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Abstract

We present an implicit tensor factorization
method for learning the embeddings of
transitive verb phrases. Unlike the implicit
matrix factorization methods recently pro-
posed for learning word embeddings, our
method directly models the interaction be-
tween predicates and their two arguments,
and learns verb phrase embeddings. By
representing transitive verbs as matrices,
our method captures multiple meanings of
transitive verbs and disambiguates them
taking their arguments into account. We
evaluate our method on a widely-used verb
disambiguation task and three phrase sim-
ilarity tasks. On the disambiguation task,
our method outperforms previous state-of-
the-art methods. Our experimental results
also show that adjuncts provide useful in-
formation in learning the meanings of verb
phrases.

1 Introduction

There is a growing interest in learning vector-
space representations of words and phrases using
large training corpora in the field of Natural Lan-
guage Processing (NLP) (Mikolov et al., 2013;
Mitchell and Lapata, 2010). The phrase represen-
tations are usually computed by composition mod-
els that combine the meanings of words into the
meanings of phrases. While some studies focus on
representing entire phrases or sentences using syn-
tactic structures (Hermann and Blunsom, 2013;
Socher et al., 2011), others focus on representing
the meaning of transitive verb phrases (Grefen-
stette and Sadrzadeh, 2011; Grefenstette et al.,
2013; Kartsaklis et al., 2012).

In this paper, we investigate vector-space repre-
sentations of transitive verb phrases. The mean-
ing of a transitive verb is often ambiguous and
disambiguated by its arguments, i.e., subjects and
objects. Investigation of transitive verb phrases
should therefore provide insights into how com-
position models can capture such semantic inter-
actions between words. Moreover, in practice,
capturing the meanings of transitive verb phrases
should be useful in many real-world NLP appli-
cations such as semantic retrieval (Miyao et al.,
2006) and question answering (Who did What to
Whom?) (Srihari and Li, 2000).

There are several approaches to representing
transitive verb phrases in a vector space using
large unannotated corpora. One is based on tensor
calculus (Grefenstette and Sadrzadeh, 2011; Kart-
saklis et al., 2012; Van de Cruys et al., 2013) and
another is based on neural networks (Hashimoto
et al., 2014; Muraoka et al., 2014; Tsubaki et
al., 2013). In the tensor-based methods, transi-
tive verbs are represented as matrices, and they are
constructed by using the pre-trained word embed-
dings of their subjects and objects. One limitation
of this approach is that the embeddings of subject-
verb-object phrases are computed statically, i.e.,
the composition process and the embedding (or
matrix) construction process are conducted sepa-
rately. In the neural network-based methods, the
embeddings of words and phrases can be learned
jointly (Hashimoto et al., 2014). However, the
strong interaction between verbs and their argu-
ments is not fully captured in their method because
it relies on shallow neural networks using diago-
nal weight matrices which are designed to work
on large training corpora.

To bridge the gap between the two approaches,
we present an implicit tensor factorization method
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for learning the embeddings of transitive verb
phrases. We assume a three-mode tensor in which
the value of each element represents the level of
plausibility of a tuple of a predicate and its two
arguments (Van de Cruys et al., 2013). We then
implicitly factorize the tensor into three latent fac-
tors, namely one predicate tensor and two argu-
ment matrices. This is motivated by the recently
proposed implicit matrix factorization methods for
learning word embeddings (Levy and Goldberg,
2014; Mikolov et al., 2013). Our method trains
matrices representing predicates and embeddings
of their arguments so that they maximize the accu-
racy of predicting the plausibility of the predicate-
argument tuples in the training corpus. The tran-
sitive verb matrices and the embeddings of their
subject and object are thus jointly learned. Fur-
thermore, this method allows us to exploit the role
of prepositional adjuncts when learning the mean-
ing of verb phrases by modeling the relationship
between prepositions and verb phrases.

Our experimental results show that our method
enables predicates and their arguments to strongly
interact with each other and that adjuncts are use-
ful in learning the meaning of verb phrases. We
evaluate our method using a widely-used verb
disambiguation task and three phrase similarity
tasks. On the disambiguation dataset provided
by Grefenstette and Sadrzadeh (2011), we have
achieved a Spearman’s rank correlation score of
0.614, which is significantly higher than the state
of the art (0.456). This result demonstrates that
the direct interaction between verbs and their ar-
guments is important in tackling verb disambigua-
tion tasks. Qualitative evaluation further shows
that the meanings of ambiguous verbs can be dis-
ambiguated according to their arguments and the
learned verb matrices capture multiple meanings
of transitive verbs.

2 Method

To learn the embeddings of transitive verb phrases,
we focus on the role of adjuncts, which optionally
complement the meaning of the verb phrases. For
example, in the following sentence, the preposi-
tional phrase starting from the preposition “in” is
an adjunct of the verb “make”:

An importer might be able to make payment
in his own domestic currency.

The transitive verb “make” is inherently ambigu-
ous, but this sentence tells us that the action ex-

Predicate Argument 1 Argument 2
make an importer payment
in make payment his own domestic currency

Table 1: Example output from the Enju parser.

Predicate Argument 1 Argument 2
make importer payment
in importer make payment currency

Table 2: Modified examples.

pressed by the verb phrase “make payment” is car-
ried out by means of a currency. If we further ob-
serve the verb phrase “pay money” with a sim-
ilar adjunct in another sentence, those two sen-
tences tell us that the two phrases “make payment”
and “pay money” are semantically similar to each
other. We therefore expect such prepositional ad-
juncts to be useful in learning the meaning of verb
phrases. In the disambiguation processes, strong
interactions between transitive verbs and their ar-
guments are desirable as with the method in Tsub-
aki et al. (2013). More specifically, the meaning of
“make” changes according to its object “payment”
and the meaning of “pay” changes according to its
object “money”.

We use the probabilistic HPSG parser
Enju1 (Miyao and Tsujii, 2008) to identify
transitive verbs with their subjects and objects,
and as adjuncts, we also extract prepositional
phrases with transitive verbs. In the grammar
of the Enju parser, each word in a sentence is
a predicate with zero or more arguments, i.e.,
prepositions, too, are treated as predicates.

In the example sentence shown above, the tran-
sitive verb “make” and the preposition “in” are
predicates which take two arguments. Table 1
shows the output from the Enju parser. In this ex-
ample, the transitive verb “make” takes two argu-
ments: the first argument (the subject) is the noun
phrase “an importer” and the second argument (the
object) is the noun “payment”. The preposition
“in” also takes two arguments: the first argument
is the verb phrase “make payment” and the sec-
ond argument is the noun phrase “his own domes-
tic currency”. For simplicity we use only the head
word of each noun phrase, so the subjects and ob-
jects of the transitive verbs are nouns and the sec-
ond arguments of the prepositions are also nouns.
We further modify the output by incorporating the

1http://kmcs.nii.ac.jp/enju/.
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subject for each verb phrase which is the first ar-
gument of prepositions when the subject exists 2.
Therefore, the words used in this paper are verbs,
nouns, and prepositions. Table 2 shows the modi-
fied output of the examples in Table 1.

To model the co-occurrence statistics of
predicate-argument structures, we follow Van de
Cruys et al. (2013) and assume a three-mode
tensor, which is just a three-dimensional array,
T ∈ R|P|×|A1|×|A2| in which plausibility scores
are stored as real values. P is the set of predi-
cates of a particular category in the training cor-
pus, A1 is the set of the first argument of the pred-
icates in P, and A2 is the set of the second ar-
gument. When treating transitive verbs as pred-
icates, A1 is the set of their subjects and A2 is
the set of their objects. Table 1 shows an exam-
ple, where “make”, “an importer”, and “payment”
are a member of P, A1, and A2, respectively. The
plausibility score T (i, j, k) corresponds to the tu-
ple of the i-th (1 ≤ i ≤ |P|) predicate having the
j-th (1 ≤ j ≤ |A1|) first-argument and the k-th
(1 ≤ k ≤ |A2|) second-argument. The larger the
value of T (i, j, k) is, the more plausible the tu-
ple (i, j, k) is. In the above example, if the tuple
(i, j, k) corresponds to “make”, “an importer”, and
“payment” and i′ corresponds to “eat”, the value
of T (i, j, k) is expected to be larger than that of
T (i′, j, k).

As with Van de Cruys et al. (2013), we factorize
the large three-mode tensor T into three factors:

• three-mode tensor P ∈ R|P|×d×d,

• matrix A1 ∈ Rd×|A1|, and

• matrix A2 ∈ Rd×|A2|.

The dimensionality d is a hyperparameter that de-
termines the size of the latent factors. Using these
factors, we can compute a plausibility score:

T (i, j, k) = a1(j)TP(i)a2(k) (1)

where a1(j) ∈ Rd×1 and a2(k) ∈ Rd×1 are the j-
th and k-th column vectors of A1 and A2, respec-
tively, and P(i) ∈ Rd×d is the i-th slice, which
is just a matrix, of P . a1(j)T is the transpose of
a1(j). By this tensor factorization, each predicate
in P is represented with a matrix, which we call
a predicate matrix, and each argument in A1 and

2Subjects can be absent. For example, in the sentence
“Learning word embedings is interesting” the subject of the
transitive verb “learn” is absent.

A2 is represented with a vector, which we call an
argument embedding. As with Hashimoto et al.
(2014), arguments are not restricted to words in
our method, and thus we compute argument em-
beddings using a composition function when the
arguments consist of more than two words.

To learn the predicate matrices and argument
embeddings, we define a plausibility judgment
task by using a cost function for each predicate-
argument tuple observed in the training corpus.
For each predicate-argument tuple (i, j, k), the
cost function E(i, j, k) is defined as follows:

− log σ(T (i, j, k))− log(1− σ(T (i′, j, k)))
− log(1− σ(T (i, j′, k)))
− log(1− σ(T (i, j, k′)))

(2)

where i′ ∈ P is a randomly drawn predicate, and
j′ ∈ A1 and k′ ∈ A2 are randomly drawn argu-
ments. σ(x) is the logistic function, so the cost
function E(i, j, k) in Eq. (2) measures whether
we can discriminate between the plausible tuple
and other three implausible tuples by means of
logistic regressions. We follow Mikolov et al.
(2013) to draw the random predicates and argu-
ments according to their frequencies weighted by
an exponent of 0.75 and ensure that each of the
randomly generated tuples is not observed in the
corpus. The overall objective function is defined
as the sum of the cost functions for all observed
predicate-argument tuples and minimized by Ada-
Grad (Duchi et al., 2011) in a mini-batch setting.

The partial derivative ∂E(i,j,k)
∂P(i) for updating the

model parameters is computed as follows:

∂E(i, j, k)
∂P(i)

= (σ(T (i, j, k))− 1)a1(j)⊗ a2(k)+

σ(T (i, j′, k))a1(j′)⊗ a2(k)+
σ(T (i, j, k′))a1(j)⊗ a2(k′)

(3)

where ⊗ denotes the outer-product of two vec-
tors. Similarly, the partial derivatives ∂E(i,j,k)

∂a1(j) and
∂E(i,j,k)
∂a2(k) are computed as follows:

∂E(i, j, k)
∂a1(j)

= (σ(T (i, j, k))− 1)P(i)a2(k)+

σ(T (i′, j, k))P(i′)a2(k)+
σ(T (i, j, k′))P(i)a2(k′)

(4)
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∂E(i, j, k)
∂a2(k)

= (σ(T (i, j, k))− 1)P(i)Ta1(j)+

σ(T (i′, j, k))P(i′)Ta1(j)+

σ(T (i, j′, k))P(i)Ta1(j′)
(5)

which can be used to learn the composition func-
tion using the backpropagation algorithm if the ar-
guments are not words. When the arguments are
words, we then use the partial derivatives to di-
rectly update the argument embeddings. P(i′),
a1(j′), and a2(k′) are also updated but for the sake
of brevity the partial derivatives for them are not
shown here. Equation (3) shows that a predicate
matrix is updated to capture the information about
which argument pairs are or are not relevant to the
predicate. Argument embeddings are learned to
capture similar information.

2.1 Transitive Verb Phrases with Adjuncts

While our method is applicable to any categories
of predicates which take two arguments, in this pa-
per, we focus on learning the embeddings of tran-
sitive verb phrases by treating transitive verbs and
prepositions as predicates. Thus, we factorize two
tensors Tv and Tp for transitive verbs and prepo-
sitions, respectively. Tv is factorized into a verb
tensor V (corresponding to P), a subject matrix
S (corresponding to A1), and an object matrix O
(corresponding to A2). To compute argument em-
beddings composed by subject-verb-object tuples,
we use the copy-subject function in Kartsaklis et
al. (2012):

s(m)⊙ (V(l)o(n)) (6)

where V(l) is a verb matrix, s(m) is a subject em-
bedding, and o(n) is an object embedding. ⊙ de-
notes the element-wise multiplication of two vec-
tors. The composed verb phrase embeddings are
taken as the first arguments of the prepositions.
The copy-subject function is also used to com-
pute verb-object phrase embeddings by omitting
the subject embedding in Eq. (6):

V(l)o(n) (7)

Compared with other composition functions de-
fined in Kartsaklis et al. (2012), such as the copy-
object function, the copy-subject function allows
us to compute embeddings for both of subject-
verb-object and verb-object phrases.

In the case of the copy-subject function, assum-
ing that Eq. (4) is defined as δ1, the subject em-
bedding in Eq. (6) is updated using the following
partial derivative:

∂E(i, j, k)
∂s(m)

= δ1 ⊙ (V(l)o(n)) (8)

We then define δ2 as follows:

δ2 = δ1 ⊙ s(m) (9)

and update the verb matrix and object embedding
using δ2:

∂E(i, j, k)
∂V(l)

= δ2o(n)T (10)

∂E(i, j, k)
∂o(n)

= V(l)Tδ2 (11)

The model parameters used in the composition
function are shared across the overall proposed
method. That is, the verb matrices and sub-
ject/object embeddings are used for computing the
composed embeddings and the plausibility scores
in Eq. (1).

2.2 Relationship to Previous Work

Representing transitive verbs with matrices and
computing transitive verb phrase embeddings have
been proposed by Grefenstette and Sadrzadeh
(2011) and others (Kartsaklis et al., 2012; Mila-
jevs et al., 2014; Polajnar et al., 2014). All of
them first construct word embeddings by using ex-
isting methods and then compute or learn transi-
tive verb matrices. This kind of approach requires
one to figure out which word embeddings are suit-
able for each method or task (Milajevs et al.,
2014). By contrast, our method does not require
any other word embedding methods and instead
jointly learns word embeddings and matrices from
scratch, which saves us from the time-consuming
process to test which word representations learned
by existing methods are suitable for which com-
position models. Moreover, our method learns the
embeddings of transitive verb phrases by using ad-
juncts rather than statically computing them using
learned word embeddings and matrices as done in
the previous work.

The information stored in the verb matrices
learned by Eq. (3) is similar to that in Grefen-
stette and Sadrzadeh (2011). In Grefenstette and
Sadrzadeh (2011), a verb matrix is computed by
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the sum of the outer-products of the embeddings of
its subject-object pairs observed in the corpus. By
using such matrices, Kartsaklis et al. (2012) pro-
posed the copy-subject function which has proven
effective in representing transitive verb phrases.
Using the copy-subject function is therefore a rea-
sonable choice for our composition function.

The use of adjuncts constructed by preposi-
tional phrases for learning verb phrase embed-
dings has been presented in Hashimoto et al.
(2014). However, they used a variety of categories
of predicates simultaneously, and thus it is not
clear how adjuncts are useful in improving the em-
beddings of transitive verb phrases. In this paper,
we use only transitive verbs and prepositions and
clarify the effects of adjuncts. Moreover, the inter-
actions between predicates and their arguments are
weak in their method because their method relies
on shallow neural networks using diagonal weight
matrices. In contrast, our method allows the pred-
icates to directly interact with their arguments.

The way of factorizing the three-mode tensors is
based on Van de Cruys et al. (2013). The main dif-
ference between our method and theirs is that our
method can treat phrases as the arguments. Their
method is based on co-occurrence count statistics,
and thus it is not straightforward to modify their
method to treat phrases as well as words.

Our implicit tensor factorization method is mo-
tivated by Levy and Goldberg (2014). They in-
troduced a way to interpret the recently developed
word embedding learning method (Mikolov et al.,
2013) by using matrix factorization. While their
method only produces embeddings of single to-
kens, our method jointly learns word and phrase
embeddings by focusing on the relationship be-
tween predicates and their two arguments.

3 Experimental Settings

3.1 Training Corpora

We separately used two corpora as our training
corpora. The first one is the British National
Corpus (BNC), from which we extracted 6 mil-
lion sentences. The second one is a snapshot of
the English Wikipedia3 (enWiki) from November
2013. We extracted 80 million sentences from the
original Wikipedia file. We then used the Enju
parser (Miyao and Tsujii, 2008) to parse all the
extracted sentences.

3http://dumps.wikimedia.org/enwiki/

Using the parsing results, we constructed the
vocabulary for each training corpus. To be more
specific, we used the 100,000 most frequent base-
form words paired with their corresponding part-
of-speech tags in each corpus. Using verbs, nouns,
and prepositions in the vocabulary, we extracted
predicate-argument tuples whose predicate cate-
gories are verb arg12 or prep arg12 defined in the
Enju parser. We then pre-processed the output as
shown in Table 2. Consequently, BNC consists of
about 1.38 million instances (1.23 million types)
for the verb data and about 0.93 million instances
(0.88 million types) for the preposition data, and
enWiki consists of about 23.6 million instances
(15.8 million types) for the verb data and about
17.3 million instances (13.5 million types) for the
preposition data. We call the verb data SVO and
the combination of the two data SVOPN 4.

For each corpus, we randomly split the data
into the training data (80%), the development data
(10%), and the test data (10%). We used the de-
velopment data for tuning hyperparameters to be
used in downstream NLP tasks. When splitting
the data, we ensured that each type of predicate-
argument tuples appeared in only one of the three
parts. Hence, for example, instances in the test
data do not appear in either of the training or the
development data.

To evaluate our method on the plausibility judg-
ment task, for each predicate-argument tuple type
in the development and the test data, we randomly
sampled implausible tuples N times in the same
way as defining the cost function in Eq. (2). That
is, we prepared N sets of the development and the
test data. For each set of the development and the
test data, we calculated the accuracy of the plausi-
bility judgment task; concretely, for each type of
predicate-argument tuples (i, j, k), we evaluated
whether T (i, j, k) is larger than all of T (i′, j, k),
T (i, j′, k), and T (i, j, k′) and then calculated the
ratio of the number of types counted as correct to
the total number of the types in the development
or the test data. Finally, we calculated the average
accuracy of the N set. For BNC, we set N to 50
and for enWiki we set N to 10.

4The training data, the training code, and the learned
model parameters used in this paper are publicly available at
http://www.logos.t.u-tokyo.ac.jp/˜hassy/
publications/cvsc2015/
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3.2 Initialization and Hyperparameters
We initialized the noun embeddings, the verb ma-
trices, and the preposition matrices with zero-
mean gaussian noise with a variance of 1

d , 1
d2 , and

1
d2 , respectively. The hyperparameters for train-
ing the embeddings and the matrices are the em-
bedding dimensionality d, the learning rate α for
AdaGrad (Duchi et al., 2011), the mini-batch size,
and the number of iterations n over the training
data. In our preliminary experiments, we have
found that varying the mini-batch size is not so
influential in our experimental results. We thus
fixed the mini-batch size to 100. For other hy-
perparameters, we set d to {25, 50, 100}, α to
{0.01, 0.02, 0.04, 0.06, 0.08, 0.1}, and the maxi-
mum number of n to 20. We selected the values
of the hyperparameters so that the accuracy of the
plausibility task was maximized on the develop-
ment data described in Section 3.1.

3.3 Baseline Method
We mainly compared our method with the method
called PAS-CLBLM in Hashimoto et al. (2014)
since PAS-CLBLM is designed to learn composed
representations as well as word embeddings using
a variety of predicate-argument structures. PAS-
CLBLM is modeled as a word predication model
using predicate-argument structures, which means
that, as with our method, the training relies on
the co-occurrence statistics of predicate-argument
structures. PAS-CLBLM achieved state-of-the-art
results on transitive verb phrase similarity tasks.
To train PAS-CLBLM, we used the same data de-
scribed in Section 3.1. We selected the Waddnl

function in PAS-CLBLM to compute the embed-
ding of each subject-verb-object tuple (i, j, k):

tanh(ws⊙ s(j)+wv⊙v(i)+wo⊙o(k)) (12)

where ws,wv,wo ∈ Rd×1 are the weight vec-
tors (or the diagonal weight matrices) for compo-
sition and s(j),v(i),o(k) ∈ Rd×1 are the embed-
dings of the subjects, verbs, and objects, respec-
tively. PAS-CLBLM has the same hyperparame-
ters as our method described in Section 3.2. We
used the development data for tuning the hyperpa-
rameters and added d = 200 to the candidate val-
ues for d since PAS-CLBLM is computationally
less expensive than our method. We thus evalu-
ated PAS-CLBLM also on the plausibility judg-
ment task. Concretely, for each type of predicate-
argument tuples (i, j, k) in the development data,

BNC enWiki
d Acc. (%) Acc. (%)

Our method
25 57.44 (0.11) 64.77 (0.03)
50 57.80 (0.11) 66.98 (0.03)

100 57.48 (0.10) 68.18 (0.03)

PAS-CLBLM

25 54.44 (0.14) 60.40 (0.03)
50 55.69 (0.13) 63.42 (0.02)

100 55.66 (0.12) 64.81 (0.02)
200 55.48 (0.15) 65.20 (0.03)

Table 3: Evaluation results on the plausibility
judgment task on the SVO development data.

the tuple is counted as correct when the predica-
tion scores for i, j, and k are larger than those for
i′, j′, and k′, respectively.

4 Results and Discussion

We first tuned the hyperparameters in both our
method and the baseline method using the plau-
sibility judgment task. Table 3 shows the aver-
age accuracy with the standard deviation for each
dimensionality on the SVO development data5.
As shown in the table, our method outperforms
PAS-CLBLM on both BNC and enWiki. The
number of the model parameters in PAS-CLBLM
(d = 200) is larger than that of the model pa-
rameters in our method (d = 50). This result
demonstrates that the model architecture itself is
more important than the number of the model pa-
rameters. The results on the SVO test data were
57.76% (our method, d = 50) and 55.66% (PAS-
CLBLM, d = 50) for BNC. For enWiki, the re-
sults were 68.18% (our method, d = 100) and
65.19% (PAS-CLBLM, d = 200). We observed
a similar trend on the SVOPN data and in the next
section, for each embedding dimensionality, we
used the model parameters which performed best
on the plausibility task.

4.1 Evaluation on Transitive Verb Tasks
4.1.1 Evaluation Settings
We evaluated the learned embeddings of transitive
verbs using a transitive verb disambiguation task
and three tasks for measuring the semantic simi-
larity between transitive verb phrases. Each phrase

5Van de Cruys (2014) reported much higher accuracy in
a similar evaluation setting with a neural network model, but
as discussed in Chambers and Jurafsky (2010), this is because
using the uniform distribution over words for producing im-
plausible tuples leads to optimistic results.

6We replicated the results reported in their pa-
per using the model parameters publicly provided at
http://www.logos.t.u-tokyo.ac.jp/˜hassy/
publications/emnlp2014/.
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Dis. Phrase similarity
Data d GS’11 ML’10 KS’13 KS’14

SVO
25 0.410 0.511 0.392 0.440
50 0.374 0.550 0.164 0.290

Our 100 0.373 0.474 0.312 0.418
method

SVOPN
25 0.574 0.543 0.439 0.432
50 0.535 0.586 0.403 0.397
100 0.508 0.545 0.487 0.517

SVO

25 0.270 0.601 0.592 0.722
50 0.412 0.581 0.523 0.721
100 0.390 0.463 0.465 0.699

PAS- 200 0.369 0.458 0.434 0.602
CLBLM

SVOPN

25 0.241 0.562 0.550 0.715
50 0.281 0.605 0.590 0.760
100 0.337 0.593 0.585 0.758
200 0.342 0.561 0.549 0.744

Milajevs et al. (2014) 0.456 n/a n/a 0.732
Hashimoto et al. (2014)6 0.422 0.669 0.612 0.770
Polajnar et al. (2014) 0.35 n/a 0.58 n/a

Table 4: Results for the transitive verb tasks using
the BNC data.

pair in the four datasets is paired with multiple hu-
man ratings: the higher the rating is, the more se-
mantically similar the phrases are. To evaluate the
learned verb phrase embeddings on each dataset,
we used the Spearman’s rank correlation between
the human ratings and the cosine similarity be-
tween the phrase embeddings. We calculated the
correlation scores using averaged human ratings.
Each phrase pair in the datasets was annotated by
more than two annotators and we took the average
of the multiple human ratings for each phrase pair.

Transitive verb disambiguation. The first
dataset GS’11 is provided by Grefenstette and
Sadrzadeh (2011). GS’11 consists of pairs of
transitive verbs and each verb pair takes the same
subject and object. As discussed in previous
work (Kartsaklis and Sadrzadeh, 2013; Milajevs
et al., 2014; Polajnar et al., 2014), GS’11 has an
aspect of a verb sense disambiguation task. For
example, the transitive verb “run” is known as
a polysemous word and this task requires one
to identify the meanings of “run” and “operate”
are similar to each other when taking “people”
as their subject and “company” as their object.
In the same setting, however, the meanings of
“run” and “move” are not similar to each other.
The task is suitable for evaluating our method
since our method allows verbs and their subjects
and objects to multiplicatively interact with each
other.

Dis. Phrase similarity
Data d GS’11 ML’10 KS’13 KS’14

SVO
25 0.438 0.403 0.255 0.406
50 0.480 0.416 0.359 0.481

Our 100 0.433 0.392 0.239 0.409
method

SVOPN
25 0.576 0.435 0.372 0.555
50 0.614 0.495 0.422 0.566
100 0.576 0.558 0.420 0.548

SVO

25 0.342 0.500 0.407 0.624
50 0.313 0.527 0.502 0.710
100 0.358 0.534 0.470 0.655

PAS- 200 0.361 0.535 0.459 0.653
CLBLM

SVOPN

25 0.171 0.571 0.583 0.697
50 0.320 0.501 0.518 0.729
100 0.321 0.606 0.540 0.742
200 0.374 0.588 0.515 0.744

Milajevs et al. (2014) 0.456 n/a n/a 0.732
Hashimoto et al. (2014) 0.422 0.669 0.612 0.770
Polajnar et al. (2014) 0.35 n/a 0.58 n/a

Table 5: Results for the transitive verb tasks using
the enWiki data.

Transitive verb phrase similarity. The other
datasets are ML’10 provided by Mitchell and La-
pata (2010), KS’13 provided by Kartsaklis and
Sadrzadeh (2013), and KS’14 provided by Kart-
saklis and Sadrzadeh (2014). ML’10 consists of
pairs of verb-object phrases and KS’13 comple-
ments ML’10 by incorporating an appropriate sub-
ject for each verb-object phrase. KS’14 is the re-
annotated version of KS’13 using a cloud sourcing
service. Unlike GS’11, these three datasets require
one to capture the topical similarity rather than the
disambiguation aspect (Polajnar et al., 2014).

4.1.2 Result Overview
Table 4 and 5 show the evaluation results using
BNC and enWiki, respectively. The results are
shown for each method, data type, and embedding
dimensionality. These tables also show the results
from other work (Hashimoto et al., 2014; Mila-
jevs et al., 2014; Polajnar et al., 2014) on the same
tasks while the training settings, such as the corpus
and information used in the training, are different
from those in this work. However, the evaluation
settings are the same with those in the previous
work. That is, in the previous work, averaged hu-
man ratings were used to evaluate the Spearman’s
rank correlation scores, similarity scores between
subject-verb-object phrases were used for GS’11,
KS’13, and KS’14, and similarity scores between
verb-object phrases were used for ML’10.

Effects of using adjuncts. Except for the re-
sults for GS’11 using PAS-CLBLM, the correla-
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Our method PAS-CLBLM
SVO SVOPN SVOPN

make dollar make saving make cash earn billion make cash make penny
make make pay use money make dollar earn million make dollar make baht
money make profit make cent make profit make gamble make yen make salary

make cash do business earn baht make pound make pay make profit
earn profit sell coin earn pound earn earning make fund make rupee
make repayment make expenditure make loan pay reimbursement make loan make cost

make make loan pay subsidy make repayment pay remuneration make repayment make receipt
payment pay amount pay deposit pay fine make raise make compensation make guarantee

make offer make transaction pay amount pay cost make expense make rebate
pay compensation pay donor pay surcharge pay fee make debt make purchase
use material use approach use number use one make usage make sort

make use type use method use concept use element make placement make size
use use concept use technique use approach use set make kind make utilization

use form use instrument use method use system make quality make redundancy
use one use system use model use type make alternative make handling

Table 6: Nearest neighbor verb-object phrases.

tion scores consistently improve when using the
SVOPN data compared with using the SVO data,
which shows using adjuncts is helpful in learning
the meanings of verb phrases. Using the SVO data
alone, verb phrase embeddings themselves are not
directly learned but computed separately. By con-
trast, the SVOPN data provides the opportunity for
learning verb phrase embeddings.

Effects of the training corpora. In previous
work on learning and evaluating word embed-
dings, it is generally observed that increasing the
training data results in better results. However, as
opposed to our expectation, Table 4 and 5 show
that using enWiki does not necessarily lead to bet-
ter results. A possible explanation is that the na-
ture of the training corpus matters the most. The
usage of each word depends on the training cor-
pora, and at least for these verb sense tasks, the
size of BNC is sufficient and the nature of BNC
fits these tasks.

4.1.3 Disambiguation Task
Our method outperforms both the baseline and
the previous state of the art for GS’11, which
demonstrates that our method better handles the
disambiguation of transitive verbs. This result
is somewhat expected since our method provides
stronger interaction between predicates and their
arguments than the baseline method.

Table 6 shows some examples7 of verb-object
phrases with their nearest neighbor ones in the em-
bedding space according to the cosine similarity.
For our method, we show the results of using the
SVO and SVOPN data, and for PAS-CLBLM, we

7The verb-object phrase “make use” is the part of the id-
iomatic expression “make use of”.

show the results of using the SVOPN data. In each
setting, we used the enWiki data with d = 50.

Table 6 clearly shows the difference between
our method and the baseline method. In our
method, the meaning of “make” becomes close
to those of “earn”, “pay”, and “use” when tak-
ing “money”, “payment”, and “use”, respectively,
as its object. By contrast, PAS-CLBLM simply
emphasizes the head word “make”. In previous
work, it is also reported that the weighed addition
composition functions put more weight on head
words (Hashimoto et al., 2014; Muraoka et al.,
2014; Socher et al., 2013). As opposed to these
previous methods, our method has the ability of
selecting the meaning of transitive verbs accord-
ing to their objects.

Table 6 also shows that the phrase embeddings
in our method are influenced by using the adjunct
data (i.e., the SVOPN data). For example, in the
example of “make money”, the results for using
the SVO data include “use money” as the nearest
neighbors. When using the SVOPN data, the fo-
cus seems to shift to the true meaning of “make
money”.

