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Abstract 

To address the challenges of normalizing 
online conversational texts prevalent in 
social media, we propose a contextual 
long-short term memory (LSTM) recur-
rent neural network based approach, 
augmented with a self-generated diction-
ary normalization technique. Our ap-
proach utilizes a sequence of characters 
as well as the part-of-speech associated 
with words without harnessing any exter-
nal lexical resources. This work is evalu-
ated on the English Tweet data set pro-
vided by the ACL 2015 W-NUT Normal-
ization of Noisy Text shared task. The re-
sults, by achieving second place (F1 
score: 81.75%) in the constrained track of 
the competition, indicate that the pro-
posed LSTM-based approach is a promis-
ing tool for normalizing non-standard 
language. 

1 Introduction 

Recent years have seen increasing use of online 
social media such as Twitter and Facebook that 
has generated a growing body of text where non-
standard language is prevalent. These non-
standard lexical items take many different forms, 
including unintentional errors based on users’ 
cognitive misconceptions and typographical er-
rors, and intentional non-canonical language 
such as abbreviations, word lengthening by du-
plication of characters, Internet slang, phonetic 
substitutions, and creative use of language 
(Chrupała, 2014; Owoputi et al., 2013).  

A key challenge posed by these non-standard 
texts is the negative impact on traditional natural 
language processing (NLP) pipeline processes, 
evidenced by noticeable underperformance of 
their predictive accuracy in various domains such 
as part-of-speech tagging (Gimpel et al., 2011) 
and named entity recognition (Ritter et al., 2011) 
compared to more standard text. As an approach 
to addressing this challenge, text normalization 
techniques have been widely investigated, rang-
ing from extracting domain specific lexical vari-
ants (Gouws et al., 2011), unified letter transfor-
mation (Liu et al., 2011), dictionary based meth-
ods using string substitution (Han et al., 2012) in 
an unsupervised manner, to character-level edit 
operation predictions utilizing conditional ran-
dom fields in a supervised manner (Chrupała, 
2014).  

Because language data consists of sequential 
information, such as streams of characters and 
sequences of words, many NLP approaches lev-
erage computational models that can effectively 
deal with temporal data, such as hidden Markov 
models and conditional random fields (Täck-
ström, 2013; Chrupała, 2014). More recently, 
deep learning models (e.g., multi-layer feed-
forward neural networks, recurrent neural net-
works, recursive neural networks) have been 
used in NLP to achieve state-of-the-art perfor-
mance in areas such as speech recognition (Hin-
ton et al., 2012) and sentiment analysis (Socher 
et al., 2013). The success of deep learning has 
been attainable with the emergence of effective 
training methods for deep networks, such as pre-
training (Vincent et al., 2010) and optimization 
techniques (Zeiler, 2010; Martens and Sutskever, 
2011) that significantly diminish problems asso-
ciated with vanishing and exploding gradient that 
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are often observed in multi-layer neural network 
training.  

In this work, we leverage long-short term 
memory models (LSTMs) (Hochreiter and 
Schmidhuber, 1997; Graves, 2012), a variant of 
recurrent neural networks, to conduct text nor-
malization on the data set given from the W-
NUT English lexical normalization shared task 
(Baldwin et al., 2015). We additionally harness 
the part-of-speech tagger created by Noah’s Ark 
research team (Owoputi et al., 2013), a free re-
source to the constrained task. Similar to Chrupa-
ła’s work that predicts Levenshtein edit opera-
tions between canonical and non-canonical forms 
of words (Chrupała, 2014), this proposed ap-
proach predicts word-level edit operations based 
on character-level inputs. The proposed approach 
is novel compared to previous work from four 
perspectives: (1) it utilizes LSTMs to predict the 
word-level edit operations, along with a diction-
ary induced from the training set, (2) it takes as 
input the surrounding words as well as the cur-
rent word to capture contextual information of 
the predicted word, while any additional contex-
tual information (e.g., part-of-speech tags) is 
treated as heading characters of the word, (3) 
character and part-of-speech embeddings are 
learned on the fly in the normalization task in-
stead of having them trained in a separate model, 
and (4) the self-generated dictionary based nor-
malization as an antecedent step provides statis-
tically significant F1 gains over the standalone 
computational model. 

2 System Architecture 

Our proposed system consists of three steps. In 
the first step, it filters out domain-specific enti-
ties such as tokens beginning with @, hash-tags, 
and URLs. Next, the system searches for words 
contained in a dictionary generated solely from 
the training data and normalizes them when ap-
propriate. If words are not normalized in the pre-
vious steps, they are passed to the third step, 
where an LSTM model predicts the canonical 
form of the word, utilizing the word itself and 
surrounding words (the previous and following 
word). In the next sub-sections, we detail how 
each of the three steps collaboratively operate 
and explain how the LSTM model is learned 
based on the training set along with a high-level 
illustration of the architecture.  

2.1 Sequence Flow 

The proposed model operates in three primary 
phases: (1) domain-specific entity filtering, (2) 
dictionary-based normalization, and (3) LSTM-
based normalization.  

The first step performs a simple preprocessing 
of input words. First, every word is converted to 
the corresponding lowercase word. Second, 
words that are hash-tags, at-mentions, or URLs 
are filtered out and left as-is. This preprocessing 
is useful since the W-NUT normalization task 
guideline suggests not changing domain-specific 
entities, and including them could possibly inject 
noise into predictive models for non-filtered 
word prediction. 

Second, to conduct the dictionary-based nor-
malization, a dictionary is generated from the 
training set as an index of raw tokens with a list 
of their normalized forms. For instance, words 
such as “ur” and “no” are multiple mapped 
words, where multiple canonical forms are ob-
served in the training set such as [“your”, “you 
are”] and [“no”, “know”, “not”], respectively. 
This is mainly because they are normalized dif-
ferently depending on the context used in tweets. 
On the other hand, words that have a single 
mapped word are unique in terms of post-
normalization form. We denote the first type of 
words (multiple mapping) as ambiguous words, 
and the second type of words (single mapping) as 
unique words. We use this mapping information 
as a criterion to decide whether to normalize 
words based on the dictionary or pass the deci-
sion over to the LSTM model in the third step. If 
a word in the test set turns out to be a unique 
word, we label the word with the corresponding 
mapping as defined in the dictionary; otherwise, 
we pass the word to the LSTM model. This is 
based on the assumption that these unique words 
are more likely to have the same unique form in 
unseen texts. 

Finally, once the second normalization step is 
completed, only words that are either ambiguous 
or out-of-vocabulary determined by the training 
set-based dictionary are left and sent to the 
LSTM model. For ambiguous words, it is im-
portant that the model accurately identify the 
right usage of the words considering context in 
the tweets. Additionally, it is necessary to cap-
ture common patterns of standard words, so that 
the model can predict canonical forms of words 
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Figure 1: The input features based on characters and POSs and output label (edit operations) used to 
find the normalized form of nth word (Wordn). The preceding word (Wordn-1) and the following word 
(Wordn+1)’s POS and constituting characters are combined with the current word (Wordn) as input fea-
tures, where Wordn-1, Wordn, and Wordn+1 has x, y, and z characters, respectively. 
 
even when they are not seen in the training set. 
In this work, we formulate an LSTM model to 
predict an integrated list of edit operations of a 
word to become a standard word, leveraging its 
contextual information.  

