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Abstract

The automatic generation of image cap-
tions has received considerable attention.
The problem of evaluating caption gener-
ation systems, though, has not been that
much explored. We propose a novel eval-
uation approach based on comparing the
underlying visual semantics of the candi-
date and ground-truth captions. With this
goal in mind we have defined a seman-
tic representation for visually descriptive
language and have augmented a subset of
the Flickr-8K dataset with semantic anno-
tations. Our evaluation metric (BAST) can
be used not only to compare systems but
also to do error analysis and get a better
understanding of the type of mistakes a
system does. To compute BAST we need
to predict the semantic representation for
the automatically generated captions. We
use the Flickr-ST dataset to train classi-
fiers that predict STs so that evaluation can
be fully automated 1.

1 Introduction

In recent years, the task of automatically generat-
ing image captions has received considerable at-
tention. The task of evaluating such sentences,
though, has not been that much explored, and
mainly holds on metrics such as BLEU (Papineni
et al., 2002) and ROUGE (Lin and Hovy, 2003),
originally proposed for evaluating machine trans-
lation systems. These metrics have been shown to
poorly correlate with human evaluations (Vedan-
tam et al., 2014). Their main problem comes from
the fact that they uniquely consider n-grams agree-
ment between the reference and candidate sen-
tences, focusing thus only on the lexical informa-

1System and data are made available here: https://
github.com/f00barin/semtuples

tion and obviating the agreement at the visual se-
mantic level. These limitations are illustrated in
Figure 1.

Vedantam et al. (2014) have proposed to ad-
dress these limitations by making use of a Term
Frequency Inverse Document Frequency (TF-IDF)
that places higher weight on n-grams that fre-
quently occur in the reference sentence describing
an image, while reducing the influence of popular
words that are likely to be less visually informa-
tive.

In this paper, we consider a different alterna-
tive to overcome the limitations of BLEU and
ROUGE metrics, by introducing a novel approach
specifically tailored to evaluate systems for im-
age caption generation. To do this, we first define
a semantic representation for visually descriptive
language, that allows measuring to which extent
an automatically generated caption of an image
matches the underlying visual semantics of human
authored captions.

To implement this idea we have augmented
a subset of the Flickr-8K dataset (Nowak and
Huiskes, 2010) with a visual semantic represen-
tation, which we call Semantic Tuples (ST). This
representation shares some similarity with the
more standard PropBank (Kingsbury and Palmer,
2002) style Semantic Roles (SRL). However, SRL
was designed to have high coverage of all the
linguistic phenomena present in natural language
sentences. In contrast, our ST representation is
simpler and focuses on the aspects of the predi-
cate structure that are most relevant for capturing
the semantics of visually descriptive language.

This ST representation is then used to measure
the agreement between the underlying semantics
of an automatically generated caption and the se-
mantics of the gold reference captions at differ-
ent levels of granularity. We do this by aggregat-
ing the STs from the gold captions and forming
a Bag of Aggregated Semantic Tuples represen-

18



Ref: A man sliding down a huge sand dune on a sunny day 

SA: A man slides during the day on a dune. 

SB: A dinosaur eats huge sand and remembers a sunny day. 

System	
   1-­‐gram	
   2-­‐gram	
   3-­‐gram	
   4-­‐gram	
  

A	
   0.47	
   0.29	
   0.16	
   0.11	
  

B	
   0.49	
   0.36	
   0.23	
   0.17	
  

Figure 1: The limitations of the BLEU evaluation metric: SA and SB are two automatically generated
sentences that we wish to compare against the manually authored Ref. However, while SB does not relate
to the image, it obtains higher n-gram similarity than SA, which is the basis of BLEU and ROUGE.

tation (BAST) that describes the image. We do
the same for the automatically generated sentences
and compute standard agreement metrics between
the gold and predicted BAST. One of the appeals
of the proposed metric is that it can be used not
only to compare systems but also to do error anal-
ysis and get a better understanding of the type of
mistakes a system does.

