWack corpus
(Baroni et al., 2009), Wikipedia, and the BNC, for
a total of 2.8 billion tokens. This similarity score
calculates whether the attribute is closer to the first
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or second word. We found that 67% of items had
positive scores. The most successful types of at-
tributes were color (34 out 51), age (9 out of 9)
and diet (4 out of 5).

Score = (CosSim(w1, a1) · CosSim(w1, a2))
−(CosSim(w2, a2) · CosSim(w2, a1))

The dataset is too small for training supervised
models; our attempts (logistic regression on pair-
wise cosines with cross-validation) showed negli-
gibly low results.

3 Feature Norms Dataset

Only some differences can be expressed in the for-
mat assumed above, i.e. as the opposition of two
attributes, such as yellow vs. red being the differ-
ence between bananas and apples. Other differ-
ences are better expressed as the presence or ab-
sence of a feature. For instance, the difference be-
tween a narwhal and a dolphin is the presence of
a horn. For natural salient features of word con-
cepts, we turned to property norms.

We used the set of feature norms collected by
McRae et al. (2005), which includes features for
541 concepts (living and non-living entities), col-
lected by asking 725 participants to produce fea-
tures they found important for each concept. Pro-
duction frequencies of these features indicate how
salient they are. Feature norms of concepts are
able to encode semantic knowledge because they
tap into the representations that the participants
have acquired through repeated exposure to those
concepts. McRae et al. divided disjunctive fea-
tures, so that if a participant produced the feature
is green or red the concept will be associ-
ated with both the feature is green and the fea-
ture is red. Concepts that have different mean-
ings had been disambiguated before being shown
to participants. For example, there are two entries
for bow, bow (weapon) and bow (ribbon).
Because the word vector for bow encodes the
properties of both senses, we did not differentiate
between entries that have multiple senses. In our
dataset, the concept bow has the features of both
the weapon and the ribbon.

The McRae dataset uses the brain region tax-
onomy (Cree and McRae, 2003) to classify fea-
tures into different types, such as function, sound
or taxonomic. We decided to only work with vi-
sual features, which exist for all concrete concepts,

while features such as sound or taste are only rel-
evant for some concepts. This classification dis-
tinguishes between three types of visual features:
motion, color and form and surface. We first se-
lected words that had at least one visual feature of
any type. We then created word pairs by select-
ing the 50 closest neighbours of every word in the
dataset.

For each word pair, if there was a feature
that the first word had but the second didn’t,
that word pair and feature item was added to
our dataset. The set was built in such a way
that the feature of each item always refers to
an attribute of the first word. For example,
in Table 2, wings is an attribute of airplane.
The word pair [airplane,helicopter]
will only be included in the order
[helicopter,airplane] if helicopter
has a feature that airplane doesn’t have. The
relations are thus asymmetric and have fixed
directionality. For simplicity, multi-word features
were processed so that only the final word is taken
into account (e.g. has wings becomes wings).
In total, our dataset contains 528 concepts, 24 963
word pairs, and 128 515 items.

word1 word2 feature

airplane helicopter wings
bagpipe accordion pipes
canoe sailboat fibreglass
dolphin seal fins
gorilla crocodile bananas
oak pine leaves
octopus lobster tentacles
pajamas necklace silk
skirt jacket pleats
subway train dirty

Table 2: Examples of word pairs and their features

We computed a simple unsupervised baseline
for direction of difference (e.g. is subway or train
dirty?), choosing the first word iff cos(w1wf ) >
cos(w2, wf ), and achieved 69% accuracy. Ulti-
mately, this dataset could be used to build a model
that can predict an exhaustive list of distinctive
attributes for any pair of words. This could be
done in a binary set-up where the dataset has been
supplemented with negative examples: for a given
triple, predict whether the attribute is a difference
between word1 and word2.
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type w1 w2 a1 a2

color tomato spinach red green
color banana carrot yellow orange
color tiger panther orange black
age cat kitten old young
age dog pup old young
age horse foal old young
diet deer fox herbivorous carnivorous
diet cow lion herbivorous carnivorous
sex pig sow male female
sex tiger tigress male female

Table 1: Small Dataset: Examples of distinctive attribute pairs.

4 Conclusion

A system for basic language understanding should
be able to detect when concepts are similar to each
other, but also in what way concepts differ from
each other. We’ve demonstrated how an evaluation
set that captures differences between concepts can
be built.

The baselines we computed show that the dif-
ference task we propose is a non-trivial seman-
tic task. Even with the simplest evaluation set-
ting where the difference was given and only the
direction of the difference was to be established
(e.g. where the task was to establish if tomato is
red and spinach green or vice versa), the baseline
methods achieved less than 70% accuracy. A more
realistic evaluation setup would challenge models
to produce a set of differences between two given
concepts.

The dataset versions described in this paper are
proof of concept realizations, and we keep work-
ing on improving the test sets. For instance, to
counter the inherent noise of feature norms, we
plan on using human annotation to confirm the va-
lidity of the test partition of the dataset.

In the future, solving the difference task could
help in various applications, for example automa-
tized lexicography (automatically generating fea-
tures to include in dictionary definitions), con-
versational agents (choosing lexical items with
contextually relevant differential features can help
create more pragmatically appropriate, human-
like dialogs), machine translation (where explic-
itly taking into account semantic differences be-
tween translation variants can improve the quality
of the output), etc.
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Abstract

In this proposal track paper, we have pre-
sented a crowdsourcing-based word em-
bedding evaluation technique that will be
more reliable and linguistically justified.
The method is designed for intrinsic eval-
uation and extends the approach proposed
in (Schnabel et al., 2015). Our improved
evaluation technique captures word relat-
edness based on the word context.

1 Introduction
The semantic relatedness between words can be
ambiguous if the context of the word is not known
(Patwardhan et al., 2003), and word sense disam-
biguation is the process of assigning a meaning
to a polysemous word based on its context. The
context defines linguistic and corresponding fac-
tual real world knowledge which provides a differ-
ence between word’s sense and its reference. The
sense of a word concerns one of the meanings of
a word in a particular language. Reference is used
to deal with the relationship between a language
and the real world knowledge about an object or
entity. The context of a word can be understood
through a sentence, and thus understanding a word
in a sentential context works as ambiguity resolu-
tion (Faust and Chiarello, 1998).

The vector space representation of words (em-
beddings) keeps related words nearby in the vec-
tor space. The word relatedness is usually mea-
sured through synonyms, but synonyms can dif-
fer in at least one semantic feature. The feature
can be ‘denotative’, referring to some actual, real
world difference in the object the language is deal-
ing with, such as, walk, lumber, stroll, meander,
lurch, stagger. The feature can be ‘connotative’,
referring to how the user feels about the object
rather than any real difference in the object itself,

such as, die, pass away, give up the ghost, kick
the bucket, croak. Absolute synonyms are usually
rare in a language. For example: sofa and couch
are nearly absolute synonyms, however based on
the context, they have different meaning in at least
one way, such as, couch potato, because there is no
word sense available for sofa potato (Vajda, 2001).

Crowdsourcing (Ambati et al., 2010; Callison-
Burch, 2009), which allows employing people
worldwide to perform short tasks via online plat-
forms, can be an effective tool for performing eval-
uation in a time and cost-effective way (Ambati,
2012). In (Schnabel et al., 2015), crowdsourcing-
based evaluation was proposed for synonyms or a
word relatedness task where six word embedding
techniques were evaluated. The crowdsourcing-
based intrinsic evaluation which tests embed-
dings for semantic relationship between words fo-
cuses on a direct comparison of word embeddings
with respect to individual queries. Although the
method is promising for evaluating different word
embeddings, it has some shortcomings. Specifi-
cally, it does not explicitly consider word context.
As the approach relies on human interpretation of
words, it is important to take into account how
humans interpret or understand the meaning of a
word. Humans usually understand semantic relat-
edness between words based on the context. Thus,
if the approach is based only on the word without
its context, it will be difficult for humans to un-
derstand the meaning of a particular word, and it
could result in word sense ambiguity (WSA).

In this paper, we show what are the conse-
quences of the lack of the word context in (Schn-
abel et al., 2015), and we discuss how to address
the resulting challenge. Specifically, we add a sen-
tential context to mitigate word sense ambiguity,
and this extension leads to an improved evalua-
tion technique that explicitly accounts for multiple
senses of a word.
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2 Crowdsourcing Evaluation

2.1 Details of the Method
The method in (Schnabel et al., 2015) started by

creating a query inventory which is a pre-selected
set of query terms and semantically related tar-
get words. The query inventory consists of 100
query terms that balance frequency, part of speech
(POS), and concreteness. The query terms were
selected from 10 out of 45 broad categories from
WordNet (Miller, 1995). Then, 10 random words
with one adjective, one adverb, four nouns, and
four verbs were selected based on concrete con-
cepts from each category. Among the 10 words,
3 words were rare with the property that the num-
ber of their occurrences in the training corpus—
Wikipedia dump (2008-03-01)—is smaller than
2500.

For each of those 100 query terms in the inven-
tory, the nearest neighbours at ranks k ∈ {1, 5, 50}
for the six embeddings from CBOW (Mikolov
et al., 2013), Glove (Pennington et al., 2014),
TSCCA (Dhillon et al., 2012), C&W (Collobert
et al., 2011), H-PCA (Lebret and Lebret, 2013),
and Random Projection (Li et al., 2006) were re-
trieved. Then, for each k, the query word along
with the six words corresponding to the embed-
dings described above were presented to human
testers (Turkers) from Amazon Mechanical Turk
(MTurk) for evaluation. Each Turker was re-
quested to evaluate between 20 and 50 items per
task, where an item corresponds to the query term
and a set of 6 retrieved nearest neighbour words
from each of the six embeddings. The Turkers’
were then asked to select one of the six words
that is the closest synonym to the query word ac-
cording to their perception. For the selected 100
query words and 3 ranks (k), there were a total
of 300 terms on which Turkers’ perception-based
choices were used for evaluating the embedding
techniques. The comparison of embeddings was
done by averaging the win ratio, where the win
ratio was how many times the Turker chose a par-
ticular embedding divided by the number of total
ratings for the corresponding query word.

2.2 Shortcomings of the Method
A word relatedness evaluation task for word

embeddings is challenging due to ambiguity in-
herent in word sense and corresponding refer-
ence. Although the experiments in (Schnabel et
al., 2015) incorporated participants with adequate

knowledge of English, the ambiguity is inher-
ent in the language. This means that evaluations
that ignore the context may have impact on the
evaluation result. Also, the evaluated word em-
bedding techniques in (Schnabel et al., 2015)—
except TSCCA (Dhillon et al., 2015)—generate
one vector for each word, and that makes compar-
isons between two related words from two embed-
ding techniques difficult. For example, the word
‘bank’ may be embedded by CBOW as a noun in
the context of ‘he cashed a cheque at the bank’
where the related word according to nearest neigh-
bours would be ‘financial’ or ‘finance’ whereas
the TSCCA might embed the same ‘bank’ as a
noun but in the context of ‘they pulled the canoe
up on the bank’ where related word according to
nearest neighbours would be ‘slope’ or ‘incline’.
Although all the embedding techniques have been
trained with the same corpus, different techniques
may encode different explanatory factors of vari-
ation present in the data (Gao et al., 2014), and
using one embedding vector per word cannot cap-
ture the different meanings (Huang et al., 2012),
and as a result, not all senses will be conflated into
one representation.

If the query word ‘bank’ is presented to a user
with ‘financial’ and ‘incline’ as related words, and
a user is asked which one is more likely to be
a related word, then the user has to choose one
word, but she does not know the context. There-
fore, if 100 people were asked to evaluate the
query word, and 50 persons voted for ‘financial’
and 50 persons voted for ‘incline’ to be a related
word, then both CBOW and TSCCA have the
same score. However, this judgement would be
inaccurate as CBOW can embed one vector per
word whereas TSCCA can embed multiple vec-
tors for each word. Thus user’s choice of a related
word does not have sufficient impact on the qual-
ity evaluation of the embedding techniques. Note
that the word ‘bank’, as a noun, has 10 senses in
WordNet.

Before we introduce our extensions in the next
section, we investigate how (Schnabel et al., 2015)
accommodates word sense ambiguity. The Turker
is presented with a query word and several related
words to choose from. If the options presented to
the Turker are from different contexts, the Turker
has to choose from several correct senses. The
Turker could be instructed that multiple senses can
be encountered during the experiment, and one of
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the two alternative solutions could be considered:
1. Biased Select the sense that is most likely ac-

cording to your knowledge of the language
2. Uniform sampling Select one sense ran-

domly giving the same preference to all op-
tions

The first approach would be more appropriate be-
cause senses that are more common would be
given higher priority. The second option would
be hard to implement in practice because it is not
clear if random sampling could be achieved, but
this option will be useful to show connections with
our method. Certainly, even if the Turker can sam-
ple according to a uniform probability, the real
samples would depend on which senses contained
in the corpus were captured by various word em-
bedding techniques. Overall, using the above op-
tions, one could argue that the method accom-
modates different senses because the evaluation
measures how well the word embedding methods
recover the sense selection strategy of the user.
The biased method would be desirable because it
would focus on the most frequent senses, but one
should note that this would depend on the subjec-
tive judgement of the user and her knowledge.

3 Proposed Extensions
Recent efforts on multiple embeddings for words
(Neelakantan et al., 2015; Reisinger and Mooney,
2010) require a more sophisticated evaluation and
further motivate our ideas. There are existing
works, such as (Song, 2016; Iacobacci et al.,
2015), where the sense embedding was proposed
as a remedy for the current word embedding lim-
itation on ubiquitous polysemous words, and the
method learns a vector for each sense of a word.
For words with multiple meanings, it is impor-
tant to see how many senses a word embedding
technique can represent through multiple vectors.
To achieve such an evaluation, we have first ex-
tended the work of (Schnabel et al., 2015) to in-
clude sentential context to avoid word sense ambi-
guity faced by a human tester. In our method, ev-
ery query word is accompanied by a context sen-
tence. We then extended the method further so
that it is more suitable to evaluate embedding tech-
niques designed for polysemous words with regard
to their ability to embed diverse senses.

3.1 First Extension
Our chief idea is to extend the work of (Schn-

abel et al., 2015) by adding a context sentence

for each query term. Using a context sentence
for resolving word sense ambiguity is not a new
concept, and it has been used by numerous re-
searchers, such as (Melamud et al., 2015; Huang
et al., 2012; Stetina et al., 1998; Biemann, 2013).
In particular, human judgement based approaches,
such as (Huang et al., 2012), have used the sen-
tential context to determine the similarity between
two words, and (Biemann, 2013) used sentential
context for lexical substitution realising the impor-
tance of the word interpretation in the context for
crowdsourcing-based evaluations.

Due to limited and potentially insufficient em-
bedded vocabulary used to identify a related sense
of the query term, we are also proposing to provide
another option of ‘None of the above’ along with
the six words. In fact, (Schnabel et al., 2015) have
already considered ‘I don’t know the meaning of
one (or several) of the words’; however, when the
context is in place, there may be a situation when
none of the embeddings make a good match for the
query term, and in that case ‘None of the above’ is
more appropriate. In this way, the user’s response
will be more justified, and a more reliable evalua-
tion score will be retrieved. Our proposal is based
on an observation that human reasoning about a
word is based on the context, and in crowdsourc-
ing evaluations, we use a human to interpret the
meaning; and based on their judgement, we eval-
uate embedding techniques. So the human should
be presented with the examples in the manner that
is consistent with what humans see in real-life.

3.2 Second Extension
In our first extension above, every query word

is presented in a context. In order to implement a
multi-sense evaluation, every query word is pre-
sented in several contexts where contexts repre-
sent different senses. The number (p) of the con-
texts presented, where p ≥ 1, will depend on the
number and frequency of available senses for a
particular query word. Note that p contexts for the
query word are presented in every round, and the
Turker has more senses to choose from when word
embeddings encode multiple senses per word.

3.3 Example
The true, related words are those that are re-

trieved from the embedding techniques using the
nearest neighbour algorithm, for example. Below,
we show an example word ‘bar’ together with its
context; the context is extracted from WordNet.
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Query Word: Bar, [Context Sentence: He drowned his

sorrows in whiskey at the bar.], {True Related Words: bar-

room, bar, saloon, ginmill, taproom}
To extend the evaluation for multi-sense embed-

ding capabilities of the embedding techniques, we
will extend the example setting above by adding
multiple test cases for each query word represent-
ing different senses. Note that this is not needed
in (Schnabel et al., 2015) where query words are
not annotated. In the above example, only one test
case per query word was presented. However, for
the query word ‘Bar’ as a noun, there are 15 senses
available in WordNet 3.0, and 23 senses avail-
able in 2012 version of Wikipedia (Dandala et al.,
2013a). For the second extension, the human eval-
uator will be presented with p context sentences
representing p different senses. The criteria for se-
lecting senses, and the corresponding context sen-
tences will be discussed in the next section.

3.4 Context Generation
In every iteration, every word embedding

method will return its best match for the query
term. Our method will need to determine a context
(i.e. an appropriate sentence for the given word).
We call this process context generation, and this
section introduces two approaches that can be used
to implement it.

3.4.1 Informed Matching

In this informed approach, our assumption is that
the senses selected for the query word should exist
in the training corpus. Below we explain how to
implement this feature.

Matching Frequent Senses In this approach,
the goal is to use the most frequent senses from
WordNet. In this way, we can take into ac-
count the frequency of senses embedded in Word-
Net. For every query word, the most frequent n,
where n ≥ 1, word senses will be selected from
WordNet. Note that we have to select only those
senses that exist in our training corpus which is
Wikipedia in this case. The mapping of the senses
between Wikipedia and WordNet will be imple-
mented using a method similar to (Mihalcea, 2007,
Section 3.1). In the final step of their method,
the labels (Wikipedia senses) are manually (i.e.
they are performed by a human) mapped to Word-
Net senses. An alternative approach would be
automated mapping introduced in (Fernando and
Stevenson, 2012), which does not require human
intervention. One could argue that the manual

mapping would be more accurate because of the
incorporation of the human judgement, however,
this is expensive and time consuming. As the over-
lapping, most frequent senses from the Wikipedia
and WordNet will be chosen, the correct senses
corresponding to the embedded word can be se-
lected by Turkers as long as the word embedding
methods are accurate. Since our method presents
n senses per run, it is more likely that one or more
of the chosen senses were embedded by the em-
bedding techniques. Note that senses in Word-
Net are generally ordered from the most frequent
to the least frequent. WordNet sense frequencies
come from the SemCor (Miller et al., 1993) sense-
tagged corpus which means that WordNet frequen-
cies are well justified, and they are based on data.
The example sentence corresponding to the cho-
sen sense will be taken as a context sentence. As
WordNet was annotated by humans, we assume
that the context sentences are correct for a partic-
ular sense.

Matching Rare Senses In (Vossen et al., 2013),
the authors argue that current sense-tagged cor-
pora have insufficient support for rare senses and
contexts and, as a result, they may not be suffi-
cient for word-sense-disambiguation. For exam-
ple, WordNet 3.0 has 15 senses for the word ‘bar’
as a noun, whereas 2012 version of Wikipedia has
23 senses (Dandala et al., 2013a) for this word. As
a remedy for this issue, we propose another way
to generate contexts where we utilise m, where
m ≥ 1, randomly selected senses from the training
corpus (Wikipedia in our case). Note that this sec-
tion applies to the situation where none of the rare
senses exist in WordNet. Since Wikipedia does
not contain frequencies for senses, sampling has
to be according to a uniform distribution. Overall,
Wikipedia can be used as a training corpus for the
embedding methods and also for sense annotation.

In (Mihalcea, 2007), the authors showed that
links in Wikipedia articles are appropriate for rep-
resenting a sense. When Wikipedia will be used
for selecting rare senses, the context sentence will
be retrieved using a similar method to (Mihalcea,
2007, Section 3.1). Specifically, in the final step of
the mapping method of (Mihalcea, 2007, Section
3.1), the labels (Wikipedia senses) were mapped
to WordNet senses. However, this time we are
interested in the word senses that are not avail-
able in WordNet; as a result, we will map the
selected senses from Wikipedia to the appropri-
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ate subsenses in the Oxford Dictionary of English
(ODE) (Soanes and Stevenson, 2003). Note that
ODE provides a hierarchical structure of senses,
and each polysemous sense is divided into a core
sense and a set of subsenses (Navigli, 2006). We
will follow an approach similar to (Navigli, 2006)
where WordNet sense was semantically mapped
to the ODE core senses. They mapped to the core
senses because they were interested in the coarse-
grained sense mapping to resolve granularity in-
herent in WordNet. In our case, we will do se-
mantic mapping between Wikipedia senses (piped
link or simple link) and ODE subsenses, instead
of mapping the WordNet sense to the ODE core
senses. Then, corresponding context sentences
will be selected from Wikipedia or ODE.

Overall, when the corresponding context sen-
tence for a query term is not available in Word-
Net, the context sentence can be retrieved from
Wikipedia (Mihalcea, 2007; Dandala et al., 2013b)
or ODE using the method described above.

3.4.2 Random Matching

The informed method described above requires ei-
ther manual matching by humans (which are time
consuming and expensive) or an automated match-
ing which may be inaccurate. An alternative ap-
proach is to sample senses randomly from Word-
Net ignoring senses contained in the training cor-
pus. The sampling distribution should be based on
frequencies of senses. In this case, ‘None of the
above’ option will be used whenever none of the
embedded words are related to the query word ac-
cording to the presented context. If we consider a
large number of Turkers’ evaluations, the evalua-
tion will still give the performance score reflecting
the true performance score of the embedding tech-
nique. However, this will be more costly because
more Turkers will be required.

3.5 Merit of our Extensions
At the end of Sec. 2.2, we explained how word

sense ambiguity is accommodated in (Schnabel et
al., 2015). We argued that their evaluation was
in expectation with respect to subjective prefer-
ences of the Turkers. Additionally, when the con-
text is not provided, the Turkers may even for-
get about common senses of the query word. In
our proposal, we argue that query words should
be presented in an appropriate context. Similar to
Sec. 2.2, we can distinguish two ways in which we
can apply our method:

1. Informed sampling Sample senses accord-
ing to their frequency in WordNet

2. Uniform sampling Sample senses according
to a uniform probability distribution if no fre-
quency data is available (e.g. Wikipedia)

We can now draw a parallel with alternative ways
that Turkers may apply to solve the word sense
ambiguity problem. In particular, under certain
conditions (i.e. when word embeddings don’t use
sense frequency information), the uniform sam-
pling option in our method would be equivalent
with the uniform sampling method in Sec. 2.2.
This means that asking the Turkers to select senses
randomly according to a uniform probability dis-
tribution is the same as sampling contexts ac-
cording to a uniform distribution. The two ap-
proaches differ, however, when non-uniform, in-
formed probability distributions are used. In-
formed sampling in our approach is based on
WordNet whose sense frequencies are based on
data-driven research. This means that the over-
all evaluation would be based on real frequen-
cies coming from the data instead of subjective
and idiosyncratic judgements by the Turkers. This
probabilistic argument provides another justifica-
tion for our approach.

4 Conclusion

In this paper, a crowdsourcing-based word em-
bedding evaluation technique of (Schnabel et al.,
2015) was extended to provide data-driven treat-
ment of word sense ambiguity. The method of
(Schnabel et al., 2015) relies on user’s subjective
and knowledge dependent ability to select ‘pre-
ferred’ meanings whereas our method would deal
with this problem selecting explicit contexts for
words. The selection is according to the real fre-
quencies of meanings computed from data. With
this data-driven feature, our method could be more
appropriate to evaluate both methods that pro-
duce one embedding per word as well as meth-
ods that produce one embedding per word sense.
Our method would provide scores that accommo-
date word sense frequencies in the real use of the
language. Here, we assume that word embed-
dings should recover the most frequent senses with
higher priority.
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Abstract

Recently, researchers in speech recogni-
tion have started to reconsider using whole
words as the basic modeling unit, instead
of phonetic units. These systems rely on a
function that embeds an arbitrary or fixed
dimensional speech segments to a vec-
tor in a fixed-dimensional space, named
acoustic word embedding. Thus, speech
segments of words that sound similarly
will be projected in a close area in a con-
tinuous space. This paper focuses on
the evaluation of acoustic word embed-
dings. We propose two approaches to eval-
uate the intrinsic performances of acoustic
word embeddings in comparison to ortho-
graphic representations in order to eval-
uate whether they capture discriminative
phonetic information. Since French lan-
guage is targeted in experiments, a partic-
ular focus is made on homophone words.

1 Introduction

Recent studies have started to reconsider the use
of whole words as the basic modeling unit in
speech recognition and query applications, instead
of phonetic units. These systems are based on the
use of acoustic word embedding, which are pro-
jection of arbitrary or fixed dimensional speech
segments into a continuous space, in a manner
that preserve acoustic similarity between words.
Thus, speech segments of words that sound simi-
larly will have similar embeddings. Acoustic word
embedding were successfully used in a query-
by-example search system (Kamper et al., 2015;
Levin et al., 2013) and in a ASR lattice re-scoring
system (Bengio and Heigold, 2014).

The authors in (Bengio and Heigold, 2014) pro-
posed an approach to build acoustic word em-

beddings from an orthographic representation of
the word. This paper focuses on the evaluation
of these acoustic word embeddings. We propose
two approaches to evaluate the intrinsic perfor-
mances of acoustic word embeddings in compar-
ison to orthographic representations. In particu-
lar we want to evaluate whether they capture dis-
criminative information about their pronunciation,
approximated by their phonetic representation. In
our experiments, we focus on French language
whose particularity is to be rich of homophone
words. This aspect is also studied in this work.

2 Acoustic word embeddings

2.1 Building acoustic word embeddings

The approach we used to build acoustic word
embeddings is inspired from the one proposed
in (Bengio and Heigold, 2014). The deep neural
architecture depicted in figure 1 is used to train the
acoustic word embeddings. It relies on a convolu-
tional neural network (CNN) classifier over words
and on a deep neural network (DNN) trained by
using a triplet ranking loss (Bengio and Heigold,
2014; Wang et al., 2014; Weston et al., 2011).

The two architectures are trained using different
inputs: speech signal and orthographic representa-
tion of the word, which are detailed as follows.

The convolutional neural network classifier is
trained independently to predict a word given a
speech signal as input. It is composed of convo-
lution and pooling layers, followed by fully con-
nected layers which feed the final softmax layer.
The embedding layer is the fully connected layer
just below the softmax one, named s in the fig-
ure 1. This representation contains a compact rep-
resentation of the acoustic signal. It tends to pre-
serve acoustic similarity between words, such that
words are close in this space if they sound alike.

The feedforward neural network (DNN) is used
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Figure 1: Deep architecture used to train acoustic
word embeddings.

with the purpose to build an acoustic word embed-
ding for a word not observed in the audio training
corpus, based on its orthographic representation.
It is trained using the triplet ranking loss function
in order to project orthographic word representa-
tions to the same space as the acoustic embeddings
s.

The orthographic word representation consists
in a bag of n-grams (n ≤ 3) of letters, with addi-
tional special symbols [ and ] to specify the start
and the end of a word. The size of this bag of n-
grams vector is reduced using an auto-encoder.

During the training process, this model takes as
inputs acoustic embeddings s selected randomly
from the training set and, for each signal acous-
tic embedding, the orthographic representation of
the matching word o+, and the orthographic repre-
sentation of a randomly selected word different to
the first word o−. These two orthographic repre-
sentations supply shared parameters in the DNN.

The resulting DNN model can then be used to
build an acoustic word embedding (w+) from any
word, as long as one can extract an orthographic
representation from it. This acoustic word embed-
ding can be perceived as a canonical acoustic rep-
resentation for a word, since different pronuncia-
tions imply different signal embeddings s.

2.2 Evaluation

In the literature (Kamper et al., 2015; Levin et
al., 2013; Carlin et al., 2011), a word discrimi-
nation task was used to evaluate acoustic embed-
dings s. Given a pair of acoustic segments, this
task consists on deciding whether the segments
correspond to the same words or not. This evalua-

tion task can be performed on many ways, for ex-
ample through the use of a dynamic time warping
(DTW) to quantify the similarity between two seg-
ments when using frame level embeddings (Thiol-
liere et al., 2015), or by using the euclidean dis-
tance or the cosine similarity between embeddings
representing the segments.

In (Kamper et al., 2015) the evaluation was con-
ducted on two collections of words (train and test)
coming from the Switchboard English corpus. Af-
ter training the model on the training corpus, the
cosine similarity is computed between the embed-
dings of each pair of words in the test set. These
pairs are classified as similar or different by apply-
ing a threshold on their distance, and a precision-
recall curve is obtained by varying the threshold.

In this study, we propose two approaches to
evaluate acoustic word embeddings w+. We sug-
gest to build different evaluation sets in order to
assess the acoustic word embeddings (w+) perfor-
mances on orthographic and phonetic similarity
and homophones detection tasks. We remind that
the acoustic word embedding w+ is a projection
of an orthographic word representation o+ into the
space of acoustic signal embeddings s. In our eval-
uation, we would like to measure the loss of ortho-
graphic information carried by w+ and the poten-
tial gain of acoustic information due to this pro-
jection, in comparison to the information carried
by o+.

The evaluation sets are built as follows: given
a list L of n frequent words (candidate words) in
the vocabulary composed of m words, a list of
n × m word pairs was created. Then, two align-
ments were performed between each word pair
based on their orthographic (letters) and phonetic
(phonemes) representations, using the sclite1 tool.

From these alignment two edition distances are
computed with respect to the alignment results of
orthographic and phonetic representations. The
Edition distance is computed as follows:

SER =
#In + #Sub + #Del

#symbols in the reference word
× 100 (1)

where SER stands for Symbol Error rate, symbols
correspond to the letters for orthographic repre-
sentations, and to the phonemes for phonetic ones,
and In, Sub and Del correspond respectively to in-
sertion, substitution and deletion.

1http://www.icsi.berkeley.edu/Speech/docs/sctk-
1.2/sclite.htm

63



Next, we compute two similarity scores that
correspond to the orthographic and phonetic simi-
larity scores sim score attributed for each pair of
words, which are defined as:

sim score = 10−min(10, SER/10) (2)

where min() is a function used to have an edition
distance between 0 and 10. Then, for each candi-
date word in the list L we extract its orthographi-
cally and phonetically 10 nearest words. This re-
sults in two lists for orthographic and phonetic
similarity tasks. For each candidate word in the
list L, the Orthographic list contains its ten closest
words in terms of orthographic similarity scores
and the Phonetic list contains its ten closest words
in terms of phonetic similarity scores. Finally,
the Homophones list, used for the homophone de-
tection task, contains the homophone words (i.e.
sharing the same phonetic representation).

Table 1 shows an example of the content of the
three lists.

List Exampls

Orthographic
très près 7.5
très ors 5

Phononetic
très frais 6.67
très traı̂nent 6.67

Homophone
très traie
très traient

Table 1: Example of the content of the three lists.

In the case of the orthographic and phonetic
similarity tasks, the evaluation of the acoustic em-
beddings is performed by ranking the pairs ac-
cording to their cosine similarities and measur-
ing the Spearman’s rank correlation coefficient
(Spearman’s ρ). This approach is used in (Gao et
al., 2014; Ji et al., 2015; Levy et al., 2015; Ghan-
nay et al., 2016) to evaluate the linguistic word
embeddings on similarity tasks, in which the sim-
ilarity scores are attributed by human annotators.