2.2 Data Set Encoding for LSTM 

A preliminary step to induce an LSTM model is 
to encode the data set in a trainable format (i.e., 
specification of input features and output labels). 
We define the input format as a list of sequential, 
lowercased characters that compose the previous 
word, current word, and following word. Each 
character is mapped to a unique index (0–66), 
since there are a total of 67 different characters 
in the training data after the preprocessing step 
described in 2.1. If the current word does not 
have a previous or next word (e.g., the first or 
last word in a tweet), a padding character is as-
signed for the previous or following word to 
have a consistent format. In this work, we addi-
tionally consider a word’s part-of-speech (POS) 
as extra input to the model, as previous literature 
(e.g., Yarowsky, 1997; Täckström, 2013) indi-
cates POS tags can improve performance in other 
natural language processing tasks, such as text-
to-speech synthesis and NLP parsers. We use an 
off-the-shelf POS tagger that features Brown 
clustering: the CMU Twitter Part-of-Speech 
Tagger, which achieves a state-of-the-art tagging 
result of 93% on a Twitter benchmark data set 
(Owoputi et al., 2013). The extracted POS in-
formation is added as a distinct heading character 
to each word, so that they are leveraged in the 
LSTM models. Similar to the character padding, 
we apply a POS padding for missing previous or 
next words. Note that leveraging POSs about 
words is extendable to utilize any other meta-
information, and we examine the feasibility of 
applying this technique with POS tags in the con-
text of text normalization. The input encoding for 
predicting edit operations of the current word 

(Wordn) is described in Figure 1. To summarize, 
the number of inputs in a sequence is 3 + x + y + 
z, where x, y and z are the number of characters 
of the previous, current, and following word, 
respectively, while 3 is derived from the POS 
tags of all three words. 

Encoding the output is based on the Le-
venshtein distance algorithm (Levenshtein, 1966) 
that supports three operations: insert, replace, 
and delete, inspired by Chrupała’s text normali-
zation work (Chrupała, 2014). In this work, we 
reformulate his approach to predict word-level 
edit operations instead of character-level edit 
operations, by which the model predicts a label 
for an individual token. In the character-level 
prediction, to correctly normalize a token, it re-
quires all correction predictions on every charac-
ter that belongs to a word (i.e., probabilities get 
multiplied), whereas the word-level prediction 
requires one prediction per token.  

Once a training sample is given, the Le-
venshtein distance algorithm calculates the re-
quired edit operations to convert the possibly 
non-standard word into the corresponding canon-
ical form. For example, “dese” and “dey” with 
the canonical forms of “these” and “they”, re-
spectively, have edit operations of “in-
sert_t_replace_h, none, none, none, none” and 
“insert_t_replace_h, none, none, none” (a com-
ma is used as a delimiter for characters). Note 
that the insert operation only supports inserting a 
character before the current character, so to sup-
port insertions at the end of a word, every input 
word (e.g., “doin”) is concatenated with an emp-
ty character (e.g., “doin ”), and edit operations 
are applied on the empty character (e.g., “none, 
none, none, none, insert_g”). Since more class 
labels make this multi-class classification task 
more challenging, it is important to have an op-
timized set of edit operation labels, while the 
model should be still capable of converting to 
canonical words based on the given edit opera-
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tion. For the preceding example, a way to shrink 
the label size is omitting repeated none opera-
tions at the end of the string. With this optimiza-
tion applied, both “dese” and “dey” have the 
same edit operation of “insert_t_replace_h” ig-
noring all following “none”s. From this, the 
model can successfully decode the operation by 
replacing the first character of “d” with “th” and 
appending following stream of characters from 
each example, thereby constructing “these” and 
“they”, respectively. A more pronounced benefit 
of this technique can be found when there is no 
change required in terms of the edit operations. 
No change examples will have a single common 
label of nothing; otherwise, a series of none op-
erations will be generated as independent labels 
based on the length of the word. 

Another challenge in the edit operation ap-
proach lies in dealing with variants of repeated 
occurrence of the same character (e.g., “sooo”, 
“soooo”) often used to emphasize the word, since 
all required edit operations will be treated as dif-
ferent labels (e.g., “none, none, delete, delete”, 
“none, none, delete, delete, delete”) in spite of 
similar forms of edits (note that we omit the last 
none due to the previously-mentioned optimiza-
tion). To address this challenge, we attempt to 
replace characters that subsequently occur more 
than two times with a single character or double 
characters, and see if the converted word exists 
in the dictionary (in this work, the double charac-
ter conversions have a higher priority over the 
single character conversion, if both exist in the 
dictionary). If it appears in the dictionary, we use 
the word as an input word and calculate the edit 
operations based on the converted word setting; 
otherwise, we use the original word as the input 
word. We expect this would reduce the number 
of possible labels (e.g., both “sooo” and “soooo” 
are converted to “so”, as “so” is defined as a ca-
nonical form in the dictionary while “soo” is not, 
and so both of them have edit operations of noth-
ing). As a result, the total number of labels ob-
tained form the training set is reduced from 706 
to 694.  

Training examples for LSTMs are built upon 
all words except for hash-tags, at-mentions, and 
URLs that are filtered in the first step, regardless 
of whether a word is ambiguous or unique. In 
this manner, we expect that LSTMs can capture 
context information from every three-word ex-
ample and thus utilize all available contextual 
dependencies when ambiguous or out-of-
vocabulary words appear in the test set. 

2.3 Long-Short Term Memory (LSTM) for 
Text Normalization 

An LSTM (Hochreiter and Schmidhuber, 1997) 
is a variant of recurrent neural networks (RNNs) 
that is specifically designed for sequence label-
ing on temporal data. LSTM has been extended 
to have a longer term memory compared to tradi-
tional RNNs by introducing a memory block that 
features one or more self-connected memory 
cells along with three gating units: input gate, 
forget gate and output gate (Graves, 2012). Tra-
ditional RNNs often suffer from vanishing and 
exploding gradient problems when training deep 
networks using the backpropagation-through-
time method, and thus prevent RNNs from stor-
ing long-term dependencies from previous time 
steps in the sequential data.  In LSTMs, the input 
and output gate modulate the incoming and out-
going signals on the memory cell, and the forget 
gate controls the previous state of the memory 
cell whether to remember or forget; this structure 
allows it to preserve gradient information over 
long periods of time, and thus effectively address 
vanishing/exploding gradients that make training 
difficult in standard RNNs (Graves, 2012).  

We use an LSTM as our base model, as de-
scribed in Figure 2. Note that in the figure, the 
previous word (Wordt-1) and the following word 
(Wordt+1) are omitted due to the space limita-
tions; it is important to note that they have the 
same structure as in the current word (Wordt). 
For a word’s edit operation prediction, three 
words and their associated POSs are fed into the 
model in the form of a sequence of characters for 
each word. As noted above, the POS of each 
word is inserted before the first character of that 
word, regarded as a heading character that pro-
vides extra information for the associated word.  

When a deep learning model takes words or 
characters as input, an approach to obtaining 
their representation is using one-hot-encoding, 
which is a bit vector whose length is the size of 
the vocabulary of words or characters, where 
only the associated word/character bit is on (i.e., 
1) while all other bits are off (i.e., 0). Another 
popular approach is utilizing word/character em-
beddings, where their representations are learned 
in the context of unsupervised language model-
ing (Mikolov et al., 2013; Pennington et al., 
2014) or supervised tasks of interest  (Mesnil et 
al., 2013). We choose the latter approach and 
learn character embeddings using a linear projec-
tion layer while training the text normalization 
LSTM model in a supervised manner. We set  
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Figure 2: An illustration of the LSTM-based text normalization model 

 
both the character and POS embedding size 
to 256 for this task based on preliminary 
analyses using a grid search. 

For our base code, we utilized a Theano-
based (Bastien et al., 2012) LSTM imple-
mentation1 with a single-cell memory block 
per time, which was implemented targeting 
a sentiment analysis task on an IMDB data 
set.  

In this implementation, the input gate (𝑖!), 
forget gate (𝑓!), and candidate value of the 
memory content (𝑐!) at time t are computed 
by Equation (1), (2), and (3), respectively, in 
which W and U are weight matrices for the 
input (xt) at time t and the cell output (ht-1) at 
time t-1, b is the bias vector of each unit, 
and σ and tanh are the logistic sigmoid and 
hyperbolic tangent function, respectively: 

𝑖! = σ(𝑊!𝑥! + 𝑈!ℎ!!! + 𝑏!)            (1) 
𝑓! = σ(𝑊!𝑥! + 𝑈!ℎ!!! + 𝑏!)           (2) 
𝑐! = tanh(𝑊!𝑥! + 𝑈!ℎ!!! + 𝑏!)        (3) 

Once the three vectors are computed, the 
current memory cell’s state is updated to a 
new state (𝑐!), by modulating the current 
memory candidate value (𝑐!) via the input 
gate (𝑖!) and the previous memory cell state 
(𝑐!!!) via the forget gate (𝑓!). Through this 
process, a memory cell decides whether to 
keep or forget the previous memory state 
and regulates the candidate of the current 
memory state via the input gate. This step is 
described in Equation (4): 

                                                
1 http://deeplearning.net/tutorial/lstm.html 

𝑐! = 𝑖!𝑐! + 𝑓!𝑐!!!                   (4) 

In Equation (5), the output gate (𝑜!), simi-
larly calculated as in Equation (1) and (2), is 
utilized to compute the cell activation (ℎ!) 
of the LSTM block, based on the new 
memory state (𝑐!) (Equation 6): 

𝑜! = σ(𝑊!𝑥! + 𝑈!ℎ!!! + 𝑏!)        (5) 
ℎ! = 𝑜!  tanh(𝑐!)                   (6) 

In this model, as a variant of the LSTM 
proposed by Graves (2012), the input and 
forget gates do not take as input the previous 
memory cell’s state, and the output gate 
does not utilize the current memory cell’s 
state, to take advantage of a computational 
benefit when training models; rather, the 
current memory cell’s state is only utilized 
to calculate the cell’s output representation, 
along with the computed vector from the 
output gate (Equation 6). 

As illustrated in Figure 2, a character or 
POS is fed into the model at each time step, 
inducing a cell output (h) and a cell state (c). 
To predict the label (i.e., edit operations of a 
word), the model performs an average pool-
ing (havg) on a sequence of computed cell 
output representations (h(t-1)0 to h(t+1)z) on the 
training example with the three word input 
sequence, calculates posterior probabilities 
of all candidate labels using the averaged 
representation (havg) in a softmax layer, and 
chooses the label with the highest posterior 
probability value as prediction. 
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For other parameter settings in this exper-

iment, we used 256 hidden units, 25% drop-
out rate (Srivastava et al., 2014), 
ADADELTA (Zeiler, 2012) for the network 
optimization, negative log-likelihood for the 
cost function, and mini-batch based gradient 
descent with the batch size set to 16. To 
avoid overfitting, we set aside a separate 
validation set, and let the training process 
repeat until there is no progress within the 
last ten iterations in terms of performance on 
the validation set. 

3 Empirical Evaluation 

Before submitting our test set result to the 
W-NUT English lexical normalization 
shared task, we ran a 5-fold cross validation 
on the training set to evaluate the proposed 
approach. To conduct the experiment, we 
split the training set into 5 partitions based 
on a Tweet-level separation, and trained an 
LSTM model, iteratively using 4 out of the 5 
partitions in each fold.  

In the first evaluation, we examine two 
variations of our approach to measure the 
impact of dictionary-based normalization as 

an intermediate step: (1) applying phase 1 
and phase 3, in which we do not leverage 
dictionary-based normalization but predict 
labels based on an LSTM model after at-
mention and hash-tag and URL filtering, and 
(2) applying all three phases. The evaluation 
is conducted on contextual models that take 
three word inputs.  

Table 1 describes the result of these two 
approaches for each fold. For pairwise com-
parison of the two approaches, we conduct a 
Wilcoxon signed-rank test on F1 rates. The 
result indicates that there is a statistically 
significant improvement in F1 rates (79.19% 
by achieving 5.4% marginal improvement) 
for “with dictionary normalization” over 
“without dictionary normalization” (Z=-
2.023, p=0.043). To examine the effects of 
the LSTM-based model, we further evaluat-
ed a without-LSTM approach (phase 1 and 2 
only), in which all out-of-vocabulary words 
are left unchanged, and the most often ob-
served canonical form in the dictionary is 
used as the label for ambiguous words (if the 
frequency is tied, the first form in the hash 
table is used). The average F1 score of this 
dictionary only model is 0.7786; the LSTM 

 Without Dictionary Normalization With Dictionary Normalization 
 Precision Recall F1 Precision Recall F1 

Fold 1 0.8777 0.6735 0.7622 0.8803 0.7185 0.7912 
Fold 2 0.9036 0.6546 0.7592 0.9134 0.7232 0.8072 
Fold 3 0.8737 0.6352 0.7356 0.8797 0.6805 0.7674 
Fold 4 0.8671 0.6501 0.7431 0.9107 0.6986 0.7907 
Fold 5 0.8388 0.6867 0.7551 0.8859 0.7347 0.8032 

Averaged score 0.8722 0.6600 0.7510 0.8940 0.7111 0.7919 
 

Table 1: 5-fold cross validation results of LSTMs without dictionary normalization and with dic-
tionary normalization.  

 Non-contextual Model Contextual Model 
 Precision Recall F1 Precision Recall F1 

Fold 1 0.9032 0.6838 0.7783 0.8803 0.7185 0.7912 
Fold 2 0.8776 0.7419 0.8041 0.9134 0.7232 0.8072 
Fold 3 0.8988 0.6704 0.7680 0.8797 0.6805 0.7674 
Fold 4 0.9209 0.6961 0.7929 0.9107 0.6986 0.7907 
Fold 5 0.8589 0.7387 0.7943 0.8859 0.7347 0.8032 

Averaged score 0.8919 0.7062 0.7875 0.8940 0.7111 0.7919 
 

Table 2: 5-fold cross validation results of LSTMs: non-contextual model vs. contextual model. 
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model with the dictionary statistically out-
performs the dictionary only model (Z=-
2.023, p=0.043). 

In the second evaluation, we additionally 
compare another set of two variations: con-
textual model (taking surrounding words as 
well as the current word) vs. non-contextual 
model (only taking the current word). Table 
2 summarizes the comparison on the two 
approaches enriched with the dictionary 
normalization. The contextual model outper-
forms the non-contextual model in terms of 
the F1 score, but the difference does not 
elicit a statistically significant difference 
(Z=-1.214, p=0.225).  

To construct a final model for the test set 
prediction, we utilize an ensemble method 
on contextual LSTM models with dictionary 
normalization. Given a test set, we calculate 
the prediction probability from each of the 5 
models induced from the five-fold cross val-
idation, multiply the probability values from 
the softmax layer, and choose the label with 
the highest resulting probability. In the eval-
uation through the W-NUT competition, this 
approach (NCSU_SAS_WOOKHEE.cm) 
achieved a precision score of 91.36%, recall 
score of 73.98%, and F1 score of 81.75%, 
placing second in the constrained text nor-
malization track. 

4  Conclusion and Future Work 

Text normalization is a key capability for 
addressing the challenges posed by noisy 
text. This paper presents a contextual long-
short term memory based normalization 
method, augmented with a dictionary-based 
normalization technique. Evaluations with 
the training set indicate that the dictionary-
based normalization significantly outper-
forms the without-dictionary model. This 
method was evaluated on the English Tweet 
test set offered by the W-NUT shared task, 
and shows promise as a lexical normalizer 
for noisy texts by achieving an F1 score of 
81.75%. We conclude that inputs encoded 
with a sequence of characters are a natural 
fit for the LSTM’s temporal structure when 
normalizing non-standard language.  

In the future, it will be important to inves-
tigate if including more surrounding words 
as context contributes to the model’s per-
formance, and examine possibilities of using 
different types of word-level meta-data as 
additional heading characters in the model. 
Another direction for future work is to in-
vestigate adaptations of the LSTM model 
with a self-generated dictionary. For exam-
ple, when a word is an ambiguous word, the 
LSTM’s prediction is not necessarily part of 
the normalization candidates given by the 
dictionary for the word. A tight coupling 
between the LSTM model and the candidate 
list or building a separate model targeted to 
only ambiguous words may significantly 
increase performance. 
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