
ACL 2016

The 54th Annual Meeting of the
Association for Computational Linguistics

Proceedings of the 7th Workshop on Cognitive Aspects of
Computational Language Learning

August 11, 2016
Berlin, Germany



c©2016 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-945626-07-4

ii



Introduction

The 7th Workshop on Cognitive Aspects of Computational Language Learning (CogACLL) took place
on August 11, 2016 in Berlin, Germany, in conjunction with the ACL 2016. The workshop was endorsed
by ACL Special Interest Group on Natural Language Learning (SIGNLL). This is the seventh edition
of related workshops first held with ACL 2007, EACL 2009, 2012 and 2014, EMNLP 2015, and as a
standalone event in 2013.

The workshop is targeted at anyone interested in the relevance of computational techniques for
understanding first, second and bilingual language acquisition and change or loss in normal and
pathological conditions.

The human ability to acquire and process language has long attracted interest and generated much debate
due to the apparent ease with which such a complex and dynamic system is learnt and used on the face
of ambiguity, noise and uncertainty. This subject raises many questions ranging from the nature vs.
nurture debate of how much needs to be innate and how much needs to be learned for acquisition to be
successful, to the mechanisms involved in this process (general vs specific) and their representations in
the human brain. There are also developmental issues related to the different stages consistently found
during acquisition (e.g. one word vs. two words) and possible organizations of this knowledge. These
have been discussed in the context of first and second language acquisition and bilingualism, with cross
linguistic studies shedding light on the influence of the language and the environment.

The past decades have seen a massive expansion in the application of statistical and machine learning
methods to natural language processing (NLP). This work has yielded impressive results in numerous
speech and language processing tasks, including e.g. speech recognition, morphological analysis,
parsing, lexical acquisition, semantic interpretation, and dialogue management. The good results have
generally been viewed as engineering achievements. However, researchers have also investigated the
relevance of computational learning methods for research on human language acquisition and change.
The use of computational modeling has been boosted by advances in machine learning techniques,
and the availability of resources like corpora of child and child-directed sentences, and data from
psycholinguistic tasks by normal and pathological groups. Many of the existing computational models
attempt to study language tasks under cognitively plausible criteria (such as memory and processing
limitations that humans face), and to explain the developmental stages observed in the acquisition
and evolution of the language abilities. In doing so, computational modeling provides insight into
the plausible mechanisms involved in human language processes, and inspires the development of
better language models and techniques. These investigations are very important since if computational
techniques can be used to improve our understanding of human language acquisition and change, these
will not only benefit cognitive sciences in general but will reflect back to NLP and place us in a better
position to develop useful language models.

We invited submissions on relevant topics, including:

• Computational learning theory and analysis of language learning and organization

• Computational models of first, second and bilingual language acquisition

• Computational models of language changes in clinical conditions

• Computational models and analysis of factors that influence language acquisition and use in
different age groups and cultures

• Computational models of various aspects of language and their interaction effect in acquisition,
processing and change
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• Computational models of the evolution of language

• Data resources and tools for investigating computational models of human language processes

• Empirical and theoretical comparisons of the learning environment and its impact on language
processes

• Cognitively oriented Bayesian models of language processes

• Computational methods for acquiring various linguistic information (related to e.g. speech,
morphology, lexicon, syntax, semantics, and discourse) and their relevance to research on human
language acquisition

• Investigations and comparisons of supervised, unsupervised and weakly-supervised methods for
learning (e.g. machine learning, statistical, symbolic, biologically-inspired, active learning,
various hybrid models) from a cognitive perspective.
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Abstract

We present a study about automated dis-
course analysis of oral narrative language
in adolescents with autistic spectrum dis-
order (ASD). The basis of this evaluation
is an existing dataset of fictional narra-
tions of individuals with ASD and two
matched comparison groups. We use three
robust measures for quantifying differ-
ent aspects of text cohesion on this cor-
pus. These measures and several combi-
nations of them correlate strongly with hu-
man cohesion annotations. Our evaluation
will show which of these also distinguish
the ASD group from the two comparison
groups, which do not, and which differ-
ences are related to language competence
rather than to factors specific to ASD.

1 Introduction

Language is, in many ways, a window to the mind.
Written or spoken utterances convey much more
than their content – they also provide information
about the person who is writing or speaking the
respective words. The research field of computa-
tional stylometry is concerned with the analysis of
(written or transcribed) text and how it reveals in-
formation about the person who has produced this
(see Daelemans (2013) for an overview). Typi-
cal applications, often with a focus on frequently
updated websites and social media, are automated
authorship attribution, gender distinction or foren-
sic purposes.

A growing and very interesting subfield of com-
putational stylometry is the detection of idiosyn-
cratic language which may be found in individu-
als who have cognitive, affective or developmental
disorders: while standard stylometry uses mostly
focus on the pure identification of certain users or

user groups, often with hardly interpretable fea-
tures (like function word use), diagnostic analy-
sis has the additional goal of making sense out of
the actual features. The hope here is to gain more
insight into the underlying disorder by analysing
how it affects language. Additionally, there are
also systems that automatically can identify or pre-
dict the onset of the condition in question.

Our focus is on the diagnostic analysis of oral
narratives produced by adolescents with autistic
spectrum disorder (ASD). ASD is a neurodevel-
opmental disorder characterised by impairment
in social communication and restricted, repetitive
and stereotyped patterns of behaviour (American
Psychiatric Association, 2013). Although the so-
cial and communication difficulties of individuals
with ASD have been well documented, little is
known about narrative language in this population:
whilst there has been a great deal of research on
ASD by psychologists and neurologists, there are
not many corpus analyses to support assumptions
on language development and ASD. We are partic-
ularly interested in discourse cohesion, with cohe-
sion being defined as the way in which devices are
used to link together sentences, clauses and propo-
sitions. This includes the sequencing of and transi-
tions between each event in a narrative. Although
the production of a cohesive narrative is reported
to be challenging for individuals with ASD, there
is only limited work on systematic corpus analy-
ses, mainly due to the lack suitable datasets.

Our work is based on a recently published
dataset of fictional narratives told by young people
with ASD (King et al., 2014). We expressly do not
aim to just automatically identify stories from an
ASD group, because that would be easily accom-
plished using crude features like story length. Our
goal is instead to find meaningful cohesion-related
features that distinguish the language of individu-
als wth ASD.
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Our contribution is threefold: First, we present
robust measures that allow the automated assess-
ment of cohesion in short texts, and introduce
skewness as a new measure for coreference chains.
Second, we show which features of the text co-
hesion we measure are ASD-specific according to
our data, and which are related to language com-
petence. Lastly, we also show the correlation of
our measures with human judgments of story co-
hesion.

2 Related Work

Many automated approaches to diagnostic anal-
ysis detect Alzheimer’s and related forms of de-
mentia: there are extensive studies on the specific
language changes in people that develop dementia
(Hirst and Wei Feng, 2012; Le et al., 2011), show-
ing how the syntactic complexity of sentences de-
clines with the disease’s progress. Some classi-
fiers are capable of automated diagnosis from con-
tinuous speech (Baldas et al., 2011), and, addi-
tionally, the “Nun study” resulted in a system that
can predict whether or not an individual will de-
velop Alzheimer’s decades before the actual onset
of cognitive decline (Riley et al., 2005).

Other systems recognize spontaneous speech by
individuals with more general mild cognitive im-
pairments, for adults (Roark et al., 2011) and also
for children (Gabani et al., 2009). Hong et al.
(2012) present an unusual study on the language
of adult patients with schizophrenia.

Previous research on narratives of children with
ASD has reported difficulties with both struc-
tural and evaluative language. Individuals with
ASD struggle with expressing sentiment and make
fewer references to mental states than their typi-
cally developing peers (Capps et al., 2000; Tager-
Flusberg, 1996). However, other experiments
show that, when carefully matched with compar-
ison groups on cognitive and language ability,
many of these differences are not evident.

More basic problems emanate from a general
lower syntactic complexity (Tager-Flusberg and
Sullivan, 1995) and difficulties in producing a co-
herent narrative. Karmiloff-Smith (1985) argues
that the production of a coherent narrative is de-
pendent on the integration of knowledge of both
coherence and cohesion; coherence being defined
as the structure of a story and cohesion as the
devices used to link together sentences, clauses
and propositions, thereby maintaining a common

theme. Loveland and Tunali (1993) found that in-
dividuals with autism were less likely to tell a story
as a coherent sequence and more likely to produce
narratives that included bizarre, unrelated or inap-
propriate material. Diehl et al. (2006) also report
that narratives produced by individuals with ASD
were significantly less coherent than those of a
comparison group. However, Tager-Flusberg and
Sullivan (1995) found no significant differences in
the use of lexical cohesion devices between three
groups of children with autism, learning disabili-
ties and typically developing, matched on verbal
mental age.

Some of these language difficulties have been
subject to automated analysis: Prud’hommeaux et
al. (2011) analyzed data of very young children
(6-7 years old). They built an automated classifier
that distinguished sentences uttered by children
with ASD from sentences of two control groups
(one with children with a language-impairment,
one with typically developing children). The au-
thors themselves note some drawbacks of their un-
derlying dataset, in particular that some children in
the ASD group were also classified as language-
impaired. In consequence, a clear distinction be-
tween these groups was impossible.

In two follow-up studies (Rouhizadeh et al.,
2013; Rouhizadeh et al., 2015), the authors anal-
ysed whole narratives (retellings) told by children
(mean age 6.4) with ASD compared to a typi-
cally developing control group (with the same av-
erage age and IQ). As discourse-related measures,
they use the tf-idf measure (Luhn, 1957) and sev-
eral measures of text similarity to identify idiosyn-
cratic words and topics. The texts from the control
group and some crowdsourced retellings from typ-
ically developing adults served as a basis for deter-
mining unusualness.

Regneri and King (2015) present a study on
a much larger dataset with non-fictional stories
about everyday scenarios (like having a birthday
or being angry). Next to several shallow language
features, they also evaluate tf-idf and show that
this is actually more closely related to language
competence than to ASD. However, they do not
evaluate any other discourse-related features.

For our study, we use a dataset with fictional
stories, and take the discourse-level investigation
a step further: we present different measures of
text cohesion, which quantify some actually ASD-
specific difficulties with narrative.
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FOREST

Group ASD Lang. Age All

Cohesion 1.79 2.93 2.76 2.00
Sent. / Story 7.64 9.07 10.10 8.86
Words / Sent. 10.46 12.19 11.37 11.40

MOUNTAIN

Group ASD Lang. Age All

Cohesion 2.21 2.96 3.04 2.49
Sent. / Story 10.00 9.90 12.39 10.62
Words / Sent. 10.59 10.57 10.98 10.71

ALL STORIES

Group ASD Lang. Age All

Cohesion 2.00 2.95 2.90 2.24
Sent. / Story 8.88 9.49 11.24 9.76
Words / Sent. 10.54 11.33 11.15 11.01

Table 1: Manually assigned cohesion scores, aver-
age story and sentence lengths for the corpus.

3 Data

We base our analysis on a dataset collected by
King et al. (2014), which we describe in more de-
tail in the following. The corpus contains tran-
scripts of fictional stories constructed by the chil-
dren after one of two different prompts. Appendix
A shows some examples from the story collection.
King et al. also report extensive manual annotation
of the narratives, parts of which we will use as a
gold standard for our automated experiments.

3.1 Data collection

The participants were divided in three groups: 27
high functioning adolescents with ASD aged 11
to 14 years, one comparison group of 27 adoles-
cents matched with the ASD group on chronolog-
ical age and nonverbal ability, and a second com-
parison group of 27 children and adolescents aged
between 7 and 14 years, who were individually
matched with the ASD group on a measure of ex-
pressive language (Recalling Sentences subtest of
the CELF IV (Semel et al., 2006)) and on non-
verbal ability. All groups had average scores on
non-verbal and verbal measures, as measured by
the Matrices test of the BAS II (Elliot et al., 1996)
and the BPVS II (Dunn and Dunn, 1997). There
were no significant differences between the groups

in measures of non-verbal ability, verbal ability or
expressive language. The average age difference
between the language-matched control group and
the two other groups is 17 months.

Participants in all three groups were presented
with two story stems and asked to continue the nar-
rative. Each story stem was accompanied with a
picture illustrating each prompt. The development
of these materials was based on the work of Stein
and Albro (1997), but adapted to be more suitable
for the age group of this study. To prevent order ef-
fects, the presentation of the story stems was coun-
terbalanced. After one practice story, each partici-
pant completed the following two story stems:

1. The “forest” story:

The boy ran into the forest. He
looked ahead of him and saw a lit-
tle green man in a spaceship.

2. The “mountain” story:

When the girl climbed up the
mountain, she saw, hidden among
the trees, a little wooden house
covered in snow.

Overall, there were 54 stories per group, totaling
162 stories in the corpus. This corpus is partic-
ularly well suited to analyse difficulties with co-
hesion because it contains texts that were freely
invented, without any structural guidance. More-
over, the inclusion of the language-matched and
the age-matched control groups enables us to dis-
tinguish language development issues from ASD-
specific difficulties.

3.2 Corpus annotations and statistics
The stories were recorded, transcribed and manu-
ally coded and scored according to the Narrative
Scoring Scheme (Stein and Albro, 1997, NSS).
The NSS rates stories on a 0-5 scale in several
categories: introduction, character development,
mental states, referencing, conflict/resolution, co-
hesion and conclusion. To ensure the reliability
of the coding, 10% of the narratives (16) were
also coded by an independent researcher. Inter-
reliability was found to be high (0.87).

Because we are specifically interested in dis-
course structure, the NSS annotations for cohesion
will serve as a gold standard for our own evalua-
tion (cf. Section 5.2). We show these ratings along
with some basic corpus figures in Table 1:
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Cohesion refers to the manual cohesion annota-
tions, Sent. / Story is the average number of utter-
ances per story, and Words / Sent. quantifies the
average number of words per sentence.

The ASD group has significantly lower cohe-
sion scores than the two comparison groups (Lang.
for the group matched by language competence,
Age for the controls matched by chronological
age). Between the two groups with neurotypical
participants, there is no significant difference. The
mountain story prompt resulted in longer, more
cohesive stories, consisting of shorter sentences.
This difference is particularly clear for the ASD
group and the age-matched controls.

4 Measures for Story Cohesion

In a preprocessing step, we apply the coreference
resolution module of Stanford CoreNLP (Manning
et al., 2014) to the whole corpus. On this basis, we
compute three coreference-related measures: the
proportion of sentences with anaphoric references,
the average length of coreference chains (normal-
ized by story length) and Skewness, a measure we
derive from statistics and apply to clusterings.

4.1 Sentences with anaphoric references
As a simple measure for cohesion in a text t, we
define anaphors(t) as the proportion of sentences
that contain at least one anaphoric reference (with
sentences(t) being the set of sentences in t):

anaphors(t) =
|(sentences w. anaphors in t)|

|sentences(t)|
4.2 Average length of coreference chains
The average length of coreference chains in a text
is a common indicator for cohesion (the longer
the chains, the stronger the cohesion). Computing
this as an absolute number will also directly mea-
sure the average text length, which is always lower
for the ASD group. In order to isolate the cohe-
sion part, we divide the average coreference chain
length by the number of sentences in the text. We
compute chain length(t) of a text t as follows
(with Ct as the set of all coreference chains in t):

chain length(t) =

∑
c∈Ct

length(C)

|Ct| ∗ |sentences(t)|
The average chain length for the same story will
be higher if there are fewer coreference sets (and
thus fewer characters and objects).

4.3 Skewness of coreference chains

As a third coherence measure, we introduce the
notion of Skewness for coreference chains. Skew-
ness is originally a measure for probability distri-
butions, indicating (the lack of) uniformity.

We interpret this score as a geometric measure
for a set partition: for mentions in different coref-
erence chains, this measure shows whether the
narrator has the tendency to devote equally long
story parts to all participants (resembling a uni-
form distribution) or whether he or she focuses
more on a few main characters or objects, with
some supporting entities which are less frequently
mentioned (skewed distribution). We thus inter-
pret the distribution of mentions as a probability
distribution Pr over a random variable x, with
each value xi in X corresponding to a coreference
chain ci in C(t), and Pr(X = xi) being the num-
ber of mentions in ci divided by the overall number
of mentions. skewness(t) is computed as follows
(with E being the expectation operator, µ the mean
of the distribution X , σ the standard deviation):

skewness(t) = abs

(
E

[(
X − µ
σ

)3
])

Skewness originally does not only indicate the
strength, but also the direction using negative or
positive values. Because we are only interested in
the overall asymmetry of the coreference chains,
we only note the absolute value of the result. Ac-
cording to Bulmer (1979), a result with an abso-
lute value greater than 1 is considered to indicate
strong skewness.

4.4 Measure combinations

In the final evaluation, we also use pairwise mea-
sure combinations, and the combination of all
three together. Combining here means that we first
make the measures comparable, and then average
the results. To arrive at meaningful scores, we pro-
cess the chain length and skewness as follows:

• The coreference chain length correlates
negatively with human judgements (cf. Table
3), so we combine a “negative chain length”
(1− chain length) with the respective other
measure.

• Skewness is normalized to a value between 0
and 1 before combination to match the value
span of the other two measures.
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Bob loves Alice. 
He also has a cat.
The cat sleeps on Alice's chair. 
The chair is next to a table.
There is food on the table.
The food is cold.

Bob loves Alice. 
He also has a cat.
The cat sleeps on Alice's chair,
and Alice does not mind sharing it. 
Bob pets the sleepy cat, 
and later vacuums the chair.

Bob loves Alice. 
Alices lives with him.
She's very happy with Bob.
Bob cooks for her every night.
She kills spiders for him.
Bob will marry her really soon.

Randall is Bob's Cat.
He likes playing with 
Bob's fiancé, and spilling 
food over her.
Sometimes, Bob 
catches Randall before the 
cat can mess everything up.
Randall wins most of the
time, and is utterly delighted.

Bob loves Alice, and
his cat. Alice sometimes
steals his food and 
gives it to the cat.
Bob thinks this is really 
funny, he could never 
be angry with Alice.
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higher skewness, same average chain length

Cat Bob
Alice food

table

chair

Protagonists

Figure 1: Constructed examples illustrating chain length vs. skewness

To better illustrate the relationship of skew-
ness and chain length, Figure 1 shows examplary
(made-up) stories with coreference chains of dif-
ferent lengths and skewness. The left column
shows three stories with the same skewness (0),
but different average chain length (2, 4 and 6,
top to bottom, without normalization). An inverse
case is sketched in the middle row: the chains all
have the same average chain length (4), but differ-
ent skewness (0,1.2 and1.4 respectively). Despite
the equally trivial plots, the stories with 4 or more
characters appear more readable when their coref-
erence clusters are more skewed.

5 Experiments

In the following, we first compare the ASD group
with the two control groups using our cohesion
measures and their combinations (Section 5.1).

In a second step, we show the correlation of our
measures with human coherence annotations re-
ported by King et al. (2014) (Section 5.2).

5.1 Comparison of the three groups
The computed results for all measures and their
combination is shown in Table 2.

Viewed in isolation, only the number of sen-
tences with anaphors distinguishes the ASD group
from the two control groups. While the (normal-
ized) average coreference chain length is equal for
all groups, skewness seems to be a matter of lan-
guage competence rather than exposing anomalies
from the ASD group. However, the picture is not
entirely clear: when just considering the ”forest”
stories, we see a tendency for the ASD group to
have less skewed coreference chains.

The combination of anaphoric references plus
the average chain length distinguishes the ASD

group most clearly, showing no difference be-
tween the two neurotypical groups (even though
they differ in general language competence). The
same pattern is evident in the expert annotation
with NSS scores: there is no difference between
the control groups, but the stories from the ASD
group are rated significantly as less cohesive.

All other combinations distinguish all three
groups from each other, which means that the dif-
ferences between the groups are related to both
ASD and language competence. For the combi-
nation of anaphoric references with skewness, our
data indicates that the group differences are more
strongly related to factors specific to ASD: the al-
pha level for the significance of the difference be-
tween the two control groups is lower than for the
remaining differences (p < 0.05, whereas all other
significance levels are at p < 0.01).

The remaining two feature combinations (chain
length with skewness, all three measures together)
also distinguish the ASD group from the compar-
ison groups, but (as expected) additionally bear
components of language competency.

5.2 Correlation with manual annotations

The results of our automated evaluation were
mixed with respect to ability to distinguish the
ASD group from the comparison groups. From
the isolated measures, only counting sentences
with anaphoric references shows results specific
for the ASD group. The combinations of differ-
ent cohesion components gives a clearer picture,
but only one combination shows the same pattern
observed for manual annotations: the neurotypical
groups are indistinguishable for the combination
of anaphors and chain length.

To understand better what contributes most to
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FOREST MOUNTAIN ALL STORIES

Measure ASD Lang Age ASD Lang Age ASD Lang Age

anaphors (an) 0.83 0.93 0.95 0.80 0.92 0.91 0.81 0.93 0.93*
chain length (cl) 0.56 0.52 0.55 0.47 0.47 0.44 0.51* 0.50 0.50*
skewness (skew) 0.79 0.91 1.04 0.95 0.97 1.22 0.90* 1.04 1.30*

an & cl 0.73 0.80 0.80 0.75 0.81 0.81 0.74 0.80 0.81*
an & skew 0.54 0.63 0.66 0.56 0.62 0.68 0.55 0.63 0.67
cl & skew 0.35 0.41 0.41 0.42 0.43 0.50 0.39 0.42 0.46

All Combined 0.57 0.64 0.66 0.61 0.65 0.69 0.59 0.65 0.67

NSS score 1.79 2.93 2.76 2.21 2.96 3.04 2.00 2.95 2.90

Table 2: Results of cohesion evaluation, along with the manually assigned cohesion scores. Significance
is measured for the group of all stories only. Emphasized values have no significant difference (p> 0.05)
to the ASD group, starred values ∗ have no significant difference to the language-matched group.

the cohesion perceptions of human experts, we
calculate the correlation of our measures with
the NSS scores assigned in our source dataset.
To measure correlation, we use Spearman’s rank
correlation coefficient (ρ), a non-parametric test
which is widely used for similar comparisons
of system ratings with manually assigned scores
(Mitchell and Lapata, 2008; Erk and McCarthy,
2009, among others). Spearman’s ρ compares how
similarly two measures rank the same set of sam-
ples (in our case, a sample is a story).

Table 3 shows the results. For the complete cor-
pus, all measures show significant correlations.

The best isolated measure is skewness (ρ =
0.44), which shows the highest correlation for the
mountain stories. However, combining skewness
with any of the other measures does not result in
a higher ρ value. A partial explanation lies in
the differences in story length: We did not nor-
malize skewness for story length, because ”skew-
ness per sentence” is not a meaningful measure.
However, skewness of coreference chains is intu-
itively a more distinguishing feature if the stories
are longer, simply because the possible skewness
values have a higher range when there are more
referring elements to distribute. In contrast, the
other measures seem to be less suitable for longer
texts, because skewness has the highest ρ values
on the mountain stories, which are, on average,
longer than the forest stories.

The average chain length has a significant neg-
ative correlation, i.e. cohesion is higher when the
chains are shorter on average. (For combinations,
we therefore use an inverted value, cf. Section 4).

Measure FOREST MOUNTAIN ALL

anaphors (an) 0.23 0.17 0.19
chain length (cl) -0.31 -0.22 -0.28
skewness (skew) 0.48 0.38 0.44

an & cl 0.55 0.36 0.46
an & skew 0.54 0.09 (ns) 0.31
cl & skew 0.47 0.13 (ns) 0.31

All Combined 0.57 0.21 0.40

Table 3: Correlation with manual evaluation (in
Spearman’s ρ). Values in italics are not significant
(p > 0.05), maxima are in boldface.

The number of anaphoric references displays
the lowest ρ-values (for the mountain sub-corpus,
the correlation is not significant). When combined
with coreference chain length, the fused measure
has the highest overall correlation (ρ = 0.46), so
these two features make different contributions to
the overall cohesion.

The combination of all three measures has the
second highest correlation with the manual anno-
tations, and the highest ρ for the forest prompt.

Overall, our automated measures correlate
strongly with the human annotations, but surpris-
ingly much more so for the forest stories compared
to the mountain stories. Skewness seems to be
a very good measure in general, but the number
of reference-bearing sentences combined with the
average chain length obviously contributes similar
information to the evaluation of short stories.
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6 Discussion

The measures we evaluated are all coreference-
based, quantifying different aspects of text cohe-
sion: the proportion of sentences with anaphoric
references reflects the sheer number of corefer-
ence links. The average coreference chain length
(normalized over story length) mainly measures
the number of protagonists and objects (cf. Fig-
ure 1). Skewness applied to coreference sets
shows whether the protagonists differ in impor-
tance within the story, i.e. whether there is a rec-
ognizable main character (or a few of them) next
to several supporting characters (or objects).

We succeeded in demonstrating that these mea-
sures strongly correlate with human assessment
of cohesion, and that some combinations of them
yield different results for the stories from the
ASD group compared to the control groups. In
particular, the measure combination that showed
the strongest correlation with human judgements
(chain length plus number of anaphoric refer-
ences) seems to be directly influenced by ASD,
and not just an indicator of general language com-
petence: there was no difference between the two
neurotypical control groups, but the score of the
ASD group differed significantly from both.

Skewness, which we used as a new measure
for quantifying the distribution of referring expres-
sions into coreference sets, shows the highest cor-
relation with human judgement as an isolated mea-
sure. However, skewness seems to work better
for longer stories, which is intuitively clear: the
possible variation of coreference set distribution is
higher if there are more anaphoric references, and
skewness becomes more distinguishing if the re-
sults show a higher variation.

Obviously, our measures cannot assess the
whole spectrum of discourse features: they do not
include any lexical features or semantic discourse
relations. While we tried to compute such indica-
tors, neither lexical chains nor discourse relations
lead to a meaningful evaluation on our dataset.
This is mostly due to the brevity of the stories,
but is also because the setup of oral narration does
not yield the discourse structure typically found in
written language. Analyses with deeper discourse
features would require a different dataset, which,
however, might be difficult to create.

The most important outcome of this analysis is
that an automatic evaluation of cohesion for di-
agnostic stylometry can be successfully used to

validate theoretical claims. We also took im-
portant steps towards identifying cohesion-based
measures to analyze unusual language traits in
adolescents with autistic spectrum disorder. Our
measures proved suitable for short stories, which
is important because the participants we focus on
have difficulties with producing longer texts. Fur-
ther, our approach is robust enough to assess co-
hesion in transcripts of spoken narrations, which
are more difficult to process with than written lan-
guage. Future work needs to show how our ideas
can be extended beyond this point, either with dif-
ferent measures, or with different datasets, or both.

7 Conclusion

We have presented an automatic evaluation show-
ing differences in stories narrated by adolescents
with autistic spectrum disorder in comparison with
two control groups. For this purpose, we presented
three robust measures applicable to the short story
transcripts, namely the proportion of sentences
with anaphors, the (normalized) average corefer-
ence chain length, and skewness as a new measure
related to coreference set clusterings.

We showed that skewness is the measure that
best correlates with manual cohesion annotation,
and that it seems to be more meaningful for longer
stories. Further we have shown that the combina-
tion of coreference chain length and the number
of sentences with anaphors is sufficient to assess
cohesion in shorter stories.

In future work, we would seek to find other
measures of cohesion which could help to assess
the difficulties of individuals with ASD compared
to neurotypical controls, possibly on a different
dataset with longer stories. Further, it would be in-
teresting to establish whether the features that we
found persist with age, and whether they are com-
parable to the effects reported for other disorders
and diseases such as dementia.

References
American Psychiatric Association. 2013. Diagnostic

and statistical manual of mental disorders: DSM-5.
APA, Washington, DC, 5th ed. edition.

Vassilis Baldas, Charalampos Lampiris, Christos Cap-
salis, and Dimitrios Koutsouris. 2011. Early Diag-
nosis of Alzheimer’s Type Dementia Using Contin-
uous Speech Recognition. In Lecture Notes of the
Institute for Computer Sciences, Social Informat-
ics and Telecommunications Engineering. Springer
Berlin Heidelberg.

7



M.G. Bulmer. 1979. Principles of Statistics. Dover
Books on Mathematics Series. Dover Publications.

Lisa Capps, Molly Losh, and Christopher Thurber.
2000. “The Frog Ate the Bug and Made his
Mouth Sad”: Narrative Competence in Children
with Autism. Journal of Abnormal Child Psychol-
ogy, 28(2).

Walter Daelemans. 2013. Explanation in computa-
tional stylometry. In Proc. of CICLing’13.

Joshua J. Diehl, Loisa Bennetto, and Edna Carter
Young. 2006. Story Recall and Narrative Coherence
of High-Functioning Children with Autism Spec-
trum Disorders. Journal of Abnormal Child Psy-
chology, 34(1).

Lloyd M. Dunn and Leota M. Dunn. 1997. The British
Picture Vocabulary Scale Second Edition (BPVS II).
Windsor Berkshire: NFER-NELSON Publication
Company.

Colin Elliot, Pauline Smith, and Kay McCullouch.
1996. The British Ability Scales II (BASII). Windsor
Berkshire: NFER-NELSON Publication Company.

Katrin Erk and Diana McCarthy. 2009. Graded word
sense assignment. In Proc. of EMNLP 2009.

Keyur Gabani, Melissa Sherman, Thamar Solorio,
Yang Liu, Lisa Bedore, and Elizabeth Peña. 2009.
A corpus-based approach for the prediction of
language impairment in monolingual english and
spanish-english bilingual children. In Proc. of
NAACL-HLT 2009.

Graeme Hirst and Vanessa Wei Feng. 2012. Changes
in style in authors with alzheimer’s disease. English
Studies, 93(3).

Kai Hong, Christian G. Kohler, Mary E. March, Am-
ber A. Parker, and Ani Nenkova. 2012. Lexi-
cal differences in autobiographical narratives from
schizophrenic patients and healthy controls. In
Proc. of EMNLP-CoNLL 2012.

Annette Karmiloff-Smith. 1985. Language and cog-
nitive processes from a developmental perspective.
Language and Cognitive Processes, 1(1).

Diane King, Julie Dockrell, and Morag Stuart. 2014.
Constructing fictional stories: a study of story nar-
ratives by children with autistic spectrum disorder.
Research in developmental disabilities, 35(10).

Xuan Le, Ian Lancashire, Graeme Hirst, and Regina
Jokel. 2011. Longitudinal detection of dementia
through lexical and syntactic changes in writing: a
case study of three british novelists. Literary and
Linguistic Computing, 26(4).

Katherine Loveland and Belgin Tunali. 1993. Nar-
rative language in autism and the theory of mind
hypothesis: a wider perspective. In Understanding
other minds: Perspectives from autism. Oxford Uni-
versity Press.

Hans Peter Luhn. 1957. A statistical approach to
mechanized encoding and searching of literary in-
formation. IBM J. Res. Dev., 1(4).

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Proc. of ACL 2014:
System Demonstrations.

Jeff Mitchell and Mirella Lapata. 2008. Vector-based
models of semantic composition. In Proc. of ACL
2008.

Emily T Prud’hommeaux, Brian Roark, Lois M Black,
and Jan van Santen. 2011. Classification of atypical
language in autism. ACL HLT 2011.

Michaela Regneri and Diane King. 2015. Automat-
ically evaluating atypical language in narratives by
children with autistic spectrum disorder. In Proc. of
NLPCS 2014.

Kathryn P. Riley, David A. Snowdon, Mark F.
Desrosiers, and William R. Markesbery. 2005.
Early life linguistic ability, late life cognitive func-
tion, and neuropathology: findings from the Nun
Study. Neurobiology of Aging, 26(3).