For the homophone detection task, the eval-
uation is performed in terms of precision. For
each word w in the Homophones list, let LH(w)
be the list of k homophones of the word w, and
LH neighbour(w) be the list of k nearest neigh-
bours extracted based on the cosine similarity and
LH found(w) be the intersection between LH(w)
and LH neighbour(w), that corresponds to the list
of homophones found of the word w.

The precision Pw of the word w is defined as:

Pw =
|LH found(w)|
|LH(w)| (3)

where |.| refers to the size of a list. We define the
overall homophone detection precision on the Ho-
mophones list as the average of the Pw:

P =
∑N

i=1 Pwi

N
(4)

where N is the number of candidate words which
have a none-empty Homophones list.

3 Experiments on acoustic word
embeddings

3.1 Experimental setup
The training set for the CNN consists of 488 hours
of French Broadcast News with manual transcrip-
tions. This dataset is composed of data coming
from the ESTER1 (Galliano et al., 2005), ES-
TER2 (Galliano et al., 2009) and EPAC (Estève
et al., 2010) corpora.

It contains 52k unique words that have been
seen at least twice each in the corpus. All of
them corresponds to a total of 5.75 millions oc-
currences. In French language, many words have
the same pronunciation without sharing the same
spelling, and they can have different meanings;
e.g. the sound [so] corresponds to four homo-
phones: sot (fool), saut (jump), sceau (seal) and
seau (bucket), and twice more by taking into ac-
count their plural forms that have the same pro-
nunciation: sots, sauts, sceaux, and seaux. When
a CNN is trained to predict a word given an acous-
tic sequence, these frequent homophones can in-
troduce a bias to evaluate the recognition error. To
avoid this, we merged all the homophones exist-
ing among the 52k unique words of the training
corpus. As a result, we obtained a new reduced
dictionary containing 45k words and classes of ho-
mophones.

Acoustic features provided to the CNN are log-
filterbanks, computed every 10ms over a 25ms
window yielding a 23-dimension vector for each
frame. A forced alignment between manual tran-
scriptions and speech signal was performed on the
training set in order to detect word boundaries.
The statistics computed from this alignment re-
veal that 99% of words are shorter than 1 sec-
ond. Hence we decided to represent each word by
100 frames, thus, by a vector of 2300 dimensions.
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When words are shorter they are padded with zero
equally on both ends, while longer words are cut
equally on both ends.

The CNN and DNN deep architectures are
trained on 90% of the training set and the remain-
ing 10% are used for validation.

3.2 Acoustic word embeddings evaluation
The embeddings we evaluate are built from two
different vocabularies: the one used to train the
neural network models (CNN and DNN), com-
posed of 52k words present in the manual tran-
scriptions of the 488 hours of audio; and another
one composed of 160k words. The words present
in the 52k vocabulary are nearly all present in the
160k vocabulary.

The evaluation sets described in section 2.2 are
generated from these two vocabularies: in the 52k
vocabulary, all the acoustic word embeddings w+

are related to words which have been observed
during the training of the CNN. This means that
at least two acoustic signal embeddings have been
computed from the audio for each one of these
words; in the 160k vocabulary, about 110k acous-
tic word embeddings were computed for words
never observed in the audio data.

3.2.1 Quantitative Evaluation
The quantitative evaluation of the acoustic word
embeddings w+ is performed on orthographic
similarity, phonetic similarity, and homophones
detection tasks. Results are summarized in table 2.

52K Vocab. 160K Vocab.
Task o+ w+ o+ w+

Orthographic 54.28 49.97 56.95 51.06
Phonetic 40.40 43.55 41.41 46.88
Homophone 64.65 72.28 52.87 59.33

Table 2: Evaluation results of similarity (ρ× 100)
and homophone detection tasks (precision).

They show that the acoustic word embeddings
w+ are more relevant for the phonetic similarity
task, while o+ are obviously the best ones on the
orthographic similarity task.

These results show that the projection of the or-
thographic embeddings o+ into the acoustic em-
beddings space s changes their properties, since
they have captured more information about word
pronunciation while they have lost information

about spelling. So, in addition to making possi-
ble a measure of similarity distance between the
acoustic signal (represented by s) and a word (rep-
resented by w+), acoustic word embeddings are
better than orthographic ones to measure the pho-
netic proximity between two words.

For the homophone detection task, the Homo-
phones list is computed from the 160k vocabu-
lary: that results to 53869 homophone pairs in
total. The 52k vocabulary contains 13561 homo-
phone pairs which are included in the pairs present
in the 160k vocabulary. As we can see, the w+

acoustic embeddings outperform the orthographic
ones on this task on the two data sets. This con-
firms that acoustic word embeddings have cap-
tured additional information about word pronun-
ciation than the one carried by orthographic word
embeddings. For this task we cannot compare the
results between the two vocabularies, since the
precision measure is dependent to the number of
events. For the Spearman’s correlation, a com-
parison is roughly possible and results show that
the way to compute w+ is effective to generalize
this computation to word not observed in the audio
training data.

3.2.2 Qualitative Evaluation
To give more insight into the difference of the
quality of the orthographic word embeddings o+

and the acoustic ones w+, we propose an empiri-
cal comparison by showing the nearest neighbours
of a given set of words. Table 3 shows exam-
ples of such neighbour. It can be seen that, as
expected, neighbour of any given word share the
same spelling with it when they are induced by
the orthographic embeddings and arguably sound
like it when they are induced by the acoustic word
ones.

Candidate
word

o+ w+

grecs i-grec, rec,
marec

grec, grecque,
grecques

ail aile, trail, fail aille, ailles, aile
arts parts, charts,

encarts
arte, art, ars

blocs bloch, blocher,
bloche

bloc, bloque,
bloquent

Table 3: Candidate words and their nearest neigh-
bours
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4 Conclusion

In this paper, we have investigated the intrinsic
evaluation of acoustic word embeddings. These
latter offer the opportunity of an a priori acous-
tic representation of words that can be compared,
in terms of similarity, to an embedded representa-
tion of the audio signal. We have proposed two
approaches to evaluate the performances of these
acoustic word embeddings and compare them to
their orthographic embeddings: orthographic and
phonetic performance by ranking pairs and mea-
suring the Spearman’s rank correlation coefficient
(Spearman’s ρ), and by measuring the precision in
a homophone detection task.

Experiments show that the acoustic word em-
beddings are better than orthographic ones to mea-
sure the phonetic proximity between two words.
More, they are better too on homophone detec-
tion task. This confirms that acoustic word embed-
dings have captured additional information about
word pronunciation.
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Abstract

Most evaluations for vector space models
are semantically motivated, e.g. by mea-
suring how well they capture word similar-
ity. If one is interested in syntax-related
downstream applications such as depen-
dency parsing, a syntactically motivated
evaluation seems preferable. As we show,
the choice of embeddings has a noticeable
impact on parser performance. Since eval-
uating embeddings directly in a parser is
costly, we analyze the correlation between
the full parsing task and a simple linear
classification task as a potential proxy.

1 Introduction

Many complex tasks in NLP are solved using em-
beddings as additional features. In some pipelines,
pre-trained embeddings are used as-is, in oth-
ers they are learned as an integral part of train-
ing the pipeline (examples for this would be e. g.
RNNLMs(Mikolov et al., 2010) or parsers that
learn their own embeddings (e. g. Chen and Man-
ning (2014))). We focus on the first type. If we
want to run a system that can be enhanced using
pre-trained embeddings, the question arises which
embedding actually works best.

Since it is computationally infeasible to evalu-
ate all embeddings on all pipelines, usually simple
tasks are used to demonstrate the strengths of em-
beddings and an embedding for use in a pipeline is
picked based on these proxy tasks. Most of these
tasks are semantically motivated and English domi-
nates as language of choice for the tasks. Last year,
we proposed a more syntactically motivated eval-
uation task syneval, which uses morpho-syntactic
information across a variety of languages (see Sec-
tion 2).

Morphological information helps syntactic
parsers, but usually there is no gold-standard infor-
mation available during parsing (with the exception
of parser evaluation). Using embeddings that are
good predictors of the missing morphological in-
formation should alleviate the problem of missing
morphology.

It is reasonable to assume that the classification
problems in syneval are a good proxy for syntax-
related tasks because they describe how well an
embedding is able to capture morphological in-
formation which is helpful to the parser. To test
this assumption, we evaluate the performance of
RBGParser (Lei et al., 2014; Zhang et al., 2014)
using different embeddings as additional features.
The parser performance using a specific embed-
ding should then reflect the embedding’s perfor-
mance on the classification tasks. We know that
embeddings yield only marginal improvements if
the parser also has access to gold standard morpho-
logical information but benefits significantly if no
morphological information is present (Lei et al.,
2014; Köhn et al., 2014). Therefore, we experi-
ment with stripping the information that is used as
classification target in syneval.

2 Syneval

In previous work, we proposed to make use of
treebanks to extract simple syntactic evaluation
tasks (Köhn, 2015) but somehow didn’t assign a
catchy name. We now make up for this and call
this approach syneval throughout this paper. For a
given syntactic feature type F (e.g. tense or case),
a classification task is created as follows: Let W
be the set of words forms and V ⊆ Rn the vector
space of a given embedding W → V . Using a
treebank where some words1 are annotated with

1Some words are not annotated with features of certain
types, e. g. nouns are usually annotated without tense markers.
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Figure 1: Accuracies for the proxy task syneval evaluated on Basque, English, French, German, Hungarian,
Polish, and Swedish. Note that dep was not evaluated on French. All results are from Köhn (2015).
Results for embeddings not discussed in this paper have been omitted.

a syntactic feature of the given type f ∈ F , we
combine the syntactic information with the word
vector v ∈ V of the word, obtaining a pair (v, f)
for each word. In other words, we perform an inner
join of the embedding and the syntactic annotation
on the word and project on V and F .

Note that there is no functional dependence
W → F because the same word form can have
different syntactic features depending on the con-
text. Therefore, there is also no functional depen-
dence between the word vectors and the syntactic
features.

A linear classifier is trained on (v, f) pairs to
predict the syntactic feature given the word embed-
ding. If the classifier yields a high accuracy, the
embeddings encode structure with respect to the
syntactic feature type. The vector space is parti-
tioned by the classifier into convex polytopes which
each represent one syntactic feature (such as NN
for the PoS classification task) and if the classifier
has a high accuracy, these polytopes accurately de-
scribe the features. Since the classifier does not
use any context features and a word vector can be
paired with different syntactic features, the upper
bound for classification accuracy can be approx-
imated by classification based on the word form.
The lower bound is the majority baseline, i.e. using
no features at all.

The syntactic features used in syneval are: pos
(the PoS of the word), label (the dependency la-
bel), headpos (the PoS of the word’s head) as well
as the morphological features case, gender, tense,
and number. Syneval results for a selected set of
embeddings are depicted in Figure 1.

Syneval has several advantages over other em-

bedding evaluation methods: First of all, it uses
several languages instead of being centered on En-
glish. It does not need manually generated data
such as similarity judgments as the treebanks used
for evaluation have already been built for other pur-
poses. Syneval covers much more lexical items
than other evaluations: SimLex-999 (Hill et al.,
2015, one of the larger word similarity corpora)
contains 1030 word forms whereas syneval per-
forms an evaluation on nearly 30.000 word forms
for English.

3 Data and Embeddings

To limit the amount of computation, we select
four languages out of the seven evaluated by Köhn
(2015), namely Basque, German, Hungarian, and
Swedish, and three embeddings out of six. Even
with these reductions, the experiments for this pa-
per needed about 500 CPU-days. All experiments
are performed on data from the SPMRL 2014 (Sed-
dah et al., 2014), using the full training set for each
language and the dev set for evaluation.

The embeddings are taken from Köhn (2015).
We use the ten-dimensional embeddings, as the
differences between the approaches are more pro-
nounced there, and we can be sure that the parser
does not drain in high dimensional features (Lei
et al. (2014) used 25 and 50 dimensional vectors).
Again, we limit the number of embeddings to three:
skip-gram using dependency contexts (dep, (Levy
and Goldberg, 2014)), GloVe (Pennington et al.,
2014), and word2vec using cbow (Mikolov et al.,
2013). In the syneval evaluation, dep performed
best, GloVe worst, and cbow in between (see Fig-

68



dep cbow GloVe none dep cbow GloVe none
Basque +all 89.77 89.13 89.79 90.07 Hungarian +all 88.66 88.54 88.24 88.39

-case 89.43 88.12 88.30 88.41 -case 87.52 87.37 87.46 87.10
-tense 89.81 88.80 89.71 89.97 -tense 87.50 87.41 87.59 87.26

-number 89.88 88.86 89.26 89.86 -number 87.59 87.34 87.60 87.07
-PoS 88.22 86.39 87.94 87.99 -PoS 85.97 85.72 85.80 85.42

-all 85.51 80.99 81.68 79.24 -all 81.18 78.69 78.24 76.08

German +all 94.87 94.67 94.89 94.82 Swedish +all 85.17 85.06 84.83 85.17
-case 94.38 94.20 94.40 94.42 -case 85.20 84.94 84.97 85.15

-tense 94.87 94.66 94.81 94.76 -tense 84.94 84.94 85.27 85.15
-number 94.84 94.60 94.77 94.83 -number 85.07 84.81 85.06 85.19

-PoS 91.24 90.15 91.15 91.22 -PoS 79.53 78.21 78.65 78.68
-all 88.26 86.68 87.72 87.35 -all 76.55 73.79 73.41 71.11

Table 1: Unlabeled parsing accuracies using different embeddings as well as no embeddings with varying
amounts of gold-standard morphological information available. Results better than the second best by a
margin of at least .1 are highlighted.

ure 1). For some tasks, GloVe barely outperforms
the majority baseline, i.e. it does not contain much
information that can be extracted with a linear clas-
sifier.

4 Using Embeddings in a Parser

To evaluate the benefit of using the embeddings
mentioned in the previous section in a parser, the
parser needs to fulfill several requirements: The
parser needs to work both with and without embed-
dings, it needs to use pre-trained embeddings, and
it should make use of morphological features. If
all these requirements are fulfilled, it is possible
to measure the benefit of different embeddings as
well as using embeddings at all, and whether mor-
phological information supersedes such benefits.

Based on the requirements, we chose RBGParser
for the evaluation. RBGParser uses embeddings
for scoring edges using low-rank tensors. To score
edges, the function uses the embedding, form,
lemma, pos, and morphological information of the
words as well as arc length and direction. In ad-
dition to the low-rank tensor, it uses the same fea-
tures as TurboParser (Martins et al., 2013) as well
as some features encoding global properties. Both
components are weighted using a hyperparameter
which we keep fixed at the default value. Since
the embeddings are only used in the tensor compo-
nent, the quality of the embeddings only affect this
component.

Nevertheless, we chose to use the whole parser
including all features instead of just measuring the

impact on the low-rank tensor component because
it is possible that improvements in this component
don’t translate to an improvement of the whole
parser.

5 Experiments

The basic idea is as follows: If an embedding en-
codes a morphological feature well, it should be a
good drop-in replacement of that feature. There-
fore, if we strip a morphological feature from the
data, using a well-performing embedding should
yield higher parsing accuracies than using a worse
performing one.

We use the following setups with each embed-
ding (as well as without embeddings):

• no case information (-case)
• no tense information (-tense)
• no number information (-number)
• no PoS information (-PoS)
• morphology (including PoS) completely

stripped (-all)
• all gold standard information as-is (+all)

We train RBGParser on the gold standard for
each language using the settings mentioned above,
i. e. stripping the morphological information corre-
sponding to the setting from both training and test
data. For each setting and language, we trained the
parser in for modes: Without Embeddings, with
dep, with GloVe, and with cbow. The resulting
accuracies are listed in Table 1. No embedding is
able to provide a benefit to the parser with complete
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gold-standard annotations (the +all rows), which is
consistent with previous findings.

Even when stripping morphological information,
the embeddings only yield relevant improvements
with respect to not using embeddings in -PoS and
-all settings. In both these cases, dep clearly outper-
forms the other embeddings, which is consistent
with the syneval results (Figure 1). In contrast,
cbow, which performs better than GloVe in syneval,
yields worse results than GloVe on average. Both
differences are significant (two-sided sign test; dep
6= glove: p < 0.05; GloVe 6= cbow: p < 0.01).
The absolute difference between dep and GloVe is
much larger than the absolute difference between
GloVe and cbow. The difference between GloVe
and cbow is especially striking in the -PoS case
where cbow outperforms GloVe by a large margin
in syneval but is consistently beaten in the parsing
task for every language, even those where cbow
outperforms GloVe in the +all case.

Stripping a single morphological feature (other
than PoS) has little impact on parsing accuracy. On
the other hand, stripping all morphological infor-
mation leads to much worse accuracies than just
parsing without PoS. This hints at some redundancy
provided by the morphological annotations.

6 Conclusions

Syneval and the downstream parser evaluation both
reveal large differences between the different em-
beddings. dep outperforms all other embeddings
in syneval for all tasks except number-Polish and
number-Spain and also is most helpful to the parser
with considerable margin. The embeddings are
only consistently helpful to the parser if no PoS-
tags are provided.

Despite the consistency of the dep result
between syneval and the parsing task, our findings
are inconclusive overall. On the one hand, the by
far best performing approach on the proxy task
also performed best for parsing, on the other hand
cbow performed worse than GloVe in the parsing
task despite performing better in the proxy task.
This indicates that there is helpful information
encoded that is not captured by the proxy task,
but which interestingly can not be realized when
parsing with full gold-standard morphological
annotation.

Code and data for this work is available under
http://arne.chark.eu/repeval2016.
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Abstract

Vector space models of word representa-
tion are often evaluated using human sim-
ilarity ratings. Those ratings are elicited
in explicit tasks and have well-known sub-
jective biases. As an alternative, we pro-
pose evaluating vector spaces using im-
plicit cognitive measures. We focus in
particular on semantic priming, exploring
the strengths and limitations of existing
datasets, and propose ways in which those
datasets can be improved.

1 Introduction

Vector space models of meaning (VSMs) repre-
sent the words of a vocabulary as points in a multi-
dimensional space. These models are often evalu-
ated by assessing the extent to which relations be-
tween pairs of word vectors mirror relations be-
tween the words that correspond to those vec-
tors. This evaluation method requires us to select a
word relation metric that can serve as ground truth,
and it requires us to identify the particular types of
relations that we would like our models to repre-
sent accurately.

Typical approaches to VSM evaluation use hu-
man annotations as ground truth: in particular,
similarity ratings for pairs of words. Some eval-
uation datasets focus on similarity per se: hot-
scalding would rate highly, while antonyms like
hot-cold and associates like hot-stove would not
(Hill et al., 2015). Others do not distinguish sim-
ilarity from other types of relations: synonyms,
antonyms and associates can all receive high rat-
ings (Bruni et al., 2014).

While the distinction between similarity and re-
latedness is important, it represents only a prelim-
inary step toward a more precise understanding of
what we mean—and what we should mean—when

we talk about relations between words. The no-
tions of “similarity” and “relatedness” are fairly
vaguely defined, and as a result human raters
asked to quantify these relations must carry out
some interpretations of their own with respect to
the task, in order to settle upon a judgment schema
and apply that schema to rate word pairs. The
fact that the definition of the relation structure is
left to the annotator’s judgment introduces inter-
annotator variability as well as potentially unde-
sirable properties of human similarity judgments:
for example, the fact that they are not symmetric
(Tversky, 1977).

The subjectivity of this task, and the involve-
ment of the conscious reasoning process needed
to arrive at a rating (Batchkarov et al., 2016),
raise the question: to what extent does the rela-
tion structure that emerges from such rating tasks
reliably reflect the relation structure that under-
lies human language understanding? After all,
humans process language effortlessly, and natural
language comprehension does not require reason-
ing about how similar or related words are.

This does not mean that the brain does not
perform computations reflecting relations between
words—evidence suggests that such computa-
tions occur constantly in language processing, but
that these computations occur on a subconscious
level (Kutas and Federmeier, 2011). Fortunately,
there are psycholinguistic paradigms that allow us
to tap into this level of processing. If we can make
use of these subconscious cognitive measures of
relatedness, we may be able to continue taking ad-
vantage of humans as the source of ground truth
on word relations—while avoiding the subjectiv-
ity and bias introduced by conscious rating tasks.

We propose to evaluate VSMs using seman-
tic priming, a cognitive phenomenon understood
to reflect word-level relation structure in the hu-
man brain. We show some preliminary results
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exploring the ability of various VSMs to predict
this measure, and discuss the potential for finer-
grained differentiation between specific types of
word relations. Finally, we argue that existing
datasets (both explicit similarity judgments and
semantic priming) are too small to meaningfully
compare VSMs, and propose creating a larger se-
mantic priming resource tailored to the needs of
VSM evaluation.

2 Semantic priming

Semantic priming refers to the phenomenon in
which, when performing a language task such as
deciding whether a string is a word or a nonword
(lexical decision), or pronouncing a word aloud
(naming), humans show speeded performance if
the word to which they are responding is pre-
ceded by a semantically related word (Meyer and
Schvaneveldt, 1971; McNamara, 2005). For in-
stance, response times are quicker to a word like
dog (referred to as the “target” word) when it is
preceded by a word like cat (referred to as the
“prime”), than when it is preceded by a prime like
table. This facilitation of the response to dog is
taken to be an indication of the relation between
dog and cat, and the magnitude of the speed-up
can be interpreted as reflecting the strength of the
relation.

Since priming results provide us with a human-
generated quantification of relations between word
pairs, without requiring participants to make con-
scious decisions about relatedness—the task that
participants are performing is unrelated to the
question of relatedness—this measure is a strong
candidate for tapping into subconscious properties
of word relations in the human brain.

Several studies have already shown correspon-
dence between priming magnitude and VSM mea-
sures of relation such as cosine similarity or neigh-
bor rank (Mandera et al., 2016; Lapesa and Evert,
2013; Jones et al., 2006; Padó and Lapata, 2007;
Herdağdelen et al., 2009; McDonald and Brew,
2004). These positive results suggest that some of
the implicit relation structure in the human brain
is already reflected in current vector space mod-
els, and that it is in fact feasible to evaluate rela-
tion structure of VSMs by testing their ability to
predict this implicit human measure.

However, to our knowledge, there has not yet
been an effort to identify or tailor a priming dataset
such that it is ideally suited to evaluation of VSMs.

Semantic priming experiments make use of many
different methodologies, and test many different
types of relations between words. In selecting
or constructing a priming dataset, we want to be
informed about the methodologies that are best-
suited to generating data for purposes of VSM
evaluation, and we want in addition to have con-
trol over—or at least annotation of—the types of
relations between the word pairs being tested.

3 Experimental setup

3.1 Cognitive measurements

Most previous work has modeled small prim-
ing datasets. By contrast, we follow Mandera
et al. (2016) in taking advantage of the online
database of the Semantic Priming Project (SPP),
which compiles priming data from 768 subjects
for over 6000 word pairs (Hutchison et al., 2013).
This dataset’s size alone is advantageous, as it po-
tentially allows us to draw more confident conclu-
sions about differences between models (as dis-
cussed below), and it ensures broader coverage in
the vocabulary.

The SPP has two additional advantages that are
relevant for our purposes. First, it contains data
for four methodological variations on the seman-
tic priming paradigm: all combinations of two
tasks, lexical decision and naming, and two stim-
ulus onset asynchronies (SOA), 200 ms and 1200
ms, which represent the amount of time between
the start of the prime word and the start of the tar-
get word. We assess the usefulness of each of the
methods for evaluating VSMs, in order to iden-
tify the methodological choices that generate opti-
mal data for evaluation. A second advantage of the
SPP is that it contains annotations of the relation
types of the word pairs; this property can allow
for finer-grained analyses that focus on relations
of particular interest, as we will discuss in greater
detail below.

3.2 Vector-space models

We trained four word-level VSMs for testing:
skip-gram (Mikolov et al., 2013) with window
sizes of 5 and 15 words (referred to as SG5 and
SG15 below) and GloVe (Pennington et al., 2014)
with window sizes of 5 and 15 words (Gl5 and
Gl15). All models were trained on a concatenation
of English Wikipedia and English GigaWord us-
ing their default parameters and dimensionality of
100. A fifth model (referred to as SG5n) was gen-
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erated by adding uniform random noise U(-2,2) to
the vectors of the SG5 model, as an example of a
model that we would expect to perform poorly.

3.3 Evaluation

We evaluated the VSMs by fitting linear regression
models to the human response times, with cosine
similarity between prime and target as the predic-
tor of interest.1 As a simple baseline model, we
entered only word frequency as a predictor. Word
frequency is widely recognized as a strong predic-
tor of reaction time in language tasks (Rubenstein
et al., 1970). While it is only one among the fac-
tors known to affect the speed of word recognition
(Balota et al., 2004), it is by far the most impor-
tant, and unlike factors such as word length, it is
represented in many vector space models (Schn-
abel et al., 2015), making it all the more important
to control for here.

4 Results

4.1 Cognitive measures

We first compare the four methodological varia-
tions on the semantic priming paradigm. Figure 1
shows the r2 values, which quantify the proportion
of the variance explained by the regression model.
Recall that the baseline regression model (“base”)
contains only frequency as a predictor of response
time, while the other regression models contain
as predictors both frequency and cosine similarity
between prime and target, as determined by each
of the respective VSMs.

The greatest amount of variance is accounted
for in the lexical decision task, with somewhat
more variance accounted for with the 200 ms
SOA. There is a more substantial margin of im-
provement over the frequency baseline in the 200
ms SOA, suggesting that the results of the LDT-
200 ms paradigm constitute the most promising
metric for assessing the extent to which VSMs re-
flect cognitive relation structure.

The four normally-trained VSMs (SG5, SG15,
Gl5, Gl15) perform quite similarly to one an-
other on this metric. Within those conditions in
which we do see improvement over the frequency
baseline—that is, primarily the lexical decision
task conditions—the introduction of noise (SG5n)

1Lapesa and Evert’s (2013) result suggests that rank of
the target among the vector space neighbors of the prime may
model priming results more closely; we intend to experiment
with this measure in future work.

Relation Example pair

Synonym presume, assume
Antonym asleep, awake
Forward phrasal associate human, being
Script ambulance, emergency
Category celery, carrot
Supraordinate disaster, earthquake
Instrument rake, leaves
Functional property airplane, fly
Backward phrasal associate lobe, ear
Perceptual property fire, hot
Action quench, thirst

Table 1: Annotated relations in SPP

nullifies that improvement. This suggests that the
additional variance accounted for by the four nor-
mal VSMs is indeed a reflection of their quality.

4.2 Relation types

Each word pair in the Semantic Priming Project is
additionally annotated for the category of the rela-
tion between the words in the pair (see Table 1 for
examples). Having access to information about the
particular relations embodied by a given word pair
can be quite important for maximizing the util-
ity of our evaluation metrics, as we are likely to
care about different relations depending upon the
downstream task to which we intend to apply our
vector representations. For instance, we may care
more about faithfulness to script relations when
performing document-level tasks, but care more
about performance on synonym and antonym re-
lations for word- and sentence-level tasks such as
sentiment analysis and entailment.

With this in mind, we run preliminary experi-
ments testing our VSMs as predictors of response
time within the specific relation categories. In Fig-
ure 2, we show a sample of results on the per-
relation level. These suggest that the spaces may
vary in interesting ways, both within and between
relation types. However, the small sample sizes
lead to large confidence intervals; in particular, the
drop in performance resulting from the addition of
noise is dwarfed by the size of the error bars. As
such, we cannot at this point draw firm conclu-
sions from the results. To make conclusive use of
the advantages potentially afforded by the relation
annotation in the SPP, it would be necessary to col-
lect additional relation-annotated priming data.
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Figure 1: r2 values for linear models fit to priming results in full SPP dataset, under different priming
conditions. Baseline model (“base”) contains only frequency as a predictor, while other models contain
cosine values from the indicated VSMs. Error bars represent bootstrapped 95% confidence intervals.
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Figure 2: r2 values for linear models fit to priming
results in specific relation categories. Number of
items in category is indicated in subplot title.

4.3 Similarity datasets

Finally, for the sake of comparison with con-
ventional metrics, we include Figure 3, which
shows the same baseline and vector space regres-
sion models, assessed as predictors of the rat-
ings in the MEN (Bruni et al., 2014) and Sim-
Lex (Hill et al., 2015) datasets. Frequency appears
to be a poorer predictor of explicit similarity rat-
ings than of the implicit cognitive measures. Al-
though there is some variation in performance be-

tween the four normally-trained VSMs, it is less
straightforward to distinguish between them once
we take confidence intervals into account; this is-
sue of overlapping confidence intervals is much
more pronounced with smaller datasets such as
RG-65 (Rubenstein and Goodenough, 1965) and
MC-30 (Miller and Charles, 1991).
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Figure 3: r2 values, with 95% confidence inter-
vals, for linear models fit to MEN/SimLex explicit
similarity ratings.

75



5 Discussion

We have presented here a proposal to leverage
implicit measures of relation structure in the hu-
man brain to evaluate VSMs. Such measures can
sidestep the subjectivity introduced by standard
similarity rating tasks, and tap more directly into
the relation structure fundamental to language pro-
cessing by humans.

In our exploratory results above we find, con-
sistent with previous studies, that VSMs can pre-
dict priming beyond the variance explained by fre-
quency alone, at least in certain cognitive mea-
surements (in particular, lexical decision with a
short SOA), suggesting that priming magnitude
could be used as a VSM evaluation metric. We
have also reported preliminary results taking ad-
vantage of the relation-specific annotation in the
SPP. Relation-specific evaluation sets could prove
valuable for finer-grained understanding of the re-
lations captured in a given VSM. We see, however,
that if we are to make statistically valid conclu-
sions about differences between models, we must
extend our dataset substantially. This could be ac-
complished by the same basic procedures used to
build the SPP, extended to a massive scale using
an online platform such as Mechanical Turk.

Finally, it may be useful to experiment with
other implicit cognitive measures known to reflect
relation structure. A prominent example is the
N400, a neural response elicited by every word
during sentence comprehension (Kutas and Fed-
ermeier, 2011). The amplitude of the N400 re-
sponse is modulated by the relation of the word
to its context: the worse the fit to context, the
larger the N400 amplitude. As a result, the N400
is often used to study the effects of context on
word processing. There is existing evidence that
vector space model representations of preceding
context and target words can predict N400 ampli-
tude (Parviz et al., 2011; Ettinger et al., 2016). In
future work, the N400 may therefore prove use-
ful for assessing VSM relation structure above the
word level.
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Abstract

We propose a method for evaluating em-
beddings against dictionaries with tens or
hundreds of thousands of entries, covering
the entire gamut of the vocabulary.

1 Introduction

Continuous vector representations (embeddings)
are, to a remarkable extent, supplementing and po-
tentially taking over the role of detail dictionaries
in a broad variety of tasks ranging from POS tag-
ging (Collobert et al., 2011) and parsing (Socher
et al., 2013) to MT (Zou et al., 2013), and beyond
(Karpathy, Joulin, and Li, 2014). Yet an evalua-
tion method that directly compares embeddings on
their ability to handle word similarity at the entire
breadth of a dictionary has been lacking, which is
all the more regrettable in light of the fact that em-
beddings are normally generated from gigaword
or larger corpora, while the state of the art test sets
surveyed in Chiu, Korhonen, and Pyysalo (2016)
range between a low of 30 (MC-30) and a high of
3,000 word pairs (MEN).