4.1.4 Phrase Similarity Task
In the phrase similarity tasks, our method com-
pares favorably to PAS-CLBLM for ML’10, but
PAS-CLBLM outperforms our method for KS’13
and KS’14. These results are consistent with
those in previous work. In Milajevs et al.
(2014) and Polajnar et al. (2014), using the sim-
plest composition function (the element-wise vec-
tor addition) achieves much better correlation
scores than other tensor-based complex compo-
sition functions. These results indicate that our
method is suitable for capturing the disambigua-
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Verb Nearest neighbors

run

27th operate, execute, insert, hold, grid,
col. produce, add, assume, manage, render
34th release, operate, create, override, govern,
row oversee, distribute, host, organize

all operate, start, manage, own, launch,
continue, establish, open, maintain

encode

28th denature, transfect, phosphorylate,
row polymerize, subtend, acid
39th format, store, decode, embed,
row concatenate, encrypt, memorize

all concatenate, permute, phosphorylate,
quantize, composite, transfect, transduce

Table 7: Nearest neighbor verbs.

tion rather than capturing the topical similarity be-
tween phrases.

4.2 Qualitative Evaluation on Verb Matrices

Finally, we inspect the learned verb matrices us-
ing the SVO data of enWiki with d = 50. Com-
pared with the word embeddings, the verb matri-
ces have two-dimensional structure. According to
Eq. (3), each row vector and each column vector in
a verb matrix are updated to capture the informa-
tion about what subject-object pairs are relevant
(or irrelevant) to the verb.

Table 7 shows the nearest neighbor verbs using
the cosine similarity between row (or column) vec-
tors in the verb matrices. For reference, we also
show the results using the vectorized representa-
tion of the verb matrices (denoted as “all” in the
table). While the entire matrices capture the gen-
eral similarity between verbs as with word embed-
dings, some specific rows (or columns) capture the
multiple meanings of usages of the verbs.

5 Related Work

Based on the distributional hypothesis (Firth,
1957), various methods for word embeddings have
been actively studied (Levy and Goldberg, 2014;
Mikolov et al., 2013). Recent studies also inves-
tigate how to learn phrase and/or sentence em-
beddings using syntactic structures and word em-
beddings (Socher et al., 2011). Along the same
line of research, there is a growing body of work
on representing transitive verb phrases using word
embeddings (Grefenstette and Sadrzadeh, 2011;
Hashimoto et al., 2014; Kartsaklis et al., 2012;
Tsubaki et al., 2013). Those studies can be split
into two approaches: one is based on tensor calcu-
lus and the other is based on neural networks.

In contrast to the recent studies on word embed-
dings, the tensor-based methods represent words
with tensors which are not limited to vectors. That
is, higher order tensors such as matrices and three-
mode tensors are also used. In the case of repre-
senting transitive verb phrases, for example, each
transitive verb is represented as a matrix and each
noun is represented as a vector in Grefenstette and
Sadrzadeh (2011). Based on Coecke et al. (2010),
Grefenstette and Sadrzadeh (2011) presented a
method for calculating a verb matrix using word
embeddings of its observed subjects and objects.
The word embeddings were constructed by the
method in Mitchell and Lapata (2008). Grefen-
stette and Sadrzadeh (2011) then introduced com-
position functions using the verb matrices and the
noun embeddings. Their approach has been fol-
lowed by some recent studies (Kartsaklis et al.,
2012; Milajevs et al., 2014; Polajnar et al., 2014;
Van de Cruys et al., 2013).

In the neural network-based methods each word
is usually represented with a vector. Tsubaki et
al. (2013) presented a neural network language
model focusing on the binary relationship between
verbs and their objects. Their co-compositionality
method enables verb embeddings to be multi-
plicatively influenced by the objects, and vice
versa. Subsequently, Hashimoto et al. (2014) in-
troduced a method which jointly learns word and
phrase embeddings by using a variety of predicate-
argument structures. While their method achieves
state-of-the-art results on phrase similarity tasks,
the interaction between predicates and their argu-
ments is weak.

6 Conclusion and Future Work

We have presented an implicit matrix factorization
method for learning the embeddings of transitive
verb phrases. The verb matrices learned by our
method capture the multiple meanings of transi-
tive verbs and we have shown that adjuncts play an
important role in learning the meanings of transi-
tive verb phrases. In our experiments, our method
outperforms the previous state of the art on a tran-
sitive verb disambiguation task. In future work,
we will investigate how the learned phrase embed-
dings improve real-world NLP applications.
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