Brian Roark, Margaret Mitchell, J Hosom, Kristy
Hollingshead, and Jeffrey Kaye. 2011. Spoken lan-
guage derived measures for detecting mild cognitive
impairment. Audio, Speech, and Language Process-
ing, IEEE Transactions on, 19(7).

Masoud Rouhizadeh, Emily Prud’hommeaux, Brian
Roark, and Jan van Santen. 2013. Distributional se-
mantic models for the evaluation of disordered lan-
guage. In Proc. of NAACL-HLT 2013.

Masoud Rouhizadeh, Emily Prud’Hommeaux, Jan
Van Santen, and Richard Sproat. 2015. Measuring
idiosyncratic interests in children with autism. In
Proc. of ACL 2015.

Eleanor Semel, Elisabeth .H Wiig, and Wayne Secord.
2006. Clinical Evaluation of Language Fundamen-
tals (CELF-4 UK). Pearson Assessment, fourth edi-
tion uk edition.

Nancy L Stein and Elizabeth R Albro. 1997. Build-
ing complexity and coherence: Children’s use of of
goal-structured knowledge in telling stories. Narra-
tive development: Six approaches, page 5.

Helen Tager-Flusberg and Kate Sullivan. 1995. At-
tributing mental states to story characters: A com-
parison of narratives produced by autistic and men-
tally retarded individuals. Applied Psycholinguis-
tics, 16.

Helen Tager-Flusberg. 1996. Brief report: Current the-
ory and research on language and communication in
autism. Journal of Autism and Developmental Dis-
orders, 26(2).

8



Appendix A Corpus Examples

The following shows some examples from our
story corpus collected by King et al. (2014). For
each story stem (repeated below), we show 2 ex-
amples from the ASD group, and one from each
control group. For the sake of brevity, we do
not show the manual annotations from the original
corpus. Slashes (/) indicate utterance boundaries.

A.1 The Forest story
The boy ran into the forest. He looked ahead of
him and saw a little green man in a spaceship.

A.1.1 ASD
Example 1: the spaceship was quite small. / And
the alien was about the size of a small cat. / And it
was friendly. / but it didn’t really understand how
humans said hello. / So it thought, to say ’hello’
you had to vaporise the person in front of you. /
and then the boy ran away, shut his door and then
decided not to drink anymore whisky or beer.

Example 2: The green man had three eyes.
/ It had claws and fangs. / It looked at him and ran
into the spaceship. / Out came three more green
men carrying laser guns, dun dun dun.

A.1.2 Language-Matched Controls
He was shocked at first because he didn’t know
what it is. / So he walked up. / and he got
suck/ed in by a tractor beam. / and he found
himself in a UFO. / he was surround/ed by weird
looking creatures like aliens. / and they started
speaking like this unknown language to him. /
and he couldn’t understand a thing about them.
/ So he tried to escape. / he ran away. / but he
couldn’t cos—because wherever he went he was
surround/ed by aliens. / and they eventually cap-
ture/ed him and took him off to Mars. /

A.1.3 Age-Matched Controls
The little green man waved at him and yelled
at him to come and help him with his spaceship
which had crashed into the forest after he had lost
all his fuel. / The little boy went up to him and
said that he didn’t know what much he could do
because he’s obviously not very talented at fixing
alien space craft. / so he ran out of the forest went
to go get the nearest person he could see. / He
then brought him back to the spaceship where the
little green man was waiting. / and the man he’d
brought back was absolutely amazed. / he went up

to the little alien and started speaking with him. /
And then after a while he persuaded it to come out
of it’s spaceship. / and it went to meet the locals
who were very very amazed. / and then all the peo-
ple joined together. / and they pulled his spaceship
out of the mud. / and he flew back in it to mars.

A.2 The Mountain story
When the girl climbed up the mountain, she saw,
hidden among the trees, a little wooden house cov-
ered in snow.

A.2.1 ASD
Example 1: She went up to the mountain to see
the house. / She went inside and had a cup of tea.
/ After that she can’t get out because the snow
block/ed the door. / And the men came came in
and broke it. / but snow came again. / and then
she was stuck. / That’s it.

Example 2: the snow house was was a zombie.
/ and the zombie / he went up to the door. / and
the zombie scared him. / and the zombie went to
chase the girl. / and the girl ran away to to her
grandma that was climbing up the mountain. / and
she screamed and jumped off the mountain

A.2.2 Language-Matched Controls
She saw it was abandoned. / so she went down
to see what it was like. / She peeked inside the
window. / and inside there was a pixie . / and then
the pixie saw the girl and said ’go away from my
window’. / and then he threw a bowl of soup over
her. / the little girl went home and said: ’daddy
there was a pixie who threw some soup over me’. /
and then the dad said ’don’t be silly’. / stop telling
your little stories’.

A.2.3 Age-Matched Controls
She walked towards the house. / the house lit up.
/ lights switched on. / She knocked on the door. /
she was cold. / she asked if she could come in. /
There was a strange lady come to the door, pim-
ples and spots all over her, mouldy ugly hair and
very very small. / she went in. / the lady was actu-
ally a witch in disguise. / She grabbed the girl and
threw her into the oven. / her friend had also came
into the house five minutes later and seen her in
the oven. / She had pushed the witch over, got her
out and ran off. / they reported it all to the police. /
The police came up the next day. / The house was
not there.
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Abstract
Many studies have been made on the lan-
guage alterations that take place over the
course of Alzheimer’s disease (AD). As a
consequence, it is now admitted that it is
possible to discriminate between healthy
and ailing patients solely based on the
analysis of language production. Most of
these studies, however, were made on very
small samples—30 participants per study,
on an average—, or involved a great deal
of manual work in their analysis. In this
paper, we present an automatic analysis of
transcripts of elderly participants describ-
ing six common objects. We used part-
of-speech and lexical richness as linguistic
features to train an SVM classifier to au-
tomatically discriminate between healthy
and AD patients in the early and moder-
ate stages. The participants, in the corpus
used for this study, were 63 Spanish adults
over 55 years old (29 controls and 34
AD patients). With an accuracy of 88%,
our experimental results compare favor-
ably to those relying on the manual extrac-
tion of attributes, providing evidence that
the need for manual analysis can be over-
come without sacrificing in performance.

1 Introduction

As life expectancy increases, age-related disorders
increase as well, bringing great social, health and
economic challenges for governments and soci-
eties in general. Researchers across the world are
trying to find methods for detecting and treating
these disorders in effective, non-invasive and cost-
efficient ways.

AD affects one in ten adults over 65 years old
in the United States (Alzheimer’s Association,

2015). Interventions may be more effective in
the early stages of dementia. Nevertheless, it is
highly common, especially in low and middle in-
come countries, to diagnose AD several years af-
ter the disease begins, leading to a treatment gap
for early dementia sufferers (Alzheimer’s Disease
International, 2011). This gap could reduce the ef-
fectiveness of treatments, prolonging the patients’
state of reduced independence. Alzheimer’s Dis-
ease International (2015) identifies early diagnosis
and treatment as a means of attenuating care costs
and reducing this gap. Furthermore, an early diag-
nosis would allow the sufferers and their families
to get their affairs in order by foreseeing the future
better and preparing accordingly.

Many researchers have studied the early detec-
tion of AD. These studies usually follow two main
approaches: the analysis of biomarkers and the ex-
amination of patients’ decreasing cognitive abili-
ties. The first approach yields reliable results in
the detection of AD in its moderate and advanced
stages, albeit still performing insufficiently in the
early stages of the disease (Alzheimer’s Associ-
ation, 2015). The second approach has gained
more attention in recent years, due to the fact that,
in clinical practice, it has shown promise in the
early detection of AD (Taler and Phillips, 2008;
Schröder et al., 2010). Furthermore, when com-
pared to the first approach, the analysis of the de-
cline of cognitive abilities represents an inexpen-
sive and noninvasive alternative.

Language skills are among the first cognitive
abilities to diminish during the course of AD, with
alterations appearing even before any symptom
is experienced. Clinicians have designed many
standard tests to evaluate language in elderly pa-
tients (Taler and Phillips, 2008), such as asking
them to retrieve words from certain categories, to
think of words that start with the same letter, to
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name objects in pictures, etc. These tests, although
sufficient to give a reasonably accurate diagno-
sis, present some problems in the clinical prac-
tice (Smith and Bondi, 2013). Such problems in-
clude production of nervousness and discomfort
in elderly patients, as well as a “practice effect”.
Also, these tests do not necessarily describe pa-
tients’ real performance in language production.
This, apart from aiding in early detection of the
disease, could help further our understanding of
the disease, its progression and the parts of the
brain affected in early stages (before the damage
can be visible on MRI images).

In this article, we introduce our first experimen-
tal approach for automatic analysis of transcripts
from elderly Spanish speakers. We aim to discrim-
inate cognitively-healthy participants from (early
and moderate) AD sufferers.

2 Related Work

Relatively few authors (Bucks et al., 2000; Jar-
rold et al., 2010; Guinn and Habash, 2012; Guinn
et al., 2014; Jarrold et al., 2014; Alegria et al.,
2013) have researched the automatic discrimi-
nation of AD patients using language analyses
of transcripts, although there is a growing inter-
est in recent years. In most studies, researchers
examined the free discourse of elderly English-
speakers. The most often-used features are part-
of-speech rates, lexical richness measures, pauses,
and incomplete words. Overall accuracy ranges
from 73% to 95%, but between authors there is a
disagreement on the features used. Some works,
like Khodabakhsh et al. (2015) even minimize the
usefulness of these types of features.

Most of these studies used very small sam-
ples (8-32 AD patients and 16-51 controls) taken
in different settings (phone/face-to-face conversa-
tions, hospital/familiar environment, inconsistent
thematics, etc.). These differences make it diffi-
cult comparing their findings. Given the small size
of the samples, it would be helpful to use corpora
with constrained settings, like restricted discourse
and controlled environments, in order to discard
differences attributable to factors unrelated to lan-
guage. Moreover, further studies with non-English
speakers would help us to enrich our understand-
ing of language alterations due to AD.

In a different approach, Guerrero et al. (2016)
trained a Bayesian Network using manually ex-
tracted conceptual components along with age,

gender, and educational level as prior probabili-
ties to detect AD. Their corpus consisted of tran-
scripts of Spanish elderly participants orally de-
scribing six objects (Peraita and Grasso, 2010).
The authors reported the following performance—
accuracy, precision, recall (sensitivity), F1-score,
false positive rate, and false negative rate—:

Acc Pre Rec F1 FPR FNR
0.91 0.94 0.87 0.90 0.05 0.01

Table 1: Results by Guerrero et al. (2015).

For this work, we studied the restricted-
discourse corpus used in Guerrero et al. (2016),
and trained an SVM using some of the linguis-
tic features used by previous authors in the anal-
ysis of free conversations. We additionally in-
corporated two scarcely explored part-of-speech-
based features—conjunction rate and secondary
verb rate—. We compared our automatic analysis
results to those obtained by Guerrero et al. using
manually extracted conceptual components.

3 Methods

3.1 Corpus

Peraita and Grasso (2010) created a dataset1 of
oral descriptions in Spanish to study linguistic
pathologies related to dementia, particularly AD.
All recollections were obtained with the written
informed consent of the participants (Grasso et al.,
2011). The authors granted us permission to use
their corpus for this study. We choose this corpus
because its availability, restricted discourse and
homogeneous recollections facilitate the compar-
ison of our results with those of other researchers.
Likewise, the size of this sample is comparable to
the largest samples used in related works.

The cohort used by Guerrero et al. (2016) in
their study includes a total of 69 participants (30
controls and 39 AD patients previously diagnosed
by neurologists) aged between 55 and 95 years
old. For each participant, Peraita and Grasso
recorded free oral descriptions of six common ob-
jects (referred in their work as “semantic cate-
gories”): dog, apple, pine (living things), car,
trousers and chair (non-living things). These de-
scriptions were manually transcribed. Any inter-
actions with or interventions by the interviewer

1http://www.uned.es/investigacion-corpuslinguistico/
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Figure 1: Translated sample from the corpus.

were excluded from the transcription. In addi-
tion, the authors of the corpus noted if a partic-
ipant went “off-topic”, but did not include these
utterances in the transcript. They annotated this
corpus to show marks of interruptions, off-topic,
and unintelligible words.

In their study, Peraita and Grasso (2010) man-
ually analyzed and extracted attributes from the
description of each object. These attributes were
divided into eleven categories: taxonomic, types,
parts, functional, evaluative, places/habitat, be-
havior, cause/generate, procedural, life cycle, and
others. In Figure 1, we provide a translated ver-
sion of a sample taken from the corpus.

From the sample, we removed all participants
with no utterances in the description of one or
more objects. Additionally, since our objective
was to evaluate the performance of a classifier for
early detection of AD, we proceeded like Guerrero
et al. (2016) and only considered the controls and
patients in the early and moderate stages of AD.
Our final sample consisted of a total of 63 partici-
pants (29 controls and 34 AD patients).

3.2 Linguistic features

For this work, we used a combination of 5 features
that most authors have found suitable: verb, noun
and preposition rates, Brunet’s W index, and
Honoré’s R Statistics. Additionally, in a previous
non-automatic study regarding the preservation
of syntax in AD, Kemper et al. (1993) found

that sentences produced by cognitively healthy
adults usually contain more secondary verbs and
conjunctions. We incorporated these findings,
resulting in a total of 7 features.

Part-Of-Speech features:

• Verb, noun, preposition and conjunction
rates: the number of verbs, nouns, preposi-
tions and conjunctions per 100 words, respec-
tively.

• Secondary verb rate: number of secondary
verbs divided by the total number of verbs.

Lexical richness features:

• We used Brunet’s W index (Brunet, 1978) to
determine the richness of speakers’ vocabu-
laries:

W = N (V−1.165) (1)

Where N is the total number of words used
and V is the vocabulary size (number of dif-
ferent words used).

• Honoré’s R Statistics (Honoré, 1979) mea-
sures lexical richness based on the number of
a speakers once-mentioned words:

R = (100logN)/(1− V1/V ) (2)

Where N is the total number of words used,
V is the vocabulary size, and V1 is the num-
ber of words mentioned only once.

3.3 Implementation
To perform the binary classification, we used a
Support Vector Machine (SVM) implementation
of the Python library scikit-learn (Pedregosa et al.,
2011). For the automatic tokenization, lemma-
tization, and part-of-speech extraction, we used
FreeLing 3.0 (Padró and Stanilovsky, 2012), an
open source language analysis tool suite. We
selected this package for its good performance
in Spanish (although it also supports other lan-
guages), and for the way it encapsulates multiple
text analysis services in a single application.

In their experiments, Guerrero et al. (2016)
trained their Bayesian Network without directly
linking risk factor variables (such as age, gender,
or education) to the rest of the model. Instead, they
used these a priori probabilities as deterministic
inputs. In our experiments, we did not consider
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these variables. We performed our classification
based solely on linguistic features.

Using the above-mentioned risk factor vari-
ables and their correlation to AD could be use-
ful in the improvement of the overall accuracy of
these types of experiments. However, these cor-
relations vary significantly depending on factors
such as country, race, quality of life, diet, pollu-
tion, environment, etc. Moreover, in most coun-
tries, there are no reliable statistics about these
correlations (Alzheimer’s Disease International,
2015). Furthermore, most AD datasets have very
few participants, and their distributions are not
usually an accurate representation of the popula-
tion. In practice, training an algorithm with the
socio-demographic information presented in these
datasets would lead to biased results.

In the core of their Bayesian Network, Guerrero
et al. (2016) calculated the probability of a per-
son having a lexical-semantic-conceptual deficit
(LSCD)—which is considered by the authors as
a major sign of cognitive impairment—in two
main categories: “living things” and “non-living
things”. The authors obtained these probabilities
based on the number of attributes present on each
of the 11 categories; first individually for each
object, and then jointly for the main category to
which they belonged (living / non-living things).
The reason behind this categorical division is that
previous researchers have found an important dif-
ference in the number of attributes of living and
non-living things in the descriptions given by AD
patients in early stages and those given by healthy
individuals. The authors used the k-means++ al-
gorithm to discretize the presence of LSCD given
the number of living and non-living things’ at-
tributes mentioned by a participant.

We designed two different experiments. In the
first experiment, we followed the lead of Guerrero
et al. (2016) and divided each human subject’s de-
scriptions into living and non-living things. From
this, we extracted a total of 14 linguistic features
(set1): 7 features (verb, noun, preposition, sec-
ondary verb and conjunction rates, Brunet’s W in-
dex, and Honoré’s R Statistics) from their descrip-
tions of living things, and (the same) 7 features
from their descriptions of non-living things. In the
second experiment, we considered all the descrip-
tions from each human subject as a unit and ex-
tracted the 7 linguistic features (set2).

Calibration: We tested two SVM kernels for

Figure 2: ROC curves and areas under the curves
for the classifiers trained with set1 and set2.

both experiments, linear and Radial Basis Func-
tion (RBF). We used a 5-fold cross validation to
calibrate the value of their respective hyperparam-
eters. Cross validation used 80% of the data for
training and 20% for testing. We shuffled the train-
ing and testing samples and selected them at ran-
dom. For set1, the best model (accuracy=86%)
used an RBF kernel (C=1.0, gamma=0.0001). The
best model (accuracy=88%) for set2 used a linear
kernel (C=0.1). The best models’ accuracies re-
flect the performance of the classifiers when deal-
ing with completely unseen data.

4 Results

We evaluated the two best models using 5-times-
10-fold cross-validation over the dataset. In Ta-
ble 2 we show the average of the most common
performance metrics—accuracy, precision, recall
(sensitivity), F1-score, FPR (false positive rate),
and FNR (false negative rate)—used for medical
applications. Additionally, we obtained the ROC
curves and areas under the curves (AUC) for both
experiments (see Figure 2).

Set Acc Pre Rec F1 FPR FNR
1 0.87 0.91 0.88 0.88 0.08 0.12
2 0.88 0.89 0.90 0.88 0.10 0.10

Table 2: Performance metrics obtained with the
classifier trained with set1 and set2.

5 Discussion and future directions

As shown in Table 2, the differences in accuracy
and F1-score between the AD classifiers trained
with set1 and set2 of features are not very per-
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ceptible. The classifier of the second experiment
has a slightly higher sensitivity (2% more), which
means that it has a lower tendency of letting AD
participants go unrecognized. When comparing
the AUC of both classifiers, the difference is more
noticeable; set2 performed better than set1. From
this, we concluded that for the linguistic features
considered, there is no need to separate partici-
pants’ descriptions into living and non-living cat-
egories.

Guerrero et al. (2016) reported an accuracy
of 91% (see Table 1) and an AUC of 0.9636.
They used a Bayesian Network fed with manually-
extracted attributes and incorporated participants’
socio-demographic information as a priori de-
terministic inputs. We obtained an accuracy of
88% and an AUC of 0.9685 by performing auto-
matic language analysis, without taking into ac-
count any socio-demographic information. Al-
though the manually extracted attributes’ classifier
performs slightly better, automatic language anal-
ysis reduces time and human effort and provides
consistency and replicability.

There is another cohort of 143 speakers from
Argentina in the corpus used in this work. The
corpus is provided in a read-only application, and
manually transforming the data into text format
took a great amount of time. For this reason, we
only analyzed the cohort of Spanish participants
as Guerrero et al. (2016) did. To our knowledge,
no experimental work has been done over it yet.
Our next step will be to experiment with this co-
hort to explore intralanguage variations. We also
intend to perform a study on less restrictive dis-
course contexts, like the work of Prud’hommeaux
and Roark (2011) with story retellings.

For our first set of experiments, we selected
some basic linguistic features commonly used in
free spontaneous discourse analysis, but applied
them to a particular restricted discourse context
with very encouraging results for detecting AD
in its early and moderate stages. In future ex-
periments we will test more sophisticated linguis-
tic features, and perform computational syntactic
and semantic analysis. Furthermore, we will in-
vestigate performance of other classification algo-
rithms. An in-depth analysis of features used and
their relevance in this task is also planned.
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Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, and J. Vanderplas. 2011. Scikit-learn:
Machine learning in Python. The Journal of Ma-
chine Learning Research, 12:2825–2830.

Herminia Peraita and Lina Grasso. 2010. Corpus
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Abstract

Many studies have found that language al-
terations can aid in the detection of cer-
tain medical afflictions. In this work, we
present an ongoing project for recollect-
ing multilingual conversations with the el-
derly in Latin America. This project, so
far, involves the combined efforts of psy-
chogeriatricians, linguists, computer sci-
entists, research nurses and geriatric care-
givers from six institutions across USA,
Canada, Mexico and Ecuador. The rec-
ollections are being made available to the
international research community. They
consist of conversations with adults aged
sixty and over, with different nationalities
and socio-economic backgrounds. Con-
versations are recorded on video, tran-
scribed and time-aligned. Additionally,
we are in the process of receiving written
texts—recent or old—authored by the par-
ticipants, provided voluntarily. Each par-
ticipant is recorded at least twice a year to
allow longitudinal studies. Furthermore,
information such as medical history, edu-
cational background, economic level, oc-
cupation, medications and treatments is
being registered to aid conducting research
on treatment progress and pharmacologi-
cal effects. Potential studies derived from
this work include speech, voice, writing,
discourse, and facial and corporal expres-
sion analysis. We believe that our recollec-
tions incorporate complementary data that
can aid researchers in further understand-
ing the progression of cognitive degenera-
tive diseases of the elderly.

1 Introduction

The Carolinas Conversations Collection (Pope
and Davis, 2011), a project for recollecting con-
versations with elderly people that live in North
and South Carolina, started in 2008. This project
was initially supported by the USA National Li-
brary of Medicine. For the collection, the con-
versations were transcribed, marked, time-aligned
and made available to the international research
community by means of a secured website1. The
collection has grown steadily since then, having, at
present, over 460 conversations with adults over
sixty years old, either healthy or suffering from
any medical condition. A fourth of these conver-
sations were made with participants afflicted with
Alzheimer’s disease.

In 2015, we started to increase the coverage of
this collection to incorporate different languages.
The first additional language to be incorporated is
Latin-American Spanish. We are currently adding
conversations with new participants; elderly Span-
ish speakers from Ecuador and Mexico. Addi-
tionally, we are incorporating new information and
language modalities to increase the robustness of
possible studies that may use this corpus. So
far, this project has engaged involvement through
combined efforts of six institutions across four dif-
ferent countries.

2 Methodology

The recollections are being made at least twice
a year with each participant. In Ecuador, we
are working in collaboration with “Universidad
Técnica Particular de Loja” (UTPL), and with the
“Perpetuo Socorro” Foundation, a home for el-
derly people. In Mexico, the psychogeriatricians
from the Psychiatric Hospital “Fray Bernardino

1http://carolinaconversations.musc.edu/
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Álvarez” have agreed to work as our medical ex-
perts and advisors for this project. Furthermore,
the Foundation and the Psychiatric Hospital have
made arrangements to allow us to communicate
with their residents, patients and their guardians,
and invite them to participate in our Latin Ameri-
can recollections.

In the case of Ecuador, none of the involved in-
stitutions has an Institutional Review Board (IRB)
for protection of human subjects, or any formal
ethics guidelines. For this reason, our institutional
IRB took over that role. Consequently, a person
authorized via the protocol and having a Canadian
or American certification of training in ethics for
research with human subjects, must be present, in
person, during all recollections. In the case of
Mexico, the hospital has its own IRB, and their
staff are trained in ethics. This allows them to rec-
ollect the conversations without any member of
the team from Canada or the USA needing to be
present.

Before the recordings, the participants and their
caregivers are given a short explanation of the
project and its aims. Provided they agree to par-
ticipate in the project, they sign an informed con-
sent form, and with the help of their primary psy-
chiatric care providers or their primary caregiver,
we fill a questionnaire with the medical informa-
tion of the participant. In this questionnaire we
request all the medications that the participants
are actively taking, as well as their medical condi-
tions. With first-time participants, we also record
their demographic data, such as birth date, gender,
educational level, occupation (prior to retirement),
first language, and ethnic affiliation. To protect the
privacy of the participants, all names are replaced
by aliases. In the case of Ecuador, aliases are ran-
domly chosen from a pool of names of characters
or writers of classic Latin American novels; in the
case of Mexico, they are chosen from names of
congresspeople. We select aliases that correspond
with the gender of the participants.

The interviewers are the caregivers at the Foun-
dation (Ecuador), and the primary psychiatric care
providers (Mexico). All interviews take place in
the Foundation’s and the psychiatric hospital’s fa-
cilities. We believe that having free topics, and a
familiar interviewer and environment, helps pro-
vide a more comfortable atmosphere for the par-
ticipants.

All our interviewers have been trained with

techniques to motivate the participants to talk,
even if they are afflicted by some type of cognitive
impairment. We’ve created animated videos and
other training materials to instruct interviewers on
how to incite free conversations with patients. The
strategies that we provide, come from practices
that have been developed during the years of ex-
perience interviewing elderly participants in North
and South Carolina for this collection. These ma-
terials are available online 2 to facilitate the long-
distance knowledge exchange.

While training the interviewers, we usually start
by explaining the context of the project. We then
emphasize the importance of letting the partici-
pants talk and express themselves as much as pos-
sible. We ask the interviewers to be patient and
allow the participants some time to process their
questions and then answer. We also give them
cues such as repeating the last utterance of the
participants when they are stuck; giving encourag-
ing feedback and signs of interest, such as making
eye contact, responding with interjections, corpo-
ral and facial expressions according to the mood
of the conversation; and keeping the flow of the
conversation by mentioning any information that
they have gathered about the participants during
the time of knowing them.

The conversations are free in the sense that there
is no specific theme to talk about, although the
most common topics are the early lives of the
participants, their hobbies, their health and their
views on life in general. There is no time limit to
these conversations. Some of the common ques-
tions to start the flow of the conversation are: “Tell
us about your life”, “What do you like to do?”,
“How was your childhood?”, “Do you have any
hobbies?”, “Who is accompanying you today?”,
“Do you have any pet?”, “What did you use to do
for a living?”.

The conversations from Mexico and Ecuador
are being manually transcribed and time-aligned
by our collaborators of the Linguistic Engineering
Group (LEG) at the National University of Mex-
ico. We selected the LEG group due to their vast
experience in the creation of corpora3 in Spanish.
The transcriptions are labelled with markings that
indicate pauses, interruptions, external noises, par-
ticipant’s noises (e.g., laughter, crying, coughing,
hawkings), intonation and emphasis (e.g., whis-

2https://goo.gl/E7xeOO (English and Spanish subtitles
are available)

3http://www.corpus.unam.mx/
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pering, yelling), actions (e.g., winking, hand ges-
turing, finger snapping, clapping), and unconven-
tional pronunciations.

In addition to the recordings of the conversa-
tions, at Mexico we are also asking the participants
and/or their guardians for copies (digital or physi-
cal) of written texts, such as old letters, messages,
etc., authored by the participants, recently or in
years prior to this study, including letters from
their youth or middle age. This is to encourage re-
search in written analysis, such as the famous Nun
Study (Snowdon et al., 1996).

3 Description of the samples

Recollections in Ecuador started in May, 2015.
For the first series we interviewed 12 participants,
and recorded a total of 15 conversations. The sec-
ond recollection was made on January, 2016, and
it incorporated 4 new participants and a total of 10
interviews. So far, the cumulative recorded time
of conversations in Ecuador is over six hours and
45 minutes, and the average length of the conver-
sations is 16 minutes. The participants’ ages range
from 70 to 91 years old, with an average age of 83
years old (see Table 1).

We started the recollections in Mexico in Febru-
ary, 2016. For these recollections, the psychiatric
care providers interview the participants after their
routine consultations. Therefore, all recollections
and follow-ups are carried out throughout the year.
While writing this paper, the recollections in Mex-
ico have just begun and, so far, they included 9
participants, all female. However, we estimate
recording at least one conversation per week. Here
the participants’ ages range from 61 to 82 years
old, with an average age of 69 years old.

Women Men Global

U
SA

Participants 71 16 87
Conversations 368 94 462
Avg. age 79.3 79.1 79.3
Avg. education (years) 13.1 14.1 13.3

E
cu

ad
or Participants 12 4 16

Conversations 18 7 25
Avg. age 83.9 83 83.6
Avg. education (years) 6.2 8.2 6.7

M
ex

ic
o Participants 9 0 9

Conversations 9 0 9
Avg. age 69 - 69
Avg. education (years) 5.5 - 5.5

Table 1: Socio-demographic overview of the par-
ticipants of the collection

As shown in Table 1, the majority of our partic-
ipants in all countries are female. We attribute this

phenomenon to two main factors: first and fore-
most, women have shown a significantly higher
willingness, in comparison to men, to participate
in this project, especially in Mexico. Secondly, the
age expectancy of women is higher than men, for
which the elderly male population is smaller. We
are currently making efforts to increase the num-
ber of male participants to balance the sample.

4 Implications, applications and
prospects

The longitudinal, multilingual and multimodal at-
tributes of our collection, as well as the registra-
tion and follow up of the medical treatments taken
by the participants and their demographic infor-
mation, will allow researchers to perform a wide
variety of studies. Some of these studies have al-
ready been tackled before. However in most cases
authors have used small monolingual and homo-
geneous samples that do not allow the possibility
of generalizing. Furthermore, many of the datasets
used for these studies are not shared to the research
community, limiting the advancement of research.

Our collection has the advantage of contain-
ing a multiethnic sample, not to mention the het-
erogeneity gained by including participants from
three different countries. These attributes will
make for robust research that will support the
study of intra-language and inter-language vari-
ations, as well as intermodal linguistic analyses
(see Figure 1). Additionally, it will allow control
for alterations attributable to race, demographic
factors, specific diseases, medications and treat-
ments. Longitudinal studies will allow following
the course of aging in the elderly, and the differ-
ences between a healthy versus a pathological de-
cline. This collection also provides data to im-
prove automatic transcription and face recognition
for this particular cohort, which tends to present
particular challenges. Some of the clearest re-
search possibilities to be performed with this col-
lection are those focused on the improvement of
communication with the elderly, and medical ap-
plications.

4.1 Improving communication

It is important to maintain and preserve commu-
nication with the elderly, especially since it has
been suggested (Arkin, 2007) that maintaining
language-enriched conversations along with exer-
cise can delay the effects of dementia. Our col-
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Figure 1: Multimodal studies available in the cor-
pus.

lection not only contains the utterances and tran-
scriptions of the elderly participants, but it also
includes the entire transcription of the exchanges
with the interviewers. This allows performing
studies to improve communication by analyzing
which strategies prove more successful in pro-
moting conversations with the elderly. Other au-
thors (Davis, 2005; Davis et al., 2011) have made
a strong emphasis on the importance of preserv-
ing communication with elderly people, and have
worked in the development of specific communi-
cation strategies, particularly with those suffering
from dementia.

In addition to explicit linguistic barriers, there
are other factors that limit our ability to commu-
nicate with elderly people. For example, Freuden-
berg et al. (2015) found out that young people have
trouble correctly interpreting facial expressions in
the elderly, often perceiving neutral expressions as
negative emotions. This in part makes studying
emotions in this population a challenge, but in do-
ing so, could provide insights on how to preserve
an effective communication with them. However,
analysis of emotions have other purposes, since al-
terations in the expression of emotions can show
signs of certain disorders (Hamm et al., 2014;
Adams and Oliver, 2011).

4.2 Medical applications

Automatic language analysis for studying neu-
rodegenerative diseases in elderly people has
been gaining momentum in recent years. Au-
thors like Jarrold et al. (2010) and (2014),
Schrder et al. (2010), Prud’hommeaux and
Roark, (2011), Lehr et al., (2013), Gonzalez-
Moreira et al. (2014), Khodabakhsh (2014)
and (2015), Guerrero et al. (2016), López-de-Ipiña

et al. (2015), and König et al. (2015), have studied
language alterations that may aid in the automatic
detection, or even prediction, of Mild Cognitive
Impairment and Alzheimer’s disease in its mild
and moderate stages, with promising results. Ad-
ditionally, Goberman et al. (2010), Holtgraves et
al. (2013), and Cardona et al. (2013), have studied
the linguistic features associated with Parkinson’s
disease. To support the furthering of these types
of research, we prioritize the inclusion of partici-
pants suffering from different cognitive and men-
tal afflictions (see Table 2).

USA Ecuador Mexico
Participants 87 16 9
Alzheimer’s dis. 47 8 2
Parkinson’s dis. 0 1 0
Depression 9 3 1
Schizophrenia 1 0 1
Bipolar disorder 1 1 0
Healthy (cognit.) 23 5 2

Table 2: Prevalence of the main mental health dis-
orders in each cohort.

5 Conclusions and future work

In this paper we presented a report of our first
recollections of conversations with elderly people
in Latin America, as well as the characteristics
of this ongoing multidisciplinary multicenter re-
search project. We envisage to continue these rec-
ollections for the following two to five years. Ad-
ditionally, we are initiating the necessary collabo-
ration agreements with Canadian institutions to in-
corporate a cohort with Canadian French-speakers
and English-speakers to our collection. With this
cohort we will add a new language and an En-
glish variation. Furthermore, in Ecuador we are
making arrangements to incorporate some elderly
Quechua-speakers to our sample. To our knowl-
edge, there is no available research on linguistic
analysis of this indigenous population. Finally,
we are currently working on our first research us-
ing this corpus. We believe that our recollections
can be of use for performing speech, voice, writ-
ing, discourse, and facial and corporal expression-
based analysis to further our understanding about
the progression of cognitive degenerative diseases,
and ultimately to help improving our communica-
tion strategies with the elderly, thus ameliorating
their quality of life.
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“Fray Bernardino Álvarez” in Mexico City, spe-
cially Dr. Andrés Roche Bergua, Dr. Alexiz Bo-
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Abstract

This paper aims at utilizing cognitive in-
formation obtained from the eye move-
ments behavior of annotators for auto-
matic coreference resolution. We first
record eye-movement behavior of multi-
ple annotators resolving coreferences in
22 documents selected from MUC dataset.
By inspecting the gaze-regression pro-
files of our participants, we observe how
regressive saccades account for selec-
tion of potential antecedents for a cer-
tain anaphoric mention. Based on this
observation, we then propose a heuris-
tic to utilize gaze data to prune men-
tion pairs in mention-pair model, a pop-
ular paradigm for automatic coreference
resolution. Consistent improvement in
accuracy across several classifiers is ob-
served with our heuristic, demonstrating
why cognitive data can be useful for a dif-
ficult task like coreference resolution.

1 Introduction

Coreference resolution deals with identifying the
expressions in a discourse referring to the same
entity. It is crucial to many information retrieval
tasks (Elango, 2005). One of its main objectives
of is to resolve the noun phrases to the entities
they refer to. Though there exist many rule based
(Kennedy and Boguraev, 1996; Mitkov, 1998;
Raghunathan et al., 2010) and machine learning
based (Soon et al., 2001; Ng and Cardie, 2002;
Rahman and Ng, 2011) approaches to corefer-
ence resolution, they are way behind imitating the
human process of coreference resolution. Com-
paring the performance of different existing sys-
tems on a standard dataset, Ontonotes, released for
CoNLL-2012 shared task (Pradhan et al., 2012),
it is quite evident that the recent systems do not
have much improvement in accuracy over the ear-
lier systems (Björkelund and Farkas, 2012; Dur-

rett and Klein, 2013; Björkelund and Kuhn, 2014;
Martschat et al., 2015; Clark and Manning, 2015).

This paper attempts to gain insight into the
cognitive aspects of coreference resolution to im-
prove mention-pair model, a well-known super-
vised coreference resolution paradigm. For this
we employ eye-tracking technology that has been
quite effective in the field of psycholinguistics
to study language comprehension (Rayner and
Sereno, 1994), lexical (Rayner and Duffy, 1986)
and syntactic processing(von der Malsburg and
Vasishth, 2011). Recently, eye-tracking studies
have been conducted for various language pro-
cessing tasks like Sentiment Analysis, Transla-
tion and Word Sense Disambiguation. Joshi et
al. (2014) develop a method to measure the sen-
timent annotation complexity using cognitive ev-
idence from eye-tracking. Mishra et al. (2013)
measure complexity in text to be translated based
on gaze input of translators which is used to label
training data. Joshi et al. (2013) propose a studied
the cognitive aspects if Word Sense Disambigua-
tion (WSD) through eye-tracking.

Eye-tracking studies have also been conducted
for the task of coreference resolution. Cunnings
et al. (2014) check for whether the syntax or dis-
course representation has better role in pronoun
interpretation. Arnold et al. (2000) examine the
effect of gender information and accessibility to
pronoun interpretation. Vonk (1984) studies the
fixation patterns on pronoun and associated verb
phrases to explain comprehension of pronouns.

We perform yet another eye-tracking study to
understand certain facets of human process in-
volved in coreference resolution that eventually
can help automatic coreference resolution. Our
participants are given a set of documents to per-
form coreference annotation and the eye move-
ments during the exercise are recorded. Eye-
movement patterns are characterized by two ba-
sic attributes: (1) Fixations, corresponding to a
longer stay of gaze on a visual object (like charac-
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ters, words etc. in text) (2) Saccades, correspond-
ing to the transition of eyes between two fixations.
Moreover, a saccade is called a Regressive Sac-
cade or simply, Regression if it represents a phe-
nomenon of going back to a pre-visited segment.
While analyzing these attributes in our dataset, we
observe a correlation between the Total Regres-
sion Count and the complexity of a mention be-
ing resolved. Additionally, Mention Regression
Count, i.e., the count of a previous mention get-
ting visited while resolving for an anaphoric men-
tion, proves to be a measure of relevance of that
particular mention as antecedent to the anaphoric
mention.

Following the insights, we try to enrich
mention-pair model, a popular paradigm in auto-
matic coreference resolution by performing men-
tion pair pruning prior to classification using men-
tion regression data.

2 Creation of Eye-movement Database

We prepared a set of 22 short documents, each
having less than 10 sentences. These were se-
lected from the MUC-6 dataset1. Discourse size
is restricted in order to make the task simpler for
the participants and to reduce eye movements er-
ror caused due to scrolling.

The documents are annotated by 14 partici-
pants. Out of them, 12 of them are graduate/post-
graduate students with science and engineering
background in the age group of 20-30 years, with
English as the primary language of academic in-
struction. The rest 2 are expert linguists and they
belong to the age group of 47-50. To ensure that
they possess good English proficiency, a small En-
glish comprehension test is carried out before the
start of the experiment. Once they clear the com-
prehension test, they are given a set of instruc-
tions beforehand and are advised to seek clarifi-
cations before they proceed further. The instruc-
tions mention the nature of the task, annotation in-
put method, and necessity of head movement min-
imization during the experiment.

The task given to the participants is to read one
document at a time, and assign ids to mentions
that are already marked in the document. Each
id corresponding to a certain mention has to be
unique, such that all the coreferent mentions in
a single coreference chain are assigned with the

1http://www.cs.nyu.edu/cs/faculty/
grishman/muc6.html

same id. During the annotation, eye movements
data of the participants (in terms of fixations, sac-
cades and pupil-size) are tracked using an SR-
Research Eyelink-1000 Plus eye-tracker (monoc-
ular mode with sampling rate of 500 Hz). The eye-
tracking device is calibrated at the start of each
reading session. Participants are allowed to take
breaks between two reading sessions, to prevent
fatigue over time.

We observe that the average annotation ac-
curacy in terms of CoNLL-score ranges be-
tween 70.75%-86.81%. Annotation error, we
believe, could be attributed to: (a) Lack of pa-
tience/attention while reading, (b) Issues related
to text comprehension and understanding, and (c)
Confusion/indecisiveness caused due to lack of
context. The dataset is freely available for aca-
demic use2.

3 Analysis of Eye-regression Profiles

The cognitive activity involved in resolving coref-
erences is reflected in the eye movements of the
participants, especially in the movements to the
previously visited words/phrases in the document,
termed as regressive saccades or simply, regres-
sions. Regression count refers to the number
of times the participant has revisited a candidate
antecedent mention while resolving a particular
anaphoric mention. This is extracted from the
eye movement events between the first gaze of the
anaphoric mention under consideration and the an-
notation event of this mention (when participants
annotate the mention with a coreferent id).

Figure 1 shows the mention position (for a given
mention id) in terms of the order of the mention
in the document against count of regression going
out from each mention to the previous mentions.
The regression count for a particular mention is
averaged over all the participants. As we see, av-
erage regression count tends to increase with in-
crease in mention id, except for some mentions
which may not have required visiting to the previ-
ous mentions for resolving them. The complexity
of the content in MUC-6 dataset makes the spread
of the regression counts dispersed. We also ob-
serve that, towards the end of the document, par-
ticipants tend to regress more to the earlier sec-
tions because of limited working memory (Calvo,
2001). This increases the number of regressions
performed from mentions appearing towards the

2http://www.cfilt.iitb.ac.in/cognitive-nlp/
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end of the document.
It is worth noting that intra-sentential mentions

that have antecedents within the same sentence
(as in ’Prime Minister Brian Mulroney and his
cabinet have been briefed today’) do not gener-
ally elicit regressions. We believe, intra-sentential
resolutions are connected to processing of syn-
tactic constraints in an organized manner, as ex-
plained by the binding theory (Chomsky, 1982).
Though the number of intra-sentential mentions in
our dataset is low, it is evident from figure 1, that
they do not account for many regressions.
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Figure 1: MUC-6 dataset: Mention id Vs Regres-
sion count

This above analysis on regression counts sup-
ports our hypothesis that the mentions that are re-
gressed to more frequently have a better say in re-
solving an anaphoric mention.

4 Leveraging Cognitive Information
Automatic Coreference Resolution

We experiment with a supervised system follow-
ing a mention-pair model (Soon et al., 2001)-
injecting the eye-movement information into
it. Mention-pair model classifies mention pairs
formed between mentions in a document as coref-
erent or not, followed by clustering, forming clus-
ters of coreferent mentions. Eye tracking infor-
mation is utilized in the process of mention pair
pruning prior to mention pair classification.

4.1 For Mention-pair Pruning
Given an anaphoric mention, the probability of
each previous mention being selected as an-
tecedent is computed as follows. Transitions done
by a participant to potential antecedent mentions,
while resolving an anaphoric mention, are first ob-
tained from the regression profile. From this, we
filter out the regressions to a candidate antecedent

mention that happen between two events- (a) first
fixation lands on the anaphoric mention and (b) the
anaphoric mention gets annotated with an id.

mention pair pruning

mention pair classification

clustering

mention pairs

coreferent chains

Eye tracking 
transition prob

Figure 2: Mention-pair pruning

These regression counts from all the partici-
pants are aggregated to compute the transition
probability values, as follows:

Pmi,mj =
count(transitions mj → mi)∑
k count(transitions mj → mk)

(1)
In equation 1, Pmi,mj gives the transition proba-

bility value for an anaphoric mention mj to a can-
didate antecedent mention mi. count() computes
the aggregated regression count over all partici-
pants. Denominator part computes for all candi-
date antecedents(k) of the anaphoric mention.

Transition probability thus computed for candi-
date mention pairs, are utilized prior to mention
pair classification, filtering out irrelevant men-
tion pairs. In the mention pair model, a mention
pair(mant,mana) is formed between an anaphoric
mention (mana) and a candidate antecedent men-
tion (mant). For an anaphoric mention, the thresh-
old probability value is computed from the num-
ber of potential candidate antecedents. Pthresh =

1
#candidate antecedents . Mentions pairs having
probability less than Pthresh are pruned.

5 Experiments and Results

Eye movement data driven mention pair pruning,
as discussed above, is experimented across dif-
ferent classifiers, viz., Support Vector Machine
(SVM), Naive Bayes, and Multi-layered Feed-
Forward Neural Network (Neural Net). We use
libsvm3 for SVM implementation and Scikit-
Learn4 for Naive Bayes implementation. The neu-

3https://www.csie.ntu.edu.tw/ cjlin/libsvm/
4http://scikit-learn.org/
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Experiments MUC B3 CEAFe CoNLL
P R F P R F P R F

SVM (RBF) unpruned 61.13 68.96 64.81 57.72 75.39 65.38 47.33 58.23 52.22 60.80
pruned 62.67 66.99 64.76 62.62 73.71 67.71 52.00 57.83 54.76 62.41

SVM (Linear) unpruned 53.33 70.93 60.88 37.64 75.02 50.13 26.56 51.27 34.99 48.67
pruned 54.71 71.42 61.96 39.63 75.07 51.88 29.44 53.14 37.89 50.58

Naive Bayes unpruned 62.85 97.53 76.44 23.23 98.03 37.56 10.53 54.22 17.64 43.88
pruned 62.90 96.05 76.02 25.06 96.64 39.80 13.50 58.64 21.94 45.92

Neural Net unpruned 64.73 71.42 67.91 63.71 77.20 69.81 52.60 61.96 56.90 64.87
pruned 66.35 70.93 68.57 66.55 76.15 71.03 55.76 62.01 58.72 66.11

Berkeley coref unpruned 84.89 58.12 69.0 84.93 47.86 61.22 82.45 37.96 51.99 60.73
pruned 86.86 58.62 70.0 87.15 47.64 61.6 82.7 39.26 53.25 61.61

Table 1: Results with different classifiers and Berkeley coreference system with and without pruning of
candidate mention pairs (P,R,F)→ (Precision, R:Recall, F:F-measure), CoNLL:CoNLL Score

ral network classifier having an input layer, a hid-
den layer and an output layer is implemented us-
ing Keras5. For training, we consider a subset of
English section of OntoNotes (v5.0) data (Pradhan
et al., 2012) with 1634 documents. Testing is done
with the 22 documents taken from MUC-6 dataset.

Since the main aspect of our work is mention
pair pruning, we first check the mention pair prun-
ing accuracy. We find that mention pair pruning
has a precision of 87.24%. Pruning errors may be
attributed to increased number of regressions hap-
pening to mentions towards the end of the docu-
ments (refer section 3).

Performance of the system is evaluated using
MUC, B3 and CEAFe metrics. CoNLL score is
computed as the average of F1s of all the men-
tioned metrics. Table 1 shows the results across
different classifiers with and without mention pair
pruning. Considering the CoNLL score, there is
an improvement in performance across all clas-
sifiers. This improvement is contributed by the
increase in precision , despite the fall in recall.
Table 2 shows a few instances of non-coreferent
antecedent-anaphora pairs which are correctly pre-
dicted as non-coreferent because of pruning.

Antecedent Anaphora
here a treaty
Paramount Communica-
tions Inc

an after-tax gain of $1.2
billion

Rogers Communications A Spokesman

Table 2: Instances of precision errors corrected by
pruning

Among all the classifiers neural network gives
better accuracy, but the effective performance
gain is higher with classifiers with lesser accu-
racy. Naive Bayes giving the least accuracy, gives

5http://keras.io/

the best accuracy improvement of 2.04% with
mention-pair pruning. This gives the impression
that systems with lower performance, are likely to
benefit from the eye movement based heuristics.

The performance improvement of mention pair
pruning is also verified with the state of the art
Berkeley Coreference Resolution system (Durrett
and Klein, 2013). The choice of the system was
based on the code accessibility to make the mod-
ification required for mention pair pruning. Re-
sults of Berkeley system in table 1 shows that there
is an improvement in CoNLL score , mainly con-
tributed by the increase in precision.

6 Conclusion and Future Work

As far as we know, our work of utilizing cogni-
tive information for the task of automatic corefer-
ence resolution is the first of it kind. By analyzing
the eye-movement patterns of annotators, we ob-
serve a correlation between the complexity of re-
solving an anaphoric mention and eye-regression
count associated with the preceding mentions. We
also observe that gaze transition probability de-
rived from regression counts associated with a
mention signify the candidacy of that mention as
an antecedent. This helps us devise a heuristic
to prune irrelevant mention pair candidates in a
supervised coreference resolution approach. Our
heuristic brings noticeable improvement in accu-
racy with different classifiers. The current work
can be further enriched to utilize eye-gaze infor-
mation for (a) meaningful feature extraction for
mention pair classification and (b) proposing effi-
cient clustering mechanism. We would also like
to replace our current annotation setting with a
non-intrusive reading setting (say, reading text on
mobile devices with camera based eye-trackers),
where explicit annotations need not be required.
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Abstract

This paper presents a method for linking
models for aligning linguistic etymologi-
cal data with models for phylogenetic in-
ference from population genetics. We be-
gin with a large database of genetically re-
lated words—sets of cognates—from lan-
guages in a language family. We pro-
cess the cognate sets to obtain a complete
alignment of the data. We use the align-
ments as input to a model developed for
phylogenetic reconstruction in population
genetics. This is achieved via a natu-
ral novel projection of the linguistic data
onto genetic primitives. As a result, we
induce phylogenies based on aligned lin-
guistic data. We place the method in the
context of those reported in the literature,
and illustrate its operation on data from
the Uralic language family, which results
in family trees that are very close to the
“true” (expected) phylogenies.

1 Introduction

Recently, mathematical theory of statistical
physics has been shown to unite stochastic mod-
els of evolution in seemingly diverse fields,
such as population genetics, ecology and linguis-
tics (Blythe and McKane, 2007; Blythe, 2009;
Baxter et al., 2009; Vázquez et al., 2010). How-
ever, statistical inference about language evolution
under such models is complicated by the practi-
cally intractable form of likelihoods for even a
moderate set of languages. This calls for novel
ways to probabilistic evaluation of any particu-
lar phylogenetic model and for learning the most
plausible genealogies from data. In the con-
text of population genetics, such an approach is
introduced in (Sirén et al., 2011; Sirén et al.,

2013) by combining diffusion-based approxima-
tions of conditional distributions with adaptive
Monte Carlo methods. In contrast to coalescent-
based likelihoods, this approach enables analy-
sis of much larger data collections, as the suf-
ficient statistics from the data correspond under
these models to the empirical allele frequencies of
each population, rather than genetic characteristics
of single individuals. This property makes these
models attractive from the perspective of evolu-
tionary linguistics.

The field of evolutionary linguistics, or com-
putational etymology, addresses a range of prob-
lems, including: automatic identification of sets of
cognates—genetically related words; finding ge-
netic relations across languages in a language fam-
ily; finding patterns of recurrent sound correspon-
dence among groups of languages; reconstruction
of proto-forms in ancestral (usually unobserved)
languages; etc. These problems are interdepen-
dent. When approached by traditional methods,
work proceeds in cycles, through iterative refine-
ment via the comparative method. In our work, we
take sets of cognate words as given, and focus on
the problems of genetic relations and patterns of
correspondence. The problem of reconstruction is
also addressed, indirectly.

Based on automatically derived pairwise corre-
spondences among the languages in a given cor-
pus of cognate sets1—we aim to determine the
overall structure of the language family. To find
the correspondences, we try to find the best align-
ment of the complete data at the level of individ-
ual sounds—or, equivalently, symbols, since we
assume that our data is phonetically transcribed.

An important aspect of our approach is that we
aim to use all available data—to avoid subjective

1The creators of the input dataset posit that the elements
of a cognate set derive from a common origin—a word in the
ancestral proto-language.
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bias, which would be inherent in selecting some
subset of available data, as is sometimes done with
short 50- to 200-word lists. We learn patterns of
correspondence directly from the data, in explicit
form. We let only the data determine what rules
are inherent in it; i.e., we look for correspondences
that are inherently encoded in a given dataset—
rather than relying on externally supplied (and
possibly biased) assumptions or “priors.” The
models assume no a priori knowledge or “univer-
sal” principles—e.g., no preference for aligning a
symbol with itself, aligning a vowel with a vowel
rather than a consonant, etc.

The main idea of the approach we are explor-
ing here—summarized in Figure 1—is to create a
bridge between the two domains: on the linguis-
tic side, alignment of etymological data, and on
the population-genetics side, phylogenetic infer-
ence. The two domains operate on different kinds
of objects: in linguistics we have languages, words
and sounds, whereas in genetics we have pop-
ulations, individuals, and their DNA sequences,
and although there are apparent similarities, it is
not obvious how these can be combined. In Sec-
tion 4 we formalize the problem of alignment and
present some details about the alignment mod-
els we use—step B in the figure. Section 6 de-
scribes our population-genetics model for phylo-
genetic inference (step D). Section 5 shows how
we can “glue” these two together, by means of
a cross-domain projection—mapping information
obtained from linguistic alignments into a form
usable in population genetics (step C). In Sec-
tion 7 we present some results from the combined
approach, which involves building pairwise dis-
tance matrices and constructing phylogenetic trees
(steps E–F). The resulting trees are compared to
manually-constructed gold standards, to get an es-
timate of the quality of the inference pipeline.

Building phylogenetic trees by applying models
from population genetics to an alignment of a lan-
guage family has not been attempted previously, to
our knowledge. In section 2 we review several ap-
proaches to etymological alignment from the last
decade, and describe the data we use in our exper-
iments, in Section 3. We conclude with a discus-
sion and current work, in Section 8.

2 Related Work

The last 15 years have seen a surge in interest
in computational modeling of language relation-

ships, change and evolution. We have been devel-
oping a family of models for this task, called the
Etymon models, (Wettig et al., 2011; Wettig et al.,
2012; Nouri and Yangarber, 2016), etc.2

Methods introduced in (Kondrak, 2002), in-
spired by alignment in machine translation, learn
one-to-one sound correspondences between words
in pairs of languages. Kondrak (2003), and Wet-
tig et al. (2011) find more complex—many-to-
many—sound correspondences. These methods
focus on alignment. They model the context of the
sound changes in a limited way, while it is known
that most evolutionary changes are conditioned on
the context of the evolving sound. Bouchard-Côté
et al. (2007) propose MCMC-based methods to
model context, and operate on more than one pair
of languages at a time.3

The Etymon models, similarly to other work,
operate at the phonetic level only, leaving se-
mantic judgements to the creators of the input
databases. Some prior work has attempted to ap-
proach semantics by computational means as well.
We do not address the problem of discovering cog-
nates; this problem is attempted, e.g., in, (Kon-
drak, 2004; Kessler, 2001; Steiner et al., 2011)
and semi-automatically in (Bouchard-Côté et al.,
2007). Our Etymon models begin with a set of et-
ymological data (or more than one such set) for a
language family as given, and treat the given cog-
nate set as a fundamental unit of input. We use the
principle of recurrent sound correspondence, as in
much of the literature, including (Kondrak, 2002;
Kondrak, 2003), and others.

One approach to evaluating our alignment mod-
els, is to try to infer relationships among entire
languages within the family. Construction of phy-
logenies is studied extensively, e.g., by (Nakhleh
et al., 2005; Ringe et al., 2002; Barbançon et al.,
2009). This work differs from ours in that it op-
erates on manually pre-compiled sets of charac-
ters. Each character is a distinctive feature of lan-
guages, which takes on different values among dif-
ferent languages within the family. All Etymon
models operate at the level of sounds within words
and cognate sets.

There is extensive work on alignment in the
machine-translation (MT) literature, with some

2Please see http://etymon.cs.helsinki.fi/ for the publicly
available software packages.

3The running time did not scale well when the number
of languages was above three; (Bouchard-Côté et al., 2009)
describe improved models to align multiple languages.
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A. Data B. Alignment model C. Projection D. Pop-genetics model E. Distances F. Trees

Figure 1: Outline of the components in the inference pipeline

methods from MT alignment projected onto align-
ment in etymology. The intuition is that sen-
tences that are translation of each other in MT
correspond to cognate words in etymology, and
words in MT correspond to sounds in etymology.
The notion of regularity of sound change in et-
ymology, which is what our models try to cap-
ture, is loosely similar to contextually conditioned
correspondence of translation words across lan-
guages. For example, (Kondrak, 2002) employs
MT alignment from (Melamed, 1997; Melamed,
2000). One might employ the IBM models for
MT alignment, (Brown et al., 1993), or the HMM
model, (Vogel et al., 1996). Among the MT-
related models, (Bodrumlu et al., 2009) is similar
to ours in that it is based on MDL, the Minimum
Description Length principle. There are important
differences between our alignment problem vs.
alignment in MT. Evolutionary sound correspon-
dence is conditioned by local context, whereas in
MT correspondences may depend on much wider
context. There is no analogue to the notion of pho-
netic features in MT. Phonetic correspondences
in etymological data—which apply throughout the
language—have no analogue in semantic shift pro-
cesses in a such way as to be captured by MT
alignment models. Neither are phonetic features
used in the aforementioned work from the area of
automatic transliteration, e.g., (Zelenko, 2009).

Our work on the Etymon models is closely
related to a series of generative models
in (Bouchard-Côté et al., 2007) through (Hall and
Klein, 2011), in the following respects.

In (Wettig et al., 2011) some context is modeled
in the form of coding pairs of symbols, as in (Kon-
drak, 2003). Bouchard-Côté et al. (2007) and Hall
and Klein (2011) handle context by conditioning
the symbol being generated upon the symbols im-
mediately preceding and following. Wettig et al.
(2012) and Nouri and Yangarber (2016) use much
broader context by building decision trees, so that
non-relevant context information does not grow
model complexity.

In (Wettig et al., 2011) sounds / symbols are
treated as atomic—not analyzed in terms of their
phonetic makeup. (Bouchard-Côté et al., 2007)

recognize “natural classes” in defining the context
of a sound change, though not in generating the
symbols themselves; (Bouchard-Côté et al., 2009)
encode as a prior which sounds are “close” to each
other. In (Wettig et al., 2012) and later Etymon
models, we code each sound in terms of the indi-
vidual phonetic features that make up the sound.

Etymon models are based on the information-
theoretic MDL principle, e.g., (Grünwald,
2007)—like (Wettig et al., 2011) and un-
like (Bouchard-Côté et al., 2007; Hall and Klein,
2011). MDL brings important theoretical benefits,
since models chosen in this way are guided by
data with no free parameters or hand-picked
“priors.” The data analyst chooses the model
class and structure, and the coding scheme, i.e.,
a decodable way to encode both model and
data. This determines the learning strategy—we
optimize the cost function, which is the code
length determined by these choices.

Objective function: For the objective function to
optimize during alignment, we use the prequential
code-length (Dawid, 1984), as explained in (Wet-
tig et al., 2011). Normalized Maximum Likeli-
hood (NML) as presented in (Wettig et al., 2012;
Nouri and Yangarber, 2016) could be used as an
alternative to prequential coding. Although NML
reduces the code length, and brings other advan-
tages, it did not have a significant effect on the
quality of the alignments required in the experi-
ments presented here.

Some of our work on modeling language
change and evolution, (Nouri and Yangarber,
2016) shows that alignment may not be a neces-
sary goal for obtaining efficient compression; in
case of models that circumvent alignment, it is less
clear how they can be combined with population-
genetics models.

Additional prior work related to the population-
genetics models is referenced throughout the pa-
per and in Section 6.

3 Data

As we mentioned, we aim to use large-scale ety-
mological databases, rather than small, manually-
selected sets of characters of the languages. For
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  Uralic  

  Samoyedic  

  South  

  Sayan  
  Samoyedic  

  Kamas  
  Koibal  
  Motor  
  Taigi  
  ...  

  Selkup  

  North  

  Enets-Nenets  

  Nenets    Enets  

  Nganasan  

  Finno-Ugric  

  Ugric  

  Ob-Ugric  

  Mansi    Khanty  

  Hungarian  

  Finnic  

  Permic  

  Udmurt    Komi  

  West Finnic  

  Mari  
    

  Mordvin  
  North Finnic  

  Sami  
  Baltic Finnic  

  Finnish  
  Estonian  Figure 2: Uralic language family, adapted from (Anttila, 1989)

∗Proto

F innish

Mordvin

k a r . n e š
| | | | | | |
k ā r . n e .
| | | | | | |
k . r e n . č

v e n e š
| | | | |
v e n e .
| | | | |
v e n . č

Figure 3: Sample alignments for Finnish and
Mordvin: kaarne/krenč ’raven’, vene/venč ’boat’,
with unobserved, hypothesized proto word-forms

the Uralic language family, we use the Star-
Ling Uralic database, (Starostin, 2005), based
on (Rédei, 1991) and expanded. The database con-
tains 2586 Uralic cognate sets. Whereas much of
the prior work is based on small manually pre-
selected subsets of the data—so-called “Swadesh
lists” of 100 (or 40, 50, etc.) words—we use com-
plete large data sets. In this paper, we focus on
a sub-tree of Uralic, viz., the Finno-Ugric sub-
family—i.e., excluding the remaining Samoyedic
sub-tree of Uralic—which contains most of the ex-
tant Uralic data. Our experiments use the 10 “prin-
cipal” Finno-Ugric languages.4

One arrangement of the Uralic languages ac-
cepted by some linguists is shown in Fig-
ure 2, adapted from Encyclopedia Britannica and
(Anttila, 1989). Note, that this is the subject of
some debate in modern scholarship, and alterna-
tive phylogenies have some acceptance among lin-

4The 10 Finno-Ugric languages used in the exper-
iments are: est=Estonian, fin=Finnish, khn=Khanty,
kom=Komi, man=Mansi, mar=Mari, mrd=Mordvin,
saa=Saami, udm=Udmurt, unk/ugr=Hungarian. The Star-
Ling database also contains data on dialects for the 7
languages excluding {fin, est, unk}; in the figures, the suffix
after the code identifies the principal dialect—having the
largest number of entries in StarLing. Some of these dialects
are quite far apart; in other experiments we also use the
second-largest dialects, giving 17 languages in total.

guists. Figure 2 shows the phylogeny most widely
accepted today. Other theories, e.g., posit a “Vol-
gaic” branch, which groups together Mari with
Mordvin languages, where this phylogeny posits
Mari on an independent branch, an offshoot from
the “West Finnic” subgroup, see, e.g., (Anttila,
1989). We use this phylogeny as a gold-standard
in our experiments.

In our experiments we need a measure of dis-
tance between phylogenies proposed by different
approaches. For comparison, we can treat the phy-
logenies as unrooted, leaf-labeled (URLL) trees.
One distance measure for URLL trees is intro-
duced in (Robinson and Foulds, 1981). Based on
this particular distance measure, the distance be-
tween the gold standard tree and the tree with a
Volgaic branch would be 0.14, (see discussion in
Section 7).

4 Pairwise Alignment

We use our Etymon models, described in (Wettig
et al., 2011; Wettig et al., 2012), for aligning the
etymological data.e summarize the main features
of these models in this section. We begin with
pairwise alignment: aligning words from two lan-
guages at a time. For each word pair, the task of
alignment means finding exactly which symbols
correspond. The simplest form of such alignment
at the symbol level is a 1-1 pair (σ : τ) ∈ Σ×T , a
single symbol σ from the source alphabet Σ with
a symbol τ from the target alphabet T . We denote
the sizes of the alphabets by |Σ| and |T |.

To model insertions and deletions, we augment
both alphabets with a special empty symbol—
denoted by a dot—and write the augmented alpha-
bets as Σ. and T .. We can then align word pairs,
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such as vene—venč (“boat” in Finnish and Mord-
vin), in many ways, including, e.g., as in Figure 3,
where the alignment on the right contains symbol
pairs: (v : v), (e : e), (n : n), (e : .), (. : č). Note
that, since the Proto language is not observed, the
alignment model might actually prefer to align
(e:č) in these examples, especially if this pattern
appears several times (which it does)—since there
is no a priori penalty for vowel-consonant align-
ment, as mentioned in the Introduction.

If we align all languages simultaneously, rather
than pairwise, there may be additional information
in other languages (which there is), that may help
the model disfavor (e:č). N-way alignment will be
revisited in the conclusion.

According to the MDL Principle, the aim is to
code these aligned word pairs as compactly as pos-
sible. To construct such a code, we “transmit” the
aligned data by listing the “events”—the observed
symbol pairs (σ : τ). Since the code needs to
be uniquely decodable, after each word pair we
transmit a special event (# : #) to mark the
word boundaries. The code length (or cost) for
the complete, aligned data is our objective func-
tion that the algorithm optimizes. Lower code-
length means that the algorithm has found a way
of aligning the data that is more compact, i.e., it
has discovered more regularity in the data.

Using prequential coding, or Bayesian Marginal
Likelihood, the total cost of coding the aligned
data is given by:

L(D) = (1)

−
∑
e∈E

log Γ
(
C(e) + α(e)

)
+
∑
e∈E

log Γ
(
α(e)

)
+ log Γ

[∑
e∈E

(
C(e) + α(e)

)]− log Γ

[∑
e∈E

α(e)

]

whereE = Σ.×T .∪{(# : #)} is the event space,
C(e) stores the number of times event e occurs
in the complete alignment, and α(e) = 1 are the
uniform Dirichlet priors.

Learning the model from the observed data now
means iteratively re-aligning word pairs, and up-
dating the matrix C, which stores the counts of
all observed alignment events. The sparser C be-
comes, the lower the code-length will be.

Summary of the Algorithm: We start with an
initial random alignment for each pair of words in
the corpus. We then alternate between two steps:
A. update the count matrix and compute the code

length, and B. re-align all word pairs in the corpus,
using dynamic-programming re-alignment. Dur-
ing the dynamic-programming step, for each word
pair we find the best alignment, i.e., the one with
the lowest cost given the alignments for rest of
the words. The algorithm is described in detail in
(Wettig et al., 2011).

The algorithm is similar to Expectation-
Maximization (EM), but is in fact greedy. The iter-
ative steps monotonically decrease the cost func-
tion, and thus compress the data. We continue un-
til we reach convergence. To avoid local optima,
we use Simulated Annealing.

5 Projection

To be able to apply phylogenetic reconstruction
methods from population genetics we need to de-
fine appropriate analogues for the notions of popu-
lation, individual, locus, and allele, which are the
essential inputs to the population genetics models,
described in the next section.

It is natural to identify population with lan-
guage, and individuals with words in the language.
Next, suppose that the proto-language L∗ (the root
of the family tree) had been fully observed, as
in Figure 3. Then, for any leaf language Li, we
could align Li to L∗ (pairwise). We could then fix
the set of sounds of L∗ as the set of “loci” (sites)
in the “DNA” of the individuals. We treat each
sound s of L∗ as a locus, in the sense that from the
complete alignment from Li to L∗ we can observe
the distribution of sounds (fromLi’s alphabet) that
were aligned to s. Thus, the alleles are the various
sounds (in Li’s alphabet) which appear aligned to
s in the words in Li. Each Li will have its distinc-
tive distribution of alleles at each locus. Thus, in
the Mordvin examples in Figure 3, at the “locus”
labeled e in the Proto-language, we would observe
the “allele” e once, and the allele dot twice.

However, in general, we have no access to L∗,
and we proceed indirectly as follows. Suppose,
for instance, {Li} are the 10 languages from the
Finno-Ugric sub-family of Uralic. We designate
each Li, in turn, as a reference language—in place
of the unobserved L∗. The reference Li “do-
nates” its sounds as the loci, to be aligned to each
of the remaining 9 (target) languages. As be-
fore (with L∗), at each site, a target population
Lj has a distinctive distribution over the alleles—
symbols drawn from the universal phonetic alpha-
bet, which is simply the union of the individual al-
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phabets. In this way, each reference language Li
induces one dataset DLi of allele distributions in
the remaining 9 populations, giving a total of 10
input datasets. These datasets are processed by the
population genetics model introduced below.

Although “sacrificing” the reference language
in this way skews the dataset, we compensate for
this by averaging the estimated pairwise distances
over all 10 datasets {DLi}. When we calculate
the distances of languages based on a single ref-
erence, there will be a higher level of variance
in the estimates and as a consequence Neighbor-
Join and similar algorithms can easily lead to in-
correct trees. When we instead calculate the av-
erage distance for any pair of languages (Li, Lj)
over the 8 remaining references, the variance in
the estimates stabilizes (because the mean distance
estimate will be much less variable) and conse-
quently the NeighborJoin algorithm shows more
accurate performance. To verify empirically these
basic statistical arguments—that using the mean
distances is more stable than any single estimate—
we ran simulations with artificial data sets (Fig-
ure 4). In the simulation we perturb the pairwise
distances with Normal noise, using mean 0 and
σ as shown on the X-axis. The upper curve is
the (average) URLL distance from trees built on
single estimates to the gold-standard tree in Fig-
ure 2; the lower curve is the URLL distance from
the tree based on the mean of the estimates to
the gold-standard tree. The figures confirm the
higher stability of the mean (of 8 estimates in A,
15 estimates in B), as compared to any single es-
timate, which is according to the expectations. In
addition, there may be a small effect caused by
the fact that some reference language can produce
slightly better results than another, but the main
effect should be the one explained above.

6 Population genetics model

With this definition of population, individual, lo-
cus, and allele, we proceed to the method for
building the phylogenetic tree based on each com-
plete aligned data set. Below we introduce ex-
pressions for conditional distributions that jointly
determine a hierarchical probability model for the
count data derived from the alignment. The model
reflects the degree of relatedness among the lan-
guages through a tree topology and the corre-

sponding branch length parameters.5 We con-
sider modeling the relatedness of K languages
by a rooted bifurcating tree topology T repre-
senting the order of divergence from a common
ancestral language. The leaves of the topology
T correspond to the K modern (observed) lan-
guages, whereas the inner nodes correspond to
ancestral (unobserved) languages. The length of
each branch c of T is a parameter to be inferred
from the output of the alignment algorithm us-
ing the introduced two-part coding approach. Our
Beta-Dirichlet model describes stochastic changes
in the alignment patterns of loci by separating the
shared alleles S among two or more languages
from those that are present in a single language
only (private alleles P ). From the perspective of
genetics, the latter correspond to novel mutations
that arise over time in any particular population
and are not observed elsewhere. For a locus, the
conditional distribution of alleles for a node c of
T , either observed or ancestral, is determined by
the relative frequencies ψSc and ψPc of values in S
and P , respectively. HereψSc = (ψSc1, . . . , ψScr)
is a vector of relative frequencies for the r alleles
in S and ψPc is a scalar of the total relative fre-
quency of alleles in P , so that ψPc+

∑r
j=1 ψScj =

1. By definition, ψPca equals zero for the root
node ca.

For each node c except the root, the conditional
distribution of the relative frequency of the values
in the private set ψPc given the relative frequency
ψPpa(c) in the parent node pa(c) is defined as the
Beta distribution:

ψPc | ψPpa(c) ∼ Beta(φPcµPc, φPc(1− µPc))
(2)

where µPc corresponds to the mean of the distri-
bution and φPc determines the variance, given by

V ar(ψPc) =
µPc(1− µPc)
φPc + 1

The relative frequencies of the shared features ψSc
have the conditional distribution:

(1− ψPc)−1ψSc | ψPc, ψPpa(c), ψSpa(c) ∼
∼ Dirichlet(φScµSc1, . . . , φScµScr) (3)

where again µScj and φSc control the first two cen-
tral moments of the distribution.

5The underlying theory relies on concepts from theoreti-
cal population genetics, (Ewens, 2004; Blythe and McKane,
2007); the reader may refer also to (Sirén et al., 2011; Sirén
et al., 2013), for a detailed account of the model structure.
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Figure 4: Stability of phylogeny based on sample means of pairwise distances vs. individual samples:
(A) for 10 Uralic languages; (B) for 17 Uralic languages

We choose parameters of the two distributions
as

µPc = 1− e−mcτc(1− ψPpa(c)) (4)

µScj =
ψSpa(c)j

1− ψPpa(c)
(5)

φPc =
µPc

(1−e−(mc+1)τc )
(mc+1) − (1− µPc)(1− e−τc)

− 1

(6)

φSc =
(mc + 1)(1− µPc)e−τc

1− e−(mc+1)τc
(7)

to yield the same expectation and covariance struc-
ture as obtained under the Wright-Fisher infinite
alleles model (Sirén et al., 2013; Ewens, 2004).
The parameter τc represents the relative time be-
tween a node and its ancestral language and mc is
an effective mutation parameter in the branch con-
necting c and pa(c). For the relative frequencies
ψSca in the root node ca, a uniform distribution
is assumed in the model. Assuming conditional
independence of all loci for which count data is
derived in the alignment, a product multinomial
distribution is obtained for the feature counts con-
ditionally on the unknown relative frequency pa-
rameters, such that

p(x|ψ) =
L∏
l=1

K∏
c=1

p(x(c)
l |ψlP c, ψlSc), (8)

where p(x(c)
l |ψlP c, ψlSc) is the joint multinomial

probability of the feature counts x(c)
l for the lo-

cus l in language c, where the relative frequencies
are now indexed. Notice that the remaining pa-
rameters in 2 and 3 are set to be constant over the

loci, thus representing the average tendency over
the loci.

In our fully Bayesian probabilistic formulation,
prior distributions are assigned to all the unknown
parameters. Similar to (Sirén et al., 2013), here
we have used uniform distributions on the interval
(0, 1) for the time parameters τ and exponential
distributions with mean 1 for the relative mutation
parameters m. As in Bayesian phylogenetics in
general, the tree topologies are assigned a uniform
prior distribution. These choices have been made
to specify vaguely informative prior distributions
which should not have any considerable effect on
the resulting posterior inferences.

Using the implementation from (Sirén et al.,
2013), the Adaptive Metropolis (AM) algo-
rithm, (Haario et al., 2001) can be applied to gen-
erate samples from the conditional posterior dis-
tribution of τ , m and ψ, given a topology T and
the partition of the features to sets P and S. In our
MCMC simulations we used 100000 iterations in
total, out of which the initial sequence of 20000
iterations was discarded as burn-in and the chain
was thinned by including every 8th iteration in the
final sample. This resulted in posterior samples of
size 10000 values.

Here, the AM algorithm is first used to gener-
ate the posterior samples separately for each pair
of languages in a given alignment, which allows
us to compute the distance between the two lan-
guages as the sum of relative times τ since the
divergence from a common ancestral language.
Then, we construct the tree topology correspond-
ing to the particular alignment by finding the un-
rooted binary tree using the neighbour joining al-
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Figure 5: Phylogenetic (unrooted) tree computed
by NeighborJoin, using pairwise distances aver-
aged over 10 Uralic datasets.

gorithm, (Felsenstein, 2004). Finally, a summary
tree for all languages is obtained by combining the
information over all considered alignments. As
the described procedure is used separately for each
sample obtained from the posterior distribution of
the pairwise distances, it results in a measure of
statistical uncertainty associated with the topology
by counting the relative number of times the ob-
tained tree has a certain topology. Conditional on
any topology constructed in this manner, one can
obtain posterior inferences for its branch lengths
directly from the posterior samples by including
the fraction of samples leading to the particular
topology.

The software suite implementing this model has
been made available to the public.6

7 Experiments

In this section we present some results from using
the combined pipeline approach, summarized in
Figure 1, applied to the Uralic data.

Since we have 10 input datasets that each con-
tribute different pairwise distances, we average
these distances over all 10 datasets (for each lan-
guage pair (a, b), averaging over the 8 datasets
where neither a nor b is reference). A topol-
ogy obtained using this method is shown in Fig-
ure 5. Recall, that this tree is unrooted,7 and iden-
tifying the node circled in green with the Finno-

6URL: http://www.helsinki.fi/bsg/. Compatibility be-
tween the etymological and the population-genetic suites will
be maintained also in future releases.

7NeighborJoin selects the root via a heuristic, which only
tries to minimize the length of the longest root-to-leaf path.

Figure 6: Phylogenetic network computed by
NeighborNet, using same datasets.

D(T,G) Count % of Total
0.000000 1 0.0000
0.142857 14 0.0007
0.285714 126 0.0062
0.428571 1018 0.0502
0.571429 8114 0.4003
0.714286 60444 2.9819
0.857143 363112 17.9135
1.000000 1594196 78.6471

Total 2027025

Table 1: URLL tree distances from gold standard.

Ugric node in “gold-standard” Uralic trees yields
a strong resemblance to the “true” topology. The
main deviation in the derived topology is at the
node circled in red, corresponding to Permic (an-
cestor of Komi and Udmurt), which “should” be in
the other subtree relative to the Finno-Ugric root.
This resulting tree has a URLL distance of 0.28
from the gold-standard tree we introduced in Sec-
tion 3. To get an intuitive sense of the quality of
this result, we observe that the number of unrooted
leaf-labeled trees with n nodes is (2n− 3)!!, (see,
e.g., (Ford, 2010)), which is over 2 million for 10
nodes. These trees and their distance from the
gold-standard are summarized in Table 1. In the
table, D(T,G) denotes the distance of a selected
tree to the gold standard. It is easy to check that the
expected distance for a randomly selected URLL
10-leaf tree from is over 0.963, with a standard de-
viation of 0.17. The chance of picking a tree with
distance 0.28 or less at random is under 7×10−5.
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For a deeper investigation of the relations
among the languages, we generate a phyloge-
netic network in SplitsTree4, (Huson and Bryant,
2006), (Figure 6), from the posterior expectations
of the pair-wise distances using the Neighbor-Net
method, (Bryant and Moulton, 2004). As de-
scribed in the original article, (Bryant and Moul-
ton, 2004), the sizes of the boxes in the center of
the network represent uncertainty about the phy-
logenetic position of the adjacent leaf nodes. For
instance, there is negligible uncertainty about the
position of the common ancestor of Finnish and
Estonian. In contrast, the greatest uncertainty is
related to the position of Permic, which is the only
branch in the tree in Figure 5 that deviates from
the gold-standard structure. The relevance of the
introduced alignment method is highlighted by the
fact that our reconstruction of the language relat-
edness in terms of trees yields results highly con-
gruent with gold-standards .

8 Discussion and current work

Using recent advances from population genetics,
we have obtained a promising approach to fully
probabilistic inference about language genealo-
gies based on unsupervised etymological align-
ment. According to our knowledge, this work
represent a first attempt to do such inference and
it will be of considerable interest to investigate
further the properties of this model family in the
linguistics context. The essential elements that
enable the use of a powerful population-genetics
modeling approach are: a. the mapping of sounds
to genetic loci which allow the use of a dis-
tribution to represent the evidence in the data;
b. use of each language in turn as a reference
language in the pair-wise alignment, instead of an
(unobserved) proto-language. Since the model-
based distances are averaged over a set of refer-
ence languages, the resulting distance estimates
are considerably more stable than the individual
estimates, as demonstrated in our numerical ex-
periments; c. the novel diffusion approximation-
based population-genetics models offer an enor-
mous computational advantage over standard co-
alescent likelihood-based models. Moreover, the
latter models would be considerably more diffi-
cult to adapt to the linguistic setting, since they
are by definition individual-based, in contrast to
the models used here, which enable a direct mod-
eling of languages as a whole by frequencies of

the mapped sounds.
Current work includes using context of sounds

in aligning the word pairs, and applications to et-
ymological data sets from other language fami-
lies, and extension for modeling of internal nodes
in the tree. One direction is using Turkic data
(from StarLing), where some of the ancestral lan-
guages are observed, and examining how accu-
rately the model identifies these languages with
internal nodes of the phylogeny. We are also ex-
tending the presented model to work with more
than 1-1 symbol alignment, using, e.g., 2-2 align-
ments found in (Kondrak, 2003; Wettig et al.,
2012). Finally, using methods for direct N-way
alignment—e.g., as suggested in (Steiner et al.,
2011)—we may be able to obtain useful estimates
of the sounds in the hidden Proto-language, and
how they align to sounds in the observed lan-
guages. This would in a sense provide the “true”
sites, and allow us to circumvent the need for av-
eraging over distances obtained from alignment
to reference languages, potentially improving the
overall accuracy.
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2010. Agent based models of language competition:
Macroscopic descriptions and order-disorder transitions.
Journal of Statistical Mechanics: Theory and Experiment,
2010:P04007.

Stephan Vogel, Hermann Ney, and Christoph Tillmann.
1996. HMM-based word alignment in statistical trans-
lation. In Proceedings of 16th Conference on Computa-
tional Linguistics (COLING 96), pages 169–174, Copen-
hagen, Denmark.

Hannes Wettig, Suvi Hiltunen, and Roman Yangarber. 2011.
MDL-based Models for Alignment of Etymological Data.
In Proceedings of RANLP: the 8th Conference on Recent
Advances in Natural Language Processing, Hissar, Bul-
garia.

36



Hannes Wettig, Kirill Reshetnikov, and Roman Yangarber.
2012. Using context and phonetic features in models of
etymological sound change. In Proc. EACL Workshop on
Visualization of Linguistic Patterns and Uncovering Lan-
guage History from Multilingual Resources, pages 37–44,
Avignon, France.

Dmitry Zelenko. 2009. Combining MDL transliteration
training with discriminative modeling. In Proceedings of
the ACL-IJCNLP, Singapore.

37



Proceedings of the 7th Workshop on Cognitive Aspects of Computational Language Learning, pages 38–43,
Berlin, Germany, August 11, 2016. c©2016 Association for Computational Linguistics

An incremental model of syntactic bootstrapping

Christos Christodoulopoulos*, Dan Roth* and Cynthia Fisher†
*Department of Computer Science †Department of Psychology

University of Illinois at Urbana-Champaign
{christod,danr,clfishe}@illinois.edu

Abstract

Syntactic bootstrapping is the hypothesis
that learners can use the preliminary syn-
tactic structure of a sentence to identify
and characterise the meanings of novel
verbs. Previous work has shown that syn-
tactic bootstrapping can begin using only
a few seed nouns (Connor et al., 2010;
Connor et al., 2012). Here, we relax
their key assumption: rather than training
the model over the entire corpus at once
(batch mode), we train the model incre-
mentally, thus more realistically simulat-
ing a human learner. We also improve
on the verb prediction method by incor-
porating the assumption that verb assign-
ments are stable over time. We show
that, given a high enough number of seed
nouns (around 30), an incremental model
achieves similar performance to the batch
model. We also find that the number of
seed nouns shown to be sufficient in the
previous work is not sufficient under the
more realistic incremental model. The re-
sults demonstrate that adopting more real-
istic assumptions about the early stages of
language acquisition can provide new in-
sights without undermining performance.

1 Introduction

An important aspect of how children acquire lan-
guage is how they map lexical units and their com-
binations to underlying semantic representations
(Gleitman, 1990). Syntactic bootstrapping is an
account of this aspect of language learning. It
is the hypothesis that learners can use the syn-
tactic structure of a sentence to characterise the
meanings of novel verbs. However, the problem
remains of how learners first identify verbs, and

characterise the syntactic structure of sentences.
One mechanism for resolving this issue is Struc-

ture Mapping (Fisher et al., 2010), which hypothe-
sises that, assuming an innate one-to-one mapping
between nouns and semantic arguments in an ut-
terance, children are able to use this information
to first identify verbs and their arguments, and then
assign semantic roles to those arguments. In this
paper we provide a computational model for this
account of syntactic bootstrapping. We use a sys-
tem called BabySRL (Connor et al., 2010; Connor
et al., 2012) that assigns semantic roles to argu-
ments in an utterance – a simplified version of the
Semantic Role Labeling Task (SRL; (Palmer et al.,
2011)). Here, we focus on the preliminary task of
identifying nouns and verbs from sentences in a
corpus of child-directed speech (the Brown corpus
(Brown, 1973), a subset of the CHILDES database
(MacWhinney, 2000)). Previous work (Connor et
al., 2010) presented a model which could identi-
fying noun and verb clusters with minimal super-
vision (a few seed nouns). However, this model
had two substantial limitations: the first was train-
ing was done in a batch mode, where the entire
dataset was made available to the learner before
any predictions were made; the second was that
while the noun prediction was aggregated (previ-
ously identified known clusters persisted through-
out the run through the data), the verb prediction
was not (previously identified verb clusters had no
effect on future predictions).

The current work makes two main advances
on the previous work. Firstly, it addresses the
batch mode limitation, adopting a more cogni-
tively plausible approach where all sentences are
given to the learner incrementally, more accurately
modelling ongoing learning from child-directed
speech. Secondly, it adopts an aggregated ap-
proach to verb prediction, as described in section
2.2, which capitalises on the fundamental assump-
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Figure 1: Illustration of the noun and verb prediction heuristics. The noun heuristic stage receives
words assigned to HMM states and a list of seed nouns, and assigns the noun label to states that contain
4 or more seed nouns, assumed to be learned without syntactic help (right-hand side columns show
the number of identified seeds and assignment). The verb heuristic receives a list of noun states per
sentence and accumulates counts of co-occurring nouns for each of the non-noun states (right-hand side
histograms). It assigns the verb label to the state with the highest probability of occurring with the
number of nouns that appear in the sentence.

tion that distributional clusters will behave in a
grammatically consistent fashion (“once a verb,
always a verb”).

2 Noun and verb prediction

Figure 1 describes the heuristics for noun and verb
prediction. Firstly, we model the distributional-
based word categorization with a hidden Markov
model (HMM) using 80 states. We used a Vari-
ational Bayes HMM model (Beal, 2003), trained
off-line over a very large corpus of child-directed
speech (2.1M tokens). We then use the method de-
scribed in Connor et al. (2010) to identify which of
these HMM states act as arguments (nouns) and
predicates (verbs). As in the original work, we
also give the HMM a number of function words
as identified by their part-of-speech tags in order
to be clustered into separate reserved states. This
represents (but does not model explicitly) the as-
sumption that infant learners can identify function
words based on a variety of cues, including lin-
guistic context, prosody, and frequency (Gerken
and McIntosh, 1993; Christophe et al., 2008;
Hochmann, 2013). Note also, that the list of func-
tion words was given to the HMM during training
and not during the tagging of the BabySRL cor-

pus. This means that for this corpus, the HMM
is using the same distributional statistics as for the
content words to decide on the function-word state
membership.

2.1 Identifying nouns

As in Connor et al. (2010), we use a simple heuris-
tic to identify noun HMM states. We assume a
number of (up to 75) “seed” nouns (taken from
Dale and Fenson (1996) – we chose the words
that were produced by at least 50% of children un-
der 21 months old). These words, assumed to be
learned without syntactic knowledge, are recog-
nised by the learner as verb arguments by virtue of
structure-mappings one-to-one mapping assump-
tion (Fisher et al., 2010). Using that knowledge,
the learner is able to identify which HMM states
contain these nouns and label them as arguments.
Any state that contains 4 or more seed nouns is la-
belled as a noun state. We also experimented with
a dynamic noun threshold: rather than keeping it to
a fixed number (4), we used a number of functions
that would dynamically increase this threshold ac-
cording to the number of seed nouns presented to
the learner. Experiments that increased the thresh-
old up to 30 with linear, exponential, or logarith-
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mic functions revealed no significant difference in
results.

2.2 Identifying verbs

After running the noun heuristic, each remaining
word (that does not belong to a function-word
HMM state) is considered a candidate verb. For
the purposes of this process, we assume that there
is a single verb for each utterance. However, we
use all the sentences available in the BabySRL cor-
pus, a bare majority of which (51%) have only one
verb predicate.

For the verb identification heuristic, we create a
histogram of the number of times each non-noun
content word (verb candidate) co-occurs with a
specific number of noun arguments (shown in the
top right of Figure 1). After this stage, as dis-
cussed in the Introduction, we diverge from the
original model and adopt an aggregated predic-
tion policy. The original model simply chose
the “winner” of the histogram-based predictions:
the candidate i with state si that maximized the
probability of the identified number of noun argu-
ments. For this new model, instead of assigning
the verb label directly to the winner, we aggregate
the predictions for each sentence into two num-
bers: the number of times state si was chosen as
the the winner of the histogram-based predictions
(#si(pred)), and the overall number of times state
si appeared in the corpus (#si(·)). From these
two numbers we can calculate the probability of
this state being a “stable” verb, p(si(pred)) =
(#si(pred)/#si(·)). For each sentence, we then
pick the candidate whose state has the highest
probability of being a stable verb. If multiple can-
didates have the same state and therefore the same
probability, we choose the first.1

One of the corollaries of this experiment is that
for the verb heuristic to work, the true argument
structure of a verb (number of core arguments) has
to align with the number of predicted arguments
(nouns). To verify this, we looked at the num-
ber of times a verb’s core arguments agree with
the number of gold-standard nouns. We found that
this is true for 36.3% of the sentences with a single
verb (30.6% overall). This seemingly low score
reflects the fact that not all arguments are single
nouns: some contain no nouns, (as in the adjec-

1This method could allow us to predict multiple verbs per
sentence, if instead of assigning the state with the highest
probability, we set a threshold over which every state is as-
signed the verb label.

tive argument of “looks nice”), and some contain
multiple nouns, mostly in the form of conjunc-
tions (“the boy and the girl”).2 The implication
here is that if the verb heuristic was only using
the count histograms as a source of information,
its performance would have been mediocre. How-
ever, by excluding noun and function words states
as potential arguments, the verb heuristic is able to
achieve a pretty robust precision as we will see in
section 4.

3 Incremental prediction

During language acquisition, children are exposed
to learning data incrementally, meaning they are
not exposed to all the data before having to gener-
ate their own hypotheses. To model this incremen-
tal exposure, the following changes to the original
model were made.

Rather than noun prediction preceding verb pre-
diction, in the incremental model both processes
happen concurrently. When the model is exposed
to the first sentence, it will identify no noun states
because none of them exceed the threshold of 4
seed nouns. However, if a seed noun occurs, its
appearance will be counted towards the sum of its
state.

For example, in a case where the first four utter-
ances in the corpus are as follows (HMM states
are indicated by numbers following their corre-
sponding word, function-word states are in grey
and seed nouns are in bold):

(1) a. papa/57 wants/58 an/6 apple/39
b. get/43 the/27 red/79 bicycle/39
c. come/75 and/21 move/43 horsie/39
d. i/50 forgot/63 a/6 spoon/39
e. you/50 ’re/25 eating/73 the/6 broom/39

When the model reaches utterance (1-a), it recog-
nises the seed noun ‘apple’, and so increments
the counter for state 39. The only information
available to the verb prediction module at this
point is that ‘apple’, as a seed noun, is a potential
noun. Therefore, this sentence contains two possi-
ble verbs,‘papa’ and ‘wants’ (‘a/an’ has a known
function-word state). Therefore, both states 57
and 58 are stored in the verb histograms as having
one argument and since it appears first (see foot-

2Compound nouns (“ice cream” or “fire truck”) are dis-
counted using a simple heuristic of joining contiguous noun
mentions.
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(a) Noun F-score (b) Verb precision

Figure 2: Results from the incremental noun/verb prediction, averaged over three children from the
Brown corpus (solid lines). The x axis shows the number of sentences. Colours indicate number of
seed nouns. For reference, dotted lines show results from the batch mode heuristics over all sentences
including those with multiple verbs, using the same verb aggregation techniques described in section 2.2.
For nouns, F-score is used, since the model predicts multiple nouns per utterance. For verbs, since only
one verb is predicted per utterance, precision is used as the evaluation metric.

note 1), ‘papa’ will be chosen as the verb.3

The process repeats for utterances (1-b)–(1-d),
each of which contains one seed noun in state
39. When the system reaches utterance (1-e), state
39 will have attained the threshold of 4 identi-
fied nouns. Utterance (1-e) therefore contains one
noun identified via this noun heuristic, ‘broom’,
and one known seed noun, ‘you’, leaving ‘eating’
as the only allowable verb candidate, and correctly
predicting the argument histogram count (2) for its
state (73). Using this toy example, we can see how
it will not take long for both the noun and verb
heuristics to reach the prediction level of the batch
mode via an incremental process.

Note that while noun and verb prediction is truly
incremental, the preliminary HMM learning and
state assignments happen in batch mode. This as-

3The storing of both states 57 and 58 as potential one-
argument verbs in the example may seem to conflict with the
assumption that there is only one verb per sentence. It is true
that at this stage, the model will lose information relevant
to the true number of arguments of each verb, since poten-
tial arguments may be wrongly identified as verb candidates.
However, the statistical stability of verb argument-taking be-
haviour, as well as the incrementally improving noun heuris-
tic, leads to these early errors being corrected. In addition,
this approach leaves space for a future version of this model
where multiple verbs per sentence can be predicted.

sumption could be relaxed in future, since there
already exist incremental models of word category
assignment (Parisien et al., 2008; Fountain and La-
pata, 2011). Here, as with the original work, we
chose not to focus on this earlier stage of language
acquisition, and instead assume that learning dis-
tributional facts about words proceeds largely in-
dependently for some time, until a few nouns are
known – at which point syntax guides interpre-
tation of the distributional classes. However, we
know that category learning itself is influenced
by syntactic properties (Christodoulopoulos et al.,
2012). As such, in future work we plan to inte-
grate the syntactic category learning with the verb
and noun prediction stage to improve the accuracy
of both.

4 Results and Discussion

We now present the results of the two main ad-
vances over the previous work of Connor et al.
(2010): the incremental version of the verb and
noun heuristics, and the aggregated predictions for
the verb heuristic.

Figure 2 shows the results from the two tasks of
noun and verb prediction averaged over three chil-
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dren, as well as the results of the original batch
version from Connor et al. (2010). It is worth not-
ing that the three children in the Brown corpus had
different numbers of sentences that came from dif-
ferent age ranges. As such, the average trajecto-
ries mask substantial individual differences. There
are two main findings: 1) the incremental scores
for each number of seed nouns slowly converge to
those of the batch mode; 2) similar to the origi-
nal study, there is a plateau for both noun and verb
prediction scores around 30 seed nouns.

For the noun prediction, we can see that the
number of seed nouns it takes to reach compa-
rable performance is slightly higher than in the
batch mode model. For instance, with 15 seed
nouns, the incremental prediction achieves a score
of 47.1%, whereas the batch mode achieves a
score of 73.6%. This is important, because it
shows that the number of seed nouns the batch
mode suggested was sufficient is not sufficient un-
der a more realistic incremental model. Interest-
ingly, this difference is not as pronounced for the
verb prediction scores. The reason for this is that
by aggregating over the histogram-based predic-
tions, we can recover from more noise coming
from the noun assignment. We also replicated
the original (non-aggregated) verb heuristic from
Connor et al. (2010). The results follow similar
trends, although the absolute numbers are lower.
This is verified our intuition that the grammatical
‘meaning’ of HMM states is indeed stable.

This work also raises a more general point about
computational models of language learning. Real
human learners not only have limited resources
such as memory and processing power, but also
are exposed to training instances incrementally
and only once. Related work in the field of com-
puter vision tries to mimic these learning condi-
tions (“one-shot learning”, Fei-Fei et al. (2006)),
but this approach has not yet attracted much at-
tention in the field of computational modeling of
language acquisition.4 We present these results as
a preliminary step in this direction, showing that
we can still attain good performance even while
acknowledging these limitations, and that this can
give us more insights into what exactly human
learners require to support acquisition.

4A notable exception is the work on incremental word
category acquisition mentioned above (Parisien et al., 2008;
Fountain and Lapata, 2011).

5 Conclusion

In this paper, we presented an incremental ver-
sion of the syntactic bootstrapping model of Con-
nor et al. (2010), with the additional innovation
of aggregating over verb predictions – the latter
representing the fundamental assumption that the
tagging of HMM states with grammatical cate-
gory “meaning” is stable (“once a verb, always
a verb”). We showed that given a high enough
number of seed nouns, an incremental model can
achieve similar performance within around 2000
sentences for noun predictions and 3000 sentences
for verb predictions. Importantly, the results also
show that the number of seed nouns shown to be
sufficient in the previous work is not sufficient un-
der a more realistic model where the learner en-
counters data incrementally. More broadly, we
demonstrate that adopting more realistic assump-
tions about the early stages of language acquisi-
tion can tell us more about what learners require
to bootstrap the acquisition of syntactic categories
while maintaining high performance.
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Abstract

One of the characteristics of child-directed
speech is its high degree of repetitious-
ness. Sequences of repetitious utterances
with a constant intention, variation sets,
have been shown to be correlated with
children’s language acquisition. To obtain
a baseline for the occurrences of variation
sets in Swedish, we annotate 18 parent–
child dyads using a generalised definition
according to which the varying form may
pertain not just to the wording but also to
prosody and/or non-verbal cues. To facili-
tate further empirical investigation, we in-
troduce a surface algorithm for automatic
extraction of variation sets which is eas-
ily replicable and language-independent.
We evaluate the algorithm on the Swedish
gold standard, and use it for extracting
variation sets in Croatian, English and
Russian. We show that the proportion of
variation sets in child-directed speech de-
creases consistently as a function of chil-
dren’s age across Swedish, Croatian, En-
glish and Russian.

1 Introduction

1.1 Background and motivation

Child-directed speech has many characteristics
that set it apart from adult-directed language, such
as shorter utterances, lower speech rate, fewer
disfluencies, lower syntactic complexity, greater
modulation of F0 and high repetitiousness (Broen,
1972). Here is an example of the latter property
from our data:1

1Translation of utterances from the MINGLE-3 corpus
(Björkenstam and Wirén, 2014) with parental speech to a
child aged 1;3 (compare Section 3).

You can put the animals there.
You can take the pig and the cat and put

them there.
Can you put them there?
Good.
Can you put the pig there too?

Sequences of such (partial) self-repetitions with a
constant intention have been called variation sets,
and have been shown to account for a large pro-
portion of the language that children hear (Küntay
and Slobin, 1996; Clark., 2009, p. 37).2

Why does this phenomenon occur? To some
extent, repetitiousness may serve simply to cap-
ture and maintain the child’s attention, but our
intuitions tell us that it is likely to also facili-
tate language learning for infants. For example,
it may allow for effective segmentation of pho-
netic material (Bard and Anderson, 1983), and it
has been shown to be a predictor of syntax growth
(Hoff-Ginsberg, 1986; Hoff-Ginsberg, 1990; Wa-
terfall, 2006). In a similar vein, investigating so-
cial and attentional cues in word learning, Frank
et al. (2012), point out that the temporal proximity
and continuity of repetitious language create sup-
portive contexts where partial understanding of in-
dividual utterances can lead to fuller understand-
ing.3

But variation sets have also been shown to ben-
efit artificial language learning. In an experiment
on this, Onnis et al. (2008) showed that adults ex-
posed to input with varation sets performed bet-
ter in phrase segmentation and phrase-boundary
judgement tasks than a control group who heard

2”Variation set” is actually a misnomer, since the idea is
that the order of individual utterances is important.

3It is also interesting to note that child-directed signing
shares many characteristics of child-directed speech, such as
prosodic exaggeration, lexical and syntactic simplification,
and repetition (Masataka, 2000), and these shared character-
istics include variation sets (Hoiting and Slobin, 2002).
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the same input in scrambled order without varia-
tion sets. They note that “[f]rom a computational
standpoint, the key characteristic of variation sets
is that local mechanisms of alignment and compar-
ison allow even memory-limited learners to dis-
cover structure that they would otherwise miss”
(Onnis et al., 2008, p. 424).

1.2 Related work

Early studies of child-directed language dealing
with partial and exact repetition include Broen
(1972), Snow (1972), Kaye (1980) and Hoff-
Ginsberg (1986; 1990). For example, Broen (ibid.,
p. 29, 43) tracked “clusters of sequential sen-
tences” where “the meaning remains constant”.
Snow (ibid.) found more partial and exact repe-
titions to 2-year olds than to 10-year olds.

Küntay and Slobin (1996) introduced the term
”variation set”, by which they meant a contiguous
sequence of repetitions with varying form but con-
stant intention. They pointed out that the core of
a variation set (and the main vehicle for express-
ing the intention) is almost always a verb, with op-
tionally expressed arguments. (In the above exam-
ple from the MINGLE-3 corpus, this verb would
be ”put”.) The possible variations were taken to
be ”(1) lexical substitution and rephrasing, (2) ad-
dition and deletion of specific referential terms,
and (3) reordering of constituents” (Küntay and
Slobin, 2002, p. 6). Their definition did not in-
clude exact repetitions, however. Furthermore, it
appears that in order for a new utterance to be con-
sidered a member of a existing variation set, the
new utterance has to satisfy the above conditions
for all of the previous utterances taken to be in the
set.

Küntay and Slobin’s study was based on tran-
scripts of everyday interaction between a Turkish-
speaking mother and her child over a seven-month
period, during which the child was between 1;8
and 2;3 years. The finding was that 21% of the
utterances occurred within variation sets, and that
these sets were positively associated with chil-
dren’s acquisition of specific verbs. A follow-up
study of transcripts of another Turkish-speaking
mother and a child (at age 1;3 and 2;0 years)
showed how the communicative functions of the
variation sets changed as a function of age (Küntay
and Slobin, 2002).

Waterfall (2006) provided the first longitudi-
nal study of variation sets in English, based on

12 mother–child dyads with children between 1;2
and 2;6 years. Waterfall’s (2006, p. 21) defini-
tion of variation set is somewhat different from
Küntay and Slobin’s, though it is not clear what
effect that has in practice. Basically, she defines
a variation set as a sequence of utterances that be-
longs to the same conversational turn, that relates
to the same event or situation, that ”have similar
or related meanings”, and shares at least one noun
or verb. Again, it appears that these conditions
should hold between all utterances within the set,
and like Küntay and Slobin, she did not include
exact repetitions. Also, she allowed up to four
non-related intervening utterances in a variation
set. Waterfall found that children’s production of
nominal and verbal structures was correlated with
peaks in the parents’ use of that structure in vari-
ation sets. She also found a moderate decrease in
the proportion of utterances that are part of vari-
ation sets as a function of age, from 17% at 1;2
years to 12% at 2;6 years.

Attempts at automatic extraction of variation
sets naturally focus on form rather than func-
tion. Brodsky et al. (2007) suggest a simple def-
inition of a variation set as a sequence of utter-
ances where each successive pair of utterances
has a lexical overlap of at least one element, ex-
cluding words on a stoplist (which includes high-
frequency words). Variation sets are thus extracted
by comparing pairs of successive utterances for re-
peated words, resulting in sets with at least one
non-stoplisted word in common. Using an auto-
mated procedure of this kind, Brodsky et al. ob-
tain a proportion of 21.5% of the words in Water-
fall’s (2006) corpus occurring in variation sets, and
18.3% of the words in the English CHILDES col-
lection (MacWhinney, 2000). Similar studies have
been performed by Onnis et al. (2008) and Water-
fall et al. (2010). For example, when Onnis et al.
used an automated procedure based on Waterfall’s
(2006) criteria on the Lara corpus from CHILDES
(involving one child between 1;9 and 3;3 years),
they obtained a proportion of 27,9% of the utter-
ances being inside variation sets.

1.3 The problem

For the purpose of this work, we assume that vari-
ation sets play a role in language learning for in-
fants, but we are agnostic as to the precise na-
ture of this role. Rather, the aim is to investigate
the longitudinal behaviour of variation sets using a

45



definition which subsumes earlier work but where
the repetitiousness may also be, on the one hand,
semantic (with no or very little surface repetition)
and, on the other hand, prosodic or non-verbal
(while displaying exact repetition). To obtain a
baseline for the behaviour of this phenomenon in
Swedish, we develop a gold standard for variation
sets. To facilitate further empirical investigation,
we introduce a surface algorithm which we eval-
uate on the gold standard and apply to Croatian,
English and Russian.

2 Criteria for variation sets

2.1 Basic criteria

A starting-point for our work is Küntay and
Slobin’s (1996; 2002) definition, which takes vari-
ation sets to be sequences of utterances with the
same communicative intention but with small dif-
ferences in form. Basically, our definition sub-
sumes Küntay and Slobin’s, but we extend it in
certain ways. First, along with Brodsky et al.
(2007), we extract variation sets (whether manu-
ally in the gold standard or automatically using the
algorithm) by comparing successive pairs of utter-
ances: first–second, second–third, etc. Also, up to
two intervening utterances (such as interjections)
by the parent are allowed any time in a sequence
(similarly to Snow (1972, p. 251) and Brodsky et
al. (2007)). Furthermore, we allow for verbal input
from the child within variation sets. The rationale
for this is that our data covers the ages 0;7–2;9
years (see Section 3), and especially in the early
dyads the children are still learning to take turns.
As for constant intention, we make one exception
from this, following Küntay and Slobin (2002):
we include question–answer sequences where the
parent provides both the question and the answer
in variation sets.

2.2 Surface and semantic repetitiousness

A difference compared to previous work that we
are aware of is that we aim at capturing a continu-
ous scale of surface and semantic repetitiousness,
where, at one extreme, the repetitiousness may be
purely semantic without any surface similarity at
all. Here is an example of this from our data, with
approximate translations:

Titta här då!
(But look here!)

Har du sett vilka tjusiga byxor?

(Have you seen the fancy pants?)
Kolla!
(Look!)

The intention in each of these utterances is to make
the child look at the pants, but there is no overlap
whatsoever in form between the utterances.

 

Figure 1: Phonetic and prosodic analysis of a
repetition of the Swedish phrase ”Var är gummi-
ankan?” (”Where is the rubber duck?”), uttered by
a male speaker. The utterances are ordered with
the first utterance on top. The y-axis represents
frequency (semitones) and the x-axis represents
time (seconds). Black thick horizontal lines show
stylised intonation based on tonal perception.

2.3 Multimodal variation
Contrary to many previous studies of variation sets
(Küntay and Slobin, 1996; Küntay and Slobin,
2002; Waterfall, 2006), we include exact (verba-
tim) repetitions in our definition of variation sets.
This is motivated by the result of a study that we
made of three dyads in the multimodally anno-
tated MINGLE-3 corpus (see Section 3). When-
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ever word-for-word repetition occurred in the writ-
ten transcript of the three dyads, we found consis-
tent patterns of prosodic variation in the parents’
speech, involving pitch, timing and/or stress, and
typically also variation of their non-verbal cues,
involving eye gaze direction, deictic gestures or
object manipulation.

Figure 1 shows a phonetic and prosodic analy-
sis of a variation set from our data with three exact
repetitions of the Swedish utterance ”Var är gum-
miankan?” (”Where is the rubber duck?”).4 The
vertical line indicates time-synchronized starts of
the repetitions. In the analysis window for each
repetition, a black thick horizontal line shows styl-
ized intonation based on tonal perception (per-
ceived pitch). A downwards tilted line means
falling intonation (from brighter to deeper voice),
upwards tilted means rising intonation. In the
background, the waveform and intensity (thin line)
can be seen. The annotation rows beneath each
repetition contains phonetic transcription in IPA
(top row) and syllable segmentation (second row).
The third row at the bottom contains an ortho-
graphic annotation.5

Here, the first utterance (shown at the top of
the figure) initially displays relatively flat intona-
tion, and then rising intonation with a peak on the
first syllable in the noun ”ankan” (”duck”), with
a fall on the last syllable. In contrast, the sec-
ond utterance has shorter duration and falling in-
tonation throughout. Finally, the third utterance
has completely flat intonation, with duration sim-
ilar to the first utterance but with a prolongation
of the first syllable, corresponding to the adverb
”var” (”where”).

Although this is just a small study, the fact that
variation is here being systematically manifested
through prosody and/or non-verbal cues when the
wording is constant fits well with our general im-
pression of exact repetitions. It is because of
this multimodal variation that we include verbatim
repetitions in variation sets.

3 Data

Our data consists of transcripts of Swedish child-
directed speech from the MINGLE-3 corpus

4The examples in this section are from the MINGLE-3
corpus (Björkenstam and Wirén, 2014), with approximate
English translations.

5The intonation analyses were done in Prosogram
(Mertens, 2004), and the figures were compiled from Proso-
gram and Praat (Boersma, 2001).

(Björkenstam and Wirén, 2014), consisting of 18
longitudinal dyads with three children (two girls,
one boy) recorded between the ages of 7 and 33
months with six dyads per child, all of which is
multimodally annotated. The complete duration of
the 18 dyads is 7:29 hours (mean duration 24:58
minutes). The video and audio recordings were
made from naturalistic parent–child interaction in
a recording studio at the Phonetics Laboratory at
Stockholm University (Lacerda, 2009). The chil-
dren were interacting alternately with their moth-
ers (10 dyads) and fathers (8 dyads). The sce-
nario was free play.6 The ELAN annotation tool
(Wittenburg et al., 2006) was used for transcrip-
tion of parent and child utterances, as well as
annotation of eye gaze, deictic gestures and ob-
ject manipulation (Björkenstam and Wirén, 2014).
The transcripts have been automatically annotated
with part-of-speech and morphosyntactic tags us-
ing Stagger (Östling, 2013), followed by manual
correction.

4 Creating a gold standard

The manual annotation of variation sets started
with analysis of four dyads, based on a guideline
according to the criteria in Section 2. The same
criteria were applied throughout all age groups.
The annotations were made in ELAN, using time-
lines to code the extensions of variations sets
across utterances, and taking into account both
verbal and non-verbal input from parent and child
from transcriptions, audio and video.

Each of the four dyads was annotated by two
coders independently. The resulting annotations
were merged, and a third annotator marked cases
of disagreement. This resulted in an interannota-
tor agreement (measured as set overlap between
annotators) of 78%. The remaining 14 dyads were
annotated by one annotator. During this phase, a
classification of communicative intention based on
the Inventory of Communicative Acts-Abridged
(Ninio et al., 1994) was added. This classifica-
tion was evaluated by comparing four representa-
tive dyads annotated by three independent annota-
tors, resulting in a Fleiss’s kappa of 0.63.

6Some of the data (transcripts and audio) is available
through the Swedish section of CHILDES as the Lacerda files
(MacWhinney, 2000).
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Table 1: Results of the longitudinal study of Swedish variation sets (also used as gold standard in Table
3). The third row shows the proportions of child-directed utterances that are in variation sets. Each
figure is obtained by first calculating the proportion per dyad and then averaging the proportions over
all dyads in the respective age group. Boldface indicates statistically significant difference to boldfaced
neighbour (z-test of sample proportions; respectively, z = 8, p < 0.0001, z = 2.3, p < 0.02, z = 8.2,
p < 0.0001, two-tailed). The fourth row shows the proportions of exact repetitions within variation sets.
Each figure is obtained by first calculating the proportion per variation set and averaging over the dyad,
then averaging over all dyads in the respective age group.

Longitudinal study of Swedish variation sets Group 1
0;7–0;9

Group 2
1;0–1;2

Group 3
1;4–1;7

Group 4
2;3–2;9

Number of dyads 5 5 5 3
Number of child-directed utterances 1032 1421 1492 724
Proportion of utterances that are in variation sets 50% 34% 30% 14%
Proportion of exact repetitions in variation sets 24% 16% 13% 10%

5 Results: Gold standard variation sets

In order to obtain a baseline for how the proportion
of utterances that are in variation sets varied as a
function of age of the children, we grouped the
dyads according to child age in the following four
data sets:

Age group 1: 0;7–0;9 (7–9 months)
Age group 2: 1;0–1;2 (12–14 months)
Age group 3: 1;4–1;7 (16–19 months)
Age group 4: 2;3–2;9 (27–33 months)

As shown in Table 1, our gold standard displayed a
consistent decrease in the proportion of utterances
in variation sets over time, from 50% for age group
1 to 14% for group 4. The proportion of verbatim
repetitions in variation sets also decreased, from
24% for age group 1 to 10% for group 4.

6 Automatic extraction of variation sets

The method that we use for extracting variation
sets is deliberately surface-based to allow us to de-
termine how far this can bring us relative to our
gold standard, which is based on both surface and
semantic criteria. As mentioned above, the algo-
rithm performs a stepwise comparison of pairs of
successive utterances. The criterion for including
two successive utterances in a variation set is that
the difference between them (regarded as strings)
does not fall below a certain similarity threshold.
Additionally, following Brodsky et al. (2007) and
others, we allow for sequences of maximally two
intervening dissimilar utterances that do not obey
this condition.

For string comparison, we used Ratcliff–
Obershelp pattern recognition (Black, 2004) as
implemented in the Python module difflib.7

We refer to the variation-set extraction algorithm
using this as ”difflib ratio”, DLR.8 When com-
paring two strings, the matcher returns a value be-
tween 0 and 1. A value of 1 corresponds to an
exact repetition, and 0 corresponds to two utter-
ances without any overlap of words. By using this
value as a parameter, we can obtain a threshold
for the desired degree of similarity. The threshold
can either be selected arbitrarily, or learned from
evaluation against the gold standard variation sets.
When evaluated against the gold standard, the op-
timal similarity threshold was 0.55 (see Figure 2).

We experimented with including information
from the part-of-speech tagging of the transcripts
(see Section 3) in such a way that the pair of
strings compared consisted of both the words and
their part-of-speech tags. Our intuition was that
this might give us a more refined analysis, for
example, by distinguishing cases of homonymy.
This version of the algorithm turned out not to im-
prove performance, however (see Figure 2), and
was therefore dropped.

7https://docs.python.org/2/library/
difflib.html#module-difflib.

8We also experimented with another standard technique
for calculating string similarity, namely, edit distance, also
known as Levenshtein distance (Levenshtein, 1966). In the
end we found DLR to perform slightly better relative to the
gold standard, however.
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Figure 2: Results of strict matching with the DLR similarity measure on raw (solid lines) and part-of-
speech tagged data (dotted lines). Similarity level thresholds on x-axis; precision, recall and F-score on
y-axis.

Table 2: Example variation set from the gold standard (utterance 3–4) and utterances exrqcted by the
algorithm (utterance 1–4).

Example utterances Member of Extracted by
gold set algorithm

1. Ska vi lägga ner nånting i i väskan då?
(Are we going to put something in in the bag then?)

– Yes

2. Va?
(Huh?)

– Yes

3. Ska du lägga ner kossan i väskan kanske?
(Are you going to put down the cow in the bag maybe?)

Yes Yes

4. Ska vi lägga ner kossan?
(Are we going to put down the cow?)

Yes Yes

7 Results: Automated extraction

7.1 Evaluation on Swedish gold standard

We evaluated the algorithm against the gold stan-
dard variation sets using two kinds of metrics,
which we refer to as strict and fuzzy matching.
Strict matching requires exact matching on the ut-
terance level of the extracted variation set and the
corresponding gold standard set, whereas fuzzy
matching allows for partial overlaps of the ex-
tracted variation set and the gold standard set. In
the example in Table 2, only utterance 3 and 4
are members of the gold standard variation set,
whereas the algorithm extracts utterances 1–4.
Hence, the strict matching metric treats this ex-
tracted set as a false positive, whereas the fuzzy
matching metric treats it as a true positive. As
for fuzzy matching, we need a way of calculat-
ing precision for different degrees of overlaps with
the gold set. The measure we have adopted for
this purpose is mean average precision (MAP), see

Croft et al. (2009, p. 313).

Table 3 summarizes the results of extraction
of variation sets relative to the gold standard ac-
cording to the strict and fuzzy metric. Strict
F-score reaches 0.56 and fuzzy F-score reaches
0.82 for age group 1, but F-scores gradually de-
crease with increasing age. Apparently, the varia-
tion displayed in the parents’ speech becomes less
amenable to surface methods as the children grow
older. An indirect sign of this increased complex-
ity in variation sets is that the proportion of exact
repetitions decreases as the children grow older, as
shown in Table 1.

7.2 Extraction of variation sets in Croatian,
English and Russian

To investigate the behaviour of variation sets in
other languages, we ran the algorithm with lon-
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Table 3: Evaluation of the algorithm for automatic variation-set extraction against the Swedish gold
standard per age group.

String matching relative to gold standard Group 1
0;7–0;9

Group 2
1;0–1;2

Group 3
1;4–1;7

Group 4
2;3–2;9

Strict precision
Strict recall
Strict F-score

0.539
0.581
0.559

0.406
0.406
0.406

0.351
0.446
0.392

0.217
0.333
0.262

Fuzzy precision
Fuzzy recall
Fuzzy F-score

0.774
0.877
0.822

0.627
0.763
0.689

0.505
0.743
0.601

0.324
0.615
0.425

Table 4: Results of the algorithm for automatic variation-set extraction applied to Croatian, English and
Russian child-directed utterances from CHILDES. The rows show the number of utterances in each age
group, the average proportion of utterances that are in variation sets, and the average proportion of exact
repetitions in the variation sets, with figures having being calculated in the same way as in Table 1.

Language Features of the data set Group 1
0;7–0;9

Group 2
1;0–1;2

Group 3
1;4–1;7

Group 4
2;3–2;9

Croatian
Kovacevic

Total number of utterances 39 217 408 (no data)
Utterances in variation sets 85% 54% 50% –
Exact repetitions in variation sets 0.0% 8.5% 4.9% –

English (UK)
Lara

Total number of utterances (no data) (no data) 926 391
Utterances in variation sets – – 54% 44%
Exact repetitions in variation sets – – 7.8% 6.9%

Russian
Protassova

Total number of utterances (no data) (no data) 1088 545
Utterances in variation sets – – 35% 24%
Exact repetitions in variation sets – – 6.3% 4.6%

gitudinal corpora in Croatian,9 English10 and Rus-
sian from CHILDES (MacWhinney, 2000).11 Al-
though it was not possible to find a perfect cor-
respondance with the age groups for Swedish,
Table 4 shows how the selection of languages
and transcripts from CHILDES partly matches the
Swedish data. As shown in Table 4, both the pro-
portion of variation sets and the proportion of ex-
act repetitions as far, as can be seen, decrease con-
sistently for Croatian, English and Russian.

8 Discussion

In our study of the Swedish gold standard, we
obtained statistically significant decreases in the
proportion of utterances within variation sets as
a function of age between all age groups, from

9Kovacevic: Vjeran, files 20 (0;10 years) 23 (1;2 years),
33 (1;7 years).

10Lara, files 1-09-13 (1;9 years), 2-06-00 (2;6 years).
11Protassova: Varv, files 01 (1;6 years), 04 (1;10 years), 06

(2;4 years).

50% for age group 1 to 14% for age group 4 (see
Table 1). These differences were also more con-
sistent than in Waterfall (2006), who obtained an
overall decrease from 17% for 1;2 years to 12%
for 2;6 years (ibid., p. 125). Waterfall’s age span
was shorter than ours,12 but its decrease was still
less pronounced within the comparable age in-
terval. It is also interesting to see that we ob-
tained the largest proportion of variation sets for
the youngest age group (0;7–0;9 years), which was
not covered by Waterfall.

The fact that we see larger age-related differ-
ences in our data does not seem to be attributable
to the inclusion of exact repetitions in our varia-
tion sets, judging from the proportiones of these
in Table 1. In any case, and as argued in Sec-
tion 2, the reason for extending the definition of
variation sets in this way is motivated by an in-

12Waterfall’s age group 1;2 roughly matches our group
2, 1:6 and 1;8 roughly match our group 3, and 2;2 and 2;6
roughly match our group 4. Our results for age group 1 are
new compared to previous studies, however.

50



depth analysis of a subset of these utterances in
our multimodally annotated corpus. We conjec-
ture that when an utterance is repeated verbatim,
there is instead multimodal variation that increases
the information and helps the child learn from the
utterance. As far as we know, our longitudinal fig-
ures on proportions of exact repetitions are also
the first that have been reported.

Our automatic algorithm for variation set ex-
traction is deliberately surface-based in order to
test how far this kind of method can bring us. An
independent advantage is that it is easily replica-
ble since it is based on a standard library for string
comparison. The algorithm reaches a fuzzy F-
score of up to 0.82 (strict: up to 0.56) relative to the
Swedish gold standard in spite of only using crite-
ria related to form. The F-score drops as a function
of age, however (see Table 3); we conjecture that
this is due to the relation between form and inten-
tion becoming less transparent with increased age.
That is, as the child develops and learns more lan-
guage, the parents’ variation gets more complex.
One way of handling this complexity would be by
generalizing the algorithm to recognize intention.

Since the algorithm only uses form-based cri-
teria, it is in principle also language-independent.
We obtain consistent decreases of the proportions
of utterances in variation sets also when we ap-
ply the algorithm to Croatian, English and Russian
corpora of child-directed language (see Table 4).
Although in this case we have no evaluations, it is
interesting to see that the behaviour corresponds
to what we expected.

9 Conclusion

We have investigated the longitudinal behaviour of
variation sets in child-directed speech according to
a generalised definition. Variation sets appear to
function as a device for effective communication
and learning with young children: the speaker re-
peats the same content while varying the wording,
prosody and/or non-verbal cues in order to max-
imise the chance of comprehension. With increas-
ing age and language comprehension, there is less
need for such repetitiousness.

Our study of Swedish covered a larger age span
and displayed a more consistent decrease than Wa-
terfall’s (2006) study of American English. Our
automatic algorithm seems to usefully approxi-
mate manual extraction of variation sets at least
for lower age groups, and an advantage is that the

algorithm is easily replicable. Applications of the
algorithm to Croatian, English and Russian dis-
played similar decreases in the proportions of ut-
terances in variation sets as a function of ages. We
also found that the proportions of exact repetitions
are similarly decreasing as a function of age for all
languages, and we have demonstrated how multi-
modal cues seem to provide other dimensions of
variation in these utterances.
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Jianqiang Maa,b Çağrı Çöltekinb Erhard Hinrichsa,b

a SFB 833, University of Tübingen, Germany
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Abstract

This paper presents a novel model that
learns and exploits embeddings of phone
ngrams for word segmentation in child
language acquisition. Embedding-based
models are evaluated on a phonemi-
cally transcribed corpus of child-directed
speech, in comparison with their symbolic
counterparts using the common learning
framework and features. Results show
that learning embeddings significantly im-
proves performance. We make use of ex-
tensive visualization to understand what
the model has learned. We show that the
learned embeddings are informative for
both word segmentation and phonology in
general.

1 Introduction

Segmentation is a prevalent problem in language
processing. Both humans and computers pro-
cess language as a combination of linguistic units,
such as words. However, spoken language does
not include reliable cues to word boundaries that
are found in many writing systems. The hearers
need to extract words from a continuous stream
of sounds using their linguistic knowledge and the
cues in the input signal. Although the problem is
still non-trivial, competent language users utilize
their knowledge of the input language, e.g., the
(mental) lexicon, to a large extent to aid extraction
of lexical units from the input stream.

Word segmentation in early language acquisi-
tion is especially interesting and challenging, as
early language learners barely have a lexicon or
any other linguistic knowledge to start with. Con-
sequently, it has been studied extensively through
psycholinguistic experiments (Cutler and Butter-
field, 1992; Jusczyk et al., 1999; Jusczyk et al.,

1993; Saffran et al., 1996; Jusczyk et al., 1999;
Suomi et al., 1997; van Kampen et al., 2008)
and computational modeling (Cairns et al., 1994;
Christiansen et al., 1998; Brent and Cartwright,
1996; Brent, 1999; Venkataraman, 2001; Xanthos,
2004; Goldwater et al., 2009; Johnson and Gold-
water, 2009).

The majority of the state-of-the-art computa-
tional models use symbolic representations for in-
put units. Due to Zipf’s law, most linguistic units,
however, are rare and thus the input provides lit-
tle evidence for their properties that are useful
for solving the task at hand. In machine learning
terms, the learner has to deal with the data sparse-
ness problem due to the rare units whose param-
eters cannot be estimated reliably. A model us-
ing distributed representations can counteract the
data sparseness problem by exploiting the similar-
ities between the units for parameter estimation.
This has motivated the introduction of embeddings
(Bengio et al., 2003; Collobert et al., 2011), a fam-
ily of low-dimensional, real-valued vector repre-
sentation of features that are learned from data.
Unlike purely symbolic representations, such dis-
tributed representations allow input units that ap-
pear in similar contexts to share similar vectors
(embeddings). The model can, then, exploit the
similarities between the embeddings during seg-
mentation and learning.

This paper studies the learning and use of em-
beddings of phone1 uni- and bi-grams for com-
putational models of word segmentation in child
language acquisition. Our work is inspired by
recent success of embeddings in NLP (Devlin et
al., 2014; Socher et al., 2013), especially in Chi-
nese word segmentation (Zheng et al., 2013; Pei
et al., 2014; Ma and Hinrichs, 2015). However,
this work differs from Chinese word segmenta-

1We use the therm phone as a theory-neutral term for the
distinct (phonetic) segments in the input.
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tion models in two aspects. (1) The model (Sec-
tion 2) learns from a phonemically transcribed cor-
pus of child-directed speech (Section 3.1) instead
of large written text input. (2) The learning (Sec-
tion 2.2) only relies on utterance boundaries in in-
put as opposed to explicitly marked word bound-
aries. Although the number of phone types is
small, higher level ngrams of phones inevitably
increase the severity of data sparseness. Thus we
expect embeddings to be particularly useful when
larger phoneme ngrams are used as input units.
The contributions of this paper are three-fold:

• A novel model that constructs and uses em-
beddings of phone ngrams for word segmen-
tation in child language acquisition;

• Empirical evaluations of symbolic and em-
bedding representations for this task on the
benchmark data, which suggest that learning
embeddings boosts the performance;

• A deeper analysis of the learned embed-
dings through visualizations and clustering,
showing that the learned embeddings cap-
ture information relevant to segmentation and
phonology in general.

In the next section we define the distributed
representations we use in this study, phone-
embeddings, and a method for learning the em-
beddings and the segmentation parameters simul-
taneously from a corpus without word boundaries.
Then we present a set of experiments for compar-
ing embedding and symbolic representations (Sec-
tion 3). We show our visualization and clustering
analyses of the learned embeddings (Section 4) be-
fore discussing our results further in the context of
previous work (Section 5) and concluding the pa-
per.

2 Learning Segmentation with Phone
Embeddings

2.1 The architecture of the model

Figure 1 shows the architecture of the proposed
embedding-based model. Our model takes the em-
beddings of phone uni- and bi-grams in the lo-
cal window for each position in an utterance, and
predicts whether that position is a word boundary.
The embeddings for the phone ngrams are learned
jointly with the segmentation model. The model
has the following three components:

Figure 1: Architecture of our model.

Look-up table maps phone ngrams to their
corresponding embeddings. In this study, for
each position j, we consider the 4 unigrams
(cj−1, cj , cj+1, cj+2) and 2 bigrams (cj−1cj and
cj+1cj+2) that are in a window of 4 phones of po-
sitions j. The phone cj represents the phone on
the left of the current position j and so on.

Concatenation. To predict the segmentation
for position j, the embeddings of the phone uni-
and bi-gram features are concatenated into a sin-
gle vector, input embedding, ij ∈ RNK , where
K = 6 is the number of uni- and bi-gram used
and N = 50 is the dimension of the embedding of
each ngram.

Sigmoid function. The model then computes
the sigmoid function (1) of the dot product of the
input embedding ij and the weight vector w. The
output is a score ∈ [0, 1] that denotes the probabil-
ity that the current position being a word bound-
ary, which we call boundary probability.

f(j) =
1

1 + exp (−w · ij) (1)

2.2 Learning with utterance edge and
random sampling

Our model learns from utterances that have word
boundaries removed. It, however, utilizes the ut-
terance boundaries as positive instances of word
boundaries. Specifically, the position before the
first phone of an utterance is the left boundary
of the first word, and the position after the last
phone of an utterance is the right boundary of the
last word. For these positions, dummy symbols
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are used as the two leftmost (rightmost) phones.
Moreover, one position within the utterance is ran-
domly sampled as negative instance. Although
such randomly sampled instances are not guaran-
teed to be actual negative ones, sampling balances
the positive instances, which makes learning pos-
sible.

The training follows an on-line learning strat-
egy, processing one utterance at a time and updat-
ing the parameters after processing each utterance.
The trainable parameters are the weight vector and
the embeddings of the uni- and bi-grams. For each
position j, the boundary probability is computed
with the current parameters. Then the parameters
are updated by minimizing the cross-entropy loss
function as in (2).

Jj = − [yj log f(j) + (1− yj) log (1− f(j))] (2)

In formula (2), f(j) is the boundary probabil-
ity estimated in (1) and yj is its presumed value,
which is 1 and 0 for utterance boundaries and sam-
pled intra-utterance positions, respectively. To off-
set over-fitting, we add an L2 regularization term
(||ij ||2 + ||w||2) to the loss function, as follows:

Jj ← Jj +
λ

2

(
||ij ||2 + ||w||2

)
(3)

The λ is a factor that adjusts the contribution
of the regularization term. To minimize the regu-
larized loss function, which is is still convex, we
perform stochastic gradient descent to iteratively
update the embeddings and the weight vector in
turn, each time considering the other as constant.
The gradients and update rules are similar to that
of logistic regression model as in Tsuruoka et al.
(2009), except that the input embeddings i are also
updated besides the standard weight vector.

In particular, the gradient of input embeddings
ij for each particular position j is computed ac-
cording to (4), where w is the weight vector and
yj is the assumed label. The input embeddings are
then updated by (5), where α is the learning rate.

∂Jj

∂ij
= (f (j)− yj) ·w + λij (4)

ij ← ij − α∂Jj

∂ij
(5)

2.3 Segmentation via greedy search
The word segmentation of utterances is a greedy
search procedure using the learned model. It irre-
versibly predicts segmentation for each position j

(1 ≤ j ≤ N = utterance length), one at a time, in
a left-to-right manner. If the boundary probability
given by the model greater than 0.5, the current
position is predicted as word boundary, otherwise
non-boundary. The segmented word sequence is
built from the predicted word boundaries in the ut-
terance.

3 Experiments and Results

The learning framework described in Section 2
can also be adopted for symbolic representations
where the ngram features for each position are rep-
resented by a sparse binary vector. In the sym-
bolic representation, each distinct uni- or bi-gram
is represented by a distinct dimension in the in-
put vector. In that case, the learning framework is
equivalent to a logistic regression model, the train-
ing of which only updates the weight vector but
not the feature representations. In this section, we
run experiments to compare the performances of
embedding- and symbolic-based models using the
same learning framework with the same features.
Before presenting the experiments and the results,
we describe the data and evaluation metrics.

3.1 Data

In the experiments reported in this paper, we use
the de facto standard corpus for evaluating seg-
mentation models. The corpus was collected by
Bernstein Ratner (1987) and converted to a phone-
mic transcription by Brent and Cartwright (1996).
The original corpus is part of the CHILDES
database (MacWhinney and Snow, 1985). Follow-
ing the convention in the literature, the corpus will
be called the BR corpus. Since our model does
not know the locations of true boundaries, we do
not make training and test set distinction, follow-
ing previous literature.

3.2 Evaluation metrics

As a measure of success, we report F-score, the
harmonic mean of precision and recall. F-score is
a well-known evaluation metric originated in in-
formation retrieval (van Rijsbergen, 1979). The
calculation of these measures depend on true pos-
itive (TP), false positive (FP) and false negative
(FN) values for each decision. Following ear-
lier studies, we report three varieties of F-scores.
The boundary F-score (BF) considers individual
boundary decisions. The word F-score (WF)
quantifies the accuracy of recognizing word to-
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kens. And the lexicon F-scores (LF) are calcu-
lated based on the gold-standard lexicon and lex-
icon learned by the model. For details of the
metrics, see Goldwater et al. (2009). Follow-
ing the literature, the utterance boundaries are not
included in boundary F-score calculations, while
lexicon/word metrics include first and the last
words in utterance.

Besides these standard scores we also present
over-segmentation (EO) and under-segmentation
(EU) error rate (lower is better) defined as:

EO =
FP

FP + TN
EU =

FN
FN + TP

where TN is true negatives of boundaries. Besides
providing a different look at the models’ behav-
ior, it is straightforward to calculate the statistical
uncertainty around them since they resemble N
Bernoulli trials with a particular error rate, where
N is number of boundary and word-internal posi-
tions for EU and EO respectively.

The results of our model in this paper are di-
rectly comparable with the results of previous
work on the BR corpus using the above met-
rics. The utterance boundary information that our
method uses is also available to any “pure” un-
supervised method in literature, such as the EM-
based algorithm of Brent (1999) and the Bayesian
approach of Goldwater et al. (2009). In these
methods, word hypotheses that cross utterance
boundaries are not considered, which implicitly
utilizes utterance boundary “supervision.”

3.3 Experiments
To show the differences between the symbolic and
embedding representations, we train both models
on the BR corpus, and present the performance and
error scores on the complete corpus. The training
of all models use the linear decay scheme of learn-
ing rate with the initial value of 0.05 and the regu-
larization factor is set to 0.001 throughout the ex-
periments. Table 1 presents the results, including
standard errors for EO and EU, for emb(edding)-
and sym(bolic)-based models using unigram fea-
tures (uni) and unigram+bigram features (all), re-
spectively.

Table 1 shows the average of the results ob-
tained from 10 independent runs. For each run, we
take the scores from the 10th iteration of the whole
data set, where the scores are stabilized. All mod-
els learn quickly and have good performance after

Model EO EU BF WF LF
emb/all 6.4±0.1 17.3±0.2 82.9 68.7 42.6
sym/all 8.1±0.1 25.8±0.2 75.9 60.2 31.6
emb/uni 15.8±0.1 10.6±0.3 77.4 59.1 40.7
sym/uni 13.2±0.1 21.7±0.2 73.4 54.4 29.4

Table 1: Performance of embedding and symbolic
models. Numbers in percentage.

the first iteration already. And the differences be-
tween the scores of subsequent iterations are rather
small.

4 Visualization and Interpretation

The experiment results in the previous section
show that learning embeddings jointly with a seg-
mentation model, instead using symbolic repre-
sentations, leads to a boost of segmentation perfor-
mance. Nevertheless, it is not straightforward to
interpret embeddings, as the “semantics” of each
dimension is not pre-defined as in symbolic rep-
resentations. In this section, we use visualization
and clustering techniques to interpret the informa-
tion captured by the embeddings.

Phone symbols in the BR corpus. We use the
BR corpus for visualization as in the experiments.
The transcription in the BR corpus use symbols
that, unfortunately, can not be converted to Inter-
national Phonetic Alphabet (IPA) in a context-free,
deterministic way. Thus we keep them as they are
and suggest readers who are unfamiliar with such
symbols to refer to Appendix A.

4.1 Embeddings encode segmentation roles

Segmentation roles of phone ngrams. We first
investigate the correspondence of the embeddings
to the metrics that are indicative for segmentation
decisions. For distinguishing word-boundary po-
sitions from word-internal positions as in segmen-
tation models, it is helpful to know whether a par-
ticular phone unigram/bigram is more likely to oc-
cur at the beginning of a word (word-initial), at the
end of a word (word-final), in the middle of a word
(word-medial), or has a balanced distribution of
above positions. For a phone bigram, it can also
be corss word-boundary. We call such tendencies
of phone ngrams as segmentation roles.

We hypothesize that the embeddings that are
learned by our model can capture segmentation
roles: the embeddings of phone ngrams of the
same segmentation role are similar to each other
and are dissimilar to the phone ngrams of different
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Figure 2: PCA Projections of the phone uni-gram (left) and bi-gram (right) embeddings learned in our
model.

segmentation roles. To test this, we use principal
component analysis (PCA) to project the embed-
dings of phone uni- and bi-grams that are learned
in our model into two-dimension space, where the
resulting vectors preserve 85% and 98% of the
variance in the original 50-dimension uni- and bi-
gram embeddings, respectively. We then plot such
PCA-projected 2-D vectors of the phone ngrams in
Figure 2, where the geometric distances between
data points reflect the (dis-)similarities between
the original embeddings of phone ngrams. These
data points are color coded to demonstrate the
dominant segmentation role of each phone ngram.

A phone ngram is categorized as word-initial,
word-medial, word-final or corss word-boundary
(only applicable for bigrams), if the ngram co-
occur more than 50% of the time with the corre-
sponding segmentation roles according to the gold
standard segmentation. If none of the roles reaches
the majority, the ngram is categorized as balanced
distribution. Note that segmentation roles are
assigned using the true word boundaries, while
the embeddings are learned only from utterance
boundaries.

Figure 2 (left) shows that phone unigrams of the
same category tend to cluster in the same neigh-
borhood, while unigrams of distinct categories
tend to locate apart from each other. This is con-
sistent with our hypothesis on embeddings being
capable of capturing segmentation roles. Figure
2 (right) shows that the distribution of phone bi-
grams is noisier, as many bigrams of different cat-

egories congest in the center. This suggests that
bigram embeddings are less well estimated than
unigrams ones, probably due to the larger number
and lower relative frequencies of bigrams. Nev-
ertheless, the word-initial v.s. word-final contrast
in bigrams is still sharp, as a result of our training
procedure that makes heavy use of the initial and
final positions of utterances, which are also word
boundaries. In summary, the information that are
encoded in our phone ngram embeddings is highly
indicative of correct segmentations.

4.2 Embeddings capture phonology
Hierarchical clustering of phones. Different
from the previous subsection that correlates the
learned embeddings with segmentation-specific
roles, we can alternatively explore the embeddings
more freely to see what structures emerge from
data. To this end, we apply hierarchical agglom-
erative clustering (Johnson, 1967) to the embed-
dings of phone unigrams to build up clusters in
a bottom-up manner. Initially, each unigram em-
bedding itself consists of a cluster. Then at each
step, the two most similar clusters are merged.
The procedure iterates until every embedding is
in the same cluster. The similarity between clus-
ters are computed by the single linkage method,
which outputs the highest score of all the pair-
wise cosine similarities between the embeddings
in the two clusters. Since the clustering proce-
dure is based on pair-wise cosine similarities be-
tween embeddings, we first compute such similar-
ity scores, composing the similarity matrix.

57



Figure 3: Hierarchical clustering and similarity matrix of phone embeddings learned by our model.

The dendrogram (Jones et al., 2001 ) that rep-
resents the clustering results is shown in Figure
3, together with the heatmap that represents the
similarity matrix. The dendrogram draws a U-
shaped link to indicate how a pair of child clusters
form their parent cluster, where the dissimilarity
between the two child clusters are shown by the
height of the top of the U-link. The intensity of the
color of each grid in the heatmap denotes the sim-
ilarity between the two corresponding phone em-
beddings. Moreover, each lowest node, i.e. leaf, of
the dendrogram is vertically aligned with the col-
umn of the heatmap that corresponds to the same
phone, which is labeled using the BR-corpus sym-
bols. Thus the dark blocks along the antidiagonal
also indicate the salient clusters in which phone
embeddings are similar to one another.

Phonological structure. The heatmap reveals
several salient blocks, such as the one on the
top-right corner and the one near the bottom-left
corner. The former is part of a group of clus-
ters spreading the whole right 2/3 of the den-
drogram/heatmap, which mostly consists English

consonants. In contrast, the latter contains short,
unrounded vowels in English, E, &, I and A, as
in bet, that, bit and but, respectively. It also
contains the long-short vowel pair a and O as in
hot and law. Immediately to the right of them
are the cluster of compound vowels, o, 3, e, Q.
In general, most clusters are either consonant- or
vowel-dominant, while groups of the similar vow-
els form sub-clusters under the big vowel cluster.
Although far from perfect, the results suggest that
the learned phone embeddings capture phonolog-
ical features of English. On one hand, the emer-
gence of such phonological structure is not sur-
prising, as phonology is part of what defines a
word, although our word segmentation model does
not explicitly target it. On the other hand, such re-
sults are relevant as they suggest that the phono-
logical regularities are salient and learnable from
transcriptions even if lexical knowledge is absent.

4.3 Comparison with word2vec embeddings

We see that our phone embeddings can capture
segmentation-informative and phonology-related

58



Figure 4: Heatmap of phone embeddings in word2vec (top) and our model (bottom).

patterns. A question remains: is this the conse-
quence of joint learning of the embeddings with
the segmentation model, or something also achiev-
able by general-purpose embeddings? We test this
by comparing our phone embeddings with the em-
beddings that are trained by a standard embed-
ding construction tool, word2vec (Mikolov et al.,
2013). We first preprocess the raw BR corpus to
construct the phone uni- and bi-gram corpora, re-
spectively. Then we run word2vec with skip-gram
method for 20 iterations on the two corpora to
train the embeddings for phone uni- and bi-grams,
respectively. The training relies on using each
ngram to predict other ngrams in the same local
window. We use a window size of 4 phones in the
training to be comparable with our models.

We first plot the heatmap of the unigram em-
beddings of the word2vec model and that of our
model in Fig 4, where the embeddings of distinct
phone categories in our model exhibit distinct pat-
terns, whereas such distinctions are unclear in the
word2vec embeddings. Then we conduct the same
PCA and hierarchical clustering analyses for the
word2vec embeddings, as we did for our learned
embeddings. The results are shown in Figure 5
and 6, respectively. We see that word2vec embed-
dings capture neither segmentation-specific fea-
tures nor phonological structures as our learned

embeddings do, which suggests that the joint
learning of the embeddings and the segmentation
model is essential for the success.

5 Discussion and Related Work

Performance. The focus of this paper is investi-
gating the usefulness of embeddings, rather than
achieving best segmentation performance. Since
multiple cues are useful for both segmentation
by children (Mattys et al., 2005; Shukla et al.,
2007) and computational models (Christiansen et
al., 1998; Christiansen et al., 2005; Çöltekin and
Nerbonne, 2014), our single-cue model is not ex-
pected to outperform multiple-cue ones. The up-
per part of Table 2 shows the results of two state-
of-the-art systems, both of which adopt multiple
cues. Goldwater et al. (2009) relies on Bayesian
models, especially hierarchical Dirichlet process,
which models phone unigrams, word unigrams
and bigrams using similar distributions. Unlike
our model, which has no explicit notion of words,
Goldwater et al. (2009) keeps track of phones,
words, as well as word bigrams. In comparison
with our on-line learning approach, their Gibbs
sampling-based learning method repeatedly pro-
cesses the data in a batch way. By contrast,
Çöltekin and Nerbonne (2014) does conduct on-
line learning. But their best performing model,
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Figure 5: PCA Projections of the embeddings of
phone unigrams (top) and bigrams (bottom) in
word2vec models.

Figure 6: Hierarchical clustering and similarity
matrix of phone embeddings in word2vec.

PUW, does not only rely on utterance boundaries
(U) as in our model, but also combines the pre-
dictability information (P) and the lexicon (L) of
previously discovered words.

An interesting observation is that our our model
achieves reasonably good boundary and word-

token F-scores, even comparing with these state-
of-the-art models. Unfortunately, the lexicon F-
score of our model is significantly lower. The rea-
son is probably that our method models segmenta-
tion decisions per position without explicitly keep-
ing a lexicon, whereas both state-of-the-art models
are “lexicon-aware”, which gives status to recog-
nized words. The use of word context can help
to identify low frequency words, some of which,
especially longer ones, are difficult for our phone
window-based model.

Model BF WF LF
Goldwater et al. (2009) 85.2 72.3 59.1
Çöltekin and Nerbonne (2014): PUW 87.3 76.4 53.3
Daland and Pierrehumbert (2011) 62.7 42.5 10.1
Fleck (2008) 82.9 70.7 36.6
Çöltekin and Nerbonne (2014): U 83.8 71.1 44.9
Our model: embedding, uni- & bi-gram 82.9 68.7 42.6

Table 2: Comparisoin of the best performance of
our model (bottom) with the state-of-the-art sys-
tems on the task (upper) and the models using ut-
terance boundaries as the main cue (middle). U:
using utterance boundary only; PUW: using pre-
dictability, utterance boundary and the learned lex-
icon. Numbers in percentage.

It is probably more instructive to compare the
performance of our model with other models eval-
uated in similar settings and use utterance bound-
aries as the main cue. The results of such models
are shown in the middle part of Table 2. Among
them, Daland and Pierrehumbert (2011) uses only
unigrams, whereas Fleck (2008) and the utterance
boundary-based model (U) in Çöltekin and Ner-
bonne (2014) are more elaborate, combining one
to three-grams of phones. The performance would
probably be lower if only uni- or bigrams are used
as in our model.

The scores at the bottom of the Table 2 sug-
gest that our model fares well in comparison to the
models that exploit similar learning strategies and
information sources. The results also show that
embeddings of phone unigrams and bigrams are
effective for segmentation. In addition, we also
tried trigrams, which did not improve the results
for symbolic or embedding models. This may be
due to that the trigrams are too sparse, especially
when our training samples only one inter-utterance
position per utterance.

Model properties and design choice. As de-
scribed at the beginning of Section 3, the pro-
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posed model can be seen as an extension to lo-
gistic regression model, where the resulting model
also learns the distributed representations of fea-
tures from the data. The training relies on isolated
positions, namely utterance boundaries and sam-
pled intra-utterance positions, making the model a
classifier that ignores the sequential dependencies.
For these reasons, our model is structurally simple
and computationally efficient. We also avoid batch
processing-based and computationally expensive
techniques such as Gibbs sampling, as adopted in
many Bayesian models. For cognitive modeling,
efficient, on-line learning is favorable, as human
brain appears to work that way.

To investigate the impact of learning and us-
ing distributed representations, we could alterna-
tively use other neural network architectures, such
as multi-layer feed-forward neural networks or re-
current neural networks. The computational com-
plexity would be much higher in that case. Nev-
ertheless, it is still interesting, as a future work,
to develop phone-level recurrent neural network
(RNN) models for the task. In particular, it may be
promising to experiment with a modern variation
of RNN, long short-term memory (Schmidhuber
and Hochreiter, 1997), as it recently achieved con-
siderable success on various NLP tasks. A chal-
lenge here is how to train effective RNN models
in the language acquisition setting, where explicit
supervision is mostly absent.

Embeddings boost segmentation. Table 1
demonstrates that learning embeddings instead of
using symbolic representations boosts segmen-
tation performance. This is true in both set-
tings where the model adopts unigrams and uni-
gram+bigrams as features, respectively. With em-
beddings, models apply the information obtained
from frequent input units to the decisions involv-
ing infrequent units with similar representations.
Hence, although embeddings are beneficial in both
settings, it is not surprising that the improvement
is higher for the unigrams+bigrams setting, where
the data sparseness is more severe.

Figure 7 shows the difference in the learn-
ing curves of the embedding-based and symbolic-
based models, both using unigram+bigram fea-
tures. The embedding model starts with a higher
error rate in comparison to the symbolic one, since
the vectors for each unit is randomly initialized.
However, as the embeddings are updated with
more input, the embedding model quickly catches
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Figure 7: The mean of the error rates during the 1st
iteration for the embedding and symbolic models.

up with the symbolic model and finally outper-
forms it, as the results in Table 1 show.

Other distributed representations. The ut-
terance boundary cue has been used in earlier
work (Aslin et al., 1996; Stoianov and Ner-
bonne, 2000; Xanthos, 2004; Monaghan and
Christiansen, 2010; Fleck, 2008), but not with em-
beddings. Distributed representations other than
learned embeddings, however, have been common
in the early connectionist models (Cairns et al.,
1994; Aslin et al., 1996; Christiansen et al., 1998).
Besides better performance, our model differs in
that it learns the embeddings from the input, while
earlier models used hand-crafted distributed rep-
resentations. This allows our model to optimize
representations for the task at hand.

6 Conclusion

In this paper, we have presented a model that
jointly learns word segmentation and the embed-
dings of phone ngrams. The learning in our model
is guided by the utterance boundaries. Hence,
our learning method, although not unsupervised
in machine learning terms, does not use any in-
formation that is unavailable to the children ac-
quiring language. To the best of our knowledge,
this is the first work of learning phone embed-
dings for computational models of word segmen-
tation in child language acquisition. Compared
with symbolic-based models using the same learn-
ing framework, embedding-based models signifi-
cantly improve results. Visualization and analyses
show that the learned embeddings are indicative
of not only correct segmentations, but also certain
phonological structures.
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A Symbols used in BR corpus

Consonants
Symbol Example
D the
G jump
L bottle
M rhythm
N sing
S ship
T thin
W when
Z azure
b boy
c chip
d dog
f fox
g go
h hat
k cut
l lamp
m man
n net
p pipe
r run
s sit
t toy
v view
w we
y you
z zip
~ button

Vowels
Symbol Example
& that
6 about
7 bOy
9 fly
A but
E bet
I bit
O law
Q bout
U put
a hot
e bay
i bee
o boat
u boot

Rhotic Vowels
Symbol Example
# are
% for
( here
) lure
* hair
3 bird
R butter

Adapted from Çöltekin (2011).
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Abstract

Experiments in Artificial Language Learn-
ing have revealed much about the cogni-
tive mechanisms underlying sequence and
language learning in human adults, in in-
fants and in non-human animals. This pa-
per focuses on their ability to generalize
to novel grammatical instances (i.e., in-
stances consistent with a familiarization
pattern). Notably, the propensity to gen-
eralize appears to be negatively correlated
with the amount of exposure to the artifi-
cial language, a fact that has been claimed
to be contrary to the predictions of statis-
tical models (Peña et al. (2002); Endress
and Bonatti (2007)). In this paper, we pro-
pose to model generalization as a three-
step process, and we demonstrate that the
use of statistical models for the first two
steps, contrary to widespread intuitions in
the ALL-field, can explain the observed
decrease of the propensity to generalize
with exposure time.

1 Introduction

In the last twenty years, experiments in Artificial
Language Learning (ALL) have become increas-
ingly popular for the study of the basic mecha-
nisms that operate when subjects are exposed to
language-like stimuli. Thanks to these experi-
ments, we know that 8 month old infants can seg-
ment a speech stream by extracting statistical in-
formation of the input, such as the transitional
probabilities between adjacent syllables (Saffran
et al. (1996a); Aslin et al. (1998)). This ability also
seems to be present in human adults (Saffran et al.,
1996b), and to some extent in nonhuman animals
like cotton-top tamarins (Hauser et al., 2001) and
rats (Toro and Trobalón, 2005).

Even though this statistical mechanism is well
attested for segmentation, it has been claimed
that it does not suffice for generalization to
novel stimuli or rule learning1. Ignited by a
study by Marcus et al. (1999), which postu-
lated the existence of an additional rule-based
mechanism for generalization, a vigorous debate
emerged around the question of whether the ev-
idence from ALL-experiments supports the exis-
tence of a specialized mechanism for generaliza-
tion (Peña et al. (2002); Onnis et al. (2005); En-
dress&Bonatti (2007); Frost&Monaghan (2016);
Endress&Bonatti (2016)), echoing earlier debates
about the supposed dichotomy between rules and
statistics (Chomsky, 1957; Rumelhart and Mc-
Clelland, 1986; Pinker and Prince, 1988; Pereira,
2000).

From a Natural Language Processing perspec-
tive, the dichotomy between rules and statistics
is unhelpful. In this paper, we therefore pro-
pose a different conceptualization of the steps in-
volved in generalization in ALL. In the follow-
ing sections, we will first review some of the ex-
perimental data that has been interpreted as ev-
idence for an additional generalization mecha-
nism (Peña et al. (2002); Endress&Bonatti (2007);
Frost&Monaghan (2016)). We then reframe the
interpretation of those results with our 3-step ap-
proach, a proposal of the main steps that are re-
quired for generalization, involving: (i) memo-
rization of segments of the input, (ii) computa-
tion of the probability for unseen sequences, and
(iii) distribution of this probability among partic-
ular unseen sequences. We model the first step
with the Retention&Recognition model (Alhama
et al., 2016). We propose that a rational charac-

1We prefer the term ‘generalization’ because ‘rule-
learning’ can be confused with a particular theory of gen-
eralization that claims that the mental structures used in the
generalization process have the form of algebraic rules.
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terization of the second step can be accomplished
with the use of smoothing techniques (which we
further demonstrate with the use of the Sim-
ple Good-Turing method, (Good&Turing (1953);
Gale (1995)). We then argue that the modelling
results shown in these two steps already account
for the key aspects of the experimental data; and
importantly, it removes the need to postulate an
additional, separate generalization mechanism.

2 Experimental Record

Peña et al. (2002) conduct a series of Artificial
Language Learning experiments in which French-
speaking adults are familiarized to a synthesized
speech stream consisting of a sequence of artificial
words. Each of these words contains three sylla-
bles AiXCi such that the Ai syllable always co-
occurs with the Ci syllable (as indicated by the
subindex i). This forms a consistent pattern (a
“rule”) consisting in a non-adjacent dependency
between Ai and Ci, with a middle syllable X that
varies. The order of the words in the stream is
randomized, with the constraint that words do not
appear consecutively if they either: (i) belong to
the same “family” (i.e., they have the same Ai and
Ci syllables), or (ii) they have the same middle
syllable X .

stream pulikiberagatafodupuraki..
words
AiXCi

puliki, beraga, tafodu, ...

part-words
CjAiX, XCiAj

kibera, ragata, gatafo, ...

rule-words
AiY Ci

pubeki, beduga, takidu, ...

class-words
AiY Cj

pubedu, betaki, tapuga, ...

rule*-words
AiZCi

puveki, bezoga, tathidu, ...

Table 1: Summary of the stimuli used in the de-
picted experiments.

After the familiarization phase, the participants
respond a two-alternative forced choice test. The
two-alternatives involve a word vs. a part-word,
or a word vs. a rule-word, and the participants are
asked to judge which item seemed to them more
like a word of the imaginary language they had
listened to. A part-word is an ill-segmented se-
quence of the form XCiAj or CiAjX; a choice
for a part-word over a word is assumed to indicate
that the word was not correctly extracted from the
stream. A rule-word is a rule-obeying sequence
that involves a “novel” middle syllable Y (mean-

ing that Y did not appear in the stream as anX , al-
though it did appear as anA orC). Rule-words are
therefore a particular generalization from words.
Table 1 shows examples of these type of test items.

In their baseline experiment, the authors expose
the participants to a 10 minute stream of AiXCi
words. In the subsequent test phase, the sub-
jects show a significant preference for words over
part-words, proving that the words could be seg-
mented out of the familiarization stream. In a sec-
ond experiment the same setup is used, with the
exception that the test now involves a choice be-
tween a part-word and a rule-word. The subjects’
responses in this experiment do not show a sig-
nificant preference for either part-words or rule-
words, suggesting that participants do not gener-
alize to novel grammatical sequences. However,
when the authors, in a third experiment, insert mi-
cropauses of 25ms between the words, the partic-
ipants do show a preference for rule-words over
part-words. A shorter familiarization (2 minutes)
containing micropauses also results in a prefer-
ence for rule-words; in contrast, a longer familiar-
ization (30 minutes) without the micropauses re-
sults in a preference for part-words. In short, the
presence of micropauses seems to facilitate gener-
alization to rule-words, while the amount of expo-
sure time correlates negatively with this capacity.

Endress and Bonatti (2007) report a range of ex-
periments with the same familiarization procedure
used by Peña et al. However, their test for general-
ization is based on class-words: unseen sequences
that start with a syllable of class “A” and end with
a syllable of class “C”, but with A and C not ap-
pearing in the same triplet in the familiarization
(and therefore not forming a nonadjacent depen-
dency).

From the extensive list of experiments con-
ducted by the authors, we will refer only to those
that test the preference between words and class-
words, for different amounts of exposure time.
The results for those experiments (illustrated in
figure 1) also show that the preference for general-
ized sequences decreases with exposure time. For
short exposures (2 and 10 minutes) there is a sig-
nificant preference for class-words; when the ex-
posure time is increased to 30 minutes, there is no
preference for either type of sequence, and in a 60
minutes exposure, the preference reverses to part-
words.

Finally, Frost and Monaghan (2016) show that

65



0 10 20 30 40 50 60
Minutes of exposure

35

40

45

50

55

60

65

70

75
%

 o
f g

en
er

al
iza

tio
n

rule-words, no pauses
rule-words, pauses
class-words, pauses

Figure 1: Percentage of choices for rule-words and
class-words, in the experiments reported in Peña et
al. (2002) and Endress&Bonatti (2007), for differ-
ent exposure times to the familiarization stream.

micropauses are not essential for rule-like general-
ization to occur. Rather, the degree of generaliza-
tion depends on the type of test sequences. The
authors notice that the middle syllables used in
rule-words might actually discourage generaliza-
tion, since those syllables appear in a different po-
sition in the stream. Therefore, they test their par-
ticipants with rule*-words: sequences of the form
AiZCi, where Ai and Ci co-occur in the stream,
andZ does not appear. After a 10 minute exposure
without pauses, participants show a clear prefer-
ence for the rule*-words over part-words of the
form ZCiAj or CiAjZ.

The pattern of results is complex, but we can
identify the following key findings: (i) general-
ization for a stream without pauses is only man-
ifested for rule*-words, but not for rule-words nor
class-words; (ii) the preference for rule-words and
class-words is boosted if micropauses are present;
(iii) increasing the amount of exposure time corre-
lates negatively with generalization to rule-words
and class-words (with differences depending on
the type of generalization and the presence of mi-
cropauses, as can be seen in figure 1). This last
phenomenon, which we call time effect, is pre-
cisely the aspect we want to explain with our
model. (Note, in figure 1, that in the case of rule-
words and pauses, the amount of generalization in-
creases a tiny bit with exposure time, contrary to
the time effect. We cannot test whether this is a
significant difference, since we do not have access
to the data. Endress&Bonatti, however, provided
convincing statistical analysis supporting a signif-

icant inverse correlation between exposure time
and generalization to class-words).

3 Understanding the generalization
mechanism: a 3-step approach

Peña et al. interpret their findings as support for
the theory that there are at least two mechanisms,
which get activated in the human brain based on
different cues in the input. Endress and Bonatti
adopt that conclusion (and name it the More-than-
One-Mechanism hypothesis, or MoM), and more-
over claim that this additional mechanism cannot
be based on statistical computations. The authors
predict that statistical learning would benefit from
increasing the amount of exposure:

“If participants compute the generaliza-
tions by a single associationist mecha-
nism, then they should benefit from an
increase in exposure, because longer
experience should strengthen the rep-
resentations built by associative learn-
ing (whatever these representations may
be).” (Endress and Bonatti, 2007)

We think this argument is based on a wrong
premise: stronger representations do not necessar-
ily entail greater generalization. On the contrary,
we argue that even very basic models of statisti-
cal smoothing make the opposite prediction. To
demonstrate this in a model that can be compared
to empirical data, we propose to think about the
process of generalization in ALL as involving the
following steps (illustrated also in figure 2):

(i) Memorization: Build up a memory store
of segments with frequency information (i.e.,
compute subjective frequencies).