We propose to develop a dictionary-based stan-
dard in two steps. First, given a dictionary such as
the freely available Collins-COBUILD (Sinclair,
1987), which has over 77,400 headwords, or Wik-
tionary (162,400 headwords), we compute a fre-
quency list F that lists the probabilities of the
headwords (this is standard, and discussed only
briefly), and a dense similarity matrixM or an em-
bedding ψ, this is discussed in Section 2. Next, in
Section 3 we consider an arbitrary embedding φ,
and we systematically compare both its frequency
and its similarity predictions to the gold standard
embodied in F and ψ, building on the insights of
Arora et al. (2015). Pilot studies conducted along
these lines are discussed in Section 4.

Before turning to the details, in the rest of this
Introduction we attempt to evaluate the proposed
evaluation itself, primarily in terms of the cri-
teria listed in the call. As we shall see, our
method is highly replicable for other researchers
for English, and to the extent monolingual dictio-
naries are available, for other other languages as
well. Low resource languages will typically lack a
monolingual dictionary, but this is less of a percep-
tible problem in that they also lack larger corpora
so building robust embeddings is already out of the
question for these. The costs are minimal, since
we are just running software on preexisting dictio-
naries. Initially, dictionaries are hard to assemble,
require a great deal of manual labor, and are of-
ten copyrighted, but here our point is to leverage
the manual (often crowdsourced) work that they
already embody.

The proposed algorithm, as we present it here, is
aimed primarily at word-level evaluation, but there
are standard methods for extending these from
word to sentence similarity (Han et al., 2013).
Perhaps the most attractive downstream appli-
cation we see is MT, in particular word sense
disambiguation during translation. As for lin-
guistic/semantic/psychological properties, dictio-
naries, both mono- and bilingual, are crucial re-
sources not only for humans (language learners,
translators, etc.) but also for a variety of NLP
applications, including MT, cross-lingual informa-
tion retrieval, cross-lingual QA, computer-assisted
language learning, and many more. The man-
date of lexicographers is to capture a huge num-
ber of linguistic phenomena ranging from gross
synonymy to subtle meaning distinctions, and at
the semantic level the inter-annotator agreement
is very high, a point we discuss in greater detail
below. Gladkova and Drozd (2016) quote Schütze
(2016) that “human linguistic judgments (...) are
subject to over 50 potential linguistic, psychologi-
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cal, and social confounds”, and many of these taint
the crowd-sourced dictionaries, but lexicographers
are annotators of a highly trained sort, and their
work gives us valuable data, as near to laboratory
purity as it gets.

2 Constructing the standard

Our main inputs are a frequency list F , ideally
generated from a corpus we consider representa-
tive of the text of interest (the expected input to
the downstream task), and a preexisting dictionary
D which is not assumed to be task-specific. For
English, we use both the Collins-COBUILD dic-
tionary (CED) and Wiktionary, as these are freely
available, but other general-purpose dictionaries
would be just as good, and for specific tasks (e.g.
medical or legal texts) it may make sense to add in
a task-specific dictionary if available. Neither D
nor F need contain the other, but we assume that
they are stemmed using the same stemmer.

Parse
dictionary

Adjacency
matrix SVD

Figure 1: Building the standard

The first step is to parse D into 〈word,
definition〉 stanzas. (This step is specific to the
dictionary at hand, see e.g. Mark Lieberman’s
readme. for CED). Next, we turn the definitions
into dependency graphs. We use the Stanford de-
pendency parser (Chen and Manning, 2014) at this
stage, and have not experimented with alterna-
tives. This way, we can assign to each word a
graph with dependency labels, see Fig 2 for an ex-
ample, and Recski (2016) for details. The depen-
dency graphs are not part of the current incarna-
tion of the evaluation method proposed here, but
are essential for our future plans of extending the
evaluation pipeline (see Section 4).

In the second step we construct two global
graphs: the definitional dependency graph DD
which has a node for each word in the dictionary,
and directed edges running from wi to wj if wj

appears in the definition of wi; and the headword
graph HG which only retains the edge running
from the definiendum to the head of the definiens.
We take the head to be the ‘root’ node returned
by the Stanford parser, but in many dictionaries
the syntactic head of the definition is typographi-
cally set aside and can be obtained directly from
the raw D.

At first blush it may appear that the results of
this process are highly dependent on the choice of
D, and perhaps on the choice of the parser as well.
Consider the definition of client taken from four
separate sources: ‘someone who gets services or
advice from a professional person, company, or
organization’ (Longman); ‘a person who pays a
professional person or organization for services’
(Webster); ‘a person who uses the services or ad-
vice of a professional person or organization’ (Ox-
ford); ‘a person or group that uses the professional
advice or services of a lawyer, accountant, adver-
tising agency, architect, etc.’ (dictionary.com).

Figure 2: Graph assigned to client. Edge labels are
0=isa; 1=nsubj; 2=dobj

The definitions do not literally preserve the
headword (hypernym, genus, IS A): in three cases
we have ‘person’, in one ‘somebody’. But se-
mantically, these two headwords are very close
synonyms, distinguished more by POS than by
content. Similarly, the various definitions do
not present the exact same verbal pivot, ‘en-
gage/hire/pay for/use the services of’, but their se-
mantic relatedness is evident. Finally, there are
differences in attachment, e.g. is the service ren-
dered professional, or is the person/organization
rendering the service professional? In Section 3
we will present evidence that the proposed method
is not overly sensitive to these differences, because
the subsequent steps wipe out such subtle distinc-
tions.

In the third step, by performing SVD on the
Laplacian of the graphs DD and HG we obtain
two embeddings we call the definitional and the
head embedding. For any embedding ψ, a (sym-
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metric, dense) similarity matrix Mi,j is given by
the cosine similarity of ψ(wi) and ψ(wj). Other
methods for computing the similarity matrix M
are also possible, and the embedding could also be
obtained by direct computation, setting the context
window of each word to its definition – we defer
the discussion of these and similar alternatives to
the concluding Section 4.

Now we define the direct similarity of two em-
beddings φ and ψ as the average of the (cosine)
similarities of the words that occur in both:

S(φ, ψ) = (
∑
w

φ(w)ψ(w)
‖φ(w)‖‖ψ(w)‖)/|D| (1)

It may also make sense to use a frequency-
weighted average, since we already have a fre-
quency table F – we return to this matter in Sec-
tion 3. In and of itself, S is not a very useful mea-
sure, in that even random seeding effects are suf-
ficient to destroy similarity between near-identical
embeddings, such as could be obtained from two
halves of the same corpus. For example, the value
of S between 300-dimensional GloVe (Penning-
ton, Socher, and Manning, 2014) embeddings gen-
erated from the first and the second halves of the
UMBC Webbase (Han et al., 2013) is only 0.0003.
But for any two embeddings, it is an easy mat-
ter to compute the rotation (orthonormal trans-
form) R and the general linear transform G that
would maximize S(φ,R(ψ)) and S(φ,G(ψ)) re-
spectively, and it is these rotational resp. general
similarities SR and SG that we will use. For the
same embeddings, we obtain SR = 0.709, SG =
0.734. Note that only SR is symmetrical between
embeddings of the same dimension, for SG the or-
der of arguments matters.

With this, the essence of our proposal should
be clear: we generate ψ from a dictionary, and
measure the goodness of an arbitrary embedding
φ by means of computing SR or SG between φ
and ψ. What remains to be seen is that different
dictionary-based embeddings are close to one an-
other, and measure the same thing.

3 Using the standard

In the random walk on context space model of
Arora et al. (2015), we expect the log frequency of
words to have a simple linear relation to the length
of the word vectors:

log(p(w)) =
1
2d
||~w||2 − logZ ± o(1) (2)

Kornai and Kracht (2015) compared GloVe to the
Google 1T frequency count (Brants and Franz,
2006) and found a correlation of 0.395, with the
frequency model failing primarily in distinguish-
ing mid- from low-frequency words. The key in-
sight we take from Arora et al. (2015) is that an
embedding is both a model of frequency, whose
merit can be tested by direct comparison to F , and
a model of cooccurrence, given by log p(w,w′) =
1
2d ||~w + ~w′||2 − 2 logZ ± o(1).

Needless to say, the 〈word, definition〉 stanzas
of a dictionary do not constitute a random walk:
to the contrary, they amount to statements of se-
mantic, rather than cooccurrence-based, similar-
ity between definiendum and definiens, and this is
precisely what makes dictionaries the appropriate
yardstick for evaluating embeddings.

State of the art on Simlex-999 was ρ =
0.64 (Banjade et al., 2015), obtained by com-
bining many methods and data sources. More
recently, Wieting et al. (2015) added paraphrase
data to achieve 0.69, and Recski et al. (2016)
added dictionary data to get to 0.76. Stan-
dard, widely used embeddings used in isola-
tion do not come near this, the best we tested
was GoogleNews-vectors-negative300,
which gets only ρ = 0.44; senna gets 0.27;
and hpca.2B.200d gets 0.16, very much in line
with the design goals of Simlex-999. The purely
dictionary-based embeddings are even worse, the
best obtains only ρ = 0.082 at 300 dimensions,
ρ = 0.079 at 30 dimensions.

A heuristic indication of the observation that
choice of dictionary will be a secondary factor
comes from the fact that dictionary-based embed-
dings are close to one another. Table 1 shows SR

for three dictionaries, CED, Wikt, and My (not in
the public domain). The numbers above the diag-
onal at 300 dim, below at 30 dim.

CED Wikt My
CED 1.0 .127 .124
Wikt .169 1.0 .131
My .202 .168 1.0

Table 1 SR for dictionary-based embeddings

A more solid indication comes from evaluat-
ing embeddings under Simlex-999, under the
dictionary-based similarities, and under some
other test sets.
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emb.tr.dim SL999 CED Wikt MEN RW size ∩
GN-vec-neg.300 .442 .078 .044 .770 .508 1825
glove.840B.300 .408 .058 .047 .807 .449 1998
glove.42B.300 .374 .009 .045 .742 .371 2013
glove.6B.300 .360 .065 .127 .734 .389 1782
glove.6B.200 .340 .060 .118 .725 .383 1782
glove.6B.100 .298 .059 .112 .697 .362 1782
senna.300 .270 .052 .098 .568 .385 1138
glove.6B.50 .265 .040 .087 .667 .338 1782
hpca.2B.200 .164 .040 .140 .313 .176 1315

Table 2: Comparing embeddings by Simlex-999, dictionary SR, MEN, and RareWord

As can be seen, the ρ and SR numbers largely,
though not entirely, move together. This is akin to
the astronomers’ method of building the ‘distance
ladder’ starting from well-understood measure-
ments (in our case, Simlex-999), and correlating
these to the new technique proposed here. While
Chiu, Korhonen, and Pyysalo (2016) make a rather
compelling case that testsets such as MEN, Mtruk-
28, RareWord, and WS353 are not reliable for pre-
dicting downstream results, we present here ρ val-
ues for the two largest tasks, MEN, with 3,000
word pairs, and RareWord, ideally 2,034, but in
practice considerably less, depending on the inter-
section of the embedding vocabulary with the Rare
Word vocabulary (given in the last column of Ta-
ble 2). We attribute the failure of the lesser test
sets, amply demonstrated by Chiu, Korhonen, and
Pyysalo (2016), simply to undersampling: a good
embedding will have 105 or more words, and the
idea of assessing the quality on less than 1% sim-
ply makes no sense, given the variability of the
data. A dictionary-wide evaluation improves this
by an order of magnitude or more.

4 Conclusions, further directions

An important aspect of the proposal is the possibil-
ity of making better use of F . By optimizing the
frequency-weighted rotation we put the emphasis
on the function words, which may be very appro-
priate for some tasks. In other tasks, we may want
to simply omit the high frequency words, or give
them very low weights. In medical texts we may
want to emphasize the words that stand out from
the background English frequency counts. To con-
tinue with astronomy, the method proposed in this
paper is akin to a telescope, which can be pointed
at various phenomena.

It is clear from the foregoing that we are offer-

ing not a single measurement yardstick but rather
a family of these. Lexicographers actually include
information that we are only beginning to explore,
such as the NSUBJ and DOBJ relations that are
also returned in the dependency parse. These can
also be built into, or even selectively emphasized,
in the similarity matrix M , which would offer a
more direct measurement of the potential of indi-
vidual embeddings in e.g. semantic role labeling
tasks. We can also create large-scale systematic
evaluations of paraphrase quality, using definitions
of the same word coming from different dictionar-
ies – Wieting et al. (2015) already demonstrated
the value of paraphrase information on Simlex-
999.

We have experimented with headword graphs
that retain only the head of a definition, typically
the genus. Since the results were very bad, we do
not burden the paper with them, but note the fol-
lowing. HGs are very sparse, and SVD doesn’t
preserve a lot of information from them (the ulti-
mate test of an embedding would be the ability to
reconstruct the dictionary relations from the vec-
tors). Even in the best of cases, such as hyper-
nyms derived from WordNet, the relative weight
of this information is low (Banjade et al., 2015;
Recski et al., 2016). That said, the impact of hy-
pernym/genus on the problem of hubness (Dinu,
Lazaridou, and Baroni, 2015) is worth investigat-
ing further.

One avenue of research opened up by
dictionary-based embeddings is to use not
just the definitional dependency graph, but an
enriched graph that contains the unification of
all definition graphs parsed from the definitions.
This will, among other issues, enable the study of
selectional restrictions (Chomsky, 1965), e.g. that
the subject of elapse must be a time interval, the
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object of drink must be a liquid, and so on. Such
information is routinely encoded in dictionaries.
Consider the definition of wilt ‘(of a plant) to
become weak and begin to bend towards the
ground, or (of a person) to become weaker, tired,
or less confident’. To the extent the network
derived from the dictionary already contains
selectional restriction information, a better fit with
the dictionary-based embedding is good news for
any downstream task.
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Abstract

Multi-sense word embeddings (MSEs)
model different meanings of word forms
with different vectors. We propose two
new methods for evaluating MSEs, one
based on monolingual dictionaries, and the
other exploiting the principle that words
may be ambiguous as far as the postulated
senses translate to different words in some
other language.

1 Introduction

Gladkova and Drozd (2016) calls polysemy “the
elephant in the room” as far as evaluating embed-
dings are concerned. Here we attack this problem
head on, by proposing two methods for evaluating
multi-sense word embeddings (MSEs) where pol-
ysemous words have multiple vectors, ideally one
per sense. Section 2 discusses the first method,
based on sense distinctions made in traditional
monolingual dictionaries. We investigate the cor-
relation between the number of senses of each
word-form in the embedding and in the manu-
ally created inventory as a proxy measure of how
well embedding vectors correspond to concepts in
speakers’ (or at least, the lexicographers’) mind.

The other evaluation method, discussed in Sec-
tion 3, is bilingual, based on the method of
Mikolov et al. (2013b), who formulate word trans-
lation as a linear mapping from the source lan-
guage embedding to the target one, trained on a
seed of a few thousand word pairs. Our pro-
posal is to perform such translations from MSEs,

with the idea that what are different senses in the
source language will very often translate to differ-
ent words in the target language. This way, we can
use single-sense embeddings on the target side and
thereby reduce the noise of MSEs.

Altogether we present a preliminary evaluation
of four MSE implementations by these two meth-
ods on two languages, English and Hungarian:
the released result of the spherical context clus-
tering method huang (Huang et al., 2012); the
learning process of Neelakantan et al. (2014) with
adaptive sense numbers (we report results using
their release MSEs and their tool itself, calling
both neela); the parametrized Bayesian learner
of Bartunov et al. (2015) where the number of
senses is controlled by a parameter α for seman-
tic resolution, here referred to as AdaGram; and
jiweil (Li and Jurafsky, 2015). MSEs with
multiple instances are suffixed with their most im-
portant parameters, i.e. the learning rate for Ada-
Gram (a = 0.5); the number of multi-prototype
words and whether the model is adaptive (NP) for
release neela; and the number of induced word
senses (s = 4) for our non-adaptive neela runs.

Some very preliminary conclusions are offered
in Section 4, more in regards to the feasibility of
the two evaluation methods we propose than about
the merits of the systems we evaluated.

2 Comparing lexical headwords to
multiple sense vectors

Work on the evaluation of MSEs (for lexical re-
latedness) goes back to the seminal Reisinger and
Mooney (2010), who note that usage splits words
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more finely (with synonyms and near-synonyms
ending up in distant clusters) than semantics. The
differentiation of word senses is fraught with diffi-
culties, especially when we wish to distinguish ho-
mophony, using the same written or spoken form
to express different concepts, such as Russian mir
‘world’ and mir ‘peace’ from polysemy, where
speakers feel that the two senses are very strongly
connected, such as in Hungarian nap ‘day’ and
nap ‘sun’. To quote Zgusta (1971) “Of course it
is a pity that we have to rely on the subjective in-
terpretations of the speakers, but we have hardly
anything else on hand”. Etymology makes clear
that different languages make different lump/split
decisions in the conceptual space, so much so that
translational relatedness can, to a remarkable ex-
tent, be used to recover the universal clustering
(Youna et al., 2016).

Another confounding factor is part of speech
(POS). Very often, the entire distinction is lodged
in the POS, as in divorce (Noun) and divorce
(Verb), while at other times this is less clear,
compare the verbal to bank ‘rely on a financial
institution’ and to bank ‘tilt’. Clearly the for-
mer is strongly related to the nominal bank ‘fi-
nancial institution’ while the semantic relation
‘sloping sideways’ that connects the tilting of
the airplane to the side of the river is some-

what less direct, and not always perceived by
the speakers. This problem affects our sources
as well: the Collins-COBUILD (CED, Sinclair
(1987)) dictionary starts with the semantic distinc-
tions and subordinates POS distinctions to these,
while the Longman dictionary (LDOCE, Bogu-
raev and Briscoe (1989)) starts with a POS-level
split and puts the semantic split below. Of the
Hungarian lexicographic sources, the Comprehen-
sive Dictionary of Hungarian (NSZ, Ittzés (2011))
is closer to CED, while the Explanatory Dictio-
nary of Hungarian (EKSZ, Pusztai (2003)), is
closer to LDOCE in this regard. The corpora we
rely on are UMBC Webbase (Han et al., 2013) for
English and Webkorpusz (Halácsy et al., 2004) for
Hungarian. For the Hungarian dictionaries, we
relied on the versions created in Miháltz (2010);
Recski et al. (2016). We simulate the case of
languages without a machine-readable monolin-
gual dictionary with OSub, a dictionary extracted
from the OpenSubtitles parallel corpus (Tiede-
mann, 2012) automatically: the number of the
senses of a word in a source language is the num-
ber of words it translates to, averaged among many
languages. More precisely, we use the unigram
perplexity of the translations instead of their count
to reduce the considerable noise present in auto-
matically created dictionaries.

Resource 1 2 3 4 5 6+ Size Mean Std

CED 80,003 1,695 242 69 13 2 82,024 1.030 0.206
LDOCE 26,585 3,289 323 56 11 1 30,265 1.137 0.394
OSub 58,043 14,849 2,259 431 111 25 75,718 1.354 0.492

AdaGram 122,594 330,218 11,341 5,048 7,626 0 476,827 1.836 0.663
huang 94,070 0 0 0 0 6,162 100,232 1.553 2.161
neela.30k 69,156 0 30,000 0 0 0 99,156 1.605 0.919
neela.NP.6k 94,165 2,967 1,012 383 202 427 99,156 1.101 0.601
neela.NP.30k 71,833 20,175 4,844 1,031 439 834 99,156 1.411 0.924
neela.s4 574,405 0 0 4,000 0 0 578,405 1.021 0.249

EKSZ 66,849 628 57 11 1 0 121,578 1.012 0.119
NSZ (b) 5,225 122 13 3 0 0 5,594 1.029 0.191
OSub 159,843 9,169 229 3 0 0 169,244 1.144 0.199

AdaGram 135,052 76,096 15,353 5,448 6,513 0 238,462 1.626 0.910
jiweil 57,109 92,263 75,710 39,624 15,153 5,997 285,856 2.483 1.181
neela.s2 767,870 4,000 0 0 0 0 99,156 1.005 0.072
neela.s4 767,870 0 0 4,000 0 0 99,156 1.016 0.215

Table 1: Sense distribution, size (in words), mean, and standard deviation of the English and Hungarian
lexicographic and automatically generated resources
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Table 1 summarizes the distribution of word
senses (how many words with 1,. . . ,6+ senses) and
the major statistics (size, mean, and variance) both
for our lexicographic sources and for the automat-
ically generated MSEs.

While the lexicographic sources all show
roughly exponential decay of the number of
senses, only some of the automatically gener-
ated MSEs replicate this pattern, and only at
well-chosen hyperparameter settings. huang
has a hard switch between single-sense (94%
of the words) and 10 senses (for the remain-
ing 6%), and the same behavior is shown by the
released Neela.300D.30k (70% one sense, 30%
three senses). The English AdaGram and the
Hungarian jiweil have the mode shifted to two
senses, which makes no sense in light of the dic-
tionary data. Altogether, we are left with only two
English candidates, the adaptive (NP) neelas;
and one Hungarian, AdaGram, that replicate the
basic exponential decay.

The figure of merit we propose is the correlation
between the number of senses obtained by the au-
tomatic method and by the manual (lexicographic)
method. We experimented both with Spearman ρ

Resources compared n ρ

LDOCE vs CED 23702 0.266
EKSZ vs NSZ (b) 3484 0.648

neela.30k vs CED 23508 0.089
neela.NP.6k vs CED 23508 0.084
neela.NP.30k vs CED 23508 0.112
neela.30k vs LDOCE 21715 0.226
neela.NP.6k vs LDOCE 21715 0.292
neela.NP.30k vs LDOCE 21715 0.278
huang vs CED 23706 0.078
huang vs LDOCE 21763 0.280
neela.s4 vs EKSZ 45401 0.067
jiweil vs EKSZ 32007 0.023
AdaGram vs EKSZ 26739 0.086
AdaGram.a05 vs EKSZ 26739 0.088

neela.30k vs huang 99156 0.349
neela.NP.6k vs huang 99156 0.901
neela.NP.30k vs huang 99156 0.413
neela.s4 vs jiweil 283083 0.123
AdaGram vs neela.s4 199370 0.389
AdaGram vs jiweil 201291 0.140

Table 2: Word sense distribution similarity be-
tween various resources

and Pearson r values, the entropy-based measures
Jensen-Shannon and KL divergence, and cosine
similarity and Cohen’s κ. The entropy-based mea-
sures failed to meaningfully distinguish between
the various resource pairs. The cosine similari-
ties and κ values would also have to be taken with
a grain of salt: the former does not take the ex-
act number of senses into account, while the lat-
ter penalizes all disagreements the same, regard-
less of how far the guesses are. On the other
hand, the Spearman and Pearson values are so
highly correlated that Table 2 shows only ρ of
sense numbers attributed to each word by differ-
ent resources, comparing lexicographic resources
to one another (top panel); automated to lexico-
graphic (mid panel); and different forms of auto-
mated English (bottom panel). The top two values
in each column are highlighted in the last two pan-
els, n is the number of headwords shared between
the two resources.

The dictionaries themselves are quite well cor-
related with each other. The Hungarian values
are considerably larger both because we only used
a subsample of NSZ (the letter b) so there are
only 5,363 words to compare, and because NSZ
and EKSZ come from the same Hungarian lexico-
graphic tradition, while CED and LDOCE never
shared personnel or editorial outlook. Two En-
glish systems, neela and huang, show percep-
tible correlation with a lexical resource, LDOCE,
and only two systems, AdaGram and neela,
correlate well with each other (ignoring different
parametrizations of the same system, which of
course are often well correlated to one another).

2.1 Parts of speech and word frequency

Since no gold dataset exists, against which the re-
sults could be evaluated and the errors analyzed,
we had to consider if there exist factors that might
have affected the results. In particular, the better
correlation of the adaptive methods with LDOCE
than with CED raises suspicions. The former
groups entries by part of speech, the latter by
meaning, implying that the methods in question
might be counting POS tags instead of meanings.

Another possible bias that might have influ-
enced the results is word frequency (Manin, 2008).
This is quite apparent in the release version of the
non-adaptive methods huang and neela: the
former expressly states in the README that the
6,162 words with multiple meanings “roughly cor-
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Resources compared n ρ

CED vs POS 42532 0.052
LDOCE vs POS 28549 0.206
OSubvs POS 48587 0.141
EKSZ vs POS 52158 0.080
NSZ vs POS 3532 0.046
huang vs POS 98405 0.026

AdaGram vs freq 399985 0.343
huang vs freq 94770 0.376
CED vs freq 36709 0.124
LDOCE vs freq 27859 0.317
neela.s4 vs freq 94044 0.649
neela.NP.30k vs freq 94044 0.368
neela.NP.6k vs freq 94044 0.635
UMBC POS vs freq 136040 -0.054

Table 3: Word sense distribution similarity with
POS tag perplexity (top panel) and word frequency
(bottom panel)

respond to the most frequent words".
To examine the effect of these factors, we mea-

sured their correlation with the number of mean-
ings reported by the methods above. For each
word, the frequency and the POS perplexity was
taken from the same corpora we ran the MSEs on:
UMBC for English and Webkorpusz for Hungar-
ian. Table 3 shows the results for both English
and Hungarian. The correlation of automatically
generated resources with POS tags is negligible:
all other embeddings correlate even weaker than
huang, the only one shown. From the English
dictionaries, LDOCE produces the highest corre-
lation, followed by OSub; the correlation with
CED, as expected, is very low. The Hungarian dic-
tionaries are around the level of CED.

In comparison, the correlation between sense
numbers and word frequency is much more evi-
dent. Almost all English resources correlate with
the word frequency by at least 0.3 (the notable ex-
ception being CED which is the closest to a gold
standard we have); furthermore, the highest cor-
relation we measured are between two versions of
neela and the word frequency. Adding to this
the low correlation of the gold CED against the
other resources (see Table 2), it appears the multi-
prototype embeddings included in the study were
trained to assign more vectors to frequent words
instead of trying this for truly polysemous ones.

To disentangle these factors further, we per-
formed partial correlation analysis with the ef-

fect of frequency (or its log) or POS perplexity
removed. Recall that LDOCE and CED origi-
nally correlated only to ρ = 0.266. After remov-
ing POS, we obtain 0.545, removing frequency
yields 0.546, and removing log frequency brings
this up to 0.599. Full discussion would stretch
the bounds of this paper, but on select embeddings
such as neela.NP.6k correlations with CED im-
prove from a negligible 0.093 to a respectable
0.397 if POS, and an impressive 0.696 if log fre-
quency is factored out.

3 Cross-linguistic treatment of concepts

Since monolingual dictionaries are an expensive
resource, we also propose an automatic evaluation
of MSEs based on the discovery of Mikolov et al.
(2013b) that embeddings of different languages
are so similar that a linear transformation can map
vectors of the source language words to the vectors
of their translations.

The method uses a seed dictionary of a few
thousand words to learn translation as a linear
mapping W : Rd1 → Rd2 from the source (mono-
lingual) embedding to the target: the translation
zi ∈ Rd2 of a source word xi ∈ Rd1 is approxi-
mately its image Wxi by the mapping. The trans-
lation model is trained with linear regression on
the seed dictionary

min
W

∑
i

||Wxi − zi||2

and can be used to collect translations for the
whole vocabulary by choosing zi to be the near-
est neighbor of Wxi.

We follow Mikolov et al. (2013b) in using
different metrics, Euclidean distance in training
and cosine similarity in collection of translations.
Though this choice is theoretically unmotivated, it

jelentés
értelmezés

jelentés
tanulmány

meaning
interpretation

report
memorandum

Figure 1: Linear translation of word senses. The
Hungarian word jelentés is ambiguous between
‘meaning’ and ‘report’. The two senses are identi-
fied by the “neighboring” words értelmezés ‘inter-
pretation’ and tanulmány ‘memorandum’.
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seems to work better than more consistent use of
metrics; but see (Xing et al., 2015) for opposing
results.

In a multi-sense embedding scenario, we take
a multi-sense embedding as source model, and a
single-sense embedding as target model. We eval-
uate a specific source MSE model in two ways re-
ferred as single, and multiple.

The tools that generate MSEs all provide fall-
backs to singe-sense embeddings in the form of
so called global vectors. The method single can
be considered as a baseline; a traditional, single-
sense translation between the global vectors and
the target vectors. Note that the seed dictionary
may contain overlapping translation pairs: one
word can have multiple translations in the gold
data, and more than one word can have the same
translation. In the multiple method we used the
same translation matrix, trained on the global vec-
tors, and inspected the translations of the different
senses of the same source word. Exploiting the
multiple sense vectors one word can have more
than one translation.

Two evaluation metrics were considered, lax
and strict. In lax evaluation a translation is taken
to be correct if any of the source word’s senses are
translated into any of its gold translations. In strict
evaluation the translations of the source word are
expected to cover all of its gold translations. For
example if jelentés has two gold translations, re-
port and meaning, and its actual translations are
‘report’ and some word other than ‘meaning’, then
it has a lax score of 2, but a strict score of 1.

The quality of the translation was measured by
training on the most frequent 5k word pairs and
evaluating on another 1k seed pairs. We used
OSub as our seed dictionary. Table 4 shows
the percentage of correctly translated words for
single-sense and multi-sense translation.

embedding lax strict

AdaGram 800 a.05 m100
s 26.0% 21.7%
m 30.5% 25.1%

AdaGram 800 a.01 m100
s 12.8% 10.8%
m 24.4% 21.0%

jiweil
s 39.1% 32.2%
m 9.7% 8.3%

Table 4: Hungarian to English translation. Target
embedding from Mikolov et al. (2013a)

4 Conclusions

To summarize, we have proposed evaluating word
embeddings in terms of their semantic resolution
(ability to distinguish multiple senses) both mono-
lingually and bilingually. Our monolingual task,
match with the sense-distribution of a dictionary,
yields an intrinsic measure in the sense of Chiu
et al. (2016), while the bilingual evaluation is ex-
trinsic, as it measures an aspect of performance
on a downstream task, MT. For now, the two
are not particularly well correlated, though the
low/negative result of jiweil in Table 1 could
be taken as advance warning for the low perfor-
mance in Table 4. The reason, we feel, is that
both kinds of performance are very far from ex-
pected levels, so little correlation can be expected
between them: only if the MSE distribution of
senses replicates the exponential decay seen in
dictionaries (both professional lexicographic and
crowdsourced products) is there any hope for fur-
ther progress.

The central linguistic/semantic/psychological
property we wish to capture is that of a concept,
the underlying word sense unit. To the extent stan-
dard lexicographic practice offers a reasonably ro-
bust notion (this is of course debatable, but we
consider a straight correlation of 0.27 and and a
frequency-effect-removed correlation of 0.60 over
a large vocabulary a strong indication of consis-
tency), this is something that MSEs should aim at
capturing. We leave the matter of aligning word
senses in different dictionaries for future work, but
we expect that by (manual or automated) align-
ment the inter-dictionary (inter-annotator) agree-
ment can be improved considerably, to provide a
more robust gold standard.

At this point everything we do is done in
software, so other researchers can accurately
reproduce these kinds of evaluations. Some glue
code for this project can be found at https:
//github.com/hlt-bme-hu/multiwsi.
Whether a ‘gold’ sense-disambiguated dictionary
should be produced beyond the publicly available
CED is not entirely clear, and we hope workshop
participants will weigh in on this matter.
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Abstract

While there has been a growing body of
work on word embeddings, and recent di-
rections better reflect sense-level represen-
tations, evaluation remains a challenge.
We propose a method of query inven-
tory generation for embedding evaluation
that recasts the principle of subsumption
preservation, a desirable property of se-
mantic graph-based similarity measures,
as a comparative similarity measure as ap-
plied to existing lexical resources. We aim
that this method is immediately applied
to populate query inventories and perform
evaluation with the ordered triple-based
approach set forth, and inspires future re-
finements to existing notions of evaluating
sense-directed embeddings.

1 Introduction

Work in the area of word embeddings has ex-
ploded in the last several years. Approaches based
on word prediction (Mikolov et al., 2013) show
improvement over traditional and recent work on
count based vectors (Baroni et al., 2014). There
has been gradual movement toward sense-directed
or sense-level embeddings (Huang et al., 2012;
Faruqui et al., 2015; Trask et al., 2015) while ex-
isting evaluation strategies based on applications,
human rankings, and solving word choice prob-
lems have limitations (Schnabel et al., 2015). A
limitation of relying on downstream applications
for evaluation is that results vary depending on
the application (Schnabel et al., 2015). In re-
cent work, Tsvetkov (2015) leverages alignment
with existing manually crafted lexical resources as
a standard for evaluation, which shows a strong
correlation with downstream applications.

Along this vein, there is an increasing need

for methodologies for word-sense level evalua-
tion measures. The utility of word embeddings
is to reflect notions of similarity and relatedness,
and word embeddings intended to represent senses
should in turn reflect structured relations like hy-
pernymy and meronymy. Most existing resources
on lexical similarity and relatedness rely on sub-
jective scores assigned between word pairs. This
style of evaluation suffers from limited size of the
evaluation sets and subjectivity of annotators. To
address the first issue, we propose a method for
exploiting existing knowledge formalized in lex-
ical resources and ontologies as a means to au-
tomating the process of populating a query inven-
tory. To address the second issue, we propose an
evaluation approach that, instead of human scor-
ing of word pairs, relies on comparative similarity
given a semantic ordering represented as 3-tuples
(henceforth triples). The method applies the prin-
ciple of subsumption preservation as a standard by
which to generate a query inventory and evaluate
word embedding by geometric similarity. For ex-
ample, subsumption is preserved when the simi-
larity score of embeddings representing ferry and
boat is greater than that of ferry and vessel. In the
following section we illuminate the method, eval-
uation approach, an exploratory experiment, its re-
sults, related work, and next steps.

2 Method

The foundation of the method is the principle of
subsumption preservation (Lehmann and Turhan,
2012).1 We define this principle with axiom
schemata as follows:

1We reference the two principles of subsumption and re-
verse subsumption atomically via the disjunction. Transitive
serves as syntactic shorthand for the corresponding axiom.
We assume the relationship between A and C is not asserted
but inferred by transitivity.

90



SPsimrel
(A,B,C) =def

rel(A,B) ∧ rel(B,C) ∧ Transitive(rel)→
sim(A,B) ∨ sim(B,C) ≥ sim(A,C)

SPsimrel
(A,B,C) means that similarity measure

sim conforms to the subsumption preservation
principle with respect to relation rel for all triples
〈A,B,C〉, just in case for any tuple 〈A,B,C〉 of
rel related via transitivity, the similarity score of
〈A,B〉 and that of 〈B,C〉 is greater than or equal
to that of 〈A,C〉. The property of subsumption
preservation provides a link between subsumption
and similarity in that it expresses the constraint
that A and B (B and C) are more similar than
A and C since the former pair(s) are ‘closer’ in
the corresponding graph. Note that rel serves as
relational schema that is satisfied by transitive,
generalization relations. This includes taxonomic
or partonomic inclusion that are the foundation of
lexical resources and ontologies (e.g., WordNet,
Gene Ontology).

The original intent of the subsumption preser-
vation principle is that any quantitative semantic
similarity measure sim is constrained by this de-
sirable formal property. For instance, Path (Rada
et al., 1989) abides by the subsumption preserva-
tion principle, and is defined as Path(A,B) =def

1/p, where p is the length of the path separating
two concepts, A and B. A weakness of this and
similar measures is that the length of path between
two concepts is often a reflection of variability in
the knowledge modeling technique or scope and
not necessary a reflection of relatedness. To ac-
count for this shortcoming, Resnik (1995) ap-
plies the notion of information content: ICcorpus

= -log(freq(A)), the inverse log of a concept A’s
frequency in a given corpus, of a concept pair’s
least common subsumer as the similarity mea-
sure. There are other, varied approaches to seman-
tic similarity that are based on a combination of
corpus statistics and lexical taxonomy (Jiang and
Conrath, 1997). Ultimately these approaches pro-
duce a score that is to some extent dependent on
graph-based distances.

In the present work we take a different approach
by proposing comparative similarity that hinges
on semantic graph order preservation as the unit
of evaluation. The intent is to apply only a basic
geometric similarity measure (e.g., cosine) as sim
within our definition of subsumption preservation,
in order to provide a measure of how well embed-

dings abstract to the knowledge structure expected
of a sense-directed embedding.

Thus given word embeddings, a knowledge re-
source and a similarity measure over the embed-
ding space, an embedding does not conform to the
subsumption preserving principle, if for example,
the similarity score between terms sparrow and
bird or bird and vertebrate is less than that of spar-
row and vertebrate. A set of sense embeddings do
not conform to the subsumption preserving prin-
ciple to the proportion of cases that are violated.
By adhering to the subsumption preserving prin-
ciple a set of sense embeddings reflects notions of
foundational semantic relationships and compara-
tive similarity explicitly formalized in lexical and
ontological resources. Thus, evaluation based on
this method can serve as an indicator of how well
approaches for learning embeddings can reflect re-
lationships that are not present in knowledge re-
sources.

3 Evaluation Approach

Traditionally word pairs of a query inventory are
scored by similarity with a value between 0-1. We
propose a different approach based on the unit of
ordered triple instead of pairs, and that is rela-
tive rather than absolute and quantitative. Given
a set of tuples of a relation rel that sim is poten-
tially constrained by under subsumption preserva-
tion, we consider the candidate triples as instances
of a query inventory for evaluation.

A similar approach has been applied in the eval-
uation of machine translation. Kahn (2009) de-
scribes a family of dependency pair match mea-
sures that are composed of precision and recall
over various decompositions of a syntactic depen-
dency tree. A dependency parser determines the
relevant word triples where the relation is the sec-
ond element. Reference and hypothesis sentences
are converted to a labeled syntactic dependence
tree, and the relations from each tree are extracted
and compared. We draw inspiration from this ap-
proach, where the unit of evaluation is the ordered
triple. Given the nature of our task we apply the
measure of accuracy on the triples.

4 Exploratory Experiment Setup

For evaluation the BLESS dataset is selected as
the basis for selecting a triple-based query inven-
tory, (Baroni and Lenci, 2011), focusing on hyper-
nymy and leaving meronymy as a future consider-
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ation. For pairs that are related by hypernymy we
identify intermediate words within the hypernym
graph to generate candidate triples, including only
nouns. For embeddings we used word2vec-based
embeddings generated from google corpora.2 For
the similarity measure we selected cosine similar-
ity, although the evaluation approach assumes em-
beddings and a similarity measure are two vari-
ables. So for example the score of sim(broccoli,
vegetable) is greater than sim(broccoli,produce),
therefore one part of the subsumption preservation
principle is conformed to for the triple 〈broccoli,
vegetable, produce〉. Also, sim(vegetable, pro-
duce) is greater than sim(broccoli, produce), there-
fore the triple is also in conformance with the
other part of the subsumption preserved principle,
namely reverse subsumption preservation.

We consider two approaches for calculat-
ing cosine similarity between words within the
word2vec generated embeddings. The first is the
simple approach and is performed by calculating
the cosine between two word embeddings. The
second is the aggregate approach, and requires, for
each of the two words, exhaustively collecting all
sister lemmas for the senses each word is a lemma
of, calculating the centroid for all corresponding
embeddings, and calculating cosine similarity be-
tween the resultant pair of centroid embeddings.
The aggregate approach is in effort to simulate
sense level embeddings for this exploration. We
also consider the role of word generality in the
evaluation.

5 Results

The results of the exploratory evaluation are
shown in Table 5. SS, RSS, AS, and RAS
represent subsumption and reserve subsumption
preservation by the simple and aggregate ap-
proaches. The triple inventory w/o abstract repre-
sents where triples including highly abstract terms
object and artifact were removed, and the inven-
tory IC threshold represents where triples only in-
cluded terms with Information Content above 3.0.
Therefore the number of triples in the three in-
ventories are approximately 1900, 900, and 300,
respectively. In all three cases 5k was used as
the unigram frequency cutoff for all terms in the
triples, and it was observed that increasing above
this value did not improvement accuracy. The re-
sults of the latter two runs illustrate where the most

2https://code.google.com/archive/p/word2vec/

triple inventory SS RSS AS RAS
baseline .67 .68 .73 .68
w/o abstract .78 .72 .78 .69
IC threshold .88 .73 .78 .65

Table 1: Accuracy figures for the triple-based
query inventory generated from the BLESS
dataset and WordNet.

general term in the triples is more likely a domain
concept, which coincides which better overall ac-
curacy.

6 Related Work

Newman (2010) applies semantic similarity mea-
sures leveraging WordNet, among other resources,
for measuring coherence of topic models. Word
pairs of a topic’s top N terms are scored by simi-
larity measures, where all synset pairs for a word
pair are exhaustively applied prior to calculating
their mean. The goal is to determine, based on top-
ics previously selected by Mechanical Turkers as
coherent, how well similarity measures reflect the
coherence. It was found that WordNet-based sim-
ilarity measures varied greatly, while non-graph
similarity measures using Wikipedia and more
generally applying pointwise mutual information
performed the best.

Schnabel (2015) performs a comparative intrin-
sic evaluation based on selected word embeddings
and nearest neighbor terms by cosine similarity for
different word embedding learning approaches.
Mechanical Turk participants were asked to select
the most similar term from nearest neighbors for a
given target term. Embedding learning approaches
are compared by average win ratio.

7 Discussion and Future Work

In this paper we put forth a method for gener-
ating a triple-based query inventory and evalua-
tion to assist in determining how well word em-
bedding abstract to the sense, conceptual level.
This approach provides an evaluation of relative
rather than absolute similarity, the latter of which
can lead to drastic differences in similarity scor-
ing. The results improved by applying filters
to the BLESS-derived query inventory aimed at
where the most general term in the triples are more
“meaningful”, or put simply, where we increased
the proportion of domain knowledge being tested.
Since this occurred at the cost of the size of the
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triple set, it is worth considering other heuristics
for augmenting the generated candidate triples to
improve their utility. We hope that this approach
be ultimately treated as a sort of unit test for em-
beddings aimed at the open or a particular domain.

In future work we will perform the evaluation
on sense embeddings (Trask et al., 2015), and on
embeddings that integrate with lexical resources
(Faruqui et al., 2015; Rothe and Schütze, 2015).
We will also investigate the use of other broader
relations, such as meronymy, as well as consider
other lexical and ontological resources that are
more comprehensive for the domains we aim to
evaluate. Another consideration is evaluating em-
beddings with other similarity measures that ac-
count for asymmetry. Further, we aim to test if
the accuracy conforming to subsumption preser-
vation correlates with an evaluation of a down-
stream task, to confirm whether it can serve as a
valid proxy.
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Abstract

Existing corpora for intrinsic evaluation
are not targeted towards tasks in informal
domains such as Twitter or news comment
forums. We want to test whether a rep-
resentation of informal words fulfills the
promise of eliding explicit text normaliza-
tion as a preprocessing step. One possible
evaluation metric for such domains is the
proximity of spelling variants. We propose
how such a metric might be computed and
how a spelling variant dataset can be col-
lected using UrbanDictionary.

1 Introduction

Recent years have seen a surge of interest in train-
ing effective models for informal domains such as
Twitter or discussion forums. Several new works
have thus targeted social media platforms by learn-
ing word representations specific to such domains
(Tang et al., 2014); (Benton et al., 2016).

Traditional NLP techniques have often relied on
text normalization methods when applied to infor-
mal domains. For example, “u want 2 chill wit
us 2nite” may be transcribed as “you want to chill
with us tonight”, and the normalized transcription
would be used as input for a text processing sys-
tem. This method makes it easier to apply models
that are successful on formal language to more in-
formal language. However, there are several draw-
backs to this method.

Building an accurate text normalization compo-
nent for a text processing pipeline can require sub-
stantial engineering effort and collection of manu-
ally annotated training data. Even evaluating text
normalization models is a difficult problem and of-
ten subjective (Eisenstein, 2013b).

Even when the model accurately transcribes in-
formal spelling dialects to a standard dialect, text
normalization methods may not be appropriate.

Converting text to a style more consistent with The
Wall Street Journal than Twitter may make pars-
ing easier, but it loses much of the nuance in a
persona deliberately adopted by the writer. Twit-
ter users often express their spoken dialect through
spelling, so regional and demographic information
may also be lost in the process of text normaliza-
tion (Eisenstein, 2013a).

Distributional word representations hold
promise to replace this flawed preprocessing step.
By making the shared semantic content of spelling
variants implicit in the representation of words,
text processing models can be more flexible. They
can extract persona or dialect information while
handling the semantic or syntactic features of
words (Benton et al., 2016).

In this proposal, we will present a method of
evaluating whether a particular set of word repre-
sentations can make text normalization unneces-
sary. Because the intrinsic evaluation we present
is inexpensive and simple, it can be easily used to
validate representations during training. An eval-
uation dataset can be collected easily from Urban-
Dictionary by methods we will outline.

2 Evaluating By Spelling Variants

Several existing metrics for evaluating word rep-
resentations assume that similar words will have
similar representations in an ideal embedding
space. A natural question is therefore whether
a representation of words in social media text
would place spelling variants of the same word
close to each other. For example, while the rep-
resentation of “ur” may appear close to “baby-
lon” and “mesopotamia” in a formal domain like
Wikipedia, on Twitter it should be closer to
“your”.

We can evaluate these representations based on
the proximity of spelling variants. Given a cor-
pus of common spelling variant pairs (one in-
formal variant and one formal), we will accept
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or reject each word pair’s relative placement in
our dictionary. For example, we may consider
(ur, your) to be such a pair. To evaluate
this pair, we rank the words in our vocabulary by
cosine-similarity to ur.

We could then count the pair correct if your
appears in the top k most similar tokens. A similar
method is common in assessing performance on
analogical reasoning tasks (Mikolov et al., 2013).
Having thus accepted or rejected the relationship
for each pair, we can summarize our overall per-
formance as accuracy statistic.

The disadvantage of this method is that per-
formance will not be robust to vocabulary size.
Adding more informal spelling variants of the
same word may push the formal variant down the
ranked list (for example, yr may be closer to ur
than your is). However, if these new variants are
not in the formal vocabulary, they should not af-
fect the ability to elide text normalization into the
representation.

To make the metric robust to vocabulary size,
instead of ranking all tokens by similarity to the
first word in the variant pair, we rank only tokens
that we consider to be formal. We consider a token
to be formal if it appears on a list of formal vocab-
ulary. Such a list can be collected, for example, by
including all vocabulary appearing in Wikipedia
or the Wall Street Journal.

3 Gathering Spelling Variants

If we have an informal text corpus, we can use it
to generate a set of likely spelling variants to vali-
date by hand. An existing unsupervised method to
do so is outlined as part of the text normalization
pipeline described by (Gouws et al., 2011).

This technique requires a formal vocabulary
corpus such as Wikipedia as well as a social media
corpus such as Twitter. They start by exhaustively
ranking all word pairs by their distributional sim-
ilarity in both Wikipedia and Twitter. The word
pairs that are distributionally similar in Twitter but
not in Wikipedia are considered to be candidate
spelling variants. These candidates are then re-
ranked by lexical similarity, providing a list of
likely spelling variants.

This method is inappropriate when collecting
datasets for the purpose of evaluation. When
we rely on co-occurrence information in a social
media corpus to identify potential spelling vari-
ants, we provide an advantage to representations

learned using co-occurrence information. When
we rely on lexical similarity to find variants, we
also offer an unfair advantage to representations
that include character-level similarity as part of the
model, such as (Dhingra et al., 2016).

We therefore collected a dataset from an in-
dependent source of spelling variants, UrbanDic-
tionary.

UrbanDictionary
UrbanDictionary is a crowd-compiled dictionary
of informal words and slang with over 7 million
entries. We can use UrbanDictionary as a resource
for identifying likely spelling variants. One advan-
tage of this system is that UrbanDictionary will
typically be independent of the corpus used for
training, and therefore we will not use the same
training features for evaluation.

To identify spelling variants on UrbanDic-
tionary, we scrape all words and definitions from
the site. In the definitions, we search for a num-
ber of common strings that signal spelling vari-
ants. To cast a very wide net, we could search for
all instances of “spelling” and then validate a large
number of results by hand. More reliably, we can
search for strings like:

• misspelling of [your]1

• misspelling of “your”

• way of spelling [your]

• spelling for [your]

A cursory filter will yield thousands of defini-
tions that follow similar templates. The word pairs
extracted from these definitions can then be vali-
dated by Mechanical Turk or study participants.

Scripts for scraping and filtering UrbanDic-
tionary are released with this proposal, along with
a small sample of hand-validated word pairs se-
lected in this way2.

4 Experiments

Restricting ourselves to entries for ASCII-only
words, we identified 5289 definitions on Urban-
Dictionary that contained the string “spelling”.
Many entries explicitly describe a word as a
spelling variant of a different “correctly” spelled
word, as in the following definition of “neice”:

1Brackets indicate a link to another page of definitions, in
this case for “your”.

2https://github.com/nsaphra/urbandic-scraper
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spelling[ˆ\.,]* (’|\"|\[)(?P<variant>\w+)(\1)

Figure 1: Regular expression to identify spelling variants.

Neice is a common misspelling of the
word niece, meaning the daughter of
one’s brother or sister. The correct
spelling is niece.

Even this relatively wide net misses many def-
initions that identify a spelling variant, including
this one for “definately”:

The wrong way to spell definitely.

We extracted respelling candidates using the
regular expression in Figure 1, where the group
variant contains the candidate variant. We thus
required the variant word to be either quoted or a
link to a different word’s page, in order to sim-
plify the process of automatically extracting the
informal-formal word pairs, as in the following
definition of “suxx”:

[Demoscene] spelling of ”Sucks”.

We excluded all definitions containing the word
“name” and definitions of words that appeared
less than 100 times in a 4-year sample of En-
glish tweets. This template yielded 923 candi-
date pairs. 7 of these pairs were people’s names,
and thus excluded. 760 (83%) of the remaining
candidate pairs were confirmed to be informal-to-
formal spelling variant pairs.

Some definitions that yielded false spelling vari-
ants using this template, with the candidate high-
lighted, were:

1. recieve: The spelling bee champion of his 1st
grade class above me neglected to correctly
spell “acquired”, so it seems all of you who
are reading this get a double-dose of spelling
corrections.

2. Aryan: The ancient spelling of the word “Ira-
nian”.

3. moran: The correct spelling of moran when
posting to [fark]

4. mosha: . . . However, the younger generation
(that were born after 1983) think it is a great
word for someone who likes “Nu Metal” And
go around calling people fake moshas (or as
the spelling was originally “Moshers”.

Most of the false spelling variants were linked
to commentary about usage, such as descriptions
of the typical speaker (e.g., “ironic”) or domains
(e.g., “YouTube” or “Fark”).

When using the word pairs to evaluate trained
embeddings, we excluded examples where the
second word in the pair was not on a formal vocab-
ulary list (e.g., ”Eonnie”, a word borrowed from
Korean meaning ”big sister”, was mapped to an
alternative transcription, ”unni”).

4.1 Filtering by a Formal Vocabulary List

Some tokens which UrbanDictionary considers
worth mapping to may not appear in the formal
corpus. For example, UrbanDictionary considers
the top definition of “braj” to be:

Pronounced how it is spelled. Means
bro, or dude. Developed over numerous
times of misspelling [brah] over texts
and online chats.

Both “braj” and “brah” are spelling variants of
“bro”, itself an abbreviation of “brother”. If we ex-
tract (braj, brah) as a potential spelling pair
based on this definition, we cannot evaluate it if
brah does not appear in the formal corpus. Rep-
resentations of these words should probably reflect
their similarity, but using the method described in
Section 2, we cannot evaluate spelling pairs of two
informal words.

Using a vocabulary list compiled from English
Wikipedia, we removed 140 (18%) of the remain-
ing pairs. Our final set of word pairs contained 620
examples.

4.2 Results on GloVe

As a test, we performed an evaluation on em-
beddings trained with GloVe (Pennington et al.,
2014) on a 121GB English Twitter corpus. We
used a formal vocabulary list based on English
Wikipedia. We found that 146 (24%) of the in-
formal word representations from the word pairs
in our dataset had the target formal word in the
top 20 most similar formal words from the vocab-
ulary. Only 70 (11%) of the informal word repre-
sentations had the target formal word as the most
similar formal word.
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The word pairs with representations that ap-
peared far apart often featured an informal word
that appeared closer to words that were related by
topic, but not similar in meaning. The representa-
tion of “orgasim” was closer to a number of med-
ical terms, including “abscess”, “hysterectomy”,
“hematoma”, and “cochlear”, than it was to “or-
gasm”.

Other word pairs were penalized when the “for-
mal” vocabulary list failed to filter out informal
words that appeared in the same online dialect.
The five closest “formal” words to “qurl” (“girl”),
which were “coot”, “dht”, “aaw”, “luff”, and
“o.k”.

Still other word pairs were counted as wrong,
but were in fact polysemous. The representation
of “tarp” did not appear close to “trap”, which was
its formal spelling according to UrbanDictionary.
Instead, the closest formal word was “tarpaulin”,
which is commonly abbreviated as “tarp”.

These results suggest that current systems based
exclusively on distributional similarity may be in-
sufficient for the task of representing informal-
domain words.

5 Biases and Drawbacks

Evaluating performance on spelling variant pairs
could predict performance on a number of tasks
that are typically solved with a text normalization
step in the system pipeline. In a task like sentiment
analysis, however, the denotation of the word is
not the only source of information. For example,
a writer may use more casual spelling to convey
sarcasm:

I see women who support Trump or
Brock Turner and I’m like “wow u r
such a good example for ur daughter lol
not poor bitch” (Twitter, 18 Jun 2016)

or whimsy:

*taking a personalitey test*
ugh i knew i shoud have studied harder
for this (Twitter, 6 Jun 2016)

An intrinsic measure of spelling variant similar-
ity will not address these aspects.

Some of the disadvantages of metrics based on
cosine similarity, as discussed in Faruqui et al.
(2016), apply here as well. In particular, we do not
know if performance would correlate well with ex-
trinsic metrics; we do not account for the role of

word frequency in cosine similarity; and we can-
not handle polysemy. Novel issues of polysemy
also emerge in cases such as “tarp”; “wit”, which
represents either cleverness or a spelling variant of
“with”; and “ur”, which maps to both “your” and
“you are”.

However, compared to similarity scores in gen-
eral (Gladkova and Drozd, 2016), spelling variant
pairs are less subjective.

6 Conclusions

The heuristics used to collect the small dataset re-
leased with this paper were restrictive. It is possi-
ble to collect more spelling variant pairs by choos-
ing more common patterns (such as the over 5000
entries containing the string “spelling”) to pick
candidate definitions. We could then use more
complex rules, a learned model, or human partici-
pants to extract the spelling variants from the def-
initions. However, the simplicity of our system,
which requires minimal human labor, makes it a
practical option for evaluating specialized word
embeddings for social media text.

Our experiments with GloVe indicate that mod-
els based only on the distributional similarity of
words may be limited in their ability to repre-
sent the semantics of online speech. Some recent
work has learned representations of embeddings
for Twitter using character sequences as well as
distributional information (Dhingra et al., 2016);
(Vosoughi et al., 2016). These models should
have a significant advantage in any metric rely-
ing on spelling variants, which are likely to exhibit
character-level similarity.

References
Adrian Benton, Raman Arora, and Mark Dredze. 2016.

Learning multiview embeddings of twitter users.
ACL.

Bhuwan Dhingra, Zhong Zhou, Dylan Fitzpatrick,
Michael Muehl, and William W Cohen. 2016.
Tweet2vec: Character-based distributed representa-
tions for social media. In Proceedings of ACL.

Jacob Eisenstein. 2013a. Phonological factors in so-
cial media writing. In Proc. of the Workshop on Lan-
guage Analysis in Social Media, pages 11–19.

Jacob Eisenstein. 2013b. What to do about bad lan-
guage on the internet. In HLT-NAACL, pages 359–
369.

Manaal Faruqui, Yulia Tsvetkov, Pushpendre Rastogi,
and Chris Dyer. 2016. Problems with evaluation

97



of word embeddings using word similarity tasks. In
RepEval.

Anna Gladkova and Aleksandr Drozd. 2016. Intrinsic
evaluations of word embeddings: What can we do
better? In RepEval.

Stephan Gouws, Dirk Hovy, and Donald Metzler.
2011. Unsupervised mining of lexical variants from
noisy text. In Proceedings of the First Workshop
on Unsupervised Learning in NLP, EMNLP ’11,
pages 82–90, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word
representation. In EMNLP, volume 14, pages 1532–
43.

Duyu Tang, Furu Wei, Nan Yang, Ming Zhou, Ting
Liu, and Bing Qin. 2014. Learning sentiment-
specific word embedding for twitter sentiment clas-
sification. In ACL (1), pages 1555–1565.

Soroush Vosoughi, Prashanth Vijayaraghavan, and Deb
Roy. 2016. Tweet2vec: Learning tweet embeddings
using character-level cnn-lstm encoder-decoder. In
SIGIR.

98



Proceedings of the 1st Workshop on Evaluating Vector Space Representations for NLP, pages 99–105,
Berlin, Germany, August 12, 2016. c©2016 Association for Computational Linguistics

Thematic fit evaluation: an aspect of selectional preferences

Asad Sayeed, Clayton Greenberg, and Vera Demberg
Computer Science / Computational Linguistics and Phonetics

Saarland University
66117 Saarbrücken, Germany

{asayeed,claytong,vera}@coli.uni-saarland.de

Abstract

In this paper, we discuss the human the-
matic fit judgement correlation task in the
context of real-valued vector space word
representations. Thematic fit is the ex-
tent to which an argument fulfils the se-
lectional preference of a verb given a role:
for example, how well “cake” fulfils the
patient role of “cut”. In recent work,
systems have been evaluated on this task
by finding the correlations of their output
judgements with human-collected judge-
ment data. This task is a representation-
independent way of evaluating models
that can be applied whenever a system
score can be generated, and it is applica-
ble wherever predicate-argument relations
are significant to performance in end-user
tasks. Significant progress has been made
on this cognitive modeling task, leaving
considerable space for future, more com-
prehensive types of evaluation.

1 Introduction

In this paper, we discuss a way of evaluating
real-valued semantic representations: human the-
matic fit judgement correlations. This evaluation
method permits us to model the relationship be-
tween the construction of these semantic represen-
tation spaces and the cognitive decision-making
process that goes into predicate-argument compo-
sitionality in human language users. We focus
here on verb-noun compositionality as a special
case of thematic fit judgement evaluation.

A verb typically evokes expectations regarding
the participants in the event that the verb describes.
By generalizing over different verbs, we can cre-
ate a scheme of thematic roles, which characterize
different ways to be a participant. Schemes vary,

but most contain agent, patient, instrument, and
location (Aarts, 1997). The verb “cut” creates an
expectation, among others, for a patient role that is
to be fulfilled by something that is cuttable. This
role-specific expectation is called the patient se-
lectional preference of “cut”. The noun “cake”
fulfils the patient selectional preference of “cut”,
“form” less so. As such, we can see that selec-
tional preferences are likely to be graded.

We define thematic fit to be the extent to which
a noun fulfils the selectional preference of a verb
given a role. This can be quantified in thematic fit
ratings, human judgements that apply to combina-
tions of verb, role, and noun1. One of the goals of
this type of evaluation is both for cognitive mod-
eling and for future application. From a cogni-
tive modeling perspective, thematic fit judgements
offer a window into the decision-making process
of language users in assigning semantic represen-
tations to complex expressions. Psycholinguistic
work has shown that these introspective judge-
ments map well to underlying processing notions
(Padó et al., 2009; Vandekerckhove et al., 2009).

One of our goals in developing this type of eval-
uation is to provide another method of testing sys-
tems designed for applications in which predicate-
argument relations may have a significant effect on
performance, especially in user interaction. This
particularly applies in tasks where non-local de-
pendencies have semantic relevance, for example,
such as in judging the plausibility of a candidate
coreferent from elsewhere in the discourse. Such
applications include statistical sentence generation
in spoken dialog contexts, where systems must
make plausible lexical choices in context. This
is particularly important as dialog systems grow
steadily less task-specific. Indeed, applications
that depends on predicting or generating match-

1Sometimes roles can be fulfilled by clausal arguments,
which we leave for the future.

99



ing predicate-argument pairs in a human-plausible
way, such as question-answering, summarization,
or machine translation, may benefit from this form
of thematic fit evaluation.

Both from the cognitive modeling perspective
and from the applications perspective, there is still
significant work to be done in constructing mod-
els, including distributional representations. We
thus need to determine whether and how we can
find judgements that are a suitable gold standard
for evaluating automatic systems. We seek in this
paper to shed some light on the aspects of this
problem relevant to vector-space word representa-
tion and to highlight the evaluation data currently
available for this task.

This task differs from other ways of evaluat-
ing word representations because it focuses partly
on the psychological plausibility of models of
predicate-argument function application. Anal-
ogy task evaluations, for example, involve com-
parisons of word representations that are similar
in their parts of speech (Mikolov et al., 2013b).
Here we are evaluating relations between words
that are “counterparts” of one another and that ex-
ist overall in complementary distribution to one
another. There are other forms of evaluation that
attempt to replicate role assignments or predict
more plausible role-fillers given observed text data
(Van de Cruys, 2014), but this does not directly
capture human biases as to plausibility: infrequent
predicate-argument combinations can nevertheless
have high human ratings. Consequently, we view
this task as a useful contribution to the family
of evaluations that would test different aspects of
general-purpose word representations.

2 Existing datasets

The first datasets of human judgements were ob-
tained in the context of a larger scientific discus-
sion on human sentence processing. In particular,
McRae et al. (1998) proposed incremental evalua-
tion of thematic fit for the arguments in potential
parses as a method of parse comparison. Human
judgements of thematic fit were needed for incor-
poration into this model.

McRae et al. (1997) solicited thematic fit rat-
ings on a scale from 1 (least common) to 7 (most
common) using “How common is it for a {snake,
nurse, monster, baby, cat} to frighten some-
one/something?” (for agents) and “How common
is it for a {snake, nurse, monster, baby, cat} to be

verb role-filler agent patient
accept friend 6.1 5.8
accept student 5.9 5.3
accept teenager 5.5 4.1
accept neighbor 5.4 4.4
accept award 1.1 6.6
admire groupie 6.9 1.9
admire fan 6.8 1.7
admire disciple 5.6 4.1
admire athlete 4.8 6.4
admire actress 4.6 6.4

Table 1: Sample of McRae et al. (1997) ratings.

frightened by someone/something?” (for patients).
A small sample of scores from this dataset is given
in Table 1. Each (role-filler, verb, role) triple re-
ceived ratings from 37 different participants. The
37 ratings for each triple were averaged to gener-
ate a final thematic fit score. The verbs were all
transitive, thus allowing an agent rating and pa-
tient rating for each verb-noun pair. As shown,
many nouns were chosen such that they fit at least
one role very well. This meant that some verb-
roles in this dataset have no poorly-fitting role-
fillers, e.g., patients of “accept” and “agents of
“admire”. This had strong ramifications for the
“difficulty” of this dataset for correlation with au-
tomatic systems because extreme differences in
human judgements are much easier to model than
fine-grained ones.

MST98, a 200 item subset of the McRae et al.
(1997) dataset created for McRae et al. (1998), has
two animate role-fillers for each verb. The first
was a good agent and a poor patient, and the other
a poor agent and a good patient. The ratings were
still well-distributed, but these conditions made
correlation with automatic systems easier.

Ferretti et al. (2001) created a dataset of 248 in-
strument ratings (F-Inst) and a dataset of 274 lo-
cation ratings (F-Loc) using questions of the form
“How common is it for someone to use each of the
following to perform the action of stirring?” (in-
struments) and “How common is it for someone to
skate in each of the following locations?”. 40 par-
ticipants supplied ratings on a seven point scale.

Ken McRae, Michael Spivey-Knowlton,
Maryellen MacDonald, Mike Tanenhaus, Neal
Pearlmutter and Ulrike Padó compiled a master
list of thematic fit judgements from Pearlmutter
and MacDonald (1992), Trueswell et al. (1994),
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McRae et al. (1997), a replication of Binder et al.
(2001) [Experiment B], and follow-up studies
of Binder et al. (2001) [Experiment C]. These
studies had slightly different requirements for the
kinds of verbs and nouns used and significant
overlap in stimuli due to collaboration. This rep-
resents the largest to-date dataset of agent-patient
thematic fit ratings (1,444 single-word verb/noun
judgements), referenced herein as MSTNN.

Padó (2007) created a new dataset of 414 agent
and patient ratings (P07) to be included in a sen-
tence processing model. The verbs were chosen
based on their frequencies in the Penn Treebank
and FrameNet. Role-fillers were selected to give
a wide distribution of scores within each verb.
The final dataset contains fine-grained distinctions
from FrameNet, which many systems map to fa-
miliar agent and patient roles. Judgements were
obtained on a seven point scale using questions of
the form “How common is it for an analyst to tell
[something]?” (subject) and “How common is it
for an analyst to be told?” (object).

Finally, Greenberg et al. (2015a) created a
dataset of 720 patient ratings (GDS-all) that were
designed to be different from the others in two
ways. First, they changed the format of the judge-
ment elicitation question, since they believed that
asking how common/typical something is would
lead the participants to consider frequency of oc-
currence rather than semantic plausibility. Instead,
they asked participants how much they agreed on a
1-7 scale with statements such as “cream is some-
thing that is whipped”. This dataset was con-
structed to vary word frequency and verb poly-
semy systematically; the experimental subset of
the dataset contained frequency-matched monose-
mous verbs (GDS-mono) and polysemous verbs
(GDS-poly). Synonymous pairs of nouns (one fre-
quent and one infrequent) were chosen to fit a fre-
quent sense, an infrequent sense (for polysemous
verbs only), or no senses per verb.

3 Evaluation approaches

The dominant approach in recent work in thematic
fit evaluation has been, given a verb/role/noun
combination, to use the vector space to construct a
prototype filler of the given role for the given verb,
and then to compare the given noun to that pro-
totype (Baroni and Lenci, 2010). The prototype
fillers are constructed by averaging some num-
ber of “typical” (e.g., most common by frequency

or by some information statistic) role-fillers for
that verb—the verb’s vector is not itself directly
used in the comparison. Most recent work instead
varies in the construction of the vector space and
the use of the space to build the prototype.

The importance of the vector space A seman-
tic model should recognize that cutting a cake with
an improbable item like a sword is still highly
plausible, even if cakes and swords rarely appear
in the same genres or discourses; that is, it should
recognize that swords and knives (more typically
used to cut cakes) are both cutting-instruments,
even if their typical genre contexts are different.

Because of their indirect relationship to proba-
bility, real-valued vector spaces have produced the
most successful recent high-coverage models for
the thematic fit judgement correlation task. Even
if cakes and swords may rarely appear in the same
discourses, swords and knives sometimes may. A
robust vector space allows the representation of
unseen indirect associations between these items.
In order to understand the progress made on the
thematic fit question, we therefore look at a sample
of recent attempts at exploring the feature space
and the handling of the vector space as a whole.

Comparing recent results In table 2, we sam-
ple results from recent vector-space modeling ef-
forts in the literature in order to understand the
progress made. The table contains:
BL2010 Results from the TypeDM system of Ba-

roni and Lenci (2010). This space is con-
structed from counts of rule-selected depen-
dency tree snippets taken from a large web
crawl corpus, adjusted via local mutual in-
formation (LMI) but is otherwise unsuper-
vised. The approach they take generates a
vector space above a 100 million dimensions.
The top 20 typical role-fillers by LMI are
chosen for prototype construction. Some of
the datasets presented were only created and
tested later by Sayeed et al. (2015) (*) and
Greenberg et al. (2015a) (**).

BDK2014 Tests of word embedding spaces
from Baroni et al. (2014), constructed via
word2vec (Mikolov et al., 2013a). These
are the best systems reported in their paper.
The selection of typical role-fillers for con-
structing the prototype role-filler comes from
TypeDM, which is not consulted for the vec-
tors themselves.
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Dataset BL2010 BDK2014 GSD2015 GDS2015 SDS2015-avg SDS2015-swap
P07 28 41 50 - 59 48
MST98 51 27 - - - -
MSTNN 33* - 36 - 34 25
F-Loc 23* - 29 - 21 19
F-Inst 36* - 42 - 39 45
GDS-all 53** - - 55 51 50
GDS-mono 41** - - 43 - -
GDS-poly 66** - - 67 - -

Table 2: Spearman’s ρ values (×100) for different datasets with results collected from different evalua-
tion attempts. All models evaluated have coverage higher than 95% over all datasets.

GSD2015 The overall best-performing system
from Greenberg et al. (2015b), which is
TypeDM from BL2010 with a hierarchical
clustering algorithm that automatically clus-
ters the typical role-fillers into verb senses
relative to the role. For example, “cut” has
multiple senses relative to its patient role, in
one of which “budget” may be typical, while
in another sense “cake” may be typical.

GSD2015 The overall best-performing system
from Greenberg et al. (2015a). This is the
same TypeDM system with hierarchical clus-
tering as in GSD2015, but applied to a new
set of ratings intended to detect the role of
verb polysemy in human decision-making
about role-fillers.

SDS2015-avg Sayeed et al. (2015) explore the
contribution of semantics-specific features by
using a semantic role labeling (SRL) tool to
label a corpus similar to that of BL2010 and
constructing a similar high-dimensional vec-
tor space. In this case, they average the re-
sults of their system, SDDM, with TypeDM
and find that SRL-derived features make an
additional contribution to the correlation with
human ratings. Prototypes are constructed
using typical role-fillers from the new corpus,
weighted, like TypeDM, by LMI.

SDS2015-swap This is similar to SDS2015-avg,
but instead, the typical role-fillers of SDDM
are used to retrieve the vectors of TypeDM
for prototype construction.

It should be emphasized that each of these pa-
pers tested a number of parameters, and some of
them (Baroni and Lenci, 2010; Baroni et al., 2014)
used vector-space representations over a number
of tasks. Baroni et al. (2014) found that trained,
general-purpose word embeddings—BDK2014—

systematically outperform count-based represen-
tations on most of these tasks. However, they also
found that the thematic fit correlation task was one
of the few for which the same word embedding
spaces underperform. We confirm this by observ-
ing that every system in Table 2 dramatically out-
performs BDK2014.

One hint from this overview as to why trained
word embedding spaces underperform on this
task is that the best performing systems involve
very large numbers of linguistically-interpretable
dimensions (features)2. SDS2015-avg involves
the combination of two different systems with
high-dimensional spaces, and it demonstrates top
performance on the high-frequency agent-patient
dataset of Padó (2007) and competitive perfor-
mance on the remainder of evaluated datasets.
SDS2015-swap, on the other hand, involves the
use of one high-dimensional space with the typ-
ical role-filler selection of another one, and per-
forms comparatively poorly on all datasets except
for instrument roles. Note that the typical role-
fillers are themselves chosen by the magnitudes of
their (LMI-adjusted) frequency dimensions in the
vector space itself, relative to their dependency re-
lationships with the given verb, as per the evalu-
ation procedure of Baroni and Lenci (2010). In
other words, not only do many meaningful dimen-
sions seem to matter in comparing the vectors, the
selection of vectors is itself tightly dependent on
the model’s own magnitudes.

What these early results in thematic fit evalua-
tion suggest is that, more so than many other kinds

2Baroni and Lenci provide a reduction to 5000-
dimensions via random indexing (Kanerva et al., 2000) on
their web site derived from TypeDM that performs compet-
itively. Most high-performing general-purpose trained word
embeddings, including those in (Baroni et al., 2014), have a
much smaller dimensionality, and they tend not to be trained
from linguistically-rich feature sets.
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of lexical-semantic tasks, thematic fit modeling is
particularly sensitive to linguistic detail and inter-
pretability of the vector space.

4 Future directions

In the process of proposing this evaluation task,
we have presented in this paper an overview of
the issues involved in vector-space approaches to
human thematic fit judgement correlation. The-
matic fit modeling via real-valued vector-space
word representations has made recent and signifi-
cant progress. But in the interest of building eval-
uations that truly elucidate the cognitive underpin-
nings of human semantic “decision-making” in a
potentially application-relevant way, there are a
number of areas in which such evaluations could
be strengthened. We present some suggestions
here:

Balanced datasets In order to investigate the
apparent relationship between the linguistic in-
terpretability of the vector space dimensions and
the correlations with human judgements, we
need more evaluation data sets balanced for fine-
grained linguistic features. The data collected
in Greenberg et al. (2015a) is a step in this di-
rection, as it was used to investigate the rela-
tionship between polysemy, frequency, and the-
matic fit, and so it was balanced between poly-
semy and frequency. However, a thematic role
like location—on which all systems reported here
perform poorly—could be similarly investigated
by collecting data balanced by, for example, the
preposition that typically indicates the location re-
lation (“in the kitchen” vs. “on the bus”).

Compositionality Both the currently available
thematic fit judgements and the vector spaces used
to evaluate them are not designed around com-
positionality, as they have very limited flexibil-
ity in combining the subspaces defined by typi-
cal role-filler prototypes (Lenci, 2011). Language
users may have the intuition that cutting a bud-
get and cutting a cake are both highly plausible
scenarios. However, if we were to introduce an
agent role-filler such as “child”, the human ratings
may be quite different, as children are not typical
budget-cutters. The thematic fit evaluation tasks
of the future will have to consider compositional-
ity more systematically, possibly by taking domain
and genre into account.

Perceptuomotor knowledge A crucial question
in the use of distributional representations for the-
matic fit evaluation is the extent to which the
distributional hypothesis really applies to predict-
ing predicate-argument relations. Humans pre-
sumably have access to world-knowledge that is
beyond the mere texts that they have consumed
in their lifetimes. While there is evidence from
psycholinguistic experimentation that both forms
of knowledge are involved in the neural process-
ing of linguistic input (Amsel et al., 2015), the
boundary between world-knowledge and distribu-
tional knowledge is not at all clear. However, the-
matic fit judgement data represents the output of
the complete system. An area for future work
would be to see whether the distinction between
these two types of knowledge (such as image
data or explicitly-specified logical features) can
be incorporated into the evaluation itself. How-
ever, the single rating approach has its own ad-
vantages, in that we expect an optimal vector-
space (or other) representation will also include
the means by which to combine these forms of lin-
guistic knowledge.

Rating consistency 240 items, containing the
most frequent verbs from the MSTNN dataset,
were deliberately included in the GDS-all dataset,
in order to evaluate consistency of judgements be-
tween annotators, especially when the elicitation
method varied. There was a significant positive
correlation between the two sets of ratings, Pear-
son’s r(238) 95% CI [0.68, 0.80], p < 2.2 ×
10−16. The residuals appeared normal with ho-
mogeneous variances, and the Spearman’s ρ was
0.75. This high correlation provides a possible
upper-bound on computational estimators of the-
matic fit. The fact that it is well above the state
of the art for any dataset and estimator configura-
tion suggests that there is still substantial room for
development for this task.
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Abstract

We suggest a new method for creating and
using gold-standard datasets for word sim-
ilarity evaluation. Our goal is to improve
the reliability of the evaluation, and we do
this by redesigning the annotation task to
achieve higher inter-rater agreement, and
by defining a performance measure which
takes the reliability of each annotation de-
cision in the dataset into account.

1 Introduction

Computing similarity between words is a fun-
damental challenge in natural language process-
ing. Given a pair of words, a similarity
model sim(w1, w2) should assign a score that re-
flects the level of similarity between them, e.g.:
sim(singer,musician) = 0.83. While many
methods for computing sim exist (e.g., taking
the cosine between vector embeddings derived by
word2vec (Mikolov et al., 2013)), there are cur-
rently no reliable measures of quality for such
models. In the past few years, word similarity
models show a consistent improvement in per-
formance when evaluated using the conventional
evaluation methods and datasets. But are these
evaluation measures really reliable indicators of
the model quality? Lately, Hill et al (2015)
claimed that the answer is no. They identified sev-
eral problems with the existing datasets, and cre-
ated a new dataset – SimLex-999 – which does not
suffer from them. However, we argue that there
are inherent problems with conventional datasets
and the method of using them that were not ad-
dressed in SimLex-999. We list these problems,
and suggest a new and more reliable way of evalu-
ating similarity models. We then report initial ex-
periments on a dataset of Hebrew nouns similarity
that we created according to our proposed method.

2 Existing Methods and Datasets for
Word Similarity Evaluation

Over the years, several datasets have been used
for evaluating word similarity models. Popular
ones include RG (Rubenstein and Goodenough,
1965), WordSim-353 (Finkelstein et al., 2001),
WS-Sim (Agirre et al., 2009) and MEN (Bruni et
al., 2012). Each of these datasets is a collection of
word pairs together with their similarity scores as
assigned by human annotators. A model is eval-
uated by assigning a similarity score to each pair,
sorting the pairs according to their similarity, and
calculating the correlation (Spearman’s ρ) with the
human ranking. Hill et al (2015) had made a com-
prehensive review of these datasets, and pointed
out some common shortcomings they have. The
main shortcoming discussed by Hill et al is the
handling of associated but dissimilar words, e.g.
(singer, microphone): in datasets which contain
such pairs (WordSim and MEN) they are usually
ranked high, sometimes even above pairs of simi-
lar words. This causes an undesirable penalization
of models that apply the correct behavior (i.e., al-
ways prefer similar pairs over associated dissim-
ilar ones). Other datasets (WS-Sim and RG) do
not contain pairs of associated words pairs at all.
Their absence makes these datasets unable to eval-
uate the models’ ability to distinct between as-
sociated and similar words. Another shortcom-
ing mentioned by Hill et al (2015) is low inter-
rater agreement over the human assigned similar-
ity scores, which might have been caused by un-
clear instructions for the annotation task. As a re-
sult, state-of-the-art models reach the agreement
ceiling for most of the datasets, while a simple
manual evaluation will suggest that these models
are still inferior to humans. In order to solve these
shortcomings, Hill et al (2015) developed a new
dataset – Simlex-999 – in which the instructions
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presented to the annotators emphasized the differ-
ence between the terms associated and similar, and
managed to solve the discussed problems.

While SimLex-999 was definitely a step in the
right direction, we argue that there are more fun-
damental problems which all conventional meth-
ods, including SimLex-999, suffer from. In what
follows, we describe each one of these problems.

3 Problems with the Existing Datasets

Before diving in, we define some terms we are
about to use. Hill et al (2015) used the terms
similar and associated but dissimilar, which they
didn’t formally connected to fine-grained seman-
tic relations. However, by inspecting the average
score per relation, they found a clear preference
for hyponym-hypernym pairs (e.g. the scores of
the pairs (cat, pet) and (winter, season) are much
higher than those of the cohyponyms pair (cat,
dog) and the antonyms pair (winter, summer)). Re-
ferring hyponym-hypernym pairs as similar may
imply that a good similarity model should prefer
hyponym-hypernym pairs over pairs of other re-
lations, which is not always true since the desir-
able behavior is task-dependent. Therefore, we
will use a different terminology: we use the term
preferred-relation to denote the relation which the
model should prefer, and unpreferred-relation to
denote any other relation.

The first problem is the use of rating scales.
Since the level of similarity is a relative measure,
we would expect the annotation task to ask the an-
notator for a ranking. But in most of the exist-
ing datasets, the annotators were asked to assign
a numeric score to each pair (e.g. 0-7 in SimLex-
999), and a ranking was derived based on these
scores. This choice is probably due to the fact
that a ranking of hundreds of pairs is an exhaust-
ing task for humans. However, using rating scales
makes the annotations vulnerable to a variety of
biases (Friedman and Amoo, 1999). Bruni et al
(2012) addressed this problem by asking the an-
notators to rank each pair in comparison to 50 ran-
domly selected pairs. This is a reasonable com-
promise, but it still results in a daunting annotation
task, and makes the quality of the dataset depend
on a random selection of comparisons.

The second problem is rating different rela-
tions on the same scale. In Simlex-999, the an-
notators were instructed to assign low scores to
unpreferred-relation pairs, but the decision of how

low was still up to the annotator. While some of
these pairs were assigned very low scores (e.g.
sim(smart, dumb) = 0.55), others got significantly
higher ones (e.g. sim(winter, summer) = 2.38). A
difference of 1.8 similarity scores should not be
underestimated – in other cases it testifies to a true
superiority of one pair over another, e.g.: sim(cab,
taxi) = 9.2, sim(cab, car) = 7.42. The situation
where an arbitrary decision of the annotators af-
fects the model score, impairs the reliability of
the evaluation: a model shouldn’t be punished for
preferring (smart, dumb) over (winter, summer) or
vice versa, since this comparison is just ill-defined.

The third problem is rating different target-
words on the same scale. Even within preferred-
relation pairs, there are ill-defined comparisons,
e.g.: (cat, pet) vs. (winter, season). It’s quite un-
natural to compare between pairs that have differ-
ent target-words, in contrast to pairs which share
the target word, like (cat, pet) vs. cat, animal).
Penalizing a model for preferring (cat, pet) over
(winter, season) or vice versa impairs the evalua-
tion reliability.

The fourth problem is that the evaluation mea-
sure does not consider annotation decisions reli-
ability. The conventional method measures the
model score by calculating Spearman correlation
between the model ranking and the annotators av-
erage ranking. This method ignores an important
information source: the reliability of each anno-
tation decision, which can be determined by the
agreement of the annotators on this decision. For
example, consider a dataset containing the pairs
(singer, person), (singer, performer) and (singer,
musician). Now let’s assume that in the average
annotator ranking, (singer, performer) is ranked
above (singer, person) after 90% of the annota-
tors assigned it with a higher score, and (singer,
musician) is ranked above (singer, performer) af-
ter 51% percent of the annotators assigned it with
a higher score. Considering this, we would like
the evaluation measure to severely punish a model
which prefers (singer, person) over (singer, per-
former), but be almost indifferent to the model’s
decision over (singer, performer) vs. (singer, mu-
sician) because it seems that even humans cannot
reliably tell which one is more similar. In the con-
ventional datasets, no information on reliability of
ratings is supplied except for the overall agree-
ment, and each average rank has the same weight
in the evaluation measure. The problem of relia-
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bility is addressed by Luong et al (2013) which in-
cluded many rare words in their dataset, and thus
allowed an annotator to indicate “Don’t know” for
a pair if they does not know one of the words. The
problem with applying this approach as a more
general reliability indicator is that the annotator
confidence level is subjective and not absolute.

4 Proposed Improvements

We suggest the following four improvements for
handling these problems.
(1) The annotation task will be an explicit ranking
task. Similarly to Bruni et al (2012), each pair will
be directly compared with a subset of the other
pairs. Unlike Bruni et al, each pair will be com-
pared with only a few carefully selected pairs, fol-
lowing the principles in (2) and (3).
(2) A dataset will be focused on a single preferred-
relation type (we can create other datasets for tasks
in which the preferred-relation is different), and
only preferred-relation pairs will be presented to
the annotators. We suggest to spare the annotators
the effort of considering the type of the similarity
between words, in order to let them concentrate
on the strength of the similarity. Word pairs fol-
lowing unpreferred-relations will not be included
in the annotation task but will still be a part of
the dataset – we always add them to the bottom
of the ranking. For example, an annotator will be
asked to rate (cab, car) and (cab, taxi), but not
(cab, driver) – which will be ranked last since it’s
an unpreferred-relation pair.
(3) Any pair will be compared only with pairs
sharing the same target word. We suggest to make
the pairs ranking more reliable by splitting it into
multiple target-based rankings, e.g.: (cat, pet) will
be compared with (cat, animal), but not with (win-
ter, season) which belongs to another ranking.
(4) The dataset will include a reliability indicator
for each annotators decision, based on the agree-
ment between annotators. The reliability indicator
will be used in the evaluation measure: a model
will be penalized more for making wrong predic-
tions on reliable rankings than on unreliable ones.

4.1 A Concrete Dataset

In this section we describe the structure of a
dataset which applies the above improvements.
First, we need to define the preferred-relation (to
apply improvement (2)). In what follows we use
the hyponym-hypernym relation. The dataset is

wt w1 w2 R>(w1, w2; wt)
P singer person musician 0.1
P singer artist person 0.8
P singer musician performer 0.6
D singer musician song 1.0
R singer musician laptop 1.0

Table 1: Binary Comparisons for the target word singer. P:
positive pair; D: distractor pair; R: random pair.

based on target words. For each target word we
create a group of complement words, which we re-
fer to as the target-group. Each complement word
belongs to one of three categories: positives (re-
lated to the target, and the type of the relation is
the preferred one), distractors (related to the tar-
get, but the type of the relation is not the preferred
one), and randoms (not related to the target at all).
For example, for the target word singer, the tar-
get group may include musician, performer, per-
son and artist as positives, dancer and song as
distractors, and laptop as random. For each tar-
get word, the human annotators will be asked to
rank the positive complements by their similarity
to the target word (improvements (1) & (3)). For
example, a possible ranking may be: musician >
performer > artist > person. The annotators re-
sponses allow us to create the actual dataset, which
consists of a collection of binary comparisons. A
binary comparison is a value R>(w1, w2;wt) in-
dicating how likely it is to rank the pair (wt, w1)
higher than (wt, w2), where wt is a target word
and w1, w2 are two complement words. By defi-
nition, R>(w1, w2;wt) = 1 - R>(w2, w1;wt). For
each target-group, the dataset will contain a binary
comparison for any possible combination of two
positive complements wp1 and wp2, as well as for
positive complementswp and negative ones (either
distractor or random) wn. When comparing pos-
itive complements, R>(w1, w2;wt) is the portion
of annotators who ranked (wt, w1) over (wt, w2).
When comparing to negative complements, the
value of R>(wp, wn;wt) is 1. This reflects the
intuition that a good model should always rank
preferred-relation pairs above other pairs. Notice
that R>(w1, w2;wt) is the reliability indicator for
each of the dataset key answers, which will be
used to apply improvement (4). For some example
comparisons, see Table 1.

4.2 Scoring Function

Given a similarity function between words
sim(x, y) and a triplet (wt, w1, w2) let δ = 1 if
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sim(wt, w1) > sim(wt, w2) and δ = −1 oth-
erwise. The score s(wt, w1, w2) of the triplet is
then: s(wt, w1, w2) = δ(2R>(w1, w2;wt) − 1).
This score ranges between −1 and 1, is positive
if the model ranking agrees with more than 50%
of the annotators, and is 1 if it agrees with all of
them. The score of the entire dataset C is then:∑

wt,w1,w2∈C max(s(wt, w1, w2), 0)∑
wt,w1,w2∈C |s(wt, w1, w2)|

The model score will be 0 if it makes the wrong
decision (i.e. assign a higher score to w1 while
the majority of the annotators ranked w2 higher,
or vice versa) in every comparison. If it always
makes the right decision, its score will be 1. No-
tice that the size of the majority also plays a role.
When the model takes the wrong decision in a
comparison, nothing is being added to the numer-
ator. When it takes the right decision, the numer-
ator increase will be larger as reliable as the key
answer is, and so is the general score (the denom-
inator does not depend on the model decisions).

It worth mentioning that a score can also be
computed over a subset of C, as comparisons of
specific type (positive-positive, positive-distractor,
positive-random). This allows the user of the
dataset to make a finer-grained analysis of the
evaluation results: it can get the quality of the
model in specific tasks (preferring similar words
over less similar, over words from unpreferred-
relation, and over random words) rather than just
the general quality.

5 Experiments

We created two datasets following the proposal
discussed above: one preferring the hyponym-
hypernym relation, and the other the cohyponym
relation. The datasets contain Hebrew nouns, but
such datasets can be created for different lan-
guages and parts of speech – providing that the
language has basic lexical resources. For our
dataset, we used a dictionary, an encyclopedia
and a thesaurus to create the hyponym-hypernym
pairs, and databases of word association norms
(Rubinsten et al., 2005) and categories norms
(Henik and Kaplan, 1988) to create the distractors
pairs and the cohyponyms pairs, respectively. The
hyponym-hypernym dataset is based on 75 target-
groups, each contains 3-6 positive pairs, 2 distrac-
tor pairs and one random pair, which sums up to
476 pairs. The cohyponym dataset is based on 30

target-groups, each contains 4 positive pairs, 1-2
distractor pairs and one random pair, which sums
up to 207 pairs. We used the target groups to cre-
ate 4 questionnaires: 3 for the hyponym-hypernym
relation (each contains 25 target-groups), and one
for the cohyponyms relation. We asked human an-
notators to order the positive pairs of each target-
group by the similarity between their words. In
order to prevent the annotators from confusing
between the different aspects of similarity, each
annotator was requested to answer only one of
the questionnaires, and the instructions for each
questionnaire included an example question which
demonstrates what the term “similarity” means in
that questionnaire (as shown in Figure 1).

Each target-group was ranked by 18-20 annota-
tors. We measured the average pairwise inter-rater
agreement, and as done in (Hill et al., 2015) – we
excluded any annotator which its agreement with
the other was more than one standard deviation be-
low that average (17.8 percent of the annotators
were excluded). The agreement was quite high
(0.646 and 0.659 for hyponym-hypernym and co-
hyponyms target-groups, respectively), especially
considering that in contrast to other datasets –
our annotation task did not include pairs that are
“trivial” to rank (e.g. random pairs). Finally,
we used the remaining annotators responses to
create the binary comparisons collection. The
hyponym-hypernym dataset includes 1063 com-
parisons, while the cohyponym dataset includes
538 comparisons. To measure the gap between a
human and a model performance on the dataset,
we trained a word2vec (Mikolov et al., 2013)
model 1 on the Hebrew Wikipedia. We used two
methods of measuring: the first is the conventional
way (Spearman correlation), and the second is the
scoring method we described in the previous sec-
tion, which we used to measure general and per-
comparison-type scores. The results are presented
in Table 2.

6 Conclusions

We presented a new method for creating and us-
ing datasets for word similarity, which improves
evaluation reliability by redesigning the annota-
tion task and the performance measure. We cre-
ated two datasets for Hebrew and showed a high
inter-rater agreement. Finally, we showed that the

1We used code.google.com/p/word2vec implementation,
with window size of 2 and dimensionality of 200.
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Figure 1: The example rankings we supplied to the annotators as a part of the questionnaires instructions
(translated from Hebrew). Example (A) appeared in the hyponym-hypernym questionnaires, while (B)
appeared in the cohyponyms questionnaire.

Hyp. Cohyp.
Inter-rater agreement 0.646 0.659
w2v correlation 0.451 0.587
w2v score (all) 0.718 0.864
w2v score (positive) 0.763 0.822
w2v score (distractor) 0.625 0.833
w2v score (random) 0.864 0.967

Table 2: The hyponym-hypernym dataset agreement
(0.646) compares favorably with the agreement for nouns
pairs reported by Hill et al (2015) (0.612), and it is much
higher than the correlation score of the word2vec model.
Notice that useful insights can be gained from the per-
comparison-type analysis, like the model’s difficulty to dis-
tinguish hyponym-hypernym pairs from other relations.

dataset can be used for a finer-grained analysis of
the model quality. A future work can be applying
this method to other languages and relation types.
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Abstract

We introduce QVEC-CCA—an intrinsic
evaluation metric for word vector repre-
sentations based on correlations of learned
vectors with features extracted from lin-
guistic resources. We show that QVEC-
CCA scores are an effective proxy for a
range of extrinsic semantic and syntactic
tasks. We also show that the proposed
evaluation obtains higher and more consis-
tent correlations with downstream tasks,
compared to existing approaches to in-
trinsic evaluation of word vectors that are
based on word similarity.

1 Introduction

Being linguistically opaque, vector-space rep-
resentations of words—word embeddings—have
limited practical value as standalone items. They
are effective, however, in representing meaning—
through individual dimensions and combinations
of thereof—when used as features in downstream
applications (Turian et al., 2010; Lazaridou et al.,
2013; Socher et al., 2013; Bansal et al., 2014; Guo
et al., 2014, inter alia). Thus, unless it is coupled
with an extrinsic task, intrinsic evaluation of word
vectors has little value in itself. The main purpose
of an intrinsic evaluation is to serve as a proxy for
the downstream task the embeddings are tailored
for. This paper advocates a novel approach to con-
structing such a proxy.

What are the desired properties of an intrinsic
evaluation measure of word embeddings? First,
retraining models that use word embeddings as
features is often expensive. A computationally ef-
ficient intrinsic evaluation that correlates with ex-
trinsic scores is useful for faster prototyping. Sec-
ond, an intrinsic evaluation that enables interpre-
tation and analysis of properties encoded by vector

dimensions is an auxiliary mechanism for analyz-
ing how these properties affect the target down-
stream task. It thus facilitates refinement of word
vector models and, consequently, improvement of
the target task. Finally, an intrinsic evaluation that
approximates a range of related downstream tasks
(e.g., semantic text-classification tasks) allows to
assess generality (or specificity) of a word vec-
tor model, without actually implementing all the
tasks.

Tsvetkov et al. (2015) proposed an evalua-
tion measure—QVEC—that was shown to corre-
late well with downstream semantic tasks. Ad-
ditionally, it helps shed new light on how vec-
tor spaces encode meaning thus facilitating the
interpretation of word vectors. The crux of the
method is to correlate distributional word vec-
tors with linguistic word vectors constructed from
rich linguistic resources, annotated by domain ex-
perts. QVEC can easily be adjusted to specific
downstream tasks (e.g., part-of-speech tagging) by
selecting task-specific linguistic resources (e.g.,
part-of-speech annotations). However, QVEC suf-
fers from two weaknesses. First, it is not invariant
to linear transformations of the embeddings’ basis,
whereas the bases in word embeddings are gener-
ally arbitrary (Szegedy et al., 2014). Second, it
produces an unnormalized score: the more dimen-
sions in the embedding matrix the higher the score.
This precludes comparison of models of different
dimensionality. In this paper, we introduce QVEC-
CCA, which simultaneously addresses both prob-
lems, while preserving major strengths of QVEC.1

2 QVEC and QVEC-CCA

We introduce QVEC-CCA—an intrinsic evaluation
measure of the quality of word embeddings. Our
method is a modification of QVEC—an evalua-

1https://github.com/ytsvetko/qvec
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tion based on alignment of embeddings to a ma-
trix of features extracted from a linguistic resource
(Tsvetkov et al., 2015). We review QVEC, and then
describe QVEC-CCA.

QVEC. The main idea behind QVEC is to quan-
tify the linguistic content of word embeddings
by maximizing the correlation with a manually-
annotated linguistic resource. Let the number of
common words in the vocabulary of the word em-
beddings and the linguistic resource be N . To
quantify the semantic content of embeddings, a
semantic/syntactic linguistic matrix S ∈ RP×N

is constructed from a semantic/syntactic database,
with a column vector for each word. Each word
vector is a distribution of the word over P linguis-
tic properties, based on annotations of the word
in the database. Let X ∈ RD×N be embed-
ding matrix with every row as a dimension vec-
tor x ∈ R1×N . D denotes the dimensionality of
word embeddings. Then, S and X are aligned to
maximize the cumulative correlation between the
aligned dimensions of the two matrices. Specif-
ically, let A ∈ {0, 1}D×P be a matrix of align-
ments such that aij = 1 iff xi is aligned to sj ,
otherwise aij = 0. If r(xi, sj) is the Pearson’s
correlation between vectors xi and sj , then QVEC

is defined as:

QVEC = max
A:

∑
j aij≤1

X∑
i=1

S∑
j=1

r(xi, sj)× aij

The constraint
∑

j aij ≤ 1, warrants that one dis-
tributional dimension is aligned to at most one lin-
guistic dimension.

QVEC-CCA. To measure correlation between
the embedding matrix X and the linguistic ma-
trix S, instead of cumulative dimension-wise cor-
relation we employ canonical correlation analysis
(Hardoon et al., 2004, CCA). CCA finds two sets
of basis vectors, one for X> and the other for S>,
such that the correlations between the projections
of the matrices onto these basis vectors are maxi-
mized. Formally, CCA finds a pair of basis vectors
v and w such that

QVEC-CCA = CCA(X>,S>)

= max
v,w

r(X>v,S>w)

Thus, QVEC-CCA ensures invariance to the matri-
ces’ bases’ rotation, and since it is a single corre-
lation, it produces a score in [−1, 1].

3 Linguistic Dimension Word Vectors

Both QVEC and QVEC-CCA rely on a matrix of
linguistic properties constructed from a manu-
ally crafted linguistic resource. Linguistic re-
sources are invaluable as they capture generaliza-
tions made by domain experts. However, resource
construction is expensive, therefore it is not al-
ways possible to find an existing resource that
captures exactly the set of optimal lexical prop-
erties for a downstream task. Resources that cap-
ture more coarse-grained, general properties can
be used instead, for example, WordNet for seman-
tic evaluation (Fellbaum, 1998), or Penn Treebank
(Marcus et al., 1993, PTB) for syntactic evalua-
tion. Since these properties are not an exact match
to the task, the intrinsic evaluation tests for a nec-
essary (but possibly not sufficient) set of general-
izations.

Semantic vectors. To evaluate the semantic
content of word vectors, Tsvetkov et al. (2015)
exploit supersense annotations in a WordNet-
annotated corpus—SemCor (Miller et al., 1993).
The resulting supersense-dimension matrix has
4,199 rows (supersense-annotated nouns and verbs
that occur in SemCor at least 5 times2), and 41
columns: 26 for nouns and 15 for verbs. Example
vectors are shown in table 1.

WORD NN.ANIMAL NN.FOOD · · · VB.MOTION
fish 0.68 0.16 · · · 0.00
duck 0.31 0.00 · · · 0.69
chicken 0.33 0.67 · · · 0.00

Table 1: Linguistic dimension word vector matrix
with semantic vectors, constructed using SemCor.

Syntactic vectors. Similar to semantic vectors,
we construct syntactic vectors for all words with
5 or more occurrences in the training part of the
PTB. Vector dimensions are probabilities of the
part-of-speech (POS) annotations in the corpus.
This results in 10,865 word vectors with 45 in-
terpretable columns, each column corresponds to
a POS tag from the PTB; a snapshot is shown in
table 2.

4 Experiments

Experimental setup. We replicate the experi-
mental setup of Tsvetkov et al. (2015):

2We exclude sparser word types to avoid skewed proba-
bility estimates of senses of polysemous words.
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WORD PTB.NN PTB.VB · · · PTB.JJ
spring 0.94 0.02 · · · 0.00
fall 0.49 0.43 · · · 0.00
light 0.52 0.02 · · · 0.41

Table 2: Linguistic dimension word vector matrix
with syntactic vectors, constructed using PTB.

• We first train 21 word vector models: variants
of CBOW and Skip-Gram models (Mikolov et
al., 2013); their modifications CWindow, Struc-
tured Skip-Gram, and CBOW with Attention
(Ling et al., 2015b; Ling et al., 2015a); GloVe
vectors (Pennington et al., 2014); Latent Se-
mantic Analysis (LSA) based vectors (Church
and Hanks, 1990); and retrofitted GloVe and
LSA vectors (Faruqui et al., 2015).
• We then evaluate these word vector models

using existing intrinsic evaluation methods:
QVEC and the proposed QVEC-CCA, and also
word similarity tasks using the WordSim353
dataset (Finkelstein et al., 2001, WS-353),
MEN dataset (Bruni et al., 2012), and SimLex-
999 dataset (Hill et al., 2014, SimLex).3

• In addition, the same vectors are evaluated using
extrinsic text classification tasks. Our semantic
benchmarks are four binary categorization tasks
from the 20 Newsgroups (20NG); sentiment an-
alysis task (Socher et al., 2013, Senti); and
the metaphor detection (Tsvetkov et al., 2014,
Metaphor).
• Finally, we compute the Pearson’s correlation

coefficient r to quantify the linear relationship
between the intrinsic and extrinsic scorings.
The higher the correlation, the better suited the
intrinsic evaluation to be used as a proxy to the
extrinsic task.

We extend the setup of Tsvetkov et al. (2015)
with two syntactic benchmarks, and evaluate
QVEC-CCA with the syntactic matrix. The first
task is POS tagging; we use the LSTM-CRF
model (Lample et al., 2016), and the second is de-
pendency parsing (Parse), using the stack-LSTM
model of Dyer et al. (2015).

Results. To test the efficiency of QVEC-CCA in
capturing the semantic content of word vectors,
we evaluate how well the scores correspond to the
scores of word vector models on semantic bench-
marks. QVEC and QVEC-CCA employ the seman-
tic supersense-dimension vectors described in §3.

3We employ an implementation of a suite of word similar-
ity tasks at wordvectors.org (Faruqui and Dyer, 2014).

In table 3, we show correlations between intrin-
sic scores (word similarity/QVEC/QVEC-CCA) and
extrinsic scores across semantic benchmarks for
300-dimensional vectors. QVEC-CCA obtains high
positive correlation with all the semantic tasks,
and outperforms QVEC on two tasks.

20NG Metaphor Senti
WS-353 0.55 0.25 0.46
MEN 0.76 0.49 0.55
SimLex 0.56 0.44 0.51
QVEC 0.74 0.75 0.88
QVEC-CCA 0.77 0.73 0.93

Table 3: Pearson’s correlations between word
similarity/QVEC/QVEC-CCA scores and the down-
stream text classification tasks.

In table 4, we evaluate QVEC and QVEC-CCA

on syntactic benchmarks. We first use linguistic
vectors with dimensions corresponding to part-of-
speech tags (denoted as PTB). Then, we use lin-
guistic vectors which are a concatenation of the
semantic and syntactic matrices described in §3
for words that occur in both matrices; this setup
is denoted as PTB+SST.

POS Parse
WS-353 -0.38 0.68
MEN -0.32 0.51
SimLex 0.20 -0.21

PTB
QVEC 0.23 0.39
QVEC-CCA 0.23 0.50

PTB+SST
QVEC 0.28 0.37
QVEC-CCA 0.23 0.63

Table 4: Pearson’s correlations between word
similarity/QVEC/QVEC-CCA scores and the down-
stream syntactic tasks.

Although some word similarity tasks obtain
high correlations with syntactic applications, these
results are inconsistent, and vary from a high
negative to a high positive correlation. Con-
versely, QVEC and QVEC-CCA consistently ob-
tain moderate-to-high positive correlations with
the downstream tasks.

Comparing performance of QVEC-CCA in PTB

and PTB+SST setups sheds light on the importance
of linguistic signals captured by the linguistic ma-
trices. Appending supersense-annotated columns
to the linguistic matrix which already contains
POS-annotated columns does not affect correla-
tions of QVEC-CCA with the POS tagging task,
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since the additional linguistic information is not
relevant for approximating how well dimensions
of word embeddings encode POS-related prop-
erties. In the case of dependency parsing—the
task which encodes not only syntactic, but also
semantic information (e.g., captured by subject-
verb-object relations)—supersenses introduce rel-
evant linguistic signals that are not present in POS-
annotated columns. Thus, appending supersense-
annotated columns to the linguistic matrix im-
proves correlation of QVEC-CCA with the depen-
dency parsing task.

5 Conclusion

We introduced QVEC-CCA—an approach to in-
trinsic evaluation of word embeddings. We also
showed that both QVEC and QVEC-CCA are not
limited to semantic evaluation, but are general
approaches, that can evaluate word vector con-
tent with respect to desired linguistic proper-
ties. Semantic and syntactic linguistic features
that we use to construct linguistic dimension ma-
trices are rather coarse, thus the proposed eval-
uation can approximate a range of downstream
tasks, but may not be sufficient to evaluate finer-
grained features. In the future work we propose
to exploit existing semantic, syntactic, morpho-
logical, and typological resources (e.g., univer-
sal dependencies treebank (Agić et al., 2015) and
WALS (Dryer and Haspelmath, 2013)), and also
multilingual resources (e.g., Danish supersenses
(Martínez Alonso et al., 2015)) to construct bet-
ter linguistic matrices, suited for evaluating vec-
tors used in additional NLP tasks.
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Abstract

The workshop CfP assumes that down-
stream evaluation of word embeddings is
impractical, and that a valid evaluation
metric for pairs of word embeddings can
be found. I argue below that if so, the
only meaningful evaluation procedure is
comparison with measures of human word
processing in the wild. Such evaluation is
non-trivial, but I present a practical proce-
dure here, evaluating word embeddings as
features in a multi-dimensional regression
model predicting brain imaging or eye-
tracking word-level aggregate statistics.

What’s the meaning of embeddings? In or-
der to decide how to evaluate word embeddings,
we first need to decide what word embeddings
are supposed to encode. If we assume that word
embeddings are primarily representations of the
meaning of words, it makes sense to consult lexi-
cal semantic theories.

Here’s a very, very, very (very, . . . ) crude
characterization of lexical semantics: Researchers
disagree whether words are defined by their co-
occurrences (Firth, 1957), the contexts in which
they are used (Wittgenstein, 1953), how they
are organized in the brain (Miller and Fellbaum,
1992), or the referents they denote in the real
world (Montague, 1973). I realize this is a ridicu-
lously simplistic reduction of modern lexical se-
mantics, but I think it suffices for our discussion
of how best to evaluate word embeddings.1

Any metrics here? From (one or more of) these
theories we want to derive a valid evaluation met-
ric. In my view, a valid metric satisfies two prin-
ciples: (i) that it measures what we want to mea-
sure (adequacy), and (ii) that it cannot easily be

1See the discussion in the last paragraph.

hacked. What I mean by (i) is that we want word
embeddings to capture the meaning of words; and
by (ii), that the reason we want to play the eval-
uation game is because it isn’t obvious what the
meaning of a word is. If the meaning of a word
was given directly by its character sequence, I
would not be writing this paper, and this workshop
would not have been proposed. The question then
is, do any of the four theories above provide us
with a valid metric for the general quality of word
embeddings?

Below, I argue that none of the four theories
leave us with fully valid evaluation metrics, ex-
cept maybe COGNITIVE LEXICAL SEMANTICS.
I suggest evaluating embeddings by direct com-
parison with brain-imaging and eye-tracking data
rather than word association norms, as an alterna-
tive approach to COGNITIVE LEXICAL SEMAN-
TICS. I show that state-of-the-art embeddings cor-
relate poorly with such data, but argue that this is
nevertheless the only valid metric left on the table,
if downstream evaluation is not an option – and
that, practically, we can evaluate embeddings by
the error of a multi-dimensional regression model
predicting brain imaging or eye-tracking data us-
ing the embeddings as features.

Co-occurrence theory In CO-OCCURRENCE

THEORY, the meaning of a word is defined by
its co-occurrences with other words – e.g., the
meaning of big is given by its co-occurrence with
words such as house and small, i.e., its value in a
co-occurrence matrix. Word embeddings should
therefore predict lexical co-occurrences, which
can be evaluated in terms of perplexity or word er-
ror rate. This was how embeddings were evaluated
in the early papers, e.g., (Mikolov et al., 2010).
But note that constructing co-occurrence matri-
ces is also an integral part of standard approaches
to inducing embeddings (Levy et al., 2015). In
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fact for any definition of a word’s company, we
can built co-occurrence matrices tailored to max-
imize our objective. The associated metrics can
thus be ”hacked” in the sense that the encodings
used for evaluation, can also be used for induction.
Just like with other intrinsic evaluation metrics in
unsupervised learning, co-occurrence-based eval-
uation easily bites its own tail. As soon as we
have defined a word’s company, the quality of the
embeddings depends solely on the quality of the
data. The evaluation strategy becomes the induc-
tion strategy, and the validity of the embeddings is
by postulate, not by evidence. In other words, the
metric can be hacked. Note that whether such a
metric is adequate (measuring meaning) remains
an open question.

Sprachspiel theory In SPRACHSPIEL THEORY,
the meaning of a word is defined by its usage,
i.e., the situations in which it is used. In Wittgen-
stein’s words, only someone who already knows
how to do something with it, can significantly ask
a name. Obviously, it is hard to parameterize con-
texts, but explicit semantic analysis (Gabrilovich
and Markovitch, 2009) presents a simple approx-
imation, e.g., thinking of Wikipedia sites as con-
texts. Learning word representations from in-
verted indexings of Wikipedia is encoding a sit-
uational lexical semantics, albeit in a somewhat
simplistic way. The meaning of big, for exam-
ple, is defined by the Wikipedia entries it occurs
in, i.e., its value in a term-document (or term-
topic or term-frame or . . . ) matrix. The ques-
tion then is: How well do our embeddings dis-
tinguish between different contexts? See earlier
work on using embeddings for document classi-
fication, for example. However, such an encod-
ing has also been proposed as an approach to in-
ducing embeddings (Søgaard et al., 2015). While
this proposal adopts a specific encoding of term-
document matrices, similar encodings can be built
for any definition of a Sprachspiel. Any such met-
ric can thus be ”hacked” or build into the model,
directly. Note, again, that whether such a metric
is adequate (measuring meaning) remains an open
question.

Cognitive lexical semantics How well does our
embeddings align with our mental representations
of words? Obviously, we do not have direct ac-
cess to our mental representations, and most re-
searchers have relied on word associations norms

instead.2 In matrix terms, COGNITIVE LEXICAL

SEMANTICS defines the meaning of a word as a
vector over vertices in an ontology or a mental lex-
icon. The hypothesis is that our mental lexicon is
organized as a undirected, colored, weighted net-
work, and the meaning of words are defined by
the edges connecting them to other words. The
meaning of big, for example, is in a synonym re-
lation with large, an antonym of small, etc. Such
networks are typically informed by word associa-
tion norms and corpus linguistic evidence. Using
Wordnets for evaluating word embeddings was re-
cently proposed by Tsvetkov et al. (2015).

However, again, Faruqui and Dyer (2015) re-
cently proposed this as a learning strategy, encod-
ing words by their occurrence in Wordnet. Us-
ing mental lexica as gold standard annotation thus
suffers from the same problem as defining the
meaning of words by their co-occurrencies or dis-
tributions over situations or documents; the de-
rived metrics can be hacked. Also, there’s a
number of problems with using Wordnets and the
like for evaluating word embeddings. The most
obvious ones are low coverage and low inter-
annotator agreement in such resources. Moreover,
as shown by Juergens (2014), some inter-annotator
disagreements are not random (errors), but reflect
different, linguistically motivated choices. There
are different ways to structure word meanings that
lead to different semantic networks. Different lex-
icographic theories suggest different ways to do
this. This means that our resources are theoret-
ically biased. After all, while psycholinguistic
priming effects and word association norms sug-
gest that semantically similar words are retrieved
faster than orthographically similar words, there is
to the best of my knowledge no bullet-proof evi-
dence that our brain does not order words alpha-
betically (or some other obscure way) in the men-
tal lexicon.

Do we have alternatives? Our limited under-
standing of the brain makes evaluating COGNI-
TIVE LEXICAL SEMANTICS non-trivial – at least
if we want to go beyond lexicographic representa-
tions of the mental lexicon. If we accept lexico-
graphic resources as approximations of the mental
lexicon, we can use these resources for training, as

2See Faruqui et al. (2016; Batchkarov et al. (2016; Chiu
et al. (2016) for critiques of using word association norms.
The problem with word association norms is inadequacy (and
statistical power): They conflate several types of similarity,
e.g., synonymy and antonymy, and they are culture-specific.
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well as evaluation, in the same way as we do eval-
uation in other supervised learning problems. If
we don’t, we have to resort to alternatives. Below
we consider one, namely direct evaluation against
brain imaging (and eye tracking) data.

Denotational semantics At first sight, DENO-
TATIONAL SEMANTICS seems to assume discrete
word representations (sets). Obviously, however,
some words have overlapping sets of referents.
Can we evaluate our embeddings by how well
they predict such overlaps? DENOTATIONAL SE-
MANTICS, in matrix terms, defines the meaning
of a word as its distribution over a set of refer-
ents (e.g., its occurrences in Amazon product de-
scriptions). While learning embeddings of words
from their distribution over Amazon product de-
scriptions has, to the best of our knowledge, not
yet been proposed, this would be easy to do. DE-
NOTATIONAL SEMANTICS is thus very similar to
SPRACHSPIEL THEORY from an evaluation point
of view; if we fix the set of referents, e.g., Ama-
zon products, evaluation again becomes similar to
evaluation in other supervised learning problems.

Brain imaging, anyone? If we accept the
premise in the call for papers for this workshop –
that down-stream evaluation of word embeddings
is impractical and all over the map – we also ac-
cept the conclusion that we are interested in em-
beddings, not only for practical purposes, but as
models of cognitive lexical semantics. It seems
that this motivates focusing on evaluation proce-
dures such as correlation with word association
norms or evaluation against mental lexica. How-
ever, lexicographic resources are sparse and the-
oretically biased, and word association norms are
unreliable. What do we do?

If we could measure the semantic processing as-
sociated with a word in brain imaging, this would
give us a less biased access to the cognitive lex-
ical semantics of words. If we assume such data
is available, there are two possible approaches to
evaluating word embeddings against such data:

(a) Studying the correlation between distances in
word embedding space and EEG/fMRI/etc.
space; or, perhaps more robustly, the P@k
predicting nearest neighbors EEG/fMRI/etc.
using embeddings.

(b) Evaluating the squared error of a regression
model trained to associate the input word em-
beddings with EEG/fMRI/etc.

Note that we have reasons to think such met-
rics are not entirely inadequate, since we know
humans understand words when they read them.
fMRI data, for example, may contain a lot of noise
and other types of information, but semantic word
processing is bound to the contribute to the signal,
one way or the other.

At last, a few experiments I present some ini-
tial experiments doing both (a) and (b). We evalu-
ate the EW30 and SENNA embeddings (Collobert
et al., 2011) against fMRI data from Wehbe et al.
(2015), using the token-level statistics derived in
Barrett et al. (2016), and eye-tracking data from
the Dundee Corpus (Barrett and Søgaard, 2015).

My first experiment is a simple one, merely
to show how uncorrelated raw fMRI and eye-
tracking data are with state-of-the-art embeddings.
I deliberately pick a very simple prediction prob-
lem. Specifically, we randomly sample 9 words
that are shared between the cognitive gold stan-
dard data and the two sets of embeddings we wish
to evaluate. For each of the 9 words, I compare
nearest neighbors, computing P@1 for both our
embedding models.

I convert the fMRI data and the eye-tracking
data to vectors of aggregate statistics following
the suggestions in Barrett and Søgaard (2015) and
Barrett et al. (2016). Table 1 presents the nearest
neighbors (out of the 9 randomly selected words)
in the gold data, as well as the two word em-
beddings. The P@1 for both embeddings is 2/9.
If I increase the size of the candidate set to 50,
and do three random runs, scores drop to 4% and
3.3%, respectively. For comparison, the embed-
dings agree on the nearest neighbors in 9, 10, and
10 words across three random runs. On the other
hand, this is expected, since the embedding algo-
rithms have obvious similarities, while the brain
imaging data is entirely independent of the embed-
dings. If I run the same experiment on the gaze
data, using a candidate set of 50 random words,
scores are even lower (0–1/50). The P@1 agree-
ments between the fMRI data and the eye-tracking
recordings across three runs are also very low (0,
2, and 2 in 50).

If I look at the nearest neighbors across the
full dataset, manually, the picture is also blurred.
Sometimes, the brain imaging data has odd near-
est neighbors, say teachers for having, when
EW30 had giving, for example, which is intu-
itively much closer. In other cases, the gold stan-
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Figure 1: Learning curve fitting state-of-the-art embeddings to token-level fMRI (a) and eye-tracking (b)
statistics (x-axis: learning iterations, y-axis: squared mean error)

Target Nearest neighbors

SENNA EW30 GOLD

rolling nervous pig pig
madly out nervous house
rise hold hold anytime
house hold pig anytime
nervous rolling rolling hold
hold house rise managed
managed hold out hold
out madly managed pig
pig rolling rolling rolling

Table 1: Nearest neighbors within a random sam-
ple of nine words. We underline the nearest neigh-
bors in SENNA and EW30 embeddings when they
agree with the fMRI gold data.

dard nearest neighbors are better than state-of-the
art, or defendable alternatives. Table 2 lists a few
examples, comparing against EW30, and whether
the gold standard makes intuitive sense (to me).

However, it is not clear, a priori, that the
embeddings should correlate perfectly with brain
imaging data. The brain may encode these signals
in some transformed way. I therefore ran the fol-
lowing experiment:

For words w in a training split, I train a
deep neural regression model to reconstruct the
fMRI/gaze vector from the input embedding,
which I evaluate by its squared error on a held-out
test split. All vectors are normalized to the (0,1)-
range, leading to squared distances in the (0,2)-
range. The training split is the first 100 words in

Target EW30 GOLD Okay?

students teachers mistake No
creep drift long No
peace death eat Maybe
tight nasty hold Maybe
squeak twisted broke Yes
admiring cursing stunned Yes
amazed delighted impressed Yes

Table 2: Examples of nearest neighbors (over full
dataset) for EW30 and fMRI embeddings. Man-
ual judgments (Okay?) reflect whether the fMRI
nearest neighbors made intuitive sense.

the common vocabulary (of the two embeddings
and the gold standard); the test split the next 100
words. Sampling from the common vocabulary is
important; comparisons across different vocabu-
laries is a known problem in the word embeddings
literature. I use SGD and a hidden layer with 100
dimensions.

I present a learning curve for the first 100 it-
erations fitting the embeddings to the fMRI data
in Figure 1a. Observe that the EW30 embeddings
give us a much better fit than the SENNA embed-
dings. Interestingly, the better fit is achieved with
fewer dimensions (30 vs. 50). This suggests that
the EW30 embeddings capture more of the differ-
ences in the brain imaging data. See the same ef-
fect with the eye-tracking data in Figure 1b.

What I am saying . . . Under the assumption
that downstream evaluation of word embeddings
is impractical, I have argued that correlating with

119



human word processing data is the only valid type
of evaluation left on the table. Since brain imaging
and eye-tracking data are very noisy signals, cor-
relating distances does not provide sufficient sta-
tistical power to compare systems. For that reason
I have proposed comparing embeddings by testing
how useful they are when trying to predict human
processing data. I have presented some prelimi-
nary experiments, evaluating state-of-the-art em-
beddings by how useful they are for predicting
brain imaging and eye-tracking data using a deep
neural regression model. The test is made avail-
able at the website:

http://cst.dk/anders/fmri-eval/

where users can upload pairs of embeddings and
obtain learning curves such as the ones above. I
believe this type of evaluation is the most mean-
ingful task-independent evaluation of word em-
beddings possible right now. Note that you can
also do nearest neighbor queries (and t-SNE visu-
alizations) with the output of such a model.

More advanced theories? Our proposal was in
part motivated by a crude simplification of lex-
ical semantics. Of course more advanced theo-
ries exist. For example, Marconi (1997) says lexi-
cal competence involves both an inferential aspect,
i.e., learning a semantic network of synonymy and
hyponymy relations, as well as a referential aspect,
which is in charge of naming and application. In
this framework, a word is defined by its edges in a
semantic network and its denotation and/or the sit-
uations in which it can be used. Technically, how-
ever, this is a simple concatenation of the vectors
described above. Again, the derived metrics are
easily hacked. In other words, if Marconi (1997) is
right, evaluation reduces to settling on the defini-
tion of the semantic network and of denotation or
language games, and finding representative data.
From a metrics point of view, any evaluation based
on such a theory would be a vicious circle.
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Abstract

The way humans define words is a power-
ful way of representing them. In this work,
we propose to measure word similarity by
comparing the overlap in their definition.
This highlights linguistic phenomena that
are complementary to the information ex-
tracted from standard context-based rep-
resentation learning techniques. To ac-
quire a large amount of word definitions
in a cost-efficient manner, we designed a
simple interactive word game, Word Sher-
iff. As a byproduct of game play, it gen-
erates short word sequences that can be
used to uniquely identify words. These se-
quences can not only be used to evaluate
the quality of word representations, but it
could ultimately give an alternative way
of learning them, as it overcomes some
of the limitations of the distributional hy-
pothesis. Moreover, inspecting player be-
haviour reveals interesting aspects about
human strategies and knowledge acquisi-
tion beyond those of simple word asso-
ciation games, due to the conversational
nature of the game. Lastly, we outline a
vision of a communicative evaluation set-
ting, where systems are evaluated based on
how well a given representation allows a
system to communicate with human and
computer players.

1 Introduction

The distributional hypothesis (Harris, 1954) is at
the core of many modern Natural Language Pro-
cessing (NLP) techniques. It is based on the fol-
lowing assumption:

Words are similar if they have similar contexts.
∗Contributed equally to this work.

While powerful, the assumption of context is
not always convenient, nor satisfactory. For ex-
ample, antonyms (black vs. white) and hyper-
nyms (laptop vs. computer) tend to appear in the
same context, but they cannot naively replace each
other. Similarly, implicit or prior knowledge is dif-
ficult to capture by only referring to word contexts.
One rarely writes that a banana is yellow, while
this is one of the main adjectives one would use
when defining it.

In this paper, we describe a novel and comple-
mentary framework to capture information that is
difficult to obtain by exploiting the distributional
hypothesis. It is based on a relaxed variant of
a dictionary-based hypothesis that assumes that
words are the same if they have the same defini-
tion. We soften our dictionary-based definition by
introducing the notion of “similar definition”:

Words are similar if they have similar definitions.

The issue with using word definitions is that it
depends on the ability for people to define words.
In principle, coming up with proper coherent def-
initions is costly, as it requires multiple linguistic
experts. However, if what we aim to capture is the
ability to identify a word, we can come up with
a more cost-effective data acquisition technique.
Our key contribution is the use of crowdsourcing
and gamification to show that creating a simple
interactive game can generate a huge amount of
“short definitions” at very low cost, with the po-
tential to lead to an exciting new data source to
evaluate or improve existing word representations.
What we mean by “short definition” is a short se-
quence of words that enables a human to uniquely
identify a word.

We will now describe such a game, Word Sher-
iff, which is based on the interaction between a
narrator and several guessers, the narrator being
a human who implicitly creates definitions. Be-
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fore going into the details of the game, we should
point out that there are many variants or alterna-
tive “definition games” that could be designed in a
similar spirit, the main idea being that “word def-
initions matter” because there is some unwritten
knowledge that is hard to capture by a static anal-
ysis of already existing textual data.

2 Word Sheriff

Our game is loosely based on the Pyramid game
show franchise (Stewart, 1973), and for each
round, one player (narrator) is presented with a
target word or phrase known only to herself. The
player must then give the partners (guessers) a se-
ries of clues in order to lead them to guess the cor-
rect word. After receiving each clue, guessers are
allowed to make one guess. The game terminates
when one of the guessers find the target word. To
incentivise the narrator to use a minimal number of
salient clues, the total number of allowed clues is
decided beforehand by the narrator, where a lower
number of clues lead to a higher reward. An initial
web-based prototype of the game was created by
four undergraduate students as a part of a project-
based course over eight weeks.

Illustrations of successful and unsuccessful
game sessions are shown in Tables 1 and 2. In the
first session, the narrator decided on limiting her-
self to 2 clues as she thought that banana is eas-
ily uniquely identifiable by yellow and fruit.
In fact, this was somewhat risky, as lemon would
have been an equally correct answer. While in the
second session, a larger number of clues were se-
lected by the narrator, yet the guessers did not ar-
rive at the target word weather. Interestingly,
the narrator used a syntactic clue noun that was
supposed to guide the guessers to the right type
of word. This shows the two-way communica-
tive aspect of the game, as this word was proba-
bly chosen because both guessers were proposing
adjectives in the second round. Another interest-
ing aspect of the game appears in the first round,
where Guesser 1 proposed a word with an oppo-
site meaning (sun when rain is given as the first
clue), and Guesser 2 tried to complete a common
n-gram (rain jacket).

3 Initial Limited Release

By analysing the logs generated by the game
played by human players, we can make interesting
linguistic insights and observe player behavioural

Round Narrator’s clue Guesser 1 Guesser 2
1a fruit
1b orange apple
2a yellow
2b lemon banana

Table 1: Successful game in 2 rounds for banana

Round Narrator’s clue Guesser 1 Guesser 2
1a rain
1b sun jacket
2a sunny
2b cloudy windy
3a noun
3b cloud umbrella

Table 2: Unsuccessful try (3 rds., weather)

patterns. Ultimately, in order to be successful in
the game, any player, human or computer, must be
able to account for the linguistic phenomena that
we observe.

To seed our game, we annotated 241 words with
clues to be used as gold data for bots that could be
introduced if not enough players were online to
start a game. We then performed a limited release
over a handful of days within our computer sci-
ence department, where members could play the
game freely. All in all, 246 games were played by
roughly 100 individual players, where 85% stated
that they would consider playing the game again
when answering a voluntary anonymous survey.

4 Data Analysis

To better understand what linguistic phenomena
that can be observed when playing our game, we
qualitatively analysed the annotations collected
from the players during our initial limited release.
For brevity, we only report phenomena that are
difficult to account for using the distributional hy-
pothesis, namely:

• Hypernymy: One of the most common
strategies is to use two clues involving one
hypernym and one distinguishable feature,
such as animal + horn for rhinoceros
or country + oslo for norway. Per-
haps surprisingly, we did not observe any hy-
ponym relations, but this might be due to the
limited amount of data analysed.
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(a) Narrator input.
(b) Guesser input. (c) User Interface overview.

Figure 1: Screenshots of our web-based prototype.

1st 2nd 3rd

hyena animal laugh dog

wasabi japanese spice

sausage meat pig

anaesthesiologist doctor sleep

Table 3: Compositional strategies.

• Antonymy: When observing the guesses
given after the first clue, it was interesting to
see that players sometimes strategically use
antonyms, such a win 7→ lose. We specu-
late that experienced players will tend to use
antonymy more often than beginners, as it
has the potential to uniquely identify a word
using single clue, but this intuition would
have to be statistically validated on a larger
dataset.

• Prior Knowledge: Many clue words are
related to the target words based on prior
knowledge about the world, such as the phys-
ical proximity, functional properties or other
types of common sense knowledge. One
interesting example appears when the tar-
get word is mouth: guessers tend to use
the Container/Containee relation and pro-
pose teeth or tongue as clues. An-
other interesting example is guacamole,
for which some clues are avocado and
burrito, which are related to the subject
or the object of the relation IsIngredientOf.
Another clue is condiment, which relate to
the Typical Usage of the target word.

The previous observations were mainly focus-
ing on individual words, but another interesting as-

pect is the compositional nature of the clue words.
In Table 3 we report several examples of composi-
tional strategies used by the narrators. This strat-
egy is primarily enabled by the conversational na-
ture of our game, which unlike traditional word
association games allow for more than a single re-
sponse.

5 Related work

For NLP, games have been proposed for numer-
ous tasks such as anaphora resolution (Hladká et
al., 2009) and word sense disambiguation (Jurgens
and Navigli, 2014). From the literature, Verbosity
(von Ahn et al., 2006) is the game most closely re-
lated to ours. However, unlike Verbosity our game
does not impose ontological restrictions on the in-
put given by the narrator since the end result of
the annotations produced by our game does not
seek conform with an ontology. Our game also
has an adversarial component (guesser-guesser),
which we argue is essential for player enjoyment
(Prensky, 2007).

Despite a plethora of proposed games, the ones
that remain available online have a waning or non-
existing player base, why? Our hypothesis is
that this is due to the games constraining player
creativity to conform with annotation guidelines,
leading to less enjoyment, or because of attempts
to mimic existing games and adding seemingly
unrelated annotation elements to it, to which the
player naturally asks the question “Why should I
play a variant with a convoluted annotation ele-
ment, as opposed to a variant without it?”.

Thus, we took inspiration from Boyd-Graber et
al. (2012) that gathered annotations using an on-
line quiz bowl game and found that the annota-
tors needed no financial incentives and even im-
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plemented their own version of the game once
the authors had taken their version offline.1 Our
starting-point was thus, can we build upon an ex-
isting game that is enjoyable in its own right and
with only minor modifications make it sustainable
and yield annotations that are useful for evaluating
NLP methods?

There are clear parallels between our game and
word association games that date back several
hundred years and has been of interest to the field
of psycholinguistics. One can thus see our goal to
be a natural extension of word associations work
such as Nelson et al. (2004). In regards to using
dictionary definitions, there is the work of Hill et
al. (2016), that used dictionary definitions to learn
word representations.

6 Future Directions and Challenges

Given the promising results of our prototype im-
plementation and data acquired from our initial
limited release, we believe that there are several
interesting directions to take our work:

• In our initial release we did not account for
the demographic background of our players.
An interesting experiment would be to col-
lect such data and inspect it to see if players
with different backgrounds would use differ-
ent explanations.

• Since the data we collected indicate that our
model can avoid several pitfalls of the distri-
butional hypothesis, it would seem that retro-
fitting existing word representations could in
fact lead to better word representations for
both intrinsic and extrinsic tasks.

• Ultimately, what we find to be the most exit-
ing application would be to use our data and
game to perform what we term communica-
tive evaluation. Most evaluation of NLP sys-
tems is performed in a setting where a system
is presented with an input and is asked to in-
fer some aspect of the input such as its sen-
timent, topic, or linguistic structure. How-
ever, a key aspect of language is that its pur-
pose is communication, something which our
game captures in that players are not only
asked to infer the intent of the narrator but
also to communicate the meaning of the tar-
get word when they themselves act as the nar-
rator. Given a representation, a system should

1 Personal communication.

be able to learn to perform both the guesser
and narrator role, evaluating how well the
representation aids the communicative task.
This is similar to existing work in computer
to computer communication, where two sys-
tems learn to communicate about the world,
but our setting is different in that as long as
a portion of the data is given by human play-
ers the way of communicating that is learnt is
grounded in human communication.

However, we do believe that there are several
hurdles to overcome if we are to succeed in our
efforts and we highlight two issues in particular:

• Firstly, our game being a multi-player game,
we are reliant on a large player base in or-
der to be sustainable. Not only is it neces-
sary for a significant number of players to be
online at any given point in time, it can also
be argued that the quality of our annotations
are reliant on the players coming from diverse
backgrounds, so as not to bias our data.

• Secondly, running a large-scale online game
requires large-scale infrastructure. Such in-
frastructure would also need to me main-
tained over a large period of time, potentially
longer than what a research grant may offer.

Our strategy to overcome these issues is to seek
partnership with a commercial actor that can give
us access to a wider audience and provide infras-
tructure. Such a commercial actor would be com-
pensated by more immediate access to the data
generated by the players of the game and by the
value the game itself can provide for its users,
for example as an educational application for lan-
guage learners.

7 Conclusions

In this work, we showed how to generate an inter-
esting dataset that captures linguistic phenomena
such as antonymy, hypernymy and common sense
knowledge that are difficult to capture by standard
approaches based on the distributional hypothe-
sis. Not only is this data complementary to exist-
ing word-similarity datasets, but they can come at
nearly no cost as their are obtained as a by-product
of a game that is actually very fun to play.

Apart from direct applications of such datasets
to psycholinguistics, there are several applica-
tions for which the data generated by “defini-
tion games”, but it could be useful in applications
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where prior knowledge plays an important role,
such as question answering involving reasoning
about the physical world. It is also likely that it
will help to improve machine translation by using
the word with the right definition, when there is
no one-to-one correspondence between words in
the two different languages.

Lastly, we outlined future directions that we
seek to take our research in and described several
challenges and how we seek to overcome them.
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Abstract

Similarity is a core notion that is used
in psychology and two branches of lin-
guistics: theoretical and computational.
The similarity datasets that come from
the two fields differ in design: psycho-
logical datasets are focused around a cer-
tain topic such as fruit names, while lin-
guistic datasets contain words from var-
ious categories. The later makes hu-
mans assign low similarity scores to the
words that have nothing in common and to
the words that have contrast in meaning,
making similarity scores ambiguous. In
this work we discuss the similarity collec-
tion procedure for a multi-category dataset
that avoids score ambiguity and suggest
changes to the evaluation procedure to re-
flect the insights of psychological litera-
ture for word, phrase and sentence similar-
ity. We suggest to ask humans to provide a
list of commonalities and differences in-
stead of numerical similarity scores and
employ the structure of human judgements
beyond pairwise similarity for model eval-
uation. We believe that the proposed ap-
proach will give rise to datasets that test
meaning representation models more thor-
oughly with respect to the human treat-
ment of similarity.

1 Introduction

Similarity is the degree of resemblance between
two objects or events (Hahn, 2014) and plays a
crucial role in psychological theories of knowl-
edge and behaviour, where it is used to explain
such phenomena as classification and conceptual-
isation. Fruit is a category because it is a practi-
cal generalisation. Fruits are sweet and constitute
deserts, so when one is presented with an unknown

fruit, one can hypothesise that it is served toward
the end of a dinner.

Generalisations are extremely powerful in de-
scribing a language as well. The verb runs re-
quires its subject to be singular. Verb, subject and
singular are categories that are used to describe
English grammar. When one encounters an un-
known word and is told that it is a verb, one will
immediately have an idea about how to use it as-
suming that it is used similarly to other English
verbs.

The semantic formalisation of similarity is
based on two ideas. The occurrence pattern of
a word defines its meaning (Firth, 1957), while
the difference in occurrence between two words
quantifies the difference in their meaning (Harris,
1970). From a computational perspective, this mo-
tivates and guides development of similarity com-
ponents that are embedded into natural language
processing systems that deal with tasks such as
word sense disambiguation (Schütze, 1998), in-
formation retrieval (Salton et al., 1975; Milajevs
et al., 2015), machine translation (Dagan et al.,
1993), dependency parsing (Hermann and Blun-
som, 2013; Andreas and Klein, 2014), and di-
alogue act tagging (Kalchbrenner and Blunsom,
2013; Milajevs and Purver, 2014).

Because it is difficult to measure performance
of a single (similarity) component in a pipeline,
datasets that focus on similarity are popular among
computational linguists. Apart from a pragmatic
attempt to alleviate the problems of evaluating
similarity components, these datasets serve as an
empirical test of the hypotheses of Firth and Har-
ris, bringing together our understanding of human
mind, language and technology.

Two datasets, namely MEN (Bruni et al., 2012)
and SimLex-999 (Hill et al., 2015), are cur-
rently widely used. They are designed especially
for meaning representation evaluation and sur-
pass datasets stemming from psychology (Tver-
sky and Hutchinson, 1986), information retrieval
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(Finkelstein et al., 2002) and computational lin-
guistics (Rubenstein and Goodenough, 1965) in
quantity by having more entries and, in case of
SimLex-999, attention to the evaluated relation by
distinguishing similarity from relatedness. The
datasets provide similarity (relatedness) scores be-
tween word pairs.

In contrast to linguistic datasets which contain
randomly paired words from a broad selection,
datasets that come from psychology contain en-
tries that belong to a single category such as verbs
of judging (Fillenbaum and Rapoport, 1974) or an-
imal terms (Henley, 1969). The reason for cate-
gory oriented similarity studies is that “stimuli can
only be compared in so far as they have already
been categorised as identical, alike, or equivalent
at some higher level of abstraction” (Turner et al.,
1987). Moreover, because of the extension ef-
fect (Medin et al., 1993), the similarity of two
entries in a context is less than the similarity be-
tween the same entries when the context is ex-
tended. “For example, black and white received
a similarity rating of 2.2 when presented by them-
selves; this rating increased to 4.0 when black was
simultaneously compared with white and red (red
only increased 4.2 to 4.9)” (Medin et al., 1993).
In the first case black and white are more dissimi-
lar because they are located on the extremes of the
greyscale, but in the presence of red they become
more similar because they are both monochromes.

Both MEN and SimLex-999 provide pairs that
do not share any similarity to control for false pos-
itives, and they do not control for the comparison
scale. This makes similarity judgements ambigu-
ous as it is not clear what low similarity values
mean: incomparable notions, contrast in mean-
ing or even the difference in comparison context.
SimLex-999 assigns low similarity scores to the
incomparable pairs (0.48, trick and size) and to
antonymy (0.55, smart and dumb), but smart and
dumb have relatively much more in common than
trick and size!

The present contribution investigates how a
similarity dataset with multiple categories should
be built and considers what sentence similarity
means in this context.

2 Dataset Construction

Human similarity judgements To build a sim-
ilarity dataset that contains non-overlapping cate-
gories, one needs to avoid comparison of incom-
parable pairs. However, that itself requires an a
priori knowledge of item similarity or belonging-
ness to a category, making the problem circular.

To get out of this vicious circle, one might er-
roneously refer to an already existing taxonomy
such as WordNet (Miller, 1995). But in case of
similarity, as Turney (2012) points out, categories
that emerge from similarity judgements are differ-
ent from taxonomies. For example, traffic and wa-
ter might be considered to be similar because of
a functional similarity exploited in hydrodynamic
models of traffic, but their lowest common ances-
tor in WordNet is entity.

Since there is no way of deciding upfront
whether there is a similarity relation between two
words, the data collection procedure needs to test
for both: relation existence and its strength. Nu-
merical values, as has been shown in the introduc-
tion, do not fit this role due to ambiguity. One
way to avoid the issue is to avoid asking humans
for numerical similarity judgements, but instead to
ask them to list commonalities and differences be-
tween the objects. As one might expect, similar-
ity scores correlate with the number of listed com-
monalities (Markman and Gentner, 1991; Mark-
man and Gentner, 1996; Medin et al., 1993). For
incomparable pairs, the commonality list should
be empty, but the differences will enumerate prop-
erties that belong to one entity, but not to another
(Markman and Gentner, 1991; Medin et al., 1993).

Verbally produced features (norms) for empiri-
cally derived conceptual representation of McRae
et al. (2005) is a good example of what and how
the data should be collected. But in contrast to
McRae et al. (2005)—where explicit comparison
of concepts was avoided—participants should be
asked to produce commonalities as part of similar-
ity comparison.

The entries in the dataset So far, we have pro-
posed a similarity judgement collection method
that is robust to incomparable pairings. It also nat-
urally gives rise to categories, because the absence
of a relation between two entries means the ab-
sence of a common category. It still needs to be
decided which words to include in the dataset.

To get a list of words that constitute the dataset,
one might think of categories such as sports, fruits,
vegetables, judging verbs, countries, colours and
so on. Note, that at this point its acceptable to
think of categories, because later the arbitrary cat-
egory assignments will be reevaluated. Once the
list of categories is ready, each of them is popu-
lated with category instances, e.g. plum, banana
and lemon are all fruits.

When the data is prepared, humans are asked
to provide commonalities and differences between
all pairs of every group. First, all expected sim-
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ilarities are judged, producing a dataset that can
be seen as a merged version of category specific
datasets. At this point, a good similarity model
should provide meaning representation that are
easily split to clusters: fruit members and sport
members have to be separable.

Intra-category comparisons should be also per-
formed, but because it is impractical to collect all
possible pairwise judgements between the number
of words of magnitude of hundreds, a reasonable
sample should be taken. The intra-category com-
parisons will lead to unexpected category pairings,
such as food that contains vegetables and fruits, so
the sampling procedure might be directed by the
discovery of comparable pairs: when a banana
and potato are said to be similar, fruits and veg-
etables members should be more likely to be as-
sessed.

Given the dynamic nature of score collection,
we suggest setting up a game with a purpose (see
Venhuizen et al. (2013) an example) where players
are rewarded for contributing their commonality
lists. Another option would be to crowdsource the
human judgements (Keuleers and Balota, 2015).

Evaluation beyond proximity Human judge-
ments validate the initial category assignment
of items and provide new ones. If a category
contains a superordinate, similarity judgements
arrange category members around it (Tversky
and Hutchinson, 1986). For example, similarity
judgements given by humans arrange fruit names
around the word fruit in such a way that it is their
nearest neighbour, making fruit the focal point of
the category of fruits.

As an additional evaluation method, the model
should be able to retrieve focal points. Therefore,
a precaution should be taken before human judge-
ment collection. If possible, categories should
contain a superordinate.

Similarity evaluation needs to focus on how
well a model is able to recover human similarity
intuitions expressed as groupings, possibly around
their focal points. We propose to treat it as a
soft multi-class clustering problem (White et al.,
2015), where two entities belong to the same class
if there is a similarity judgement for them (e.g. ap-
ple and banana are similar because they are fruits)
and the strength is proportional to the number of
such judgements, so we could express that apple
is more a fruit than it is a company.

In contrast to the current evaluation based on
correlation, models also need to be tested on the
geometric arrangement of subordinates around the
focal points, as only the proximity based evalua-

tion does not capture this (Tversky and Hutchin-
son, 1986).

3 Sentence Similarity

The question of sentence similarity is more com-
plex because sentences in many ways are different
entities than words. Or are they? Linguistics has
recently often pointed toward a continuum which
exists between words and sentences (Jackendoff,
2012). Jackendoff and Pinker (2005), for exam-
ple, point out that there is good evidence that “hu-
man memory must store linguistic expressions of
all sizes.” These linguistic expressions of vari-
able size are often called constructions. Several
computational approaches to constructions have
been proposed (Gaspers et al., 2011; Chang et
al., 2012), but to the authors’ best knowledge they
do not yet feature prominently in natural language
processing.

To be able to measure the similarity of phrases
and sentences in the proposed framework, we need
to be able to identify what could serve as com-
monalities between them. So what are they? First
of all, words, sentences and other constructions
draw attention to states of affairs around us. Also,
sentences are similar to others with respect to the
functions they perform (Winograd, 1983, p. 288).

Prototype effects As Tomasello (2009) points
out, speakers of English can make sense of phrases
like X floosed Y the Z and X was floosed by Y. This
is due to their similarity to sentences such as John
gave Mary the book and Mary was kissed by John
respectively. Thus, X floosed Y the Z is clearly
a transfer of possession or dative (Bresnan et al.,
2007).

The amount in which sentences are similar, at
least to a certain extent, corresponds to the func-
tion of a given sentence (the ideational function
(Winograd, 1983, p. 288) especially). Tomasello
(1998) points out that sentence-level constructions
show prototype effects similar to those discussed
above for lexical systems (e.g. colours). Consider
the following sentences:

• John gave Mary the book. is a example of an
Agent Causes Transfer construction. These
usually are build around words such as give,
pass, hand, toss, bring, etc.

• John promised Mary the book. is a exam-
ple of an Conditional transfer construction.
These usually are build around words such as
promise, guarantee, owe, etc.

As soon as one has such a prototype network,
one can actually decide sentence similarity as one

129



can say with respect to what prototypes sentences
and utterances are similar. In this case, a common
sentence prototype serves the same role as com-
monality between words.

Similarity in context However, prototype cat-
egories work on the semantic-grammatical level,
and might be handled by similarity in context: a
noun phrase can be similar to a noun as in female
lion and lioness, and to another noun phrases as
in yellow car and cheap taxi. The same similar-
ity principle can be applied to phrases as to words.
In this case, similarity is measured in context, but
it is still a comparison of the phrases’ head words
of which meaning is modified by arguments they
appear with (Kintsch, 2001; Mitchell and Lapata,
2008; Mitchell and Lapata, 2010; Dinu and Lap-
ata, 2010; Baroni and Zamparelli, 2010; Thater et
al., 2011; Séaghdha and Korhonen, 2011). With
verbs this idea can be applied to compare transi-
tive verbs with intransitive. For example, to cycle
is similar to to ride a bicycle.

Sentential similarity might be treated as the sim-
ilarity of the heads in the contexts. That is, the
similarity between sees and notices in John sees
Mary and John notices a woman. This approach
abstracts away from grammatical differences be-
tween the sentences and concentrates on seman-
tics and fits the proposed model as the respect for
the head, which is a lexical entity, has to be found
(Corbett and Fraser, 1993).

Attention attraction But still, what about prag-
matics? As Steels (2008) points out, sentences and
words direct attention and do not always directly
point or refer to entities and actions in the world.
For example, he points to the fact that if a person
asks another person to pass the wine they are actu-
ally asking for the bottle. The speaker just attracts
attention to an object of perception in a given situ-
ation.

Grammaticalisaton and lexicalisaton There
are several ways in which a sentence can both be
grammaticalised and lexicalised. For example, No
and I’ve seen John eating them are similar sen-
tences because they lexicalise the same answer to
the question Do we have cookies? More generally,
this gives rise to dialogue act tags: for another way
of utterance categorisation, refer to the work of
Kalchbrenner and Blunsom (2013) and Milajevs
and Purver (2014).

Thus, questions which the sentences answer, are
valid respects for similarity explanation, as well as
entailment, paraphrase (White et al., 2015) or spa-
tial categories (Ritter et al., 2015). This also mo-

tivates the approach of treating sentences on their
own and encoding the meaning of a sentence into
a vector in such a way that similar sentences are
clustered together (Coecke et al., 2010; Baroni et
al., 2014; Socher et al., 2012; Wieting et al., 2015;
Hill et al., 2016).

Discourse fit If one conceptualises sentence
similarity with respect to a discourse, then one
might ask how different sentences fit in to such a
discourse. Griffiths et al. (2015) tried to construct
two versions of the same dialogue using a bottom-
up method. They deconstructed a certain dialogue
in a given domain—a receptionist scenario—into
greetings, directions and farewells. They used a
small custom made corpus for this purpose and
created the two dialogues by having people rate
the individual utterances by friendliness. The re-
sulting two dialogues were surprisingly uneven.
The dialogue was supposed to give instructions to
a certain location within a building. The “friendly
version” was very elaborated and consisted of sev-
eral sentences:

(1) The questionnaire is located in room Q2-102.
That is on the second floor. If you turn to your
right and walk down the hallway. At the end
of the floor you will find the stairs. Just walk
up the stairs to the top floor and go through
the fire door. The room is then straight ahead.

The sentence which served the same purpose in
the “neutral version” was a fairly simple sentence:

(2) The questionnaire is located in Q2-102.

Often the same function of a given sentence in a
dialogue can be performed by as little as one word
or several phrases or a different sentence or even a
complete story.

Language sub-systems and strategies Steels
(2010) introduces the idea of language sub-
systems and language strategies. A language sub-
system are the means of expressing certain re-
lated or similar meanings. Examples of such sub-
systems include:

• Lexical systems which express colours.
• Morphological devices to encode tenses.
• Usage of word order to express relations be-

tween agent and patient.
The later is an illustration of a language strategy.
In English agent-patient relations are mainly en-
coded by syntax whereas German would use in-
tonation and a combination or articles and case to
convey the same information. Russian, in contrast,
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will use morphological devices for the same pur-
pose. Hence, for some purposes the entities which
are similar may not be of clearly delineated cate-
gories such as “word” or “sentence” but may be
of chunks of language which belong to the same
sub-system.

Above we identified seven criteria by which
sentence similarity can be compared. The instruc-
tions for the sentence similarity judgement tasks
may incorporate the criteria as hints for human
participants during data collection.

4 Conclusion
In this contribution we discussed the notion of
similarity from an interdisciplinary perspective.
We contrasted properties of the similarity relation
described in the field of psychology with the char-
acteristics of similarity datasets used in compu-
tational linguistics. This lead to the recommen-
dations on how to improve the later by removing
low score ambiguity in a multi-category similarity
dataset.

In the future, a multi-category similarity dataset
should be build that allow evaluation of vector
space models of meaning by not only measur-
ing proximity between the points, but also their
arrangement with respect to clusters. The same
ideas can be used to build phrase- and sentence-
level datasets. However, we leave the exact sen-
tence similarity criteria selection for future work
in this area.

On a broader perspective, this work highlights
psychological phenomena that being incorporated
into the models of meaning are expected to im-
prove their performance.
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Abstract

We propose a diagnostic method for prob-
ing specific information captured in vector
representations of sentence meaning, via
simple classification tasks with strategi-
cally constructed sentence sets. We iden-
tify some key types of semantic informa-
tion that we might expect to be captured
in sentence composition, and illustrate ex-
ample classification tasks for targeting this
information.

1 Introduction

Sentence-level meaning representations, when
formed from word-level representations, require
a process of composition. Central to evaluation
of sentence-level vector representations, then, is
evaluating how effectively a model has executed
this composition process.

In assessing composition, we must first answer
the question of what it means to do composition
well. On one hand, we might define effective com-
position as production of sentence representations
that allow for high performance on a task of inter-
est (Kiros et al., 2015; Tai et al., 2015; Wieting et
al., 2015; Iyyer et al., 2015). A limitation of such
an approach is that it is likely to produce overfit-
ting to the characteristics of the particular task.

Alternatively, we might define effective compo-
sition as generation of a meaning representation
that makes available all of the information that we
would expect to be extractable from the meaning
of the input sentence. For instance, in a represen-
tation of the sentence “The dog didn’t bark, but
chased the cat”, we would expect to be able to ex-
tract the information that there is an event of chas-
ing, that a dog is doing the chasing and a cat is
being chased, and that there is no barking event
(though there is a semantic relation between dog

and bark, albeit modified by negation, which we
likely want to be able to extract as well). A model
able to produce meaning representations that al-
low for extraction of these kinds of key seman-
tic characteristics—semantic roles, event informa-
tion, operator scope, etc—should be much more
generalizable across applications, rather than tar-
geting any single application at the cost of others.

With this in mind, we propose here a
linguistically-motivated but computationally
straightforward diagnostic method, intended to
provide a targeted means of assessing the specific
semantic information that is being captured in
sentence representations. We propose to ac-
complish this by constructing sentence datasets
controlled and annotated as precisely as possible
for their linguistic characteristics, and directly
testing for extractability of semantic information
by testing classification accuracy in tasks defined
by the corresponding linguistic characteristics.
We present the results of preliminary experiments
as proof-of-concept.

2 Existing approaches

The SICK entailment dataset (Marelli et al., 2014)
is a strong example of a task-based evaluation met-
ric, constructed with a mind to systematic incorpo-
ration of linguistic phenomena relevant to compo-
sition. SICK is one of the most commonly used
benchmark tasks for evaluating composition mod-
els (Kiros et al., 2015; Tai et al., 2015; Wiet-
ing et al., 2015). However, conclusions that we
can draw from this dataset are limited for a cou-
ple of reasons. First, certain cues in this dataset
allow for strong performance without composi-
tion (for example, as Bentivogli et al. (2016) point
out, 86.4% of sentence pairs labeled as CON-
TRADICTION can be identified simply by de-
tecting the presence of negation; a similar obser-
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vation is made by Lai and Hockenmaier (2014)),
which means that we cannot draw firm composi-
tion conclusions from performance on this task.
Furthermore, if we want to examine the extent to
which specific types of linguistic information are
captured, SICK is limited in two senses. First,
SICK sentences are annotated for transformations
performed between sentences, but these annota-
tions lack coverage of many linguistic charac-
teristics important to composition (e.g., semantic
roles). Second, even within annotated transforma-
tion categories, distributions over entailment la-
bels are highly skewed (e.g., 98.9% of the entail-
ment labels under the “add modifier” transforma-
tion are ENTAILMENT), making it difficult to test
phenomenon- or transformation-specific classifi-
cation performance.

In an alternative approach, Li et al. (2015) use
visualization techniques to better examine the par-
ticular aspects of compositionality captured by
their models. They consider recurrent neural net-
work composition models trained entirely for one
of two tasks—sentiment analysis and language
modeling—and employ dimensionality reduction
to visualize sentiment neighborhood relationships
between words or phrases before and after apply-
ing modification, negation, and clause composi-
tion. They also visualize the saliency of individ-
ual tokens with respect to the prediction decision
made for each of their tasks.

In comparison, our proposal aims to provide
generic (task-independent) evaluation and analy-
sis methods that directly quantify the extractabil-
ity of specific linguistic information that a com-
position model should be expected to capture.
Our proposed evaluation approach follows a sim-
ilar rationale to that of the diagnostic test suite
TSNLP (Balkan et al., 1994) designed for evaluat-
ing parsers on a per-phenomenon basis. As high-
lighted by Scarlett and Szpakowicz (2000) the sys-
tematic fine-grained evaluation of TSNLP enables
precise pinpointing of parsers’ limitations, while
ensuring broad coverage and controlled evalua-
tion of various linguistic phenomena and syntactic
structures. Our proposal aims at initiating work
on developing similar test suites for evaluating se-
mantic composition models.

3 Probing for semantic information with
targeted classification tasks

The reasoning of our method is as follows: if
we take a variety of sentences—each represented
by a composed vector—and introduce a classifica-
tion scheme requiring identification of a particu-
lar type of semantic information for accurate sen-
tence classification, then by testing accuracy on
this task, we can assess whether the composed
representations give access to the information in
question. This method resembles that used for de-
coding human brain activation patterns in cogni-
tive neuroscience studies of language understand-
ing (Frankland and Greene, 2015), as well as work
in NLP that has previously made use of classifica-
tion accuracy for assessing information captured
in vector representations (Gupta et al., 2015).

In order to have maximum confidence in our
interpretation of performance in these tasks, our
sentences must have sufficient diversity to ensure
that there are no consistently correlating cues that
would allow for strong performance without cap-
turing the relevant compositional information. Re-
latedly, we want to ensure that the classification
tasks cannot be solved by memorization (rather
than actual composition) of phrases.

3.1 Dataset construction
The goal in constructing the sentence dataset is to
capture a wide variety of syntactic structures and
configurations, so as to reflect as accurately as pos-
sible the diversity of sentences that systems will
need to handle in naturally-occurring text—while
maintaining access to detailed labeling of as many
relevant linguistic components of our data as pos-
sible. Ideally, we want a dataset with enough vari-
ation and annotation to allow us to draw data for
all of our desired classification tasks from this sin-
gle dataset.

For our illustrations here, we restrict our struc-
tural variation to that available from active/passive
alternations, use of relative clauses at various syn-
tactic locations, and use of negation at various syn-
tactic locations. This allows us to demonstrate de-
cent structural variety without distracting from il-
lustration of the semantic characteristics of inter-
est. Many more components can be added to in-
crease complexity and variation, and to make sen-
tences better reflect natural text. More detailed
discussion of considerations for construction of
the actual dataset is given in Section 5.
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3.2 Semantic characteristics
There are many types of semantic information that
we might probe for with this method. For our pur-
poses here, we are going to focus on two basic
types, which are understood in linguistics to be
fundamental components of meaning, and which
have clear ties to common downstream applica-
tions: semantic role and scope.

The importance of semantic role information is
well-recognized both in linguistics and in NLP—
for the latter in the form of tasks such as abstract
meaning representation (AMR) (Banarescu et al.,
2013). Similarly, the concept of scope is criti-
cal to many key linguistic phenomena, including
negation—the importance of which is widely ac-
knowledged in NLP, in particular for applications
such as sentiment analysis (Blunsom et al., 2013;
Iyyer et al., 2015). Both of these information types
are of course critical to computing entailment.

3.3 Example classification tasks
Once we have identified semantic information of
interest, we can design classification tasks to target
this information. We illustrate with two examples.

Semantic role If a sentence representation has
captured semantic roles, a reasonable expectation
would be extractability of the entity-event rela-
tions contained in the sentence meaning. So, for
instance, we might choose professor as our en-
tity, recommend as our event, and AGENT as
our relation—and label sentences as positive if
they contain professor in the AGENT relation with
the verb recommend. Negative sentences for this
task could in theory be any sentence lacking this
relation—but it will be most informative to use
negative examples containing the relevant lexical
items (professor, recommend) without the relation
of interest, so that purely lexical cues cannot pro-
vide an alternative classification heuristic.

Examples illustrating such a setup can be seen
in Table 1. In this table we have included a sam-
ple of possible sentences, varying only by ac-
tive/passive alternation and placement of relative
clauses, and holding lexical content fairly con-
stant. The verb recommend and its agent have
been bolded for the sake of clarity.

An important characteristic of the sentences in
Table 1 is their use of long-distance dependencies,
which cause cues based on linear order and word
adjacency to be potentially misleading. Notice, for
instance, that sentence 5 of the positive label col-

umn contains the string the school recommended,
though school is not the agent of recommended—
rather, the agent of recommended is located at the
beginning of the sentence. We believe that in-
corporation of such long-distance dependencies is
critical for assessing whether systems are accu-
rately capturing semantic roles across a range of
naturally-occurring sentence structures (Rimell et
al., 2009; Bender et al., 2011).

This example task can obviously be extended to
other relations and other entities/events as desired,
with training and test data adjusted accordingly.
We will remain agnostic here as to the optimal
method of selecting relations and entities/events
for classification tasks; in all likelihood, it will
be ideal to choose and test several different com-
binations, and obtain an average accuracy score.
Note that if we structure our task as we have
suggested here—training and testing only on sen-
tences containing certain selected lexical items—
then the number of examples at our disposal (both
positive and negative) will be dependent in large
part on the number of syntactic structures covered
in the dataset. This emphasizes again the impor-
tance of incorporating broad structural diversity in
the dataset construction.

Negation scope Negation presents somewhat of
a challenge for evaluation. How can we assess
whether a representation captures negation prop-
erly, without making the task as simple as detect-
ing that negation is present in the sentence?

One solution that we propose is to incorpo-
rate negation at various levels of syntactic struc-
ture (corresponding to different negation scopes),
which allows us to change sentence meaning while
holding lexical content relatively constant. One
way that we might then assess the negation infor-
mation accessible from the representation would
be to adapt our classification task to focus not on
a semantic role relation per se, but rather on the
event described by the sentence meaning. For in-
stance, we might design a task in which sentences
are labeled as positive if they describe an event in
which a professor performs an act of recommend-
ing, and negative otherwise.

