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Abstract

In this paper, we use insights from Mini-
malist Grammars (Keenan and Stabler, 2003)
to argue for a context-free approximation of
discontinuous structures that is both easy to
parse for state-of-the-art dynamic program-
ming constituent parsers and has a simple and
effective method for the reconstruction of dis-
continuous tree structures.

The results achieved on the Tiger treebank –
paired with state-of-the-art constituent parsers
such as the BLLIP and Berkeley parsers
– both improve on existing transformation-
based approaches for representing discontin-
uous structures and the state-of-the-art results
of Fernández-González and Martins’ (2015)
parsing-as-reduction approach.

1 Introduction

For languages with free(r) word order and richer
morphology, predicate-argument structure (depen-
dencies of words and their heads/governors) and
topology (contiguous phrases or regions in the sen-
tence) do not always match up. Hence, constituency
parsing techniques that rely on a context-free back-
bone either have to do with a language-dependent
approximation that puts topology at the center (e.g.
the TüBa-D/Z treebank of Telljohann et al., 2009,
based on topological fields) or can only produce
an approximation of the actual predicate-argument
structures (as is the case with most parsing ap-
proaches targeting the Negra and Tiger treebanks,
cf. Skut et al., 1997; Brants et al., 2002).

As an alternative to this procrustean choice, prac-
titioners have traditionally preferred dependency

*Work was done at the University of Heidelberg

structures, which today offer straightforward ways
to deal with nonprojective structures in practical
ways despite the fact that exact parsing of nonpro-
jective dependencies with second-order factors is in-
tractable in general (McDonald, 2006).

In the following, we present a principled treat-
ment for approximating discontinuous syntactic
structures by context-free ones. The resulting novel
technique for pseudoprojective parsing is well suited
for lexicalized as well as unlexicalized projective
parsers, and yields a feasible solution for accurate
probabilistic parsing of discontinuous structures.

2 Related work

Grammar-based approaches to constituent parsing
based on minimally context-sensitive formalisms
such as LCFRS/MCFG can give guarantees of
polynomial-time parsability. However, the step to
practical (i.e., fast and accurate) parsing is much
larger than is the case for context-free structures:
Specifically, binarization is a key to yielding prob-
abilistic formulations with a good tradeoff be-
tween expressivity and sparsity e.g. in the parser
of Charniak (2000). Binarization, however, is non-
straightforward for LCFRS (Gildea, 2010; van Cra-
nenburgh, 2012), and, unlike for CFG, it is in-
effective to obtain a grammar with lower parsing
complexity. As a result, parsers directly based on
LCFRS such as Kallmeyer and Maier (2013) are
rather limited in terms of speed and accuracy.

Greedy (and beam-search) parsing of discontin-
uous constituents has recently seen some progress
in the form of approaches that use swapping tech-
niques in transition-based parsing of discontinuous
constituents (Versley, 2014; Maier, 2015). A fur-
ther strain of approaches uses other dependency
parsing techniques by reducing discontinuous con-
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stituent parsing to a dependency labeling problem
(Hall and Nivre, 2008; Fernández-González and
Martins, 2015). However, none of these two groups
of approaches easily lend themselves to reranking
(Collins, 2000; Charniak and Johnson, 2005) or
comparable techniques.

As in van Cranenburgh and Bod (2013), we as-
sume that pairing k-best parsing of context-free
structures with a deterministic back-transform to
discontinuous structures is a feasible approach to
yield k-best lists of discontinuous structures. While
van Cranenburgh and Bod rely on a complex rank-
ing mechanism as the second step, we show that re-
finements to the first steps can already yield results
that surpass the state of the art without any separate
ranking step.

3 Pseudoprojective parsing

After initial successes with head-lexicalized PCFG
parsing for English (Collins, 1997; Charniak, 2000),
researchers tried to apply these models to languages
that show less configurationality than English. For
Czech, (Collins et al., 1999) reordered the original
word sequence into one where the corresponding
tree becomes continuous. For German, (Dubey and
Keller, 2003) transform the treebank by raising dis-
continuous parts to a higher node in the tree.

Both of these approaches will yield parsing mod-
els that (potentially) produce sensible trees for feasi-
ble sentences that have a continuous syntactic struc-
ture (which comprises the large majority of sen-
tences in English, but may only cover less than half
of sentences in typical text for German or Czech).
As such, these approximations would be problem-
atic for not offering a path from unparsed tokens as
they occur in the text to (potentially) discontinuous
trees reflecting predicate-argument structure.