In the experimental section we use the ST aug-
mented portion of the Flickr-8K dataset (Flickr-
ST) as a benchmark to evaluate two publicly avail-
able pre-trained models of the Multimodal Recur-
rent Neural Network proposed by (Vinyals et al.,
2014) and (Karpathy and Fei-Fei, 2014) that gen-
erate image captions directly from images. To
compute BAST we need to predict STs for the
automatically generated captions. This is sub-
optimal because, ideally, we would like a metric
that can be computed without human intervention.
We therefore use the Flickr-ST dataset to train
classifiers that predict STs from sentences. While
this might add some noise to the evaluation, we
show that the STs can be predicted from sentences
with a reasonable accuracy and that they can be
used as a good proxy for the human annotated STs.

In summary our main contributions are:

• A definition of a linguistic representation (the
ST representation) that models the relevant
semantics of visually descriptive language.

• Using ST we propose a new approach to eval-
uate sentence generation systems that mea-
sures caption-gold agreement with respect to
the underlying visual semantics expressed in
the reference captions.

• A new dataset (Flickr-ST) of captions aug-
mented with corresponding semantic tuples.

• A new metric BAST (Bag of Aggregated Se-
mantic Tuples) to compare systems. In ad-
dition, this metric is useful to understand the
types of errors made by the systems.

• A new fully automated metric that uses
trained classifiers to predict STs for candidate
sentences.

The rest of the paper is organized as follows:
Section 2 presents the evaluation approach, in-
cluding the proposed ST representation, the hu-
man annotation process to produce a dataset of
captions and STs and the proposed BAST met-
ric computed over the ST representation. Sec-
tion 3 describes in detail the proposed BAST met-
ric. Section 4 describes the annotation process and
the creation of the Flickr-ST dataset. Section 5
gives some details about the automatic sentence
to ST predictors used to compute the (fully auto-
matic) BAST metric. Section 6 discusses related
work. Finally, Section 7 presents experiments us-
ing the proposed metric to evaluate state-of-the-art
Multimodal Recurrent Neural Networks for cap-
tion generation.

2 Semantic Representation of Visually
Descriptive Language

We next describe our approach for evaluating sen-
tence generation systems. Figure 3 illustrates the
steps involved in the evaluation of a generated cap-
tion. Given a caption we first generate a set of se-
mantic tuples (STs) which capture the underlying
semantics. While these STs could be generated
by human annotators this will not be feasible for
an arbitrarily large number of generated captions.
Thus, in Section 5 we describe an approach to au-
tomatically generate STs from captions.
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Participants (PA)
Predicates (PR) 
Locatives (LO) 

= {MAN}
= {SLIDE}
= {DUNE, DAY}

<SLIDE, MAN, NULL, DUNE (Spatial)>
<SLIDE, MAN, NULL, DAY (Temporal)>

PatientAgentPredicate Locative

PA+PR 
PA+LO 
PR+LO 

= {SLIDE-MAN}
= {MAN-DUNE, MAN-DAY}
= {SLIDE-DUNE, SLIDE-DAY}

PA+PR+LO = {SLIDE-MAN-DUNE, 
                  SLIDE-MAN-DAY}

Arguments-Pairs

Arguments-Triplets

Single-Arguments
Bag of Aggregated Semantic Tuples (BAST)

Semantic Tuples (ST)
Ref: A man sliding down a hugh sand dune on a sunny day

Figure 2: Bag of Aggregated Semantic Tuples.

In the second step of the evaluation we map the
set of STs for the caption to a bag of arguments
representation which we call BAST. Finally, we
compare the BAST of the caption to that of the
gold captions. The proposed metric allows us to
measure the precision and recall of a system in
predicting different components of the underlying
visual semantics.

In order to define a useful semantic represen-
tation of Visually Descriptive Language (VDL)
(Gaizauskas et al., 2015) we follow a basic de-
sign principle: we strive for the simplest represen-
tation that can cover most of the salient informa-
tion encoded in VDL and that will result in annota-
tions that are not too sparse. The last requirement
means that in many cases we will prefer to map
two slightly different visual concepts to the same
semantic argument and produce a coarser seman-
tic representation.

In contrast, the PropBank representation (SRL)
(Kingsbury and Palmer, 2002) is what we would
call a fine-grained representation which was de-
signed with the goal of covering a wide range of
semantic phenomena, i.e. cover small variations in
semantic content. Furthermore, the SRL represen-
tation is designed so that it can represent the se-
mantics of any natural language sentence whereas
our representation focuses on covering the seman-
tics present in VDL. Our definitions of semantic
tuples are more similar to the proto-roles described
by Dowty (1991).