(ii) Quantification of the propensity to gener-
alize: Depending on the frequency informa-
tion from (i), decide how likely are other un-
seen types.

(iii) Distribution of probability over possible
generalizations: Distribute the probability
for unseen types computed in (ii), assigning
a probability to each generalized sequence.

Crucially, we believe that step (ii) has been ne-
glected in ALL models of generalization. This
step accounts for the fact that generalization is
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Figure 2: Three step approach to generalization:
(1) memorization of segments, (2) compute prob-
ability of new items, and (3) distribute probability
between possible new items.

not only based on the particular structure underly-
ing the stimuli, but also depends on the statistical
properties of the input.

At this point, we can already reassess the MoM
hypothesis: more exposure time does entail bet-
ter representation of the stimuli (as would be re-
flected in step (i)), but the impact of exposure time
on generalization depends on the model used for
step (ii). Next, we show that a cognitive model of
step (i) and a rational statistical model of step (ii)
already account for the time effect.

4 Memorization of segments: the
Retention and Recognition model

For step (i) of our approach, several existing
models maybe used, including models based on
recurrent neural networks (Seidenberg and El-
man, 1999), autoencoders (French et al., 2011;
French and Cottrell, 2014), exemplar-based pro-

cessing (Perruchet and Vinter, 1998) and non-
parametric Bayesian inference (Goldwater et al.,
2006). We have decided to implement the Re-
tention&Recognition (R&R) model, proposed in
(Alhama et al., 2016). R&R is a probabilistic
exemplar-based model that has been shown to fit
experimental data from a range of ALL exper-
iments on segmentation, and, importantly, pro-
duces very skewed frequency distributions that fit
well with our intuition about step (ii).

Starting from an initially empty memory, R&R
processes subsequences (segments) of the speech
stream, and decides probabilistically whether
those segments will be stored in its internal mem-
ory. The output of the model is a memory of seg-
ments, each one with a count of how many times
the model has decided to store it in memory. The
authors refer to these counts as subjective frequen-
cies.

In each iteration, R&R is presented with one
segment from the input stream. Each segment
may be composed of any number of syllables (un-
til an arbitrarily set maximum). For instance, for
a stream starting with talidupuraki..., the model
would be presented, in order, with the segments ta,
tali, talidu, talidupu, li, lidu, lidupu, lidupura, etc.
(assuming a maximum length of four syllables).

Each one of these segments is processed as
shown in figure 3: first, the recognition mecha-
nism attempts to recognize the segment (that is,
it attempts to determine whether the segment cor-
responds to one of the segments already in mem-
ory). If the attempt succeeds, the subjective fre-
quency (count) of the segment in memory is in-
creased with one. If the segment was not recog-
nized, the model may still retain it. If it does, the
segment will be added to the memory (or, if al-
ready there from a previous iteration, its subjec-
tive frequency is increased with one). If not, the
segment is ignored, and the next segment is pro-
cessed.

The recognition probability p1for segment s is
defined as follows (eq. 1):

p1(s) = (1−Bactivation(s)) ·D#types (1)

0 6 B,D 6 1

where B and D are parameters to be set with
the empirical data. The recognition probability
depends on the activation of the segment, which
equals the subjective frequency. As it can be de-
duced from eq. 1, segments with greater subjec-
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Figure 3: The Retention&Recognition model. Diagram based on Alhama et al. (2016).

tive frequency are easier to recognize. However,
the number of different segment types in memory
(#types) makes the recognition task more diffi-
cult.

The retention probability p2 is defined in eq. 2:

p2(s) = Alength(s) · Cπ (2)

0 6 A,C 6 1; π =
{

0 after a pause
1 otherwise

A and C are parameters to be set with empirical
data, and π takes the value 0 when the segment
being processed occurs right after a pause, and
1 otherwise. The retention probability is greater
for shorter segments (as can be deduced from the
length(s) exponent applied to an A parameter that
ranges between 0 and 1). The C parameter, which
is again between 0 and 1, attenuates this proba-
bility unless a pause precedes the segment. This
has the effect of boosting the retention of segments
that appear after a pause.

The four parameters involved in the model
(A,B,C,D) set the contribution of each of its
components, and allow for the adaptation of the
model to different tasks or species. Alhama et
al. did not report the optimal parameter setting
for the experiments we are concerned with here,
but they assert that the main qualitative features of
the model (such as the rich-get-richer dynamics
of the recognition function) are independent of the
parameters.

Among these qualitative features, one that is
particularly relevant for our study is the skew that
can be observed in the subjective frequencies com-
puted by the model. This feature, which can be
observed in figure 4, is presented in the original
paper as being in consonance with empirical data.
Here, we show that this property can also be val-
idated in a different way: when R&R is part of a
pipeline of models (like the 3-step approach), the
skew turns out to be a necessary property for the
success of the next model in the sequence. We
come back to this point in section 7.

Figure 4: Subjective frequencies computed by the
R&R model (A=0.5, B=0.5, C=0.2, D=0.5), for
an exposure of 10 minutes (without pauses) to the
stimuli used by Peña et al.
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5 Quantifying the propensity to
generalize: the Simple Good-Turing
method

In probabilistic modelling, generalization must
necessarily involve shifting probability mass from
attested events to unattested events. This is a well
known problem in Natural Language Processing,
and the techniques to deal with it are known as
smoothing. Here, we explore the use of the Simple
Good Turing (Gale and Sampson, 1995) smooth-
ing method as a computational level characteriza-
tion of the propensity to generalize.

Simple Good-Turing (SGT), a computation-
ally efficient implementation of the Good-Turing
method (Good, 1953), is a technique to estimate
the frequency of unseen types, based on the fre-
quency of already observed types. The method
works as follows: we take the subjective frequen-
cies r computed by R&R and, for each of them,
we compute the frequency of that frequency (Nr),
that is, the number of sequences that have a cer-
tain subjective frequency r. The values Nr are
then smoothed, that is re-estimated with a con-
tinuous downward-sloping line in log space. The
smoothed values S(Nr) are used to reestimate the
frequencies according to (3):

r∗ = (r + 1)
S(Nr+1)
S(Nr)

(3)

The probabilities for frequency classes are then
computed based on these reestimated frequencies:

pr =
r∗

N
(4)

where N is the total of the unnormalized esti-
mates2 .

Finally, the probability for unseen events is
computed based on the (estimated) 3 probability of
types of frequency one, with the following equa-
tion:

P0 =
S(N1)
N

(5)

This probability P0 corresponds to what we
have called “propensity to generalize”.

2It should be noticed that the reestimated probabilities
need to be renormalized to sum up to 1, by multiplying with
the estimated total probability of seen types 1 − P0 and di-
viding by the sum of unnormalized probabilites.

3SGT incorporates a rule for switching between Nr and
S(Nr) such that smoothed values S(Nr) are only used when
they yield significantly different results from Nr (when the
difference is greater than 1.96 times the standard deviation).

As can be deduced from the equations, SGT is
designed to ensure that the probability for unseen
types is similar to the probability of types with fre-
quency one. The propensity to generalize is there-
fore greater for distributions where most of the
probability mass is for smaller frequencies. This
obeys a rational principle: when types have been
observed with high frequency, it is likely that all
the types in the population have already been at-
tested; on the contrary, when there are many low-
frequency types, it may be expected that there are
also types not yet attested.

6 Results

6.1 Memorization of words and part-words

First we analyze the effect of the different condi-
tions (exposure time and presence of pauses) in the
memorization of segments computed with R&R
(step (i)). Figure 5 shows the presence of test items
(the nine words and nine possible part-words) in
the memory of R&R after different exposure times
(average out of ten runs of the model). As can be
seen, the subjective frequencies of part-words in-
crease over time, and thus, the difference between
words and part-words decreases as the exposure
increases.

Figure 5: Average number of memorized words
and part-words after familiarization with the stim-
uli in Peña et al., for 10 runs of the R&R model
with an arbitrary parameter setting (A=0.5 B=0.5
C=0.2 D=0.5).

The graph also shows that, when the mi-
cropauses are present, words are readily identified
after much less exposure, yielding clearer differ-
ences in subjective frequencies between words and
part-words.
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The results of these simulations are consistent
with the experimental results: the choice for words
(or sequences generalized from words) against
part-words should benefit from shorter exposures
and from the presence of the micropauses. Now,
given the subjective frequencies, how can we com-
pute the propensity to generalize?

6.2 Prediction of observed decrease in the
propensity to generalize

Next, we apply the Simple Good-Turing method 4

to subjective frequencies computed by the R&R
model. As shown in figure 6, we find that the
propensity to generalize (P0) decreases as the ex-
posure time increases, regardless of the parameter
setting used in R&R. This result is consistent with
the rationale in the Simple Good-Turing method:
as exposure time increases, frequencies are shifted
to greater values, causing a decrease in the smaller
frequencies and therefore reducing the expectation
for unattested sequences.

The results of these simulations point to a
straightforward explanation of the experimental
finding of a reduced preference for the generalized
sequences: longer exposures repeat the same set
of words (and partwords), and consequently, par-
ticipants may conclude that there are no other se-
quences in that language – otherwise they would
have probably appeared in such a long language
sample.

It can be noticed in the graphs that the propen-
sity to generalize is slightly smaller for the mi-
cropause condition. The reason for that is that
R&R identifies words faster when micropauses
are present, and therefore, the subjective frequen-
cies tend to be greater. This might appear unex-
pected, but it is in fact not contradicting the em-
pirical results: as shown in figure 5, the differ-
ence between words and partwords is much big-
ger in the condition with micropauses, so this ef-
fect is likely to override the small probability dif-
ference (as would be confirmed by a model of
step (iii)). It should be noted that, as reported
in Frost&Monaghan (2016), micropauses are not
essential for all type of generalizations (as is ev-
idenced with the fact that rule*-words are gener-
alized in the no-pause condition). Like those au-
thors, we see as the role of the micropauses to en-
hance the salience of initial and final syllables (A

4We use the free software implementation of Simple Good
Turing in https://github.com/maxbane/simplegoodturing.
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Figure 6: Propensity to generalize, for several pa-
rameter settings (average of 100 runs). Our model
shows a clear decrease for all parameter settings
we tried, consistent with the empirical data (com-
pare with figure 1).

and C) to compensate for the odd construction of
the test items (rule-words and class-words), which
include a middle syllable that occupied a different
position in the familiarization stream.

7 Discussion

The experiments we have focused on are all based
on the same simple language, but the results form a
complex mosaic: generalization is observed in dif-
ferent degrees depending on the amount of expo-
sure, the presence of micropauses and the type of
generalization (rule-words, class-words or rule*-
words). We have approached the analysis of these
results with the use of several tools: first, with the
3-step approach, a conceptualization of general-
ization that identifies its main components; sec-
ond, with the use of R&R, a probabilistic model
that already predicts some aspects of the results
—and, importantly, generates a skewed distribu-
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tion of subjective frequencies that is crucial for
step (ii); and third, with the Simple Good-Turing
method for quantifying the propensity to general-
ize. We now discuss how we interpret the outcome
of our study.

Framing generalization with the 3-step ap-
proach allowed us to identify a step that is usu-
ally neglected in discussion of ALL, namely, the
computation of the propensity to generalize. We
state that generalization is not only a process of
discovering structure: the frequencies in the famil-
iarization generate an expectation about the prob-
ability of next observing any unattested item, and
the responses for generalized sequences must be
affected by it. Moreover, this step is based on sta-
tistical information, proving that — contrary to the
MoM hypothesis — a statistical mechanism can
account for the negative correlation with exposure
time.

It should be noted that our conclusion concerns
the qualitative nature of the learning mechanism
that is responsible for the experimental findings.
It has been postulated that such findings evidence
the presence of multiple mechanisms (Endress and
Bonatti, 2016). In our view, the notion of ‘mecha-
nism’ is only meaningful as a high-level construct
that may help researchers in narrowing down the
scope of the computations that are being studied,
among all the computations that take place in the
brain at a given time. After all, there is no nat-
ural obvious way to isolate the computations that
would constitute a single ‘mechanism’, from an
implementational point of view. Therefore, our 3-
step approach should be taken as sketching the as-
pects that any model of generalization should ac-
count for, and our modelling efforts show that the
experimental results are expected given the statis-
tical properties of the input.

One issue to discuss is the influence of the use
of the R&R model in computing the propensity
to generalize. The Simple Good-Turing method
is designed to exploit the fact that words in natu-
ral language follow a Zipfian distribution —that is,
languages consist of a few highly frequent words
and a long tail of unfrequent words. This is a key
property of natural language that is normally vio-
lated in ALL experiments, since most of the arti-
ficial languages used are based on a uniform dis-
tribution of words (but see Kurumada et al. 2013).
But it would be implausible to assume that sub-
jects extract the exact distribution for an unknown

artificial language to which they have been only
briefly exposed. R&R models the transition from
absolute to subjective frequencies, resulting in a
distribution of subjective frequencies that shows a
great degree of skew, and much more so than al-
ternative models of segmentation in ALL. Thanks
to this fact, the frequency distribution over which
the SGT method operates (the subjective distribu-
tion) is more similar to that of natural language,
and the pattern of results found for the propensity
to generalize crucially depends on this type of dis-
tribution.

Finally, we have thus accomplished our goal
qualitatively. We capture the downward tendency
of the propensity to generalize, but a model for
step (iii), a longstanding question in linguistics
and cognitive science, is required to also achieve
a quantitative fit. Developing a model of step (iii)
is left as future work, but our approach already al-
lowed us to propose concrete models of the first
two steps, and explain much of the pattern of re-
sults.
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Abstract

In this study, we model the causal links be-
tween the complexities of different macro-
scopic aspects of child language. We con-
sider pairs of sequences of measurements
of the quantity and diversity of the lexi-
cal and grammatical properties. Each pair
of sequences is taken as the trajectory of a
high-dimensional dynamical system, some
of whose dimensions are unknown. We
use Multispatial Convergent Cross Map-
ping to ascertain the directions of causal-
ity between the pairs of sequences. Our
results provide support for the hypothesis
that children learn grammar through dis-
tributional learning, where the generaliza-
tion of smaller structures enables general-
izations at higher levels, consistent with
the proposals of construction-based ap-
proaches to language.

1 Introduction

A crucial question in language acquisition con-
cerns how (or, according to some, whether) chil-
dren learn the grammars of their native languages.
Some researchers, mainly coming from the gener-
ative tradition, argue that, although the grammati-
cal rules are possibly ‘innate’ (e.g., Pinker, 1994),
children still need to learn how to map the dif-
ferent semantic/grammatical roles onto the differ-
ent options offered by Universal Grammar (e.g.,
‘parameter-setting’). The evidence, however, does
not seem to support this hypothesis. For instance,
Bowerman (1990) notes that the type of seman-
tic aspects learned by the child do not match well
into the prototypical roles that would be required
to map into hard linguistic rules (e.g., learning an
AGENT category to map onto the SUBJECT syntac-
tic role). Other researchers (e.g., Goldberg, 2003;

Tomasello, 1992; Tomasello, 2005) propose that
there is a gradual increase in the generality of the
structures learned by the child, which are slowly
acquired through distributional learning. Such a
picture is strongly supported by the remarkably lit-
tle creativity exhibited by children, most of whose
utterances are often literal repetitions of those that
they have previously heard (Lieven et al., 1997;
Pine and Lieven, 1993), with little or no general-
ization in the early stages. It appears as though
children progressively and conservatively increase
the level at which they generalize linguistic con-
structions, building from the words upwards, in
what some have termed ‘lexically-based positional
analysis’ (Lieven et al., 1997).

The Theory of Dynamical Systems offers pow-
erful tools for modeling human development (e.g,
Smith and Thelen, 2003; van Geert, 1991). It pro-
vides a mathematical framework for implementing
the principle that development involves the mutual
and continuous interaction of multiple levels of
the developing system, which simultaneously un-
fold over many time-scales. Typically, a dynam-
ical system is described by a system of coupled
differential equations governing the temporal evo-
lution of multiple parts of the system and their in-
terrelations. One difficulty that arises when trying
to model a dynamical system as complex as the
development of language is that many factors that
are important for the evolution of the system might
not be available or might not be easily measurable
or –even worse– there are additional variables rel-
evant for the system of which the modeler is not
even aware. In this respect, a crucial development
was the discovery that, in a deterministic coupled
dynamical system –even in the presence of noise–
the dynamics of the whole system can be satisfac-
torily recovered using measurements of a single of
the system’s variables (Takens’ Embedding Theo-
rem; Takens, 1981).
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The finding above opens an interesting avenue
for understanding the processes involved in lan-
guage acquisition. In the same way that systems
of differential equations can be used to model the
evolution of ecosystems (e.g., predator-prey sys-
tems), one could take measurements of the de-
tailed properties of child language, and build a
detailed system of equations capturing the macro-
scopic dynamics of the process. However, in order
to achieve this, it is necessary to ascertain the ways
in which different measured variables in the sys-
tem affect each other. This problem goes beyond
estimating correlations (as could be obtained, for
instance, using regression models), as one needs to
detect asymmetrical causal relations between the
variables of interest, so that these causal influences
can be incorporated into the models.

In this study, we investigate the causal relations
different macroscopic-level measures characteriz-
ing the level of development of different tiers child
language (i.e., number of words produced, lexical
diversity, inflectional diversity and mean length of
utterances), using the longitudinal data provided
in the Manchester Corpus (Theakston et al., 2001).
In order to detect causal relations between the dif-
ferent measures, we make use of state space re-
construction relying on Takens (1981)’s Embed-
ding Theorem, and recently developed techniques
for assessing the strength of causal relations in dy-
namical systems (Multispatial Convergent Cross
Mapping; Clark et al., 2015). Here, we provide
a detailed picture of the causal connections be-
tween the development of different aspects of a
child’s language (while acquiring English). Our
result provide support for theories that advocate
distributional learning of linguistic constructions
by gradual generalizations from the level of words
to larger scale constructions.

2 Causality Detection in Dynamical
Systems

Whenever two variables are correlated, there must
exist some causal link between them. Namely, if
variables A and B are found to be correlated, then
one of four possibilities must be true: (a) A causes
B, (b) B causes A, (c) A and B form a feedback
loop, each causing the other, or (d) there is a third
variable C causing both A and B. For studying the
interactions of species within ecosystems, Sugi-
hara et al. (2012) introduced Convergent Cross
Mapping (CCM), a causality-detection technique

that is valid for non-separable systems, is capa-
ble of identifying weakly coupled variables even
in the presence of noise, and –crucially– can dis-
tinguish direct causal relations between variables
from effects of shared driving variables (i.e., in
possibility (d) above, CCM would not find causal-
ity).

Figure 1: Reconstructed manifold for Lorenz’s
system (M ; top), as well as the shadow manifolds
reconstructed considering only X (MX ; bottom-
left) and Y (MY ; bottom-right) (reprinted with
permission from Sugihara et al., 2012).

For instance, consider E. Lorenz’s often stud-
ied dynamical system, which includes three cou-
pled variables X(t), Y (t), and Z(t) whose co-
evolution is described by the system of differential
equations 

dX
dt

= σ(Y −X)

dY
dt

= X(ρ− Z)− Y
dZ
dt

= XY − βZ

. (1)

The first equation in this system indicates that
there is a relation by which Y causes X , as the
change in X (i.e., its future value) depends on
the value of Y (i.e., the future of X depends on
the past of Y even after the past of X itself has
been considered), a causal relation whose strength
is indexed by parameter σ. The manifold defined
by these three variables (Lorenz’s famous strange
attractor), which we can denote by M , is plot-
ted in the top of Fig. 1. In many circumstances,
however, not all variables of the system are avail-
able (some might be difficult to measure, or we
might not even be aware of their relevance). It
is at this point that Takens (1981)’s Embedding
Theorem comes into play. Informally speaking,
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the theorem states that the properties of a coupled
dynamical system’s attractor can be recovered us-
ing only measurements from a single one of its
variables. This is achieved by considering mul-
tiple versions of the same variable lagged in time,
that is, instead of plotting (X[t], Y [t], Z[t]), when
only measurements ofX are available, we can plot
(X[t], X[t+ τ ], . . . , X[t+ (E − 1)τ ]). These re-
constructed manifolds are termed “shadow” man-
ifolds. MX denotes the shadow manifold of M
reconstructed on the basis of X alone. There are
well-studied techniques for finding the appropri-
ate values for the parameters for the lag τ and
the number of dimensions E (c.f., Abarbanel et
al., 1993) so that the properties of the original
manifold M are recovered by the shadow mani-
fold MX . Fig. 1 illustrates this point by plotting
the shadow manifolds MX (bottom-left) and MY

(bottom-right) for the Lorenz system. Notice how
both shadow manifolds recover much of the origi-
nal’s structure, using only knowledge of one of its
three variables.

Each point in the original manifold M maps
onto points in its shadow manifolds, as is illus-
trated by the points labelled m(t), x(t), and y(t)
in Fig. 1. The preservation of the topological
properties of the original manifold in its shadow
manifolds entails that points that are close-by in
the original manifold will also be close-by in its
shadow versions. This implies that, for causally
linked variables within the same dynamical sys-
tem, the state of one variable can identify the states
of the others. Sugihara et al. (2012) noticed that,
when one variable X stochastically drives another
variable Y , information about the states of X can
be recovered from Y , but not vice-versa. This is
the basic insight of the CCM method. To test for
causality from X to Y , CCM looks for the signa-
ture of X in Y ’s time series by seeing whether the
time indices of nearby points on MY can be used
to identify nearby points on MX . Crucially, in or-
der to distinguish causation from mere correlation,
CCM requires convergence, that is, that cross-
mapped estimates improve in estimation accuracy
with the sample size (i.e., “library size”) used for
reconstructing the manifolds. As the library size
increases, the trajectories defining the manifolds
fill in, resulting in closer nearest neighbors and
declining estimation error, which is reflected in a
higher correlation coefficient between the points in
the neighborhoods of the shadow manifolds. Con-

vergence then becomes the necessary condition
for inferring causation. Using both artificial sys-
tems and ecological time-series with known dy-
namics, Sugihara and his colleagues demonstrated
that this technique successfully recovers true di-
rectional causal relations when these are present,
and –crucially– is able to discard spurious causa-
tion in the case when both variables are causally
driven by a third, unknown, variable, but there is
no true direct causation between them.

An inconvenience of CCM, and in general of
techniques that rely on manifold reconstruction,
is that they generally require that relatively long
time-series of the behavior of the system are avail-
able. Such long series are, however, very diffi-
cult, if not impossible, to obtain in many fields,
including of course language acquisition. One can
however obtain multiple short time series from dif-
ferent instances of a similar dynamical system.
In ecology, for instance, one can obtain short se-
quences of measurements of the population den-
sities of a group of species measured at differ-
ent places and times. In language acquisition, we
might have multiple, relatively short longitudinal
sequences of measurements from different chil-
dren. With this in mind Clark et al. (2015) devel-
oped Multispatial CCM (mCCM), an extension of
CCM able to infer causal relations from multiple
short time-series measured at different sites, mak-
ing use of dewdrop regression (Hsieh et al., 2008)
to take the additional heterogeneity into account.

3 Materials and Methods

3.1 Materials

We obtained from the CHILDES database
(MacWhinney, 2000) the transcriptions contained
in the Manchester Corpus (Theakston et al., 2001).
This corpus contains annotated transcripts of au-
dio recordings from a longitudinal study of 12
British English-speaking children (6 girls and 6
boys) between the ages of approximately two and
three years. The children were recorded at their
homes for an hour while they engaged in normal
play activities with their mothers. Each child was
recorded on two separate occasions in every three-
week period for one year. Each recording ses-
sion is divided into two half-hour periods. The
annotations include the lemmatized form of the
words produced by the children (incomplete words
and small word-internal errors were manually cor-
rected in the lemmatization).
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In order to increase the sample size in each pe-
riod, we followed a sliding window technique of
(Irvin et al., in press): We computed measures for
the samples contained in overlapping windows of
three consecutive corpus files. In this way, at each
point we obtained samples originating from two
files from the same recording session, and a file
from either the previous or the next recording ses-
sion.

3.2 Measures of Linguistic Development

As in previous studies (Irvin et al., in press;
Moscoso del Prado Martín, in press), in order to
measure the overall amount of speech produced by
each child, we counted the total number of word
tokens produced by each child in each temporal
window. We refer to this measure as the child’s
loquacity.

In order to measure the diversity of the words
used by the children, we use the lexical diversity
measure (Irvin et al., in press; Moscoso del Prado
Martín, in press). This is just the information en-
tropy (Shannon, 1948) of the probability distribu-
tion of word lemmas found in the sample,

H[L] =
∑
`∈L

p(`) · log
1

p(`)
, (2)

where L refers to the set of word lemmas found
in a sample, and p(`) is the probability with which
the particular lemma ` is found in that sample. En-
tropy estimates obtained using Eq. 2 using maxi-
mum likelihood estimates of the probabilities are
known to be strongly biased (Miller, 1955), with
the bias magnitude correlating with the size of
the sample used. Importantly, the sample size is
nothing else than the loquacity measure described
above. Therefore, using this plain maximum like-
lihood method would result in spurious correla-
tions. For this reason, Moscoso del Prado Martín
(in press) recommends using the bias-adjusted en-
tropy estimator (Chao et al., 2013, see Appendix
A) instead of Eq. 2.

In order to measure the acquisition of inflec-
tional morphological paradigms, we make use
of the inflectional diversity measure (Moscoso
del Prado Martín, in press). This is a
macroscopic generalization of inflectional entropy
(Moscoso del Prado Martín et al., 2004), a mea-
sure that is known to index morphological in-
fluences on adult lexical processing (Baayen and
Moscoso del Prado Martín, 2005; Moscoso del

Prado Martín et al., 2004) as well as in child lan-
guage acquisition (Stoll et al., 2012). The inflec-
tional entropy of a lemma ` (H[W |`]) is the in-
formation entropy of the inflected variants of that
lemma. Our inflectional diversity is just the av-
erage value of inflectional entropy across all lem-
mas,

H[W |L] = H[W,L]−H[L], (3)

where H[L] is the lexical diversity measure de-
scribed above, and H[W,L] is the joint entropy
between the inflected word forms and their corre-
sponding lemmas,

H[W,L] =
∑
`∈L

∑
w∈W

p(w, `) · log
1

p(w, `)
, (4)

where L denotes the set of all distinct lemmas en-
countered in the sample,W is the set of all distinct
inflected word forms encountered, and p(w, `) is
the joint probability with which lemma ` occurs
as the specific inflected form w. Inflectional di-
versity takes non-negative values, measuring how
large are the average inflectional paradigms used
in the language sample. Estimating H[W,L] us-
ing Eq. 4 is subject to the same estimation biases
that were described for lexical diversity. There-
fore, we also follow Moscoso del Prado Martín (in
press) in using the bias-adjusted estimate (Chao et
al., 2013, see Appendix A) for this magnitude, and
then combining it with the lexical diversity using
Eq. 3 to obtain our inflectional diversity estimates.

Finally, in order to measure the degree of syn-
tactic development of the children we used their
mean length of utterances (MLU). Instead of mea-
suring MLU in morphemes (Brown, 1973), we
used the simpler, but equally accurate measure in
number of words (c.f., Parker and Bronson, 2005).
In these ages, MLUs are well known to provide
an accurate measure of the syntactic richness of
the utterances produced (Brown, 1973), and in
fact correlate almost perfectly with explicit mea-
surements of grammatical diversity (Moscoso del
Prado Martín, in press).

3.3 Reconstruction of Shadow Manifolds

Using the windowing technique, for each child we
obtained four time series, one corresponding to
each of the four measures described above: lo-
quacity, lexical diversity, inflectional diversity, and
MLU. These time series are plotted in Fig. 2
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(a) (b)

(c) (d)

Figure 2: Evolution of the measures studied as a function of the children’s ages (in days). (a) Evolution
of the loquacity (measured in number of word tokens produced) for each of the twelve children. (b) Evo-
lution of the lexical diversity (measured in nats per word) for each of the twelve children. (c) Evolution
of the inflectional diversity (measured in nats per word) for each of the twelve children. (d) Evolution of
the MLU (in number of words per utterance) for each of the twelve children.

Parameter Loquacity Lexical Inflectional MLUDiversity Diversity
τ 3 2 3 3
E 3 3 2 4

Table 1: Parameter values used in the reconstruc-
tion of the shadow attractors based on each of the
four measures.

In order to ensure that applying the non-linear
dynamics techniques on these time series was
sensible, the series were checked to ensure that
they contained non-linear signal not dominated by
noise. This was achieved using a prediction test
(Clark et al., 2015): We ensured that, for all four
variables, the ability to predict future values sig-
nificantly decreased as one increases the distance
in the future at which the predictions are being
made. This increasing unpredictability is the hall-
mark of non-linear dynamical systems. Therefore,
we could safely proceed to reconstruct the shadow
attractors.

Following Clark et al. (2015), we reconstructed

the shadow attractors from each of these collec-
tions of time series. The optimal time-lags (τ )
for constructing the shadow manifolds were es-
timated as the first local minimum of the lagged
self-information in each of the time series (c.f.,
Abarbanel et al., 1993). The optimal embedding
dimensionalities (E) were estimated by optimiz-
ing next-step prediction accuracy. The estimates
were not found to differ significantly across chil-
dren, and therefore for each measure, we used a
single estimate of (τ, E) for all children. The es-
timated optimal parameter values used for the re-
construction of each shadow attractor are given in
Table 1.

3.4 Detection of Causal Relationships

The presence of directional causal relations was
tested for each of the six possible pairs of vari-
ables using mCCM. We performed 1,000 boot-
strapping iterations for assessing the p-values of
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the relations.1 Finally, to account for our lack
of a priori predictions on the causal directions to
be tested, the p-values were adjusted for multiple
comparisons using the false discovery rate pro-
cedure for correlated data (FDR; Benjamini and
Yekutieli, 2001).

4 Results

As plotted in Fig. 2, the four groups of time-series
considered here exhibit different patterns of devel-
opment. On the one hand, the loquacity, inflec-
tional diversity, and MLU series show evidence of
a more or less linear increase along the child’s de-
velopment, with their values towards the end of the
studied interval being close to what was found for
their mothers in those same conversations. On the
other hand, the lexical diversity measure exhibits
quite constant patterns across all children, with
their values being pretty much indistinguishable
from those observed for their mothers. This lat-
ter pattern is slighly different in two chilren (Ruth
and Nick), who seem to be experiencing their ‘vo-
cabulary burst’ later than the rest of the children
did. In fact, if one examines panel (c) in detail, one
sees that the inflectional diversity curves for these
two children only begin their linear increases af-
ter the children have experienced their vocabulary
bursts. A similar pattern can be seen in the MLU
curves (panel (d)) for these two particular chil-
dren, with syntactic development apparently be-
ing delayed by their late vocabulary bursts. These
two patterns suggest that the development of both
grammatical components of their language (inflec-
tional morphology and syntax) depends on hav-
ing attained a certain degree of vocabulary rich-
ness. However, just examining these curves does
not provide explicit evidence on whether these hy-
pothesized causal relationships are actually reli-
able ones or they are just statistical mirages. The
mCCM method addresses such question directly.

Fig. 3 plots the results of mCCM for each pair of
reconstructed shadow manifolds. The curves plot
how the correlations between nearest neighbors
across shadow attractors evolve as one considers
increasingly larger library sizes. The p-values re-
port whether these correlation values are signifi-
cantly increasing (the p-values are obtained by a
Monte Carlo method with 1,000 resamplings, and
further corrected for the twelve comparisons using

1All computations were done using R package
multispatialCCM (Clark et al., 2015).

the FDR procedure).
Using the p-values in Fig. 3 enables the recon-

struction of the network of causal relations de-
picted in Fig. 4. In this graph, the causal relation
between the loquacity and the lexical diversity is
considered weaker than the rest. The reason for
this is that the comparisons reported here are in
fact part of a larger study considering many more
comparisons (including many factors of the moth-
ers as well), on which we did not have any clear
a priori predictions on the relations that would be
found. When applying the FDR method on the
whole set of 56 comparisons that we actually con-
sidered, the relation plotted by the dashed arrow
is in fact not significant. In short, one should not
trust the reliability of that particular relation.

Considering only the fully reliable relations,
one finds that, as was suspected from the curves in
Fig. 2, there is an explicit causal relation between
the development of vocabulary richness (i.e., lex-
ical diversity) and the acquisition of inflectional
paradigms (i.e., inflectional diversity). The in-
crease in lexical diversity indeed causes the de-
velopment of inflectional paradigms. In turn, that
the inflectional paradigms begin to be in place en-
ables the child to begin generalizing more syntac-
tic relationships (as is reflected by the feedback
loop found between the inflectional diversity and
MLU manifolds). Importantly, that the inflectional
paradigms are developed is also strongly coupled
(i.e., forms a feedback loop) with the increase the
children’s overall loquacity; once children begin to
get a hold of grammar (inflection and syntax) they
are enabled to speak more, which in turn furthers
their ability to generalize morphological relations
and –by association– syntactic relations.

5 Discussion

In this study, we have –for the first time– docu-
mented the explicit causal relations between dif-
ferent tiers of children’s linguistic development.
At a macroscopic level, we find strictly causal re-
lations between the acquisition of vocabulary, in-
flectional paradigms, and syntactic relationships.
As schematized in Fig. 4, the development of a
sufficiently large vocabulary is a crucial trigger
for the successful acquisition of the grammatical
aspects of language, which are in turn necessary
for children to be able to speak more. These re-
sults are consistent with theories advocating the
importance distributional learning for the acqui-
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Figure 3: Results of mCCM between each pair of variables. The p-values are FDR-corrected considering
the twelve comparisons reported here.

sition of constructions (Lieven et al., 1997; Pine
and Lieven, 1993; Tomasello, 1992; Tomasello,
2005). It shows how the level of generality of
the constructions is progressively increased (Gold-
berg, 2003) by the use of ‘lexically-based posi-
tional analysis’ (Lieven et al., 1997) to achieve
early grammatical generalizations.

The picture of causal relations observed here
could be put into an informal narrative as follows:
The acquisition of sufficient lexical forms enables
children to generalize their relations into inflec-
tional paradigms. When a sufficient command of
the language’s inflectional morphology has arisen,
children are able to begin generalizing syntactic
relations. The presence of these early syntactic
developments in turn serves to increase the child’s
awareness of the functional roles served by differ-
ent paradigm members. From this point, one ob-
serves the strong bidirectional coupling between
the development of syntax and inflectional mor-
phology. An increasing awareness of the func-
tional roles of the individual forms within these
paradigms, and noticing the formal relations be-
tween them, in turn trigger further generalizations
of the paradigms into inflectional classes (Milin
et al., 2009), further increasing the productivity of
the inflectional morphology system.

This study also stresses the importance of
macroscopic level linguistic analyses. Whereas
much research in language acquisition has focused
on the acquisition of specific individual construc-
tions (microscopic level) or groups thereof (meso-
scopic level), the investigation of the properties of
the whole lexicon, inflectional and syntactic sys-
tems uncovers relations which are difficult to pin-
point at the other levels. This fits in well with
the multiscale investigation of language develop-
ment proposed from the point of view of the The-
ory of Dynamical Systems (van Geert, 1991). In-
deed, one can see, at the mesoscopic level, that
–also consistent with the distributional learning
hypothesis– there is a causal chain by which the
development of single word utterances triggers
the development of two-word utterances, which
in turn trigger three-word utterances, and so forth
(Bassano and van Geert, 2007). The macro-
scopic analyses provided here complement that
picture by indicating how that evolution of utter-
ance lengths is strongly coupled with the develop-
ment (or ‘growth’ in van Geert’s terms) of gram-
matical knowledge.

An innovative aspect of the methods we have
developed in this paper is that they provide an ex-
plicit procedure for testing whether there are ex-
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Figure 4: Reconstructed network of causal relations between the different measures of the children’s
linguistic performances. The p-values indicated on the causal arrows are FDR-corrected. The dashed-
line denotes a relationship that does not survive FDR correction considering a larger set of variables.

plicit causal relations between the development
of different aspects of language. Here we have
used the methods at a macroscopic level, but it
would be equally possible to apply them to both
microscopic- or mesoscopic-level time series. Pre-
vious research on dynamical systems on language
acquisition (e.g., Bassano and van Geert, 2007;
Steenbeek and van Geert, 2007; van Geert, 1991)
relies on proposing different candidate models in
terms of systems of differential equations, each in-
cluding different sets of causal relations and cou-
plings between time series. Our methods, us-
ing techniques for explicitly testing causal rela-
tions borrowed from ecology (a field whose study
bears uncanny similarities with the study of hu-
man development), complement the curve-fitting
by explicitly testing which couplings and causali-
ties should be included in the models, thus signif-
icantly reducing the model space that needs to be
explored.
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A Bias-Adjusted Entropy Estimator

The bias-adjusted entropy estimator (Chao et al.,
2013) relies on properties of the accumulation
curve of the number of distinct words observed
(i.e., the species accumulation curve in the biolog-
ical terms of the original paper). The estimator is
given by

Ĥ =
∑

1≤Fi≤n−1

[
Fi

n

(
n−1∑
k=Fi

1
k

)]

− f1

n
(1−A)1−n

[
log(A) +

n−1∑
r=1

1
r
(1−A)r

]
,

where Fi are the word frequencies observed in the
sample, n is the number of tokens in the corpus,
and

A =



2f2

(n− 1)f1 + 2f2
if f2 > 0,

2
(n− 1)(f1 − 1) + 2

if f2 = 0, f1 > 0,

1 if f1 = f2 = 0,

.

with f1 and f2 being the number of word types that
were encountered exactly once or twice respec-
tively (i.e., the numbers of hapax legomena and
dis legomena). This estimator is demonstrated to
be accurate and unbiased for word frequency dis-
tributions (Moscoso del Prado Martín, in press).
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Abstract

How do infants learn the meanings of their
first words? This study investigates the in-
formativeness and temporal dynamics of
non-verbal cues that signal the speaker’s
referent in a model of early word–referent
mapping. To measure the information pro-
vided by such cues, a supervised clas-
sifier is trained on information extracted
from a multimodally annotated corpus of
18 videos of parent–child interaction with
three children aged 7 to 33 months. Con-
tradicting previous research, we find that
gaze is the single most informative cue,
and we show that this finding can be at-
tributed to our fine-grained temporal an-
notation. We also find that offsetting the
timing of the non-verbal cues reduces ac-
curacy, especially if the offset is negative.
This is in line with previous research, and
suggests that synchrony between verbal
and non-verbal cues is important if they
are to be perceived as causally related.

1 Background and introduction

There is a growing literature on how infants use
non-verbal input such as parents’ hand manipu-
lations of salient objects to infer the meanings
of their first words. Meaning seems to arise as
a probabilistic process where recurrent acoustic
patterns gain referential value as they are linked
to time-synchronous recurrent patterns in other
modalities (Trueswell et al., 2016; Gogate et
al., 2006; Matatyaho and Gogate, 2008; Lac-
erda, 2009). The details of this process, such
as the informativeness and temporal dynamics

of different cues in word–referent mapping, are
still contested, though. In the social-pragmatic
approach, joint attention and understanding of
speakers’ communicative intentions are the cen-
tral vehicle for investigating the mapping, but
the mechanisms typically appear to be determin-
istic (Tomasello, 2000). In contrast, the asso-
ciative learning approach emphasises how cross-
situational co-occurrences of words and referents
increase the salience of objects, including multiple
objects in ambiguous learning contexts.

A frequently used methodology for studying
word–referent mapping is the Human Simula-
tion Paradigm (HSP), originally devised by Gleit-
man and colleagues (Gillette et al., 1999; Pic-
cin and Waxman, 2007; Medina et al., 2011).
Here, observers try to estimate referential trans-
parency by reconstructing intended referents from
non-verbal cues as they watch a muted video of
parent–child interaction. Another methodology,
which is used in this paper, is to try to model the
word–referent mapping directly. Such a model
is based on coding of the referential events in
a video, typically as perceived by an ideal ob-
server (Geisler, 2011); in other words, someone
assumed to optimally handle the perceptual task
given by the learning environment as a whole, as
recorded by the video. An example of this line of
work is Yu and Ballard (2007). They combined
social cues (in the form of prosodic affect and
joint attention) with statistical learning of cross-
situational co-occurrence into a unified model of
word learning, showing that this model performed
better than a purely statistical approach. Further-
more, Frank et al. (2009) showed that a unified
model of cross-situational co-occurrence and in-
terpretation of speakers’ referential intention out-
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performed other models of cross-situational word
learning, including the model of Yu and Ballard
(2007).

In a subsequent study which is the closest paral-
lel to the problems dealt with in this paper, Frank
et al. (2012) attempted to quantify the informative-
ness of eye gaze, hand positions and hand point-
ing (social cues), as well as referents of previous
utterances (discourse continuity), using an ideal
observer scenario. For each utterance, the toys
present in the field of view of the child at the time
of the utterance were coded. (To determine the
timing, coders were listening to the audio.) The
union of the sets of such objects associated with
all the utterances of a video thus formed the set of
possible referents. There were between 3 and 21
different objects per dyad, but the number of ob-
jects in the child’s view (the ambiguity) for each
utterance was on average between 1.18 and 2.93
per dyad. Then the object(s) in the context that
were being looked at, held or pointed to by the par-
ent (the social cues) were coded. In addition, the
object(s) that were being looked at or held by the
child (referred to as attentional cues) were coded.
Finally, the parent’s intended referent for each ut-
terance — those that contained the name of an
object or pronoun referring to it — were coded
(“look at the doggie”, “look at his eyes and ears”).

The result, based on regarding each cue as a
predictor for the object reference, was that point-
ing was a powerful predictor with a precision of
0.78. However, pointing was not frequently used;
in other words, it had low recall in the sense that
it was seldom used when an object was referred to
(and instead other means were used). Eye gaze
and hand position, on the other hand, had low
prediction accuracies, with F -scores around 0.45.
The result was that the social cues appeared to be
noisy and that, generally speaking, no such cue
on its own would allow an observer to resolve the
referential ambiguities. Simulations with a super-
vised classifier indicated that the prediction accu-
racy could be somewhat improved by combining
information from any two different cues, but that
the third did not add anything.

As discussed by Frank et al. (2012), however,
it is possible that some discriminatory power was
lost because of the coarse temporal granularity of
the model, where any temporal coordination be-
low the utterance level was invisible. For example,
if the parent was looking first at one object and

later at another object during the same utterance,
the coding did not capture the timing and ordering
of these events. More generally, if there is a sys-
tematic timing relation between verbal and non-
verbal cues that can support the learner’s choice of
referent, then we would want to distinguish it. A
second limitation of the model was that all kinds
of hand movements and gestures were coded as
either of two discrete cues, namely, hand position
and hand pointing.

This paper attempts to provide answers to two
research questions arising out of this line of work:
First, is it possible to obtain a more precise mea-
sure of the relative informativeness of the differ-
ent social cues by adopting a more fine-grained
model? Secondly, can we see any effects on in-
formativeness in this model if we offset the tim-
ing of the non-verbal cues? In other words, is the
timing actually used by the parents in some sense
optimal with respect to the synchrony of verbal
and non-verbal cues, or is the informativeness ro-
bust to (small) displacements of the cues forward
or backward in time? To measure the information
provided by social and attentional cues, we use a
supervised classification method, and different as-
sumptions about the length of short-term memory.

2 Data

This section describes our corpus and the annota-
tion used to code the parents’ and children’s refer-
ential behaviour.

2.1 Corpus

Our primary data consist of audio and video
recordings (using two cameras) from parent–child
interaction in a recording studio at the Phonet-
ics Laboratory at Stockholm University (Lacerda,
2009). The corpus consists of 18 parent–child
dyads, totalling 7:29 hours, with three children
each participating longitudinally in six dyads be-
tween the ages of seven and 33 months. The mean
duration of a dyad is 24:58 minutes. The scenario
was free play where the set of toys varied over
time, but where two of them (the target objects)
were present in all dyads.

2.2 Coding

All annotation of the corpus was made with the
ELAN tool (Wittenburg et al., 2006) according to
the guideline of Björkenstam and Wirén (2014),
producing annotation cells on tiers time-aligned
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Figure 1: Screencap of ELAN annotation.

with the audio and video files (see Figure 1). The
basic approach was to code each type of verbal
and non-verbal referential event as well as the par-
ent and child in separate tiers, thereby allowing for
analysis separately and in different combinations.

First, for each dyad, the discourse segments in
which a target object was in focus were coded
by creating cells that spanned the corresponding
timelines in a designated tier, annotated with the
name of the focused object.1 “Focus” here means
that at least one of the participants’ attention was
directed to a target object,2 and that, in the course
of the segment, at least one verbal reference to the
object was made by the parent. Such a segment
was considered to end when the focus was shifted
permanently to another (target or non-target) ob-
ject.

These segments were then coded for verbal and
non-verbal referential cues, involving speech, eye
gaze, manual gesture, and manipulation of an ob-
ject by (one or two) hands. The coding used cells
spanning the timelines corresponding to the re-
spective events in a separate tier for each type, and
with separate tiers for the parent and child, thus re-

1In some segments, both of the target objects were in fo-
cus and were then annotated with both names.

2Thus, there is not necessarily joint attention to the target
object in the whole of such a segment.

Table 2: Values of Cohen’s Kappa (required over-
lap 0.6)

Annotation tier Kappa
Parent’s object manipulation 0.71
Child’s object manipulation 0.75
Parent’s eye gaze 0.60
Child’s eye gaze 0.69

sulting in eight ELAN tiers overall. We took care
in trying to recover information from each cue as
objectively as possible. Accordingly, an impor-
tant methodological consideration was that each
tier was coded independently of the others in such
a way that all the other tiers were hidden for the
annotator.

The coding of speech involved all references to
objects and persons present in the room by means
of a name, definite description or pronoun. Each
such reference was coded in an annotation cell
spanning the timeline corresponding to the dura-
tion of the expression, with addition of its ortho-
graphic transcription and the speaker’s intended
referent. There were altogether 45 types of ob-
jects referred to verbally in the videos, but the
distribution of these events was heavily skewed,
mostly because of the prominent role of the two
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Table 1: Number of occurrences of ten most frequent objects referred to verbally, ditto hand manipula-
tions of objects, and ditto objects referred to non-verbally (using gaze or hand), all in decreasing order.
P = parent, C = child, Siffu = target object 1, Kucka = target object 2.

Objects referred Occur. Hand mani- Occur. Objects referred Occur.
to verbally pulation to non-verbally
Siffu 377 hold 797 Siffu 1229
Kucka 275 reach 539 Kucka 1103
C 166 move 321 C 184
subS 29 show 262 bag-lid 173
subK 24 touch 217 bag 146
P 22 grab 165 P 66
dress-white 14 pick-up 143 dress-white 61
bib 11 explore 120 bottle 55
car 11 enact 114 dress-pink 42
wire 8 shake 95 brush 36

target objects. The most frequently referred ob-
jects are shown in the two leftmost columns of
Table 1. As seen in the table, only three objects
were referred to more than 30 times: target object
1 (called Siffu), target object 2 (Kucka) and
child.

As for non-verbal references, the coding of gaze
similarly consisted of a cell spanning the timeline
of the act, with a specification of the object looked
at. If two objects were joined together in the field
of view of an agent, the object looked at was coded
as the larger of them. For example, if the parent
was looking at the child holding a car, we would
code this as the child being the subject of the gaze.

In the coding of manual object manipulation,
we wanted to capture the large variation in how
the parent and child were handling the objects. We
thus distinguished 79 types of object manipulation
acts, which again turned out to occur in a skewed
distribution as shown in the two middle columns
in Table 1. Altogether, there were 85 different ob-
jects referred to non-verbally (using gaze or hand),
of which the most frequent ones are shown in the
two rightmost columns in Table 1. Manual gesture
occurred very infrequently (and only for the pur-
pose of deictic pointing), and was not used in the
subsequent analysis.

The use of timelines in ELAN allows for a high
temporal resolution, permitting us to track the in-
formation from the cues very precisely. The high
resolution also brings technical challenges, how-
ever; while Frank et al. (2012) could assume a
discrete-time setting and simply use a model pre-

Table 3: Tuples extracted from coding of gaze. P =
parent, C = child, Siffu = target object 1, Kucka
= target object 2

Element Values
Predicate gaze
Agent P, C
Patient Siffu, Kucka, C, bag-lid,

bag, P, . . .

dicting referents from all the events observed dur-
ing an entire utterance, we need a continuous-time
model to fully exploit the information from our
coding.

The reliability of the coding scheme was evalu-
ated by comparing the output by two annotators on
two representative dyads, using the built-in ELAN
function for calculating Cohen’s Kappa (see Ta-
ble 2). Reliability was high for children’s eye gaze
as well as object manipulation by parent and child
(around 0.7), but slightly lower for parent eye gaze
(0.6).

3 Method

While the child has access to a vast amount of in-
formation from different senses (including touch,
taste, smell, etc.), as well as memories from be-
fore the recording session, the goal of our simu-
lated learner is to predict which object is being re-
ferred to given nothing but the information from
the different cues. We assume, however, that our
learner knows how to segment continuous speech
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Table 4: Tuples extracted from coding of hand ma-
nipulation of object. P = parent, C = child, Siffu
= target object 1, Kucka = target object 2

Element Values
Predicate hold, reach, move, show, . . .
Agent P, C
Patient Siffu, Kucka, C, bag-lid,

bag, P, . . .

into utterances and words, that it can perceive and
represent objects in the physical context, and that
it is sensitive to the interlocutor’s gaze. We fur-
thermore assume that the learner simulates the be-
ginnings of lexical acquisition in the sense that the
only information provided by the speech is that
some object in the context is being referred to ver-
bally, but nothing related to the meaning of the
words.

To provide a measure of the information inher-
ent in the cues, we use a supervised classification
method. Following Frank et al. (2012), we thus
use classification accuracy as a proxy for the vari-
able we are really interested in, namely, the in-
formativeness of different cues. Highly informa-
tive cues provide relatively unambiguous informa-
tion about the referent, and a reasonable classifier
should then be able to identify the referent with a
high level of accuracy.

It would also be possible to use the perplexity
or, equivalently, likelihood of the test data in order
to compare different models. This would capture
the (un)certainty of each model, rather than just its
ability to predict the correct referent. While intu-
itively appealing, this would increase the influence
of uninteresting model parameters (such as regu-
larization strength) on the result, so for this reason
we stick to the more easily interpretable measure
of plain classification accuracy.

As features for the classifier, we extracted in-
formation from the coding which we represent as
tuples. Thus, for gaze, we extract triples con-
sisting of 〈gaze, agent, patient〉, as shown in Ta-
ble 3. For object manipulation we extracted triples
in the format 〈predicate, agent, patient〉, for exam-
ple, 〈pick-up,C,car〉. As mentioned in Sec-
tion 2.2, there were 79 different values for predi-
cate and 85 different values for patient; the most
frequent ones of these are shown in Table 4.3 We

3Sometimes one predicate was associated with several

also keep track of the timing information for each
mention and each gaze- or hand-related cue.

The particular task that our model solves is
a multinomial classification between the possible
referents at time t, which we choose to coincide
with the start of a mention by the parent. For this,
we use a multinomial logistic regression (Maxi-
mum Entropy) model with predictors that depend
on the type of event as well as the time passed
since the event finished.

Each combination of values in a tuple that en-
codes a non-verbal event, such as 〈gaze,P,car〉
or 〈pick-up,C,car〉, corresponds to a feature
in the model. To compute the value of this feature
at time t, we use an exponential decay function to
simulate short-term memory. The memory equa-
tion has the form f(t) = e−kt, where k is a con-
stant that determines the length (half-life) of the
memory, and t is defined by

t = tstart
mention − tend

event

where tstart
mention is the time at which the mention

starts and tend
event is the time at which the non-verbal

event ends, or t = 0 in case these two overlap.
Ongoing non-verbal events are defined to have a
value of 1, but as soon as the non-verbal event
ends, the decay begins. In case the non-verbal
event and mention overlap, the event will have a
value of 1, according to the memory equation. Fu-
ture events (that is, events that have not yet oc-
curred) are defined to have a value of 0.4

As mentioned in Section 2.2, the distributions
of predicates and objects ware skewed. To avoid
having a lot of unusual features in the model, we
therefore used one threshold for inclusion of ver-
bal mentions, which we set to 100, and one thresh-
old for the use by the classifier of unique triples
representing object manipulations, which we set
to 10. The rationale for the lower threshold is that
the classifier is robust to some noise, but only if
there is a sufficient number of instances for the
predicting variable (verbal mentions), hence the
higher threshold in that case. Consequently, only
the three most frequently mentioned objects were
used in the classification.

patients, for example, 〈gaze,C, 〈car,Siffu〉〉. In this
case, two features were generated with the same timestamps:
〈gaze,C,car〉 and 〈gaze,C,Siffu〉.

4If we would like to put more emphasis on changes of
state, it is possible to include decay during an event as well to
down-weigh the information from this event once the novelty
wears off.
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Table 5: Results of experiment 1. Accuracy (in
percent) of model prediction given type of cue.
Columns show from which agents information is
incorporated into the model (P = parent, C = child,
P + C = both). The upper half shows results from
our model as described, the lower half uses the
same data but only utterance-level binary features,
thus emulating the model of Frank et al. (2012).

Type of cue used P C P + C
Fine-grained temporal information

Hand 72.9 71.8 82.5
Gaze 75.8 80.8 84.2
Hand + gaze 81.7 83.6 88.7
Utterance-level temporal information
Hand 61.5 64.1 66.6
Gaze 61.4 59.8 62.3
Hand + gaze 64.4 65.0 69.5

We train and evaluate the model using a leave-
one-out strategy on the recording session level, so
that we fit as many models as there are recording
sessions (18). Each model is fitted using data from
all but one session, then used to predict the refer-
ents of the remaining session. This method allows
us to use as much as possible of the available data,
while at the same time avoiding session-specific
context to influence the model.

4 Experiments

This section describes how we used our model in
three experiments to try to measure the informa-
tiveness and timing of non-verbal cues.

Experiment 1: Informativeness of non-verbal
cues

First, we were interested in obtaining measures of
the informativeness of the non-verbal cues from
both the parent and child as seen from a third-
person observer (in effect, looking at their joint
interaction), as well as from the agents as seen sep-
arately. To this end, we trained classifiers on cues
including gaze and hand manipulation for the in-
put from each agent as well as from both of them.
For this experiment, we used the two target ob-
jects as referents. We did not include the child, be-
cause the objective here was to use external infor-
mation sources as seen from the parent and child,
and we did not include any other objects for lack
of data. The half-life of the short-term memory

Table 6: Results of experiment 2. Accuracy (in
percent) of model prediction per referent.

Precision Recall F -score
C 31.0 13.3 18.6
Kucka 69.0 74.5 71.7
Siffu 73.6 87.8 80.0

decay used here was 3 seconds. The baseline is
given by the most frequently referred one, target
object 1 (Siffu), which was used in 58% of the
cases. An uninformed model could thus achieve
an accuracy of 58% by always predicting Siffu.

Table 5 shows the accuracy of the model’s pre-
dictions given different cue combinations and in-
formation sources (agents). Overall, the differ-
ences in predictive accuracy between the various
cue combinations are fairly small, but we can note
some things. First, gaze turns out to be more in-
formative than hand manipulation of objects. Sec-
ondly, a comparison of the P and C columns shows
that roughly the same amount of information is
provided by both agents, indicating a high degree
of convergence in their interaction.

For comparison, we also include at the end of
table 5 the corresponding accuracies obtained us-
ing the paradigm of Frank et al. (2012), that is, dis-
carding our fine-grained temporal information and
using only utterance-level binary features. The re-
sult is a sharp decline in prediction accuracy. It is
noteworthy that gaze comes out as less informa-
tive than hand manipulation under these circum-
stances, which is consistent with the results re-
ported by Frank et al. The relative importance of
cues thus seems to depend strongly on the resolu-
tion of the temporal information available to the
model.

Finally, we can see that the prediction accu-
racy is higher when the information sources are
combined, as we would expect. The P + C col-
umn shows that the prediction accuracy of a third
person view classifier (trained on both parent and
child input) is consistently higher than the accu-
racy of the classifiers trained on input from P and
C, respectively.

Experiment 2: Informativeness of non-verbal
cues to known referents
In the second experiment, we were interested in
determining if there were differences in informa-
tivess of non-verbal cues that depended on the
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object referred to. This question may bear upon
problems related to givenness and accessibility in
the domain. In each dyad, the child is a second-
person referent, and the target objects are third-
person referents. For example, according to Ariel
(1999), second-person referents are consistently
highly accessible, whereas third-person referents
are highly accessible only when they constitute
the discourse topic. Our model thus permits us
to investigate whether there are differences in the
informativity of non-verbal cues with respect to
second- and third-person referents. Since the num-
ber of references to the child was exceeded only by
the target objects, we therefore included this as a
third object.

For this experiment, we thus trained classifiers
on cues including gaze and hand manipulation for
the input from both agents combined. Table 6
shows that predicting the child is much more diffi-
cult than the external (target) objects. Using gaze
and action information from both participants, we
achieve F -scores of 71.6% and 80.0% for the two
toys, but only 18.6% for the child.
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Figure 2: Results of experiment 3. Classification
accuracy (y-axis) as a function of verbal mention,
offset whole seconds from actual word occurrence
in parent speech up/down to ±4 seconds (x-axis),
given a short-term memory of 1, 3, and 10 sec-
onds, respectively. Time = 0 coincides with the
start of the mentions by the parent.

Experiment 3: Timing of non-verbal cues
Our final experiment concerned the timing of non-
verbal cues. Previous research has highlighted the
time-synchronicity of non-verbal cues with ver-
bal utterances (Matatyaho and Gogate, 2008; Lac-
erda, 2009). Furthermore, there has been work in
the HSP paradigm on determining the effects to

referential transparency by displacing these cues
(Trueswell et al., 2016). Using our fine-grained
representation of time, we wanted to investigate
the effects in our model to see if would arrive at
similar effects as Trueswell et al.

Our hypothesis was that non-verbal cues are
synchronised with speech, and that displacing the
verbal mention from its actual temporal position
in the input would lead to a drop in classifier per-
formance. We tested this by training a classifier on
input where the timing of the predictions relative
to the onset of speech had been moved by whole
seconds up/down to ±4 seconds. This is compa-
rable to displacing the speech relative to the non-
verbal event with the same amount of time. We
also explored how short-term memory decay influ-
enced classification accuracy by comparing three
classifiers with a memory half-life of 1, 3 and 10
seconds, respectively.

The effects of the timing displacement on ac-
curacy appear in Figure 2. The 0 second verbal
mention offset is the baseline, with an accuracy of
about 86% for the 1 second memory model, and
around 88% for the 3 and 10 second memory mod-
els. Accuracy dropped when verbal mention offset
was displaced. Moving the verbal mention offset
ahead in time by as little as two seconds resulted
in accuracy scores of 82% for the 1 second model,
and 84% for the 3 and 10 second memory mod-
els. Delaying the verbal mention by 2 seconds had
a less detrimental effect, in particular for the 10
second model.

5 Discussion

The goal of this study was to develop a model for
fine-grained measuring of the informativeness and
effects of displaced timing of non-verbal cues in
parent–child interaction. To this end, we used a
corpus of videos of child-directed interaction in
a free-play setting involving several objects, but
where most of the interaction was centred on two
target objects. We coded the segments of the inter-
action that were focused on these objects with ver-
bal and non-verbal references, using speech, gaze
and hand manipulation of objects for this study.
To obtain a measure of the informativeness of dif-
ferent cues, we used classification accuracy of the
different referents.

The main difference with respect to the model
of Frank et al. (2012) concerns the representation
of time. Frank et al. use a discrete-time setting in
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which a referent is predicted from all the events
observed during an entire utterance. In contrast,
our model uses a continuous-time representation
working off the coding along ELAN timelines. A
further difference is that our model includes a sim-
ulation of short-term memory decay, where the
value of a feature is 1 if it occurs at the time of
the mention (the noun phrase), and then decreases
exponentially.

Another kind of difference concerns the way in
which we represent non-verbal cues. Frank et al.
also investigated cues associated with speech, gaze
and hand, but for the latter they only used binary
features consisting of one discrete cue for hand po-
sition and hand pointing, respectively. Our cod-
ing is more feature-rich, distinguishing 79 types
of hand manipulation.

On the other hand, Frank et al. have a broader
perspective in the sense that they also model dis-
course continuity; in other words, the fact that in
the absence of contradicting information, it is most
likely that what is being talked about now is the
same thing as what was talked about a moment
ago. We also do not take prosody into account, as
is done by Yu and Ballard (2007).

Our first experiment concerned the relative
informativeness of non-verbal cues for word-
referent mapping. We found that gaze is the most
informative cue, which is inconsistent with the
study of Frank et al. In particular, child gaze was
highly informative. We interpret this as evidence
of the parent’s ability to recognise the focus of the
child’s attention, and to create and maintain joint
attention. Additional support for our hypothesis is
given by the fact that non-verbal cues, and gaze
in particular, became much less informative when
we emulated Frank et al.’s experimental setup by
discarding temporal information for our classifier.

The third person view classifier, trained on both
parent and child input, achieved the highest accu-
racy. Although we do not have any direct coding
of joint attention, it seems that to some degree the
third person view classifier captured instances of
joint attention through the coding of gaze and ob-
ject manipulation.

In our second experiment, we compared the in-
formativeness of non-verbal cues to mentions of a
second person referent (the child) with mentions
of third person referents (the target objects). We
found that this task is more complex than classifi-
cation of mentions of third person referents. These

results raise the question whether non-verbal cues
are used less when the speaker assumes that the
referent of a word is known to the listener. In
this case, the parent knows that the child already
knows his/her name, and thus references to the
child may be used mainly as means of getting the
attention of the child.

In our third experiment, we tested the hypoth-
esis that non-verbal cues are synchronous with
speech by displacing the verbal mention from its
temporal position in the input. We expected a
drop in classifier performance, and found that es-
pecially negative offsets resulted in lower accu-
racy. We found an assymmetry in the effect of tim-
ing that is similar to experimental results on tim-
ing by Trueswell et al. (2016, p. 128), who note
that “the greatest changes in cues to referential in-
tent occur just before, rather than after, word onset
[. . . ]; moving the beep [that is, word onset] early
effectively causes these events to happen too late
to be perceived as causally related to the linguistic
event”.

6 Conclusions

Our findings show that gaze is the single most
important non-verbal cue for predicting external
object referents, thereby contradicting the study
of Frank et al. (2012). We attribute the differ-
ence to our addition of fine-grained temporal in-
formation, as we can compare our results to those
of Frank et al. by simulating their time resolu-
tion. Another result is that that non-verbal cues
seem much more informative for predicting third-
person than second-person references. Finally, we
have demonstrated the importance of synchrony
by showing that displacing the verbal mention
in time degrades prediction accuracy, particularly
when the offset is negative. This is consistent with
the findings of Trueswell et al. (2016, Figure 2,
and compare our Figure 2) who instead of a sta-
tistical classifier working off the annotation used
human observers of the video.
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