Subsequent approaches such as Levy and Man-
ning (2004) use a multiple-step algorithm to revert
the changes introduced by node raising by (heuris-
tically or automatically) identifying NULL elements
in the tree, and in a second step identifying dislo-
cated material and linking it up with an appropri-
ate NULL position. Unlike work for heuristic reat-
tachment of dependencies such as Hall and Novak
(2005) or Nivre and Nilsson (2005), however, this
work is relatively complex. Levy and Manning’s

evaluation is also performed on the individual steps
rather than in a framework that looks at the complete
process of parsing and reattachment.

Boyd (2007) proposes an approximation of
LCFRS’s block structure to get to a tree transfor-
mation that is, in difference to a pure node rais-
ing approach, reversible. Boyd labels the blocks of
a discontinuous nodes by appending a special suf-
fix (i.e. “VP*” instead of “VP”), and later merging
these nodes in a top-down fashion. We will discuss
this approach in more detail in section 3.2.

Boyd herself compares her approach of block-
based transformation to a setting where node rais-
ing was applied to the training corpus but no back-
transformation was used (similar to parsing mod-
els distributed with modern constituent parsers).
Undoing the block-based transformation yielded
a better result than node-raising without back-
transformation using gold part-of-speech tags.

Contra Boyd, Rehbein and van Genabith (2009)
find in an evaluation based on f-structure conver-
sion that Boyd’s way of transforming trees gives
worse results to their approach. Hsu (2010) looks
purely at how well parsers are able to reproduce the
structures created by pseudoprojective transforma-
tions, and finds that parsers introduce more errors in
Boyd’s method than in the node-raising method.1

3.1 Formalizing pseudoprojectivity

For our purposes a tree T = (NT∪{t1, . . . , tn}), E)
over a sequence of terminals Term = t1, . . . , tn is a
directed acyclic graph such that (i) terminals have no
children (ii) all nonterminal nodes have at least one
child, (iii) all nodes have at most one parent and (iv)
that there is a unique topmost node that dominates
all other nodes. For the nodes of such a tree we can
recursively assign a yield function such that the yield
of ti is {i} and the yield of a nonterminal node is the
union of the yields of the children.

We call a node contiguous if its yield is a contigu-
ous subsequence; we call a tree contiguous if all its
nodes are contiguous.

1A reviewer points out that these results should be seen in
the context of the experimental framework used – Rehbein only
uses the Berkeley parser, and Hsu only uses plain unbinarized
PCFGs – and that particular transformations may be more or
less appropriate for specific parsers.

59



A pseudoprojective transform over a set T of
trees is a pair (proj, unproj) of functions with the
following properties:

• proj is a total function from trees in T to trees.
For any tree T ∈ T , the value proj(T ) is a pro-
jective tree over the same terminal sequence.

• unproj is a partial function from projective trees
to trees from T . For any T ′ ∈ proj(T ),
proj(unproj(T ′)) = T ′

• proj (and by extension unproj) preserve con-
tiguous nodes: if T contains a node with label a
and a contiguous yield i..j, proj(T ) must con-
tain a node with label a and a contiguous yield
i..j. If a contiguous node a1 has a contiguous
ancestor a2, the ancestor relationship between
a1 and a2 is preserved in proj(T ).

• There is a set of barrier nodes B among
the contiguous nodes from T ∩ T ′, minimally
including the topmost node and all terminal
nodes. If proj(T ) contains a node not contained
in T with a ancestor na ∈ B and a descendent
nd ∈ B, then T must contain a noncontiguous
node with ancestor na and a descendent nd.

(I.e. proj(T ) = T for all contiguous trees).

Note that we do not require proj to be injective
(in many useful cases it is not), nor do we say any-
thing about unproj’s behaviour on trees outside of
proj(T ). Possibilities for proj include simply delet-
ing discontiguous nodes, adjusting their spans by re-
parenting (as in node raising) and/or adding other
nodes.

3.2 LCFRS-inspired approximations
A Linear Context-Free Rewriting System (LCFRS)
is a grammar where nodes in the parse tree do not
correspond to a single span, but to a fixed number of
blocks, yielding productions such as

S1(uvwxy)→ VP2(u, x) V1(v) NP2(w, y)

In grammar-based parsing, the number of blocks
(i.e. letter variables in the production rule) deter-
mines the parsing complexity; for pseudo-projective
transforms, the most important distinction is be-
tween (contiguous) blockdegree 1 nodes and (dis-
contiguous) nodes with a larger blockdegree.

Boyd (2007) proposes a pseudoprojective trans-
formation that approximates LCFRS’s block struc-
ture: Boyd labels the blocks of a discontinuous
nodes by appending a special suffix (i.e. “VP*” in-
stead of “VP”), and later merging these nodes in a
top-down fashion.

Van Cranenburgh (2012) suggests a refinement of
Boyd’s approximation – independently disc where
the different blocks of a discontinuous phrase re-
ceive different labels (yielding an approximate pro-
duction of S→ VP∗1 V NP∗1 VP∗2 NP∗2)

In practice, we found that van Cranenburgh’s ap-
proach creates many rare categories such as VP∗12,
and that limiting the numbers in the superscripts
yields identical performance to Boyd’s approach.

3.3 A new look at node raising
If we have a treebank where a VP is the projection
of a verb, we (or the parser) have a concrete expec-
tation of what to find inside a VP node. In con-
trast, LCFRS and Boyd’s transforms treat the trees
as non-lexicalized construct: for a VP, we would get
two VP* nodes with rather different properties. The
second (in our case) contains a verb and other chil-
dren that we would normally expect under a VP (not
VP*) node, and the first one contains topicalized
material. Furthermore, the occurrence of both top-
icalization and extraposition can mean that there is
no strong regularity among “first parts” and “second
parts”, which renders van Cranenburgh’s refinement
ineffective.

If we consider trees to have head terminals,
and the hierarchical relations inducing dependency
relations between terminals (see definition in the
appendix), we could hope for contiguous sub-
tree preservation, a stronger version of contiguity
preservation:

Given two trees T1 and T2 where the terminal
node subsequences i1..j1 of T1 and i2..j2 of T2 as
well as the dependencies between the terminals in
these subsequences are identical. If T1 has a con-
tiguous subtree with a yield of i1..j1, then proj(T2)
should also contain the same contiguous subtree.

Node raising (leaving aside unary productions)
fulfills this subtree conservation property for tree-
banks such as Tiger that use sibling adjunction (see
Carreras et al., 2008). The LCFRS-derived pseudo-
projective transformations do not, which intuitively
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Figure 1: A Minimalist Grammar tree

explains the result of Hsu (2010) that the latter are
harder for a context-free parser.

As a conclusion, we see two properties we want to
maintain: on the one hand, subtree contiguity preser-
vation seems to be beneficial for getting more accu-
rate parses of the projectivized trees, on the other
hand, some marking to aid deprojectivization seems
very helpful.

4 Approximating Minimalist Grammars

The approach we present in this paper is based on
an approximation of minimalist grammars (MG),
stemming from a family of approaches that is pop-
ular in mainstream generative linguistics (Chom-
sky, 1986). Transformational grammar and its de-
scendants have inspired some early work on pars-
ing beyond context-free structures (Dorr, 1987; Lin,
1993), but have for a long time lacked a formaliza-
tion that would enable more principled work.

Minimalist grammars (in the sense we will use
here) are a grammar formalism introduced by Sta-
bler (1997) and Keenan and Stabler (2003) that
belongs to the class of minimally context-sensitive
grammars (Vijay-Shanker et al., 1987; Michaelis,
1998), and carry (in comparison with LCFRS)
the benefit of being a lexicalized formalism, and
potentially of yielding more compact grammars
(Michaelis, 1998) and a more natural model of prob-
ability assignments (Hunter and Dyer, 2014).

At the core of Minimalist Grammars are
nodes/expressions that carry a category (e.g. x) to-
gether with valencies for certain categories (=x, x=)
and attractee features (e.g. -w), which designate a
node as being moved from its argument position to

who:d  marie:d  will:t  praise:v

vp
=d

cp

=d =v
tp

=t

Figure 2: A Tiger-style tree

a higher node, and attractor features (e.g. +w) which
designates a node as a host for moved constituent
of the corresponding type. A MOVE operation ex-
tracts a −x constituent into a +x position, whereas
a MERGE operation adjoins one node to another.

To illustrate the correspondence between the anal-
ysis assigned by a minimalist grammar and our tar-
get representation (flat discontinuous trees), let us
compare Figures 1 and 2: On one hand, MG as-
sumes binary adjunctions while the Tiger annotation
scheme has flat phrases – this kind of variation in
annotation scheme, while it may influence the struc-
tures preferred by PCFG and similar models, is se-
mantically equivalent (Johnson, 1998). On the other
hand, the representation with discontinuous phrases
eliminates all empty nodes (both the empty comple-
mentizer and the trace of the moved who), some-
times yielding headless phrases.

We should emphasize here that, while many in-
sights about constraints in movements that are valid
in Minimalist Grammars are still valid in actual tree-
banks (whenever we take care to allow for notational
differences), it is not true in general that annotated
treebanks are designed using the criteria that are ap-
plied in the Minimalist Program (indeed, Minimalist
Grammars have the goal of providing a formal gram-
mar to express such ideas in a more theory-neutral
way), nor do decisions about headedness, argument-
hood, and the modeling of moved nodes necessarily
correspond to those that one would make in an MG.

Beyond couching the relation between predicate-
argument trees and surface trees in more principled
terms (see also Boston et al., 2010 for a discussion
of the relation to dependencies), what do we gain?

The Shortest Move Constraint posits that any
material that is moved must attach at the first pos-
sible host node (i.e., for a moved phrase of type −x,
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attach to the lowest ancestor with the feature +x.
With the caveat that SMC may not be appropriate
for all types of movement (e.g. scrambling), it firstly
provides an intuition on possible hosts for dislocated
material (whereas the rule of “raise the nodes up to a
host node where the material can be attached with-
out discontinuity” is of a much more practical na-
ture), while simultaneously predicting that any (po-
tential) host phrase must also act as a barrier for
movement.

Following the discussion of Boston et al. (2010),
we find a plausible rationale for contiguous subtree
preservation. A downside is that undoing Move-
based dislocation – especially if we consider node
raising as the protypical example – would need more
information. Consider the following sentence:

(1)
I

Ich
have

habe [np
the

den
man

Mann [pp
with

mit
the

dem
hamster

Hamster]]
seen

gesehen
which

[der
grins

grinst]

I have seen the man with the hamster which
grins

In this case, the attachment of the relative clause to
Mann (man) or to Hamster (hamster) is an instance
of general attachment ambiguity, and while we can
use very general preferences (attach low; prefer at-
taching as an argument rather than as an adjunct,
cf. Hobbs and Bear, 1990), correct attachment often
requires semantic or context-dependent information.
(LCFRS-inspired transforms pass this problem onto
the parser, in a form that poorly fits state-of-the-art
parsing models).

4.1 Representing Moved Phrases

If we look at minimalist grammars from our pseu-
doprojective transform perspective, we see that even
when we want a transform that fulfills the contigu-
ous subtree preservation criterion (which includes
Boyd’s and van Cranenburgh’s solution, even though
they are pseudoprojective transforms in our sense),
we can solve the problem differently from – and
hopefully better than – node raising.

Marcus et al. (1994) and later Skut et al. (1997),
in a solution that we will call the trace-filler mecha-
nism try to ensure a relation between host phrase and
the argument-structure parent by inserting an empty

node in the latter and coindexing with the dislocated
material; empty nodes are not supported by today’s
parsers, and the idea of encoding the coindexation
by appending slash categories to phrases has been
shown to be non-beneficial (Schiehlen, 2004).

We can preserve contiguous subtrees and yet want
to add some marking, we could insert a phrase be-
tween the host phrase and the dislocated material, in
the simplest case one single fixed category, as in

(2) [vp [np den Mann [pp mit dem Hamster]]
gesehen [X [s der grinst]]]

where we inserted an additional X node between host
and dislocated material. In difference to simple node
raising, this would encode the information which
nodes were dislocated and which ones were not in
the tree rather than leaving it implicit.

The LR scheme for adding additional information
to raised nodes, which we propose here, leaves the
block of the sentence that includes its head with an
unchanged node label, but labels the other part as
being left- or right-dislocated, yielding, in the above
example, VP*L, VP and VP*R as labels if the mid-
dle phrase contains the head of the VP. In our exam-
ple, we would obtain the following:

(3) [vp [np den Mann [pp mit dem Hamster]]
gesehen [NP*R [s der grinst]]

Similar to the trace-filler view, and different from
the LCFRS view, we distinguish between the main
part of a phrase (normally the one containing the
head) and discontinuous (moved) parts. We mark
the moved parts with the concatenation of the origi-
nal parent label and a *L or *R suffix. In compari-
son with node raising, the additional node fulfills an
important function as it both helps the parser recog-
nize where such moved or extraposed material can
occur, based on topology (i.e., outside context) as
well as the material itself, and also provides useful
information for reattachment.

4.2 Simple Heuristics for Backtransformation

Adopting a minimalist perspective on reattachment,
we would assume that a parser for context-free struc-
tures can plausibly produce the derived structures
that capture sentence topology but not necessarily
the full set of argument and adjunct dependencies.
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method F1

uncross, no reattach 94.99
LR + top-down reattach 97.90
LR + bottom-up reattach 99.20
+S barrier 99.08

Table 1: Heuristic reattachment: roundtrip results on Tiger sen-

tences 40475-45474

To capture the discontinuous structures, we inves-
tigate two reattachment heuristics:

• The top-down heuristic chooses an appropriate
node from the siblings of the dislocated phrase,
similar to the way that Boyd’s or van Cranen-
burgh’s reattachment algorithm would operate.

• The bottom-up heuristic iterates over the yield
of the parent node (limited either to the part left
of the dislocated one for *R ones, otherwise
the part right of it), to produce a sequence of
all suitable descendents of the parent node in a
close-to-far, low-to-high fashion.

Evidence from reconstructing gold data (see table
1) shows that the bottom-up heuristic is more accu-
rate in the reconstruction, which is consistent with
the preference on low attachment as formulated by,
e.g., Hobbs and Bear (1990).

Considering the relation to Minimalist Grammar
and the Shortest Move Constraint, we would ex-
pect that certain nodes act as barriers and can
block dislocation or movement across them: In ex-
ample (4) (see figure 3), such a barrier constraint
would prevent the fronted subclause “nehmen die
Überlegungen Gestalt an” (if the plans become more
concrete) to the VP internal to the relative clause in-
stead of the VP of the matrix sentence.

In our experiments with projectivising the devel-
opment set of the Tiger treebank and subsequently
reattaching dislocated phrases (see table 1), we see
that top-down reattachment already provides a 60%
error reduction with respect to simply leaving nodes
unattached, and that using a preference for lower
attachment (“bottom-up reattach”) yields a further
60% error reduction in terms of phrase F1. In con-
trast, we see that having sentence (S) nodes block
movement leads to a slight decrease in accuracy.

5 Experimental set-up

In the following parsing experiments, we want to
compare more directly the accuracy of our LR
scheme of projectivization and reattachment to that
of, e.g. Boyd’s proposal while taking into account
many of the concerns that occur in practical parsing
today, in particular the compatibility with other tech-
niques used to improve parsing accuracy (linguis-
tic tree transformations, products of latent variable
grammars, word clustering-based generalizations of
words). As we are specifically concerned about the
behaviour with more unknown words and different
distributions of syntactic constructions that occurs in
out-of-domain corpora, we exclusively use the part-
of-speech tags assigned by the parsing model itself.

Corpora used As an in-domain corpus that we
split into a training, development and testing set, we
use the Tiger treebank (Brants et al., 2002), which
encodes argument and adjunct relations in a discon-
tinuous constituent structure with edge labels. We
use two splits that were used in the literature for
parsing experiments: the first, called the SPMRL
split reproduces the train/development/test portions
of Farkas and Schmid (2012) and was used in the
SPMRL shared tasks of 2013 for dependency and
constituency parsing, using sentences 1–40474 as
training set, the next 5000 as development set, and
the remaining 5000 as a test set. The second split
was first used in the experiments of Hall and Nivre
(2008) and uses folds 9 and 10 in a 10-fold setup as
development and testing portions, respectively.

As an out-of-domain dataset, we use the Smul-
tron treebanks of Volk et al. (2015), which include
portions of a novel (sophie), business reports
(economy), texts about mountaineering (alpine)
as well as extracts from the manual of a DVD player
(dvdman). The annotation of the Smultron tree-
banks is loosely based on the Tiger scheme but
differs in two important respects: on one hand,
the Tiger scheme merges PP nodes with the noun
phrases that is the argument of the preposition,
yielding one single PP phrase; on the other hand,
the Smultron annotation scheme uses extra nodes for
unary noun, verb and adjective phrases that would be
elided in the Tiger scheme. For a sensible compar-
ison, we use a transformed version of the Smultron
treebanks where unary nodes are deleted and argu-
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(4) [VP*L Nehmen
take

die
the

Überlegungen
thoughts

Gestalt
shape

an],
on,

würden
would

die
the

Frankfurter,
Frankfurt+ADJ,

[S die
which

im
in

Januar
January

1988
1988

[VP ihr
their

125jähriges
125-year

Bestehen
existence

feiern]
celebrate

können],
can,

[VP die
the

Verbindung
connection

zu
to

ihren
their

historischen
historical

Wurzeln
roots

kappen].
clip.

“If the plans become more concrete, the Frankfurt group, which had its 125-year anniversary in
January 1988 would cut the the connection to their historical roots.”

Figure 3: An example sentence where the closest VP is not a suitable movement target

ment NPs of prepositional phrases are unwrapped.

Parsing models For reasons of simplicity, we
limit ourselves to a small number of generative pars-
ing models that have been shown to work well for
context-free parsing.

The BLLIP parser (of which we use the gener-
ative model only and not the discriminative rerank-
ing part) uses a “maximum-entropy-inspired” prob-
abilistic model that produces head-lexicalized con-
stituents from the inside out while conditioning on
the two previous neighbours, the grandparent con-
stituents, and their heads (Charniak, 2000).

The PCFG-LA parsing model of Petrov et al.
(2006) uses a zeroth-order right-markovized version
of the treebank which is subsequently augmented
with latent symbol refinements in order to improve
the fit, using smoothing and a split-merge procedure
to avoid overfitting in the EM-based refinement pro-
cess. We found that four split-merge iterations (in-
stead of the default six) gave the best results with the
linguistically transformed trees.

As the PCFG-LA model learns a latent-variable
augmentation of the treebank trees and most often
reaches a non-unique local maximum of the EM ob-
jective, it is possible and useful to combine multiple
PCFG-LA models to reach an even better perfor-
mance using a product grammar approach where
each rule is scored by a product-of-experts of multi-
ple parsers (Petrov, 2010).

For the out-of-domain parsing, Candito and Sed-
dah (2010) found that replacing words with clusters
improved the generalization ability of parsers. Af-
ter preliminary experiments showed that replacing
all words with clusters actually had a negative effect,
our setting using word clusters only replaces words
that occur fewer than five times, using word clusters

derived with the Marlin tool (Müller and Schuetze,
2015) and text from the DECOW corpus2, limit-
ing the vocabulary size to the most frequent 250 000
word types as done by Müller and Schütze.

Finally, we also include in our investigation the
use of linguistic tree transformations, which e.g.
Dubey (2005) as well as Versley and Rehbein (2009)
found useful both for unlexicalized and discrimina-
tive PCFG parsing. In particular, we use lowering
of parenthetic material as proposed by Maier et al.
(2012) to reduce the complexity of discontinuities,
but also markers for relative clauses and compara-
tive phrases, linguistically motivated subcategoriza-
tion information for sentences, added case informa-
tion to noun phrases, as well as refing part-of-speech
classes using some morphological information.

5.1 Comparing Boyd with LR

For each of the three parsers (BLLIP, PCFG-LA,
PCFG-LA product grammar) we produce trans-
formed trees with the non-annotated treebank trees
(orig) as well as the enriched ones (xform), us-
ing Boyd’s projectivization transform (boyd) and
the one proposed here (LR).

Quite expectedly, we find that head-lexicalized
parsing using the BLLIP parser is substantially
helped by the linguistically motivated tree transfor-
mations. Somewhat less intuitively, as the earlier
results of Petrov et al. (2006) for English indicate
that basic transformations such as head annotation
do not help PCFG-LA models, we find that our lin-
guistically motivated transformations substantially
help both single PCFG-LA and product grammars.
We also see that the LR transform performs slightly
worse than Boyd’s transform in the BLLIP parser,