Given an image caption we wish to generate
a representation that captures the main underly-
ing visual semantics in terms of the events or ac-
tions (we call them predicates), who and what are

the participants (we call them agents and patients)
and where or when is the action taking place (we
call them locatives). For example, the caption
“A brown dog is playing and holding a ball in a
crowded park” would have the associated seman-
tic tuple: [predicate = play; agent = dog; patient =
null; locative = park] and [predicate = hold; agent
= dog; patient = ball; locative = park]. We call
each field of a tuple an argument; an argument
consists of a semantic type and a set of values. For
example the first argument of the first semantic tu-
ple is a predicate with value play. Notice that argu-
ments of type agent, patient and locative can take
more than one value. For example: “A young girl
and an old woman eat fruits and bread in a park on
a sunny day” will have the associated semantic tu-
ple: [predicate = eat; agent = girl, woman; patient
= fruits, bread; locative = park, day].

Note also that we use italics to represent ar-
gument values and distinguish them from vari-
ables (over some well defined discrete domain)
and words or phrases in the caption that we might
regard as lexical evidence for that value. For ex-
ample, the caption “A brown dog is playing and
holding a ball in a crowded park” will have the as-
sociated semantic tuple: [predicate = play; agent
= dog; patient = null; locative = park]. The word
associated with the predicate play is playing, but
play is a variable. In this case we are assuming
that the domain for the predicate variable is the set
of all lemmatized verbs.

Argument values will in most cases have some
word or phrase in the caption that can be regarded
as the lexical realization of the value. We refer to
such a realization as the ‘span’ of the value on the
caption. From the previous example, the span of
the predicate is ‘playing’, and its value is play. Not
all values will have an associated span, since as we
describe below, argument values might have tacit
spans which can be inferred from the information
contained in the caption but they are not explic-
itly mentioned. In practice to generate the seman-
tic representation we will ask human annotators to
mark the spans in the caption corresponding to the
argument values (for non-tacit values). We will
define the argument variable to be a ‘canonical’
representation of the span. How this ‘canonical’
representation is defined will be described in more
detail in the next section, where we discuss the an-
notation process.

20



A man sliding down a huge sand dune on a sunny day

A man slides during the day on a dune. A dinosaur eats huge sand and remembers a sunny day.

<Pr: SLIDE, Ag: MAN, Pa: NULL, Lo (S): DUNE>
<Pr: SLIDE, Ag: MAN, Pa: NULL, Lo (T): DAY>

<Pr: EAT, Ag: DINOSAUR, Pa: SAND, Lo: NULL>
<Pr: REMEMBER, Ag: DINOSAUR, Pa: DAY, Lo: NULL>

Participants (PA)
Predicates (PR) 
Locatives (LO) 
PA+PR 
PA+LO 
PR+LO 
PA+PR+LO 

= {MAN}
= {SLIDE}
= {DUNE, DAY}
= {SLIDE-MAN}
= {MAN-DUNE, MAN-DAY}
= {SLIDE-DUNE, SLIDE-DAY}
= {SLIDE-MAN-DUNE, 
                  SLIDE-MAN-DAY}

Participants (PA)
Predicates (PR) 
Locatives (LO) 
PA+PR

PA+LO 
PR+LO 
PA+PR+LO 

= {DINOSAUR, SAND, DAY}
= {EAT, REMEMBER}
= {NULL}
= {EAT-DINOSAUR, REMEMBER-DAY,
     REMEMBER-DINOSAUR, EAT-SAND}
= {DINOSAUR-NULL, SAND-NULL, DAY-NULL}
= {EAT-NULL, DINOSAUR-NULL}
= {EAT-DINOSAUR-NULL, REMEMBER-DAY-NULL, 
      EAT-SAND-NULL, REMEMBER-DINOSAUR-NULL}

Step 1: Compute STs

Step 2: Compute BAST 

Step 3: Compute Prec-Rec-F1 Metrics with respect to reference BAST 
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Figure 3: Computation of the BAST metric.