The labeling for several sentences under this
as well as the previous classification scheme are
given in Table 2. In the first sentence, when nega-
tion falls in the relative clause (that did not like the
school)—and therefore has scope only over like
the school—professor is the agent of recommend,
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Positive label Negative label
the professor recommended the student the student recommended the professor
the administrator was recommended by the professor the professor was recommended by the administrator
the school hired the researcher that the professor recom-
mended

the school hired the professor that the researcher recom-
mended

the school hired the professor that recommended the re-
searcher

the school hired the professor that was recommended by
the researcher

the professor that liked the school recommended the re-
searcher

the school that hired the professor recommended the re-
searcher

Table 1: Labeled data for professor-as-agent-of-recommend task (recommend verb and its actual agent
have been bolded).

and the professor entity does perform an act of
recommending. In the second sentence, however,
negation has scope over recommend, resulting in
a meaning in which the professor, despite being
agent of recommend, is not involved in performing
a recommendation. By incorporating negation in
this way, we allow for a task that assesses whether
the effect of negation is being applied to the cor-
rect component of the sentence meaning.

4 Preliminary experiments

As proof-of-concept, we have conducted some
preliminary experiments to test that this method
yields results patterning in the expected direction
on tasks for which we have clear predictions about
whether a type of information could be captured.

Experiments Settings
We compared three sentence embedding meth-
ods: 1) Averaging GloVe vectors (Pennington et
al., 2014), 2) Paraphrastic word averaging embed-
dings (Paragram) trained with a compositional ob-
jective (Wieting et al., 2015). and 3) Skip-Thought
embeddings (ST) (Kiros et al., 2015).1 For each
task, we used a logistic regression classifier with
train/test sizes of 1000/500.2 The classification ac-
curacies are summarized in Table 4.

We used three classification tasks for prelimi-
nary testing. First, before testing actual indica-
tors of composition, as a sanity check we tested
whether classifiers could be trained to recognize
the simple presence of a given lexical item, specif-
ically school. As expected, we see that all three
models are able to perform this task with 100%
accuracy, suggesting that this information is well-
captured and easily accessible. As an extension
of this sanity check, we also trained classifiers to

1We used the pretrained models provided by the authors.
GloVe and Paragram embeddings are of size 300 while Skip-
Thought embeddings are of size 2400.

2We tuned each classifier with 5-fold cross validation.

recognize sentences containing a token in the cate-
gory of “human”. To test for generalization across
the category, we ensured that no human nouns ap-
pearing in the test set were included in training
sentences. All three models reach a high classifi-
cation performance on this task, though Paragram
lags behind slightly.

Finally, we did a preliminary experiment per-
taining to an actual indicator of composition: se-
mantic role. We constructed a simple dataset
with structural variation stemming only from ac-
tive/passive alternation, and tested whether mod-
els could differentiate sentences with school ap-
pearing in an agent role from sentences with
school appearing as a patient. All training and
test sentences contained the lexical item “school”,
with both active and passive sentences selected
randomly from the full dataset for inclusion in
training and test sets. Note that with sentences of
this level of simplicity, models can plausibly use
fairly simple order heuristics to solve the classi-
fication task, so a model that retains order infor-
mation (in this case, only ST) should have a good
chance of performing well. Indeed, we see that
ST reaches a high level of performance, while the
two averaging-based models never exceed chance-
level performance.

5 Discussion

We have proposed a diagnostic method for directly
targeting and assessing specific types of seman-
tic information in composed sentence representa-
tions, guided by considerations of the linguistic
information that one might reasonably expect to
be extractable from properly composed sentence
meaning representations.

Construction of the real dataset to meet all of
our desired criteria promises to be a non-trivial
task, but we expect it to be a reasonable one. A
carefully-engineered context-free-grammar-based
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sentence prof-ag-of-rec prof-recommends
the professor that did not like the school recommended the researcher TRUE TRUE
the professor that liked the school did not recommend the researcher TRUE FALSE
the school that liked the professor recommended the researcher FALSE FALSE

Table 2: Sentence labeling for two classification tasks: “contains professor as AGENT of recommend”
(column 2), and “sentence meaning involves professor performing act of recommending” (column 3).

Task GloVe Paragram ST
Has-school 100.0 100.0 100.0
Has-human 99.9 90.5 99.0

School-as-agent 47.98 48.57 91.15

Table 3: Percentage correct on has-school, has-
human, and has-school-as-agent tasks.

generative process should allow us to cover a good
deal of ground with respect to syntactic variation
as well as annotation of linguistic characteristics.
Human involvement in annotation should become
necessary only if we desire annotation of linguistic
characteristics that do not follow deterministically
from syntactic properties.

One example of such a characteristic, which
merits discussion of its own, is sentence plau-
sibility. A clear limitation of automated sen-
tence generation in general is the inability to con-
trol for plausibility of the generated sentences.
We acknowledge this limitation, but would ar-
gue that for the purposes of evaluating compo-
sition, the presence of implausible sentences is
not only acceptable—it is possibly advantageous.
It is acceptable for the simple reason that com-
position seems to operate independently of plau-
sibility: consider, for instance, a sentence such
as blue giraffes interrogate the apple, which we
are able to compose to extract a meaning from,
despite its nonsensical nature. Arguments along
this vein have been made in linguistics since
Chomsky (1957) illustrated (with the now-famous
example colorless green ideas sleep furiously)
that sentences can be grammatical—structurally
interpretable—without having a sensible meaning.

As for the potential advantage, the presence
of implausible sentences in our dataset may be
desirable for the following reason: in evaluat-
ing whether a system is able to perform compo-
sition, we are in fact interested in whether it is
able to compose completely novel phrases. To
evaluate this capacity accurately, we will want
to assess systems’ composition performance on
phrases that they have never encountered. Elgo-
hary and Carpuat (2016) meet this need by dis-

carding all training sentences that include any ob-
served bigrams in their evaluation sentences. With
implausible sentences, we can substantially reduce
the likelihood that systems will have been trained
on the phrases encountered during the classifica-
tion evaluation—while remaining agnostic as to
the particulars of those systems’ training data. It
would be useful, in this case, to have annotation
of the plausibility levels of our sentences, in or-
der to ascertain whether performance is in fact
aided by the presence of phrases that may rea-
sonably have occurred during composition train-
ing. Possible approaches to estimating plausibility
without human annotation include using n-gram
statistics on simple argument/predicate combina-
tions (Rashkin et al., 2016) or making use of se-
lectional preference modeling (Resnik, 1996; Erk,
2007; Séaghdha, 2010).

A final note: learning low-dimensional vec-
tor representations for sentences is bound to re-
quire a trade-off between the coverage of en-
coded information and the accessibility of en-
coded information—some semantic characteris-
tics may be easily extractable at the cost of others.
We have not, in this proposal, covered all semantic
characteristics of interest, but it will ultimately be
valuable to develop a broad-coverage suite of clas-
sification tasks for relevant information types, to
obtain an assessment that is both fine-grained and
comprehensive. This kind of holistic assessment
will be useful for determining appropriate models
for particular tasks, and for determining directions
for model improvement.

Acknowledgments

This work was supported in part by an NSF Grad-
uate Research Fellowship under Grant No. DGE
1322106. Any opinions, findings, and conclusions
or recommendations expressed are those of the
authors and do not necessarily reflect the views
of the NSF. This work benefited from the help-
ful comments of two anonymous reviewers, and
from discussions with Marine Carpuat, Alexander
Williams and Hal Daumé III.
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Abstract

Measuring the semantic relatedness of
phrase pairs is important for evaluating
compositional distributional semantic rep-
resentations. Many existing phrase relat-
edness datasets are limited to either lexical
or syntactic alternations between phrase
pairs, which limits the power of the eval-
uation. We propose SLEDDED (Syntacti-
cally and LExically Divergent Dataset of
Event Descriptions), a dataset of event de-
scriptions in which related phrase pairs are
designed to exhibit minimal lexical and
syntactic overlap; for example, a decisive
victory — won the match clearly. We also
propose a subset of the data aimed at dis-
tinguishing event descriptions from related
but dissimilar phrases; for example, vow-
ing to fight to the death — a new train-
ing regime for soldiers, which serves as a
proxy for the tasks of narrative generation,
event sequencing, and summarization. We
describe a method for extracting candidate
pairs from a corpus based on occurrences
of event nouns (e.g. war) and a two-step
annotation process consisting of expert an-
notation followed by crowdsourcing. We
present examples from a pilot of the expert
annotation step.

1 Introduction

Measuring the semantic relatedness of phrase
pairs is an important means of evaluation for vec-
tor space representations, particularly in Composi-
tional Distributional Semantics (CDS). However,
existing phrase relatedness datasets are not often
designed to test lexical and syntactic divergence
simultaneously. On the one hand are datasets
which hold syntactic structure fixed while vary-

ing lexical items, e.g. the adjective-noun dataset
of Mitchell and Lapata (2010) (1) and the subject-
verb-object dataset of Kartsaklis and Sadrzadeh
(2014) (2).

(1) a. new information
b. further evidence

(2) a. programme offer support
b. service provide help

Such datasets are useful for examination of tar-
geted syntactic structures, especially in type-based
CDS models, but fail to challenge CDS models
to compose longer phrases with realistic sentence
structure.

On the other hand, the datasets with the most
complex and varied syntactic structures tend to
exhibit a great deal of lexical overlap across the
highly-related pairs, e.g. MSRPar (Dolan et al.,
2004) (3) and SICK (Marelli et al., 2014b) (4).

(3) a. The unions also staged a five-day
strike in March that forced all but one
of Yale’s dining halls to close.

b. The unions also staged a five-day
strike in March; strikes have preceded
eight of the last 10 contracts.

(4) a. A hiker is on top of the mountain and
is doing a joyful dance.

b. A hiker is on top of the mountain and
is dancing.

This phenomenon is not intentional, but a function
of the data collection methodology. However, the
high degree of lexical overlap makes it difficult to
evaluate CDS models, since lexical overlap base-
lines are challenging to beat (Rus et al., 2014); and
non-compositional or semi-compositional meth-
ods can perform better than fully compositional
ones (Marelli et al., 2014a).

While sentence pairs with high lexical overlap
may be common in some tasks – extractive sum-
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marization of multiple similar news stories, for ex-
ample – we believe that datasets with this charac-
teristic are not able to make clear distinctions be-
tween CDS models. We therefore propose a new
dataset exhibiting both lexical and syntactic varia-
tion across related phrases.

2 Proposal

We propose SLEDDED (Syntactically and LExi-
cally Divergent Dataset of Event Descriptions), a
phrase relatedness dataset in which semantically
related phrase pairs are carefully curated to ex-
hibit both syntactic and lexical divergence. Specif-
ically, we propose to base the related pairs on event
descriptions, where one description is centered
around a non-deverbal event noun and its counter-
part centered around a verb. Example noun-verb
pairs are shown in Figure 1.

victory – win
ceremony – celebrate

meal – eat
war – fight

Figure 1: Example pairs of non-deverbal event
nouns and counterpart verbs (idealized, not from
corpus data).

Non-deverbal event nouns describe events, but
in contrast to deverbal nouns such as celebra-
tion or fighting, are not morphologically derived
from verbs. The use of non-deverbal event nouns
ensures that related nouns and verbs cannot be
trivially equated by stemming. In the proposed
dataset, we aim for minimal shared lemmas in ev-
ery phrase pair. Example phrase pairs are shown
in Figure 2.

a decisive victory – won the match clearly
graduation ceremony – celebrated her degree

a delicious meal – ate pasta bolognese
war between neighbors – fought over borders

Figure 2: Example pairs of short phrases (ideal-
ized, not from corpus data).

Although related phrases similar to those de-
scribed here can be found within many large para-
phrase datasets, they are not readily separable
from other kinds of related pairs. We believe that
more focused datasets like SLEDDED can provide
a good complement to larger, less controlled para-
phrase datasets.

SLEDDED is aimed primarily at providing a
new challenge for CDS. We expect vector addi-
tion to be a challenging baseline, as it has been for
many other tasks, since simple addition captures
word relatedness without regard to syntax. Com-
position with Recursive Neural Networks (RNNs)
may also do well. We consider the dataset to be a
particular challenge for type-based (e.g. tensors)
and syntax-based (e.g. tree kernels) composition
methods. We also propose a subset of confounders
that require a distinction between relatedness and
similarity for events, that can serve as a proxy
for tasks such as narrative generation or event se-
quencing, and may be challenging for all models;
see Section 3.4.

3 Methods

In this section we describe our proposed method
for building SLEDDED, and present examples
from a pilot involving corpus data extraction and
expert annotation.

We choose to extract target phrases from a cor-
pus rather than elicit phrases by crowdsourcing,
since we expect the notion of event nouns to be
confusing for non-experts, and also expect a wider
range of realistic examples from corpus data. We
considered several existing methods for automatic
extraction of paraphrases that are lexically or syn-
tactically divergent; however, none are exactly
suited for our proposed dataset. Bunescu and
Mooney (2007) use named entity pairs as anchors
for diverse expressions of semantic relations, e.g.
Pfizer buys Rinat, Pfizer paid several hundred mil-
lion dollars for Rinat, Pfizer Expands With Acqui-
sition of Rinat. We do not wish to use named en-
tity anchors and this format limits the dataset to bi-
nary relations. Xu et al. (2014) use multi-instance
learning to jointly model word and sentence relat-
edness in Twitter data, but require a large corpus of
crowdsourced sentence similarity judgements. We
do not want to invest in large numbers of sentence-
level judgements when it is not certain how many
word alignments involving event nouns could be
subsequently learned.

Instead, we choose to capitalize on the fact that
event nouns can co-refer with verbal descriptions
of events, either anaphorically (backwards refer-
ring) or cataphorically (forwards referring). An
example would be The two countries fought sav-
agely over their borders. The war lasted for years.
Identifying such pairs falls within the task of event
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coreference resolution (Bagga and Baldwin, 1999;
Chen and Ji, 2009; Bejan and Harabagiu, 2014),
but focuses on cases where one event mention is
a noun. Moreover, we do not care about opti-
mal clusterings of event mentions, but rather a set
of candidates for related nouns and verbs, which
can be manually filtered to create the dataset. For
our pilot, we used a simple supervised method to
identify event nouns, following Bel et al. (2010),
and investigated the adjacent sentences for co-
referring verbs.

3.1 Event Nouns
Our goal was a wide variety of event nouns cov-
ering various topics. We began with a small seed
set of 73 positives (event nouns) and 94 negatives
(non-event nouns), manually curated by Bel et al.
(2010). We expanded the seed set using FrameNet
(Fillmore and Baker, 2010), labeling nouns be-
longing to the activity or process classes as pos-
itive, and nouns belonging to the entity or locale
classes as negative. This combination resulted in
1028 seed nouns, half positive and half negative
(after downsampling the negatives).

We then bootstrapped additional nouns using
the NYT portion of the Gigaword Corpus (Graff
et al., 2005) by training an SVM on our seed set,
using 126 syntactic features. This approach is sim-
ilar to that of Bel et al. (2010), who trained a deci-
sion tree classifier with a dozen features. We made
use of linguistic features previously found useful
for identifying non-deverbal event nouns (Resnik
and Bel, 2009; Bel et al., 2010), including the
ability to occur as the subject of aspectual verbs
(the ceremony lasted for an hour, the meal began
at 7:00) and the object of temporal prepositions
(during the war). The SVM achieved 78% accu-
racy using cross-validation on the seed set.

We used the SVM to classify 500 frequent
nouns from NYT Gigaword that were not in our
seed set. Of these, 286 were predicted as nega-
tive and 214 positive; we manually edited the pos-
itives down to 185. The resulting 699 positives
were used for corpus extraction, and the 800 neg-
atives will be used for confounders.

3.2 Corpus Extraction
After preprocessing NYT Gigaword, sentences
containing positive event nouns were extracted.
Expert annotators will see the extracted target sen-
tences in random order, and each target sentence
will be accompanied by its immediately preceding

and following sentences, which will be inspected
for co-referring verbs.

3.3 Two-Stage Annotation
Positive examples are still sparse among our can-
didate pairs. This leads us to propose a two-stage
annotation process where the initial candidates are
filtered by experts, after which the relatedness rat-
ings are obtained by crowdsourcing. The goal of
the first phase is for experts to choose phrase pairs
that exhibit lexical and syntactic divergence, and
appear to have moderate to high relatedness. The
experts also shorten full sentences to phrases of at
most 10 words.

Expert annotation can be a bottleneck for
dataset creation. However, in cases where the
source data is unbalanced, expert annotation can
actually increase the potential size of the dataset,
since funds are not wasted on crowdsourcing to
rule out a large number of negatives. As men-
tioned above, the initial expert filtering also en-
sures high quality examples despite the potentially
difficult concept of non-deverbal event nouns.

The authors have performed a short pilot of the
expert annotation stage. In a couple of hours we
produced approximately fifty positive examples,
suggesting that in less than a month of part-time
expert annotation we could produce a dataset of
a few thousand pairs (including confounders; see
Section 3.4) to proceed to crowdsourcing. The
annotation guidelines developed for this pilot are
shown in Figure 3. On a sample of the data we ob-
tained inter-annotator agreement of 0.89, reported
as 2P (A) − 1 for unbalanced data (Eugenio and
Glass, 2004). Table 1 provides a sample of phrase
pairs that the annotators considered moderately or
highly related.

3.4 Confounders
We propose two sets of confounders. The first set
consists of standard low-relatedness pairs, created
by shuffling related pairs, by pairing event nouns
with unrelated adjacent sentences (the unrelated
pairs from the expert annotation stage), and by
pairing phrases centered around non-event nouns
with adjacent sentences. Non-event noun phrases
can be extracted from the corpus using our neg-
atives list from (Bel et al., 2010), FrameNet, and
bootstrapping. The data passed along for crowd-
sourcing will consist of the positives from expert
annotation along with an equal number of con-
founders.
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• Target sentence Starg contains an event noun or noun phrase.
• Mark as a positive pair if Sprev or Snext contains a verb or verb phrase which is related in meaning

to the noun or noun phrase in Starg.
• Short phrases around the noun or verb can be considered in the relatedness decision.
• Noun phrase can include an adjectival or nominal modifier, or short PP, which identifies the

relevant sense (e.g. welfare program vs. TV program).
• Event noun must be the head of the noun phrase, e.g. earned income, not income tax.
• Verb phrase can include an object, other argument, or short PP, which identifies the relevant

sense (e.g. provide aid).
• The noun (phrase) and verb (phrase) must be topically similar, but do not need to be paraphrases

(e.g. disease/diagnosis, disease/donate organ, trial/convict are positives).
• Do not include antonymous related items, e.g. loss/win.
• Do not include cases where the noun and verb share a root, e.g. fight/fight, presumption/presume.
• Shorten the two sentences to phrases of maximum 10 words.

Figure 3: Annotation guidelines used for pilot expert annotation.

the comfort of a KLM flight from Belfast they returned to their home in Northern Ireland
the peso crisis erupted Mexican stocks slipped
he heads an outreach program he works with refugees
starting a workout program walk at a medium pace for an hour
we have won this war vowing to fight to the death
passengers in New York have no choice passengers can decide whether to avoid Kennedy
the political battle underlined the role that set-
tlements play

Cabinet members argued that construction
projects might be in jeopardy

enjoy a sound meal nibble on snacks
Clinton gave a speech the White House announced its members
the son died of heart disease donate an organ for a family
a first-round playoff loss win one last Super Bowl

Table 1: Sample candidates for highly and moderately related phrase pairs as judged by the authors, from
pilot annotation. The counterpart noun and verb, with modifiers when relevant, are in bold.

The second proposed set of confounders is
aimed at evaluating whether CDS models can dis-
tinguish between relatedness and similarity with
regard to event descriptions. Here, we choose
phrases centered around a common argument of
a verb, but where the phrase does not describe
the same event. For example, the two countries
fought savagely might be paired with many sol-
diers required training, rather than the war lasted
for years; or we ate at a new restaurant might be
paired with the art of making pizza, rather than the
meal was delicious. We conceive this as an alter-
native subset of the data, where the task is to as-
sign a lower score to the phrases containing a non-
event noun, a much harder task than simple relat-
edness. This task is a proxy for downstream appli-
cations such as event sequencing, narrative gener-
ation, and summarization, where it is necessary to
identify when multiple phrases describe the same

event. We emphasize that this confounder set is
speculative; we expect that its development will be
complex and will introduce interesting problems
which will undoubtedly result in modifications to
the approach as we work with the data.

4 Conclusion
SLEDDED is a targeted dataset of event descrip-
tions which focuses on semantic relatedness un-
der lexical and syntactic divergence. Although
SLEDDED is aimed primarily at CDS, it would
also be suitable for evaluating representations used
for tasks such as Recognizing Textual Entailment
(RTE) or Machine Translation (MT). We believe
phrase relatedness tasks have continued potential
for evaluating the next generation of vector space
representations, if they are carefully designed to
isolate the behavior of different representations
under specific linguistic conditions.
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Abstract 

Word embedding vectors are used as input for 

a variety of tasks. Choosing the right model 

and features for producing such vectors is not 

a trivial task and different embedding methods 

can greatly affect results. In this paper we re-

purpose the "Pyramid Method" annotations 

used for evaluating automatic summarization 

to create a benchmark for comparing embed-

ding models when identifying paraphrases of 

text snippets containing a single clause. We 

present a method of converting pyramid anno-

tation files into two distinct sentence embed-

ding tests. We show that our method can pro-

duce a good amount of testing data, analyze 

the quality of the testing data, perform test on 

several leading embedding methods, and final-

ly explain the downstream usages of our task 

and its significance.  

1 Introduction 

Word vector embeddings [Mikolov et al. 2013] 

have become a standard building block for NLP 

applications. By representing words using con-

tinuous multi-dimensional vectors, applications 

take advantage of the natural associations among 

words to improve task performance.  For exam-

ple, POS tagging [Al Rfou et al. 2014], NER 

[Passos et al. 2014], parsing [Bansal et al. 2014], 

Semantic Role Labeling [Herman et al. 2014] or 

sentiment analysis [Socher et al. 2011] - have all 

been shown to benefit from word embeddings, 

either as additional features in existing super-

vised machine learning architectures, or as ex-

clusive word representation features.  In deep 

learning applications, word embeddings are typi-

cally used as pre-trained initial layers in deep 

architectures, and have been shown to improve 

performance on a wide range of tasks as well 

(see for example, [Cho et al., 2014; Karpathy 

and Fei-Fei 2015; Erhan et al,. 2010]). 

One of the key benefits of word embeddings is 

that they can bring to tasks with small annotated 

datasets and small observed vocabulary, the ca-

pacity to generalize to large vocabularies and to 

smoothly handle unseen words, trained on mas-

sive scale datasets in an unsupervised manner. 

Training word embedding models is still an art 

with various embedding algorithms possible and 

many parameters that can greatly affect the re-

sults of each algorithm.  It remains difficult to 

predict which word embeddings are most appro-

priate to a given task, whether fine tuning of the 

embeddings is required, and which parameters 

perform best for a given application. 

We introduce a novel dataset for comparing em-

bedding algorithms and their settings on the spe-

cific task of comparing short clauses. The current 

state-of-the-art paraphrase dataset [Dolan and 

Brockett, 2005] is quite small with 4,076 sen-

tence pairs (2,753 positive). The Stanford Natu-

ral Language Inference (SNLI) (Bowman et al., 

2015) corpus contains 570k sentences pairs la-

beled with one of the tags: entailment, contradic-

tion, and neutral. SNLI improves on previous 

paraphrase datasets by eliminating indeterminacy 
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of event and entity coreference which make hu-

man entailment judgment difficult. Such inde-

terminacies are avoided by eliciting descriptions 

of the same images by different annotators. 

We repurpose manually created data sets from 

automatic summarization to create a new para-

phrase dataset with 197,619 pairs (8,390 positive 

and challenging distractors in the negative pairs). 

Like SNLI, our dataset avoids semantic indeter-

minacy because the texts are generated from the 

same news reports – we thus obtain definite en-

tailment judgments but in the richer domain of 

news report as opposed to image descriptions.  

The propositions in our dataset are on average 

12.1 words long (as opposed to about 8 words for 

the SNLI hypotheses). 

In addition to paraphrase, our dataset captures a 

notion of centrality - the clause elements cap-

tured are Summary Content Units (SCU) which 

are typically shorter than full sentences and in-

tended to capture proposition-level facts. As 

such, the new dataset is relevant for exercising 

the large family of "Sequence to Sequence" 

(seq2seq) tasks involving the generation of short 

text clauses [Sutskever et al. 2014]. 

The paper is structured as follows: §2 describes 

the pyramid method; §3 describes the process for 

generating a paraphrase dataset from a pyramid 

dataset; in §4, we evaluate a number of algo-

rithms on the new benchmark and in §5, we ex-

plain the importance of the task. 

2 The Pyramid Method 

The Pyramid Method (Nenkova and Passonneau, 

2004) is a summarization evaluation scheme de-

signed to achieve consistent score while taking 

into account human variation in content selection 

and formulation. This evaluation method is man-

ual and can be applied to both manual and auto-

matic summarization. It has been included as a 

main evaluation technique in all DUC datasets 

since 2005 (Passonneau et al., 2006).  

In order to use the method, a pyramid file must 

first be created manually (Fig. 1): 

 Create a set of model (gold) summaries  

 Divide each summary into Summary Content 

Units (SCUs) – SCUs are key facts extracted 

from the manual summarizations, they are no 

longer than a single clause   

 A pyramid file is created where each SCU is 

given a score by the number of summaries in 

which it is mentioned (i.e., SCUs mentioned 

in 3 summaries will obtain a score of 3) 

After the pyramid is created, it can be used to 

evaluate a new summary: 

 Find all the SCUs in the summary 

 Sum the score of all the found SCUs and di-

vide it by the maximum score that the same 

amount of SCUs can achieve 

SCUs are extracted from different source sum-

maries, written by different authors.  When 

counting the number of occurrences of an SCU, 

annotators effectively create clusters of text 

snippets that are judged semantically equivalent 

in the context of the source summaries.  SCUs 

actually refer to clusters of text fragments from 

the summaries and a label written by the pyramid 

annotator describing the meaning of the SCU. 

In our evaluation, we divert the pyramid file 

from its original intention of summarization 

evaluation, and propose to use it as a proposition 

paraphrase dataset. 

3 Repurposing Pyramid Annotations 

We define two types of tests that can be pro-

duced from a pyramid file: a binary decision test 

and a ranking test. For the binary decision test, 

we collect pairs of different SCUs from manual 

summaries and the label given to the SCU by 

annotators. The binary decision consists of de-

ciding whether the pair is taken from the same 

SCU. In order to make the test challenging and 

Model 
Summaries 

SCUs (Summariza-
tion Content Units) 
extracted 

SCUs are weighted 
by the number of 
summaries they 
appear in 

Create pyramid 

W=3 
W=2 

W=1 

Figure 1: Pyramid Method Illustration 
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still achievable, we add the following constraints 

on pair selection: 

 Both items must contain at least 3 words; 

 For non-paraphrase pairs, both items must 

match on more than 3 words; 

 Both items must not include any pronouns; 

 The pair must be lexically varied (at least 

one content word must be different across 

the items) 

Non-paraphrase pair: ‘Coun-

tries worldwide sent Equipment’, 

‘Countries worldwide sent Relief 

Workers’ 

Paraphrase pair: ‘countries 

worldwide sent money equip-

ment’, ‘rescue equipment poured 

in from around the world’ 

Figure 2: Binary test pairs example 

For the ranking test, we generate a set of multiple 

choice questions by taking as a question an SCU 

appearance in the text and the correct answer is 

another appearance of the same SCU in the test. 

To create synthetic distractors, we use the 3 most 

lexically similar text segments from distinct 

SCUs: 

Morris Dees co-founded the SPLC: 

1. Morris Dees was co-founder of the Southern Poverty Law 

Center (SPLC) in 1971 and has served as its Chief Trial 

Counsel and Executive Director 

2. Dees and the SPLC seek to destroy hate groups through multi-

million dollar civil suits that go after assets of groups and their 

leaders 

3. Dees and the SPLC have fought to break the organizations by 

legal action resulting in severe financial penalties 

4. The SPLC participates in tracking down hate groups and publi-

cizing their activities in its Intelligence Report 

Figure 3: Ranking test example question 

Using DUC-2007, 2006 and 2005 pyramid files 

(all contain news stories), we created 8,755 ques-

tions for the ranking test and for the binary test 

we generated 8,390 positive pairs, 189,229 nega-

tive pairs for a total 197,619 pairs. The proposi-

tions in the dataset contain 95,286 words (6,882 

unique). 

4 Baseline Embeddings Evaluation 

In order to verify that this task indeed  

is sensitive to differences in word embeddings, 

we evaluated 8 different word embeddings on the 

task as a baseline: Random, None (One-Hot em-

bedding), word2vec (Mikolov et al., 2013) 

trained on Google News and two models trained 

on Wikipedia with different window sizes (Levy 

and Goldberg 2014), word2vec trained with 

Wikipedia dependencies (Levy and Goldberg 

2014), GloVe (Pennington et al., 2014) and Open 

IE based embeddings (Stanovsky et al., 2015). 

For all of the embeddings, we measured sentence 

similarity as the cosine similarity1 of the normal-

ized sum of all the words in the sentences.  

For the binary decision test, we evaluated the 

embedding by finding a threshold for answering 

where a pair is a paraphrase that maximizes the 

F-measure (trained over 10% the dataset and 

tested on the rest) of the embedding decision. For 

the rank test, we computed the percentage of 

questions where the correct answer achieved the 

highest similarity score and the MRR measure 

(Craswell, 2009).  

Results are summarized in Table 1. 

 Binary Test  

(F-measure)  

Ranking Test  

(Success Rate) 

Ranking Test 

(Mean reciprocal 

rank) 

Random-

Baseline 

0.04059 24.662% 0.52223 

One-Hot 0.26324 63.973% 0.77202 

word2vec-BOW 

(google-news) 

0.42337 66.960% 0.78933 

word2vec-

BOW2 (Wikipe-

dia) 

0.39450 61.684% 0.75274 

word2vec-

BOW5 (Wikipe-

dia) 

0.40387 62.886% 0.76292 

word2vec-Dep 0.39097 60.025% 0.74003 

GloVe 0.37870 63.000% 0.76389 

Open IE 

Embedding 

0.42516 65.667% 0.77847 

Table 1: Different embedding performance on binary and 

ranking tests.  

The OpenIE Embedding model scored the high-

est for the binary test (0.42 F). Word2vec model 

trained on google news achieved the best success 

rate in the ranking test (precision@1 of 66.9%), 

                                                 

1 Using spaCy for tokenization 
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significantly better than the word2vec model 

trained on Wikipedia (62.8%). MRR for ranking 

was dominated by word2vec with 0.41. 

5 Task Significance  

The task of identifying paraphrases specifically 

extracted from pyramids can aid NLP sub-fields 

such as:  

 Automatic Summarization: Identifying 

paraphrases can both help identifying sa-

lient information in multi-document 

summarization and evaluation by recre-

ating pyramid files and applying them on 

automatic summaries; 

 Textual Entailment: Paraphrases are bi-

directional entailments;  

 Sentence Simplification: SCUs capture 

the central elements of meaning in ob-

servable long sentences.   

 Expansion of Annotated Datasets: 

Given an annotated dataset (e.g., aligned 

translations), unannotated sentences 

could be annotated the same as their par-

aphrases  

6 Conclusion 

   We presented a method of using pyramid files 

to generate paraphrase detection tasks. The sug-

gested task has proven challenging for the tested 

methods, as indicated by the relatively low F-

measures reported in Table 1 on most models. 

Our method can be applied on any pyramid an-

notated dataset so the reported numbers could 

increase by using other datasets such as TAC 

2008, 2009, 2010, 2011 and 20142. We believe 

that the improvement that this task can provide to 

downstream applications is a good incentive for 

further research.   

                                                 

2 http://www.nist.gov/tac/tracks/index.html 
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