2http://www.corporafromtheweb.org
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variant BLLIP PCFG-LA LA-product
F1 EX POS discF1 F1 EX POS discF1 F1 EX POS discF1

orig-Boyd 80.32 43.75 97.55 68.41 82.35 42.95 97.63 70.55 83.11 45.66 97.76 72.68
orig-LR 81.28 45.71 97.68 70.02 82.27 43.57 97.71 71.46 83.29 45.81 97.80 72.95
xform-Boyd 82.01 44.67 97.70 71.55 81.35 42.71 97.55 70.92 83.62 46.16 97.72 74.43
xform-LR 81.93 45.27 97.73 71.64 82.43 43.49 97.68 72.77 84.18 46.90 97.84 75.43
LR + cleanup 82.19 45.53 97.73 71.85 82.43 43.49 97.68 72.77 84.36 47.08 97.84 75.56
LR + filter 82.20 45.63 97.72 72.09 82.58 43.87 97.69 73.11 84.09 47.31 97.79 75.81

Table 2: Comparison on the Tiger development set, sentences with ≤ 70 words

whereas the tendency is exactly reversed in PCFG-
LA-based parsing. Looking at the evaluation results
when ignoring continuous constituents (see table 2,
discF1 columns), we see that the LR scheme specif-
ically improves the quality of discontinuities, some-
times by a slight amount, and sometimes by as much
as one percent).

Dealing with invalid solutions Some of the de-
crease in performance for the BLLIP parser for
the LR scheme is due to the occasional dislocated
phrases (e.g. NP*R) that cannot be reattached and
are then left behind. For the Boyd transform, our im-
plementation already reverts discontinuity-marked
phrases (e.g. NP*) to the original label (e.g. NP).

To deal with the ‘invalid’ phrases, we propose two
solutions: the first one, which we call the cleanup
strategy, involves a post-processing step in which
all dislocated phrase nodes are deleted (and their
daughters attached to the deleted phrase’s parent).
The second one, which we call the filter strategy,
involves producing ranked list of parses, of which
we delete any parse that includes dislocated nodes
that cannot be reattached. Of the remaining parses,
we chose the highest-scoring one.

For the BLLIP parser, we find that both the
cleanup step and the kbest list filter result in im-
provements over the default version, while the ad-
vantage of the filtering-based approach over the sim-
pler cleanup approach is very slight at best.

5.2 Comparing with the state of the art

Table 4 compares the result of our pseudoprojective
parsing approach to other evaluation results on the
Tiger treebank using parser-assigned POS tags.3

We find that our BLLIP parsing model already

3Fernandez-Gonzalez and Martins report substantially
higher results using gold part-of-speech tags.

performs quite well, going beyond the results of
van Cranenburgh and Bod (2013) that use a PCFG
base parser followed by a DOP-inspired reranking
step, or the discriminative parsing results of Vers-
ley (2014). Using the product-grammar approach,
we find that our approach outperforms the parsing-
as-reduction approach of Fernández-González and
Martins (2015) by a small margin in the Hall/Nivre
split, also yielding much improved (+1.9%) evalua-
tion results for the case of the SPMRL split.

5.3 Experiments with Out-of-domain parsing

Table 3 shows the results on different treebanks from
SMULTRON in comparison with those on Tiger.
We see that out-of-domain results are substantially
lower than those achievable on the Tiger develop-
ment set: The novel (sophie) performs relatively
well while performance on the other domains falls
off even more. The most difficulties are due to the
DVD manuals (dvdman), which already Seeker and
Kuhn (2014) argue to be due to several phenomena
not seen in well-edited text.

If we compare the accuracy of the POS assign-
ment from the PCFG-LA parsing models to both
the tagging results of Seeker and Kuhn (2014) and
our own, in each case using the Marmot CRF tagger
Müller et al. (2013), we see that in all cases (except
for the Alpine domain) the parser is able to make use
of the syntactic context to achieve improved part-of-
speech accuracy, even if the overall difficulty of the
out-of-domain texts is higher. Use of word clusters
seems to be especially helpful in those cases where
the parser has difficulty at the POS level.