3 The Bag of Semantic Tuples Metric

As mentioned earlier, our semantic representation
is ‘coarser’ than PropBank style semantic role an-
notations. Furthermore, there are two other im-
portant differences: 1) We do not represent the se-
mantics of atomic sentences but that of captions
that might actually consist of multiple sentences,
and 2) Our representation is truly semantic mean-
ing that resolving the argument value of a predi-
cate might involve making logical inferences. For
example we would annotate the caption: “A man
is standing on the street. He is holding a camera”
with [predicate = standing; agent = man; patient
= null; locative = street] and [predicate = hold;
agent = man; patient = null; locative = street]. This
means that in contrast to the SRL representation,
our semantic representation will not, in general, be
‘aligned’ with the syntax of the caption.

We now give a more detailed description of each
argument type:

• The Predicate is the main event described by

the sentence. We consider two types of pred-
icates, those that describe an action and those
that describe a state. Action predicates are
in most cases expressed in the caption using
verb-phrases. However, some action predi-
cates might not be explicitly mentioned in the
caption but can be naturally inferred. For ex-
ample, the caption “A woman in a dark blue
coat, cigarette in hand” would be annotated
with the tuple: [predicate = hold; agent =
woman; patient = cigarette; locative = null].
In the case that the predicate is indicating a
state of being, there is typically a conjugation
of the verb “to be”, i.e. is, are, was. For ex-
ample: “A person is in the air on a bike near
a body of water.”

• The Agent is defined as the entity that is per-
forming the action. Roughly speaking, it is
the answer to the question: Who is doing the
action? For example: in the sentence “The
man is sleeping under a blanket in the street
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as the crowds pass by” we have the predicate
= sleeping with agent = man, and predicate =
pass with agent = crowd. In the case of predi-
cates that describe a state of being such as “A
person is in the air on a bike near a body of
water”, we define the agent to be the answer
to the question: Whose state is the predicate
describing? Thus for the given example we
would have agent = person.

• The Patient is the entity that undergoes a
state of change or is affected by the agent per-
forming some action. For example, the cap-
tion “A woman in a dark blue coat, cigarette
in hand.” would have: [patient = cigarette].
Unlike the predicate and agent, the patient
is not always present, for example in “Two
people run in the sand at the beach.” The
patient is never present with state-of-being
predicates as: “A person is in the air on a bike
near a body of water”. When there is no pa-
tient we say that the argument value is null.

• The Locative is defined as the answer to the
question: Where or When is the action tak-
ing place? So there are two main types of
locatives, spatial locatives such as on the wa-
ter and temporal locatives such as at night.
Spatial locatives in turn can be of different
types, they can be scenes such as on-beach
or they can express the relative location of
the action with respect to a reference object
such as under-blanket in the caption “A man
sleeping under the blanket”. The locatives are
actually composed of two parts: a preposi-
tion (if present), which expresses the tempo-
ral or spatial situation, and the main object
or scene. Locatives, like the patient, are not
always present. Thus the locative might also
take the value null.

We could also consider a richer semantic repre-
sentation that includes modifiers of the arguments,
for example for the caption: “A brown dog is play-
ing and holding a ball in a crowded park” we
would have the associated semantic tuples: [pred-
icate = play; agent = dog; agent-mod = brown
patient = null; locative = park] and [predicate =
hold; agent = dog; patient = ball; locative = park,
locative-mod = crowded]. For the first version of
the ST dataset, however, we opted for keeping the
representation as simple as possible and decided
not to annotate argument modifiers. One of the

reasons is that we observed that in most cases if we
can properly identify the main arguments extract-
ing their modifiers can be done automatically by
looking at the syntactic structure of the sentence.
For example if we can obtain a dependency parse
tree for the reference caption, extracting the syn-
tactic modifiers of dog is relatively easy.

4 The Flickr-ST Dataset: Human
Annotation of Semantic Tuples

We believe that one of the main reasons why most
of the evaluations used to measure caption genera-
tion performance involve computing surface met-
rics is that until now there was no dataset anno-
tated with underlying semantics.

To address this limitation we decided to create
a new dataset of images annotated with semantic
tuples as described in the previous section. Our
dataset has the advantage that every image is an-
notated with both the underlying semantics in the
form of semantic tuples and natural language cap-
tions that constitute different lexical realizations
of the underlying visual semantics. To create our
dataset we used a subset of the Flickr-8K dataset
with captions, proposed in (Hodