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Abstract

We present the first application of the adjunct/argument distinction to Hierarchical Phrase-Based
SMT. We use rule labelling to characterize synchronous recursion with adjuncts and arguments.
Our labels are bilingual obtained from dependency annotations and extended to cover non-
syntactic phrases. The label set we derive in this manner is extremely small, as it contains only
thirty-six labels, and yet we find it useful to cluster these labels even further. We present a cluster-
ing method that uses label similarity based on left-hand-side/right-hand-side joint trained-model
estimates. The results of initial experiments show that our model performs similarly to Hiero on
in-domain French-English data.

1 Introduction

Labelling Hierarchical Phrase-Based models (Hiero) (Chiang, 2005) allows to disambiguate Hiero,
while benefitting from its broad coverage. Using syntactic labels for labelling as Zollmann and Venu-
gopal (2006) do with Syntax-Augmented Machine Translation (SAMT) or, e.g., Li et al. (2012) in an
inspired approach, yields however unwieldy models with large non-terminal vocabularies. We propose
to approach the labelling problem from the other end, using the adjunct-argument distinction to mini-
mally label Hiero.

We interpret adjuncts in the general sense of modifiers, and not only of adjuncts in semantic frames.
Generally speaking, the adjunct-argument distinction accounts for a difference in selectional preferences:
arguments are selected by their heads, while adjuncts select their heads. This distinction is modelled
in Tree-Adjoining Grammar (Joshi et al., 1975; Joshi and Schabes, 1997), through substitution and
adjunction. Shieber and Schabes (1990) and Shieber (2007) have proposed Synchronous Tree-Adjoining
Grammar (STAG) by for SMT, and the adjunct/argument distinction has been applied to Syntax-Based
models notably by DeNeefe and Knight (2009) and Liu et al. (2011).

We do not attempt here to model adjunction in Hiero, rather we reduce the adjunct-argument distinc-
tion to one of type. The semantic aspect of this distinction–adjuncts modify the meaning of a phrase,
while arguments complete it–makes it appealing for Machine Translation, as one may expect that it
can be preserved across a bitext. To circumvene mismatches, we label both sides of the data to derive
bilingual labels. The label set that we derive is minimal as we start from two labels for adjuncts and
arguments on both sides of the data, and derive only four new labels for non-syntactic phrases; after
combining source and target labels into bilingual labels, the label set contains thirty-six labels only.

We conduct experiments on French-English data, and show that while direct application of this small
adjunct/argument label set leads to sub-optimal results, promising results can be obtained by clustering
bilingual labels. While further tests are required, our model is currently limited by Hiero’s phrase-length
limit; to fully apply adjunct/argument labelling, one needs to extend this model, with reordering rules for
instance, or by exchanging the phrase-length constraint for a constraint on recursion.

This work is licenced under a Creative Commons Attribution 4.0 International License. Page numbers and proceedings footer are
added by the organizers. License details: http://creativecommons.org/licenses/by/4.0/

2
Proceedings of the 1st Deep Machine Translation Workshop (DMTW 2015), pages 2–11,

Praha, Czech Republic, 3–4 September 2015.



2 Labelling Adjuncts and Arguments for Hiero

Our labelling procedure follows that of SAMT (Zollmann and Venugopal, 2006) to some extent. We
start from sentence pairs that have been parsed on both sides of the data into dependencies, and we map
dependency labels to either adjuncts or arguments, as is Figure 11.

finally , arms fuel conflicts all over the world .

enfin , les armes alimentent les conflits de par le monde .

Figure 1: Example sentence pair. Adjunct dependencies are indicated with dashes.

Dependency labels vary per parser, but we broadly map modifier and punctuation labels to adjuncts,
and remaining labels to arguments. Table 1 presents the mapping from the dependency converters of
Candito et al. (2010) for French and of Johansson and Nugues (2007) for English.

Table 1: Adjunct-mapping criteria for English and French

head-governor relation other constraints on head h, governor g, etc.

English ADV, APPO, PRN
AMOD relation(g, governor(g)) ! = ADV
PMOD h precedes g
NMOD POS(h) ∉ {CC, DT, EX, POS, MD, PRP, PRP$, RP, SYM, WDT,

WP, WP$, WRB}
P h has no dependents

French mod, mod rel
ponct h has no dependents

2.1 Phrase-Labelling scheme

Next, we define phrase labels to allow for recursion over non-syntactic phrases. Our phrase labelling
procedure is summarized as Algorithm 1. This scheme follows SAMT and beyond that Combinatorial
Categorial Grammar (CCG) (Steedman, 2000), but it is coarser on the one hand, and it is adapted to
syntactic differences between adjunct and arguments, on the other.

It is coarser in that the added phrasal labels, while corresponding to incomplete constituents or con-
stituent sequences, are in fact kept to a minimum, that do not reflect the combination logic of CCG: we
distinguish incomplete adjuncts, incomplete arguments, sequences of arguments, and default all remain-
ing phrases to a single type.

To reflect specific adjunct/argument behaviour, we let constituents that miss adjuncts keep their type,
thus reflecting the fact that adjuncts do not alter the syntactic type of the phrases they modify; for the
same reason, we label sequences of arguments and adjuncts as a sequence of arguments; finally, we label

1Word alignments are tentative, but the adjunct/argument labels are factual; the labelling of “de par le monde” is the result
of a parsing error.
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sequences of adjuncts as a single adjunct, reflecting the absence of linguistic restriction on the number of
adjuncts for a given phrase (although we do not actually test whether adjuncts have the same governor).

Algorithm 1: Labelling procedure for extracted phrases.
input : A phrase φ and a dependency tree with adjunct (A) and argument (C) labels.
output: A phrase label for φ
if φ matches a dependent D then Label(φ) ← Label(D)
else if φ matches a sequence of dependents Di then

if all Di are adjuncts then Label(φ) ← A else Label(φ)← CS
else if φ matches a dependent D less some left and/or right sub-dependents SDi then

if all SDi are adjuncts then Label(φ) ← Label(D)
else

if D is an adjunct then Label(φ) ← AI else Label(φ)← CI
else Label(φ) ← P

2.2 Bilingual labelling

The adjunct/argument label set presented thus far can be equally applied on the source and target sides
of the data. To account for parsing differences and linguistic divergence (Dorr, 1994; Hwa et al., 2002;
Arnoult and Sima’an, 2014), we combine source and target labels into composite, bilingual labels. The
resulting label set consists of 36 labels.

Table 2 shows some phrase pairs for the example of Figure 1.

Table 2: Adjunct/argument-based phrasal labels

label French phrase English phrase label French phrase English phrase

AA enfin , finally , CICI alimentent fuel
CC les armes arms CICI monde world
CA de par le monde all over the world CSCS le monde . the world .
CIAI de par all over PP monde . world .
CIP les conflits de par conflicts all over

The phrase “finally ,” is labelled as an adjunct as it is a sequence of adjuncts with the same gover-
nor; “the world .” is labelled as an argument sequence as it is a multi-headed sequence containing an
argument; “conflicts all over” is labelled as a phrase (P ) as it is a multi-headed sequence containing an
incomplete argument.

3 Model

The model is a SAMT-like, labelled-variant of Hiero (Chiang, 2005). The model is similar to Hiero, but
for the fact that the single non-terminal of Hiero is replaced by a set of labels.

Model derivations are scored by a log-linear model over features; our model uses most of the Hiero and
SAMT features. Like Hiero, the model features comprehend phrase-translation weights, lexical weights,
rule penalty, glue-rule penalty and word penalty; the phrase-translation-weights feature also applies for
adjunct/argument-labelled models, and is then computed on unlabelled rule equivalents, i.e., on lexi-
cal content only. Like SAMT (Zollmann, 2011), the model uses features for left-hand-side-conditioned
rule weights, labelled-rule translation weights, rule-rarity penalty, and flags for lexical-only rules, ab-
stract rules, monotone rules, and abstract-target rules. Unlike SAMT, we do not condition labelled on
unlabelled sides: phrase-translation weights are computed on labelled rules on the one hand, and on
unlabelled rules on the other hand.
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4 Adjunction-label clustering

Hanneman and Lavie (2013) propose a clustering method for SAMT labels to reduce their amount and the
resulting computational load. Their method employs source labels next to the usual SAMT target labels:
combining source and target labels allows them to compute relative-frequency estimates of source/target
labels, which serve to compute distance measures between source labels on one hand, and target labels
on the other. The distance measure between two source labels s1 and s2 is defined as the marginal
difference between P (t∣s1) and P (t∣s2) estimates; the distance between target labels is defined similarly.
Clustering proceeds by searching the source or target labels that minimize either one of the source-label
and the target-label distances, and collapsing the resulting label pair. Clustering stops after a predefined
number of iterations, after which only the clustered target labels are used to extract an SAMT grammar.
The resulting model proves superior to SAMT on a Chinese-English task, and generally superior to
Hiero.

Even though our bilingual label set is very small, the combination of source and target labels is ad-hoc,
and initial experiments show it is misadapted. To correct this, we adapt the method of Hanneman and
Lavie (2013) to cluster combined, bilingual labels.

4.1 Label-distance measures
Rather than using a joint distribution of source and target labels to compute label distance, we use a joint
distribution of left-hand-side and right-hand-side labels. We define a distance dLHS between left-hand-
side label occurrences, and a distance dRHS between right-hand-side label occurrences.

The lhs distance between two non-terminals υ1 and υ2 in the bilingual label set U is computed by
marginalizing the difference between non-terminal rewriting probabilities, where probability estimates
are obtained by heuristic counting of joint LHS/RHS labels in extracted labelled rules:

dLHS(υ1, υ2) = ∑
υ∈U

(PRHS∣LHS(υ∣υ1) − PRHS∣LHS(υ∣υ2)) (1)

This distance captures similarities in the rewriting behaviour of non-terminals.
For the rhs distance, we tested two definitions. The first one, dnRHS , mirrors the lhs distance, by

marginalizing the difference between inverse non-terminal rewriting probabilities:

dnRHS(υ1, υ2) = ∑
υ∈U

(PLHS∣RHS(υ∣υ1) − PLHS∣RHS(υ∣υ2)) (2)

Under this definition, two non-terminals are similar if they have similar generating distributions.
The second one, duRHS , marginalizes the difference between joint lhs/rhs probabilities over left-hand-

side non-terminal labels:

duRHS(υ1, υ2) = ∑
υ∈U

(PLHS,RHS(υ, υ1) − PLHS,RHS(υ, υ2)) (3)

Under this definition, the similarity in right-hand-side label occurrences is not normalized anymore by
right-hand-side label probabilities, so this rhs distance is also conditioned on right-hand-side labels hav-
ing similar frequencies.

We derive a single label distance measure by adding the lhs and rhs distances. Depending on the
variant of rhs distance (normalized or unnormalized), we obtain either dn or du:

dn(υ1, υ2) = dLHS(υ1, υ2) + d
n
RHS(υ1, υ2) (4)

du(υ1, υ2) = dLHS(υ1, υ2) + d
u
RHS(υ1, υ2) (5)

4.2 Clustering
Clustering proceeds by searching at each step for the label pair that minimizes label distance. The two
closest labels are clustered into a single label, and probability estimates are updated for the next round.
Clustering stops when a predefined label-set size has been reached. The clustered bilingual labels can
then be used to extract a new grammar.

5



5 Experiments

5.1 Experimental set-up
5.1.1 Data
We conduct experiments of French-English data from the Europarl corpus (v7) with in-domain test data
from the WMT07 Europarl development and test sets (devtest2006 and test2006).

We use the Berkeley aligner2 for training word alignments, with 5 rounds of IBM1 and HMM train-
ing; the training data consist of the French-English Europarl training set, containing 1.97M sentence
pairs with a maximum length of 40 tokens. The data are tokenized with a script adapted from the Moses
tokenizer and lowercased. The language model is a 4-gram model with interpolated Kneser-Ney smooth-
ing, and is trained with KenLM3 on the English side of the training set with a sentence-length limit of 80
tokens; the set contains 52.5M tokens.

The training data consist of 200k sentence pairs of length limited to 40 tokens, taken from the training
set used for the language model and the word alignments; the data contain 4.18M English tokens;

5.1.2 Annotations
We parse both sides of the training data with the Berkeley Parser4–the data are then true-cased–, and
then convert parses to dependency parses: with the Pennconverter of Johansson and Nugues (2007) for
English, and the Functional Role Labeller of Candito et al. (2010) for French.

5.1.3 Model Training and decoding
We train models using an in-house grammar extractor, and a decoder based on Joshua5. Training and
decoding constraints and defaults are the same as for Hiero, but we disallow consecutive non-terminals
on both sides, and not only on the source side.

Model parameters are tuned with Mira, allowing up to 20 iterations. Following (Clark et al., 2011) we
average results over three rounds of tuning/decoding.

5.2 First results
Table 3 reports tests on adjunct/argument label sets, where we use source-language labels only
(AA-Src), target-language labels (AA-Trg), or combined, bilingual labels (AA-Bi).

Table 3: Performance of monolingual and bilingual labelling
schemes with regard to Hiero; significant differences are marked
with one ▿ for p = 0.05 and two for p = 0.01

BLEU METEOR TER
dev test dev test dev test

Hiero 32.1 31.8 34.9 34.8 52.9 53.3

AA-Src 31.9▿▿ 31.3▿▿ 34.8▿ 34.7▿▿ 53.0 53.5▿▿

AA-Trg 32.0▿ 31.6▿▿ 34.9 34.7▿ 52.9 53.5▿▿

AA-Bi 31.9▿ 31.5▿▿ 34.8 34.7▿▿ 53.0 53.5▿

All models underperform Hiero, on the test set more than on the development set, and on BLEU more
than Meteor or TER. The AA-Src model performs worse: source-labelling models are most known to
guide reordering, which is relatively absent in French-English. The AA-Bi model appears to give poorer
results than the AA-Trg model, and that while it disposes of more information; argueably, even if the
source-language labels are not directly useful, they might serve to refine target labels. We attribute the
relatively poor results of the AA-Bi model to the undirected combination of source and target labels, and

2https://code.google.com/p/berkeleyaligner/
3http://kheafield.com/code/kenlm/
4https://github.com/slavpetrov/berkeleyparser
5http://joshua-decoder.org/
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we use label-rewriting statistics on the development set grammar of the AA-Bi model to cluster labels
as described in section 4.

5.3 Label clustering

We apply both definitions of the rhs distance of Equations 2 and 3 to extract two label sets. In both cases,
we limit the final, clustered label-set size to six labels. Table 4 presents the label set obtained with the
rhs-normalized distance dn (equation 4), and Table 5 the label set obtained with the rhs-unnormalized
distance du (Equation 5).

Table 4: Clusters obtained with normalized (conditional) RHS distance dn and relative frequency of LHS
occurrence

clustered bilingual labels P (LHS)

1 CA, CAI , CC, CCI , CCS , CP, CIA, CIAI , CIC, CICI , CICS , CIP 0.381
2 AA, AAI , AC, ACI , ACS , AP, CSA, CSAI , CSC, CSCI , CSCS , CSP, PA, PAI , PC,

PCI , PCS
0.255

3 PP 0.328
4 AICS 0.024
5 AIC, AICI 0.012
6 AIA, AIAI , AIP 0.001

Table 5: Clusters obtained with unnormalized (joint) RHS distance du and relative frequency of LHS
occurrence

clustered bilingual labels P (LHS)

1 CC, CCI , CIC, CICI 0.288
2 CA, CAI , CCS , CP, CIA, CIAI , CICS , CIP, CSC, CSCI , CSCS , CSP, PC, PCI ,

PCS , PP
0.595

3 AC, AIC, AICI 0.016
4 AA, AAI , AIA , AIAI 0.050
5 ACI , ACS , AP, AICS , AIP 0.018
6 CSA, CSAI , PA, PAI 0.032

Clusters obtained with dn (Table 4) show a dominance of the source-label component: labels with an
AI source component form half of all clusters (clusters 4,5 and 6), and other labels–PP excepted–are
clustered by their source component only.

In contrast, clusters obtained with du (Table 5) show some symmetry between source and target com-
ponents, and they group together adjuncts and incomplete adjuncts, arguments and incomplete argu-
ments, and multi-headed dependent sequences and phrases: cluster 1 corresponds to argument/argument
translations; cluster 2 to argument/adjunct pairs and phrasal (multi-headed) or semi-phrasal equivalences;
cluster 3 to adjunct/argument pairs; cluster 4 to adjunct/adjunct pairs; cluster 5 to adjunct/phrase pairs;
and cluster 6 to phrase/adjunct pairs.

These clusters also lead to better translation results, as Table 6 shows.
The model trained with the label set of Table 4, AA-Cn performs worse than the original labelled

model AA-Bi. The second label set leads to a better AA-Cu model, which performs significantly better
than AA-Bi on the test set. Compared to Hiero, AA-Cu is still less performant on the development
set–at least in terms of BLEU scores–, but achieves comparable results on the test set.
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Table 6: Performance of clustered labelling schemes with regard
to Hiero and the original bilingual-label model; significant differ-
ences with Hiero are marked with one ▿ for p = 0.05 and two for
p = 0.01; significant differences with the original label-set model
are marked with one ▴ for p = 0.05 and two for p = 0.01;

BLEU METEOR TER
dev test dev test dev test

Hiero 32.1 31.8 34.9 34.8 52.9 53.3
AA-Bi 31.9 31.5 34.8 34.7 53.0 53.5

AA-Cn 31.8▿▿/▾ 31.4▿▿ 34.8 34.7▿ 53.1▿▿ 53.6▿▿

AA-Cu 31.9▿▿ 31.8▴▴ 34.9 34.8▴▴ 53.0 53.3▴▴

6 Discussion

Our first results show that direct matching of source and target labels leads to sub-optimal performance.
Our solution uses rule estimates to cluster bilingual labels. This is orthogonal to the approach of Chi-
ang (2010), who applies rule-matching features on both sides of the data, without explicitely matching
source and target labels. While using bilingual labels is appealing as these labels are directly inter-
pretable in terms of syntactic correspondence, clustering only allows to merge labels. A more refined
method would allow to both split and merge labels, with the original adjunct/argument labels as a starting
point for characterizing synchronous recursion linguistically.

As far as the current clustering procedure is concerned, we have shown that a distance based on rewrit-
ing patterns of left-hand-side non-terminals and occurrence patterns of right-hand-side non-terminals
weighed over left-hand-side contexts leads to meaningful clusters and decent results. The clustered la-
bels pair up labels of type adjunct, argument or (multi-headed) constituent sequence with their incomplete
counterparts. This is not surprising: as, e.g., adjunct phrases rewrite largely to the same phrases as the
incomplete adjunct phrases, their corresponding labels are close according to the left-hand-side distance;
similarly, as both types of phrases are largely extracted from the same phrases, their corresponding la-
bels are close according to the joint right-hand-side distance6. The results we obtain with these clustered
labels suggest that the distinction between full and incomplete constituents is not essential for phrase
labelling, which agrees with the labelling method of Li et al. (2012), where phrases are labelled with the
highest, undominated head(s).

The translation results we present here are quite limited, both in extent and scores. One can first
question whether labelling could increase performance for French-English; we intend to extend the ap-
plication of the model to other language pairs in future work. Secondly, as we kept the Hiero constraints
on phrase length and reordering–using labelled but otherwise standard glue rules–the effect of labelling
can only be local. Possible extentions for our model would consist in extending the reordering capacities
of Hiero with adjunct/argument reordering rules, or to use adjuncts to restrict recursion, thereby making
way to lift Hiero’s standard phrase-length constraint.

7 Related Work

Most work on adjunction in SMT takes place in a syntax-based framework, which forms a natural ground
for STAG. DeNeefe and Knight (2009) and Liu et al. (2011) for instance have proposed tree-to-string
models that differentiate between adjunction and substitution. The only application of adjunction to
string-to-string models we know of is that of Arnoult and Sima’an (2012), who exploit the optional
character of adjuncts to extract more rules for a Phrase-Based model.

While the first applications of syntax for SMT (Wu, 1997; Poutsma, 2000; Yamada and Knight, 2001)

6One can also note that, as the right-hand-side distance is not normalized, it takes lower values than the left-hand-side
distance; we have not attempted to weigh them differently, but more experiments in this direction might be worth the while.
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used constituency trees, recent work has come to use a larger array of linguistic formalisms: besides
applications of TAG (DeNeefe and Knight, 2009; Liu et al., 2011), Xie et al. (2011) apply dependency
syntax for tree-to-string modelling and Li et al. (2012) for labelling Hiero; Hassan et al. (2007) apply
CCG supertags to phrase-based SMT and Almaghout et al. (2011) to Hiero; Xiong et al. (2012) apply
predicate-argument structures in a hierarchical phrase-based model and Li et al.(2013) for in Hiero.

Labelling hierarchical models introduces new constraints while providing the opportunity to relax
innate Hiero constraints. New constraints are: a limitation of the grammar to observed substitutions,
which can be remedied by relaxing matching constraints using features to learn subsitution preferences
(Chiang, 2010); an increase of rule sparsity and computational constraints, which can be remedied by
label clustering (Hanneman and Lavie, 2013; Mino et al., 2014). The Hiero constraints that one attempts
to relax are the monotonic top-level ordering, first and foremost (Huck et al., 2012; Li et al., 2012; Li et
al., 2013). Li et al. (2012) also relax the source non-terminal adjacency constraint, while Li et al. (2013)
relax the phrase-length constraint for extraction and decoding.

8 Conclusion

We have presented a bilingual labelling scheme for Hiero that is based on the adjunct/argument distinc-
tion. Even though our label set is very small, containing only thirty-six labels, we find that clustering
these labels is useful. As it is, our model is able to perform similarly to Hiero on in-domain test data for
French-English.

For future work, we plan to refine our labelling method, and to extend our model to circumvene
the limited reordering capacity of Hiero: either with reordering rules, for which the adjunct/argument
distinction should form a good basis, or through restrictions on recursion, which would allow to lift
Hiero’s phrase-length constraint.
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