6 Summary

In this paper, we have presented a new, linguistically
well-motivated method for transforming discontinu-
ous trees to context-free ones and back.
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Parser LF1/70 EX/70 POS
TIGERDEV
multi+sm4 84.18 46.90 97.84
multi+sm4+clust 84.31 47.51 97.74
ALPINE
multi+sm4 74.18 32.70 93.79
multi+sm4+clust 74.80 33.96 93.96
marmot Seeker14 94.42
ECONOMY
multi+sm4 74.38 22.05 91.73
multi+sm4+clust 74.50 22.44 92.40
marmot Seeker14 91.83
SOPHIE
multi+sm4 77.71 38.56 96.51
multi+sm4+clust 77.53 38.19 96.41
marmot Seeker14 95.20
DVDMAN
multi+sm4 71.54 25.78 90.55
multi+sm4+clust 72.45 26.56 90.22
marmot Seeker14 90.81

Table 3: Comparative results for parsing the SMULTRON tree-

banks (LR without cleanup)

Tiger-H&N (pred) L ≤ 40 all
F1 EX F1 EX

Hall&Nivre 2008 75.33 32.63 — —
van Cranenburgh ’13 78.8- 40.8- — —
Fernandez&Martins ’15 82.57 45.93 81.12 44.48
Ours, BLLIP 81.16 43.17 79.68 41.87
Ours, PCFGLA-prod 82.93 44.26 81.93 42.87
Tiger-SPMRL (pred) L ≤ 70 all

F1 EX F1 EX
Versley 2014 73.90 37.00 — —
Fernandez&Martins ’15 77.72 38.75 77.32 38.64
Ours, BLLIP 76.96 35.52 76.52 35.42
Ours, PCFGLA-prod 79.84 39.61 79.50 39.50
Table 4: Test set results on the split of Hall and Nivre (2008)

and on the SPMRL split

Because this method allows us to make effective
use of state-of-the-art parsing for continuous trees
(similar to the parsing-as-reduction approach lever-
aging state-of-the-art models for dependency pars-
ing), this transformation approach has a substan-
tial advantage over models that use a more complex
grammar formalism but have to use a simpler statis-
tical model.

Using three generative probabilistic models, we
showed that our method performs better than the
older transformation approach of Boyd (2007), and
outperforms the current state of the art for discon-
tinuous parsing on the Tiger treebank, the parsing-
as-reduction approach of Fernández-González and
Martins (2015). Future work will explore feature-
based statistical models for reattachment and parse
selection.
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Appendix A. Notational clarifications

For two trees T and T ′ covering the same sequence
of terminals, and containing no unary productions,
we define the intersection tree T ∩ T ′ as follows:

• If we identify nonterminals with (label, yield)
pairs, the nonterminals of T ∩ T ′ are exactly
those (label, yield) pairs that correspond to
nonterminals of both T and T ′.
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• The set of edges of T ∩ T ′ is determined as
the cover relation of its descendent relation.
A node n1 is a descendent of a node n2 iff
yield(n1) ⊆ yield(n2).

We can extend this definition to trees containing
unary productions if we consider mappings LT from
yields to label sequences (i.e., P(Nn) → Σ∗ if Σ is
our set of labels).

We can define this mapping for a tree as follows:

• if there is no node in T with a yield y, then
LT (y) = ε

• if T contains one or more nodes with the same
yield, they form a chain of unary productions.
Given the sequence l1, . . . lm ∈ Σ∗ of the labels
of this sequence (read from top to bottom), we
then set LT (y) = l1, . . . , lm.

Taking (e.g.) the longest common prefix of two such
sequences gives us an operation that is idempotent,
commutative and associative.

If we identify nonterminals with (label, yield, or-
der) triples, we can extend the definition of the inter-
section tree as follows:

• The nonterminals of T ∩ T ′ are those (label,
yield, order) triples that correspond to nonter-
minals of both T and T ′ and whose unary par-
ents (if any) are also nonterminals of T ∩ T ′.

• A node n1 is a descendent of a node if ei-
ther yield(n1) ( yield(n2) or if yield(n1) =
yield(n2) ∧ order(n1) ≤ order(n2).

We can assign induced dependencies to a node
given a suitable head assignment function as fol-
lows:

Given a head assignment function
headidx : Σ × Σ∗ → N (such that
headidx(p, c1, . . . , cm) ∈ {1, . . . ,m}) we can re-
cursively assign a head to each node by using:

• head(n) = n for terminal nodes

• head(n) = head(nk) if n has label lp and the
children n1, . . . , nm have labels l1, . . . , lm and
headidx(lp; l1, . . . , lm) = k

The induced dependency graph then contains
Range(Term) as nodes. For any pair of a node
n and its child n′, the dependency graph contains
a dependency edge (head(n), head(n′)) as long as
head(n) 6= head(n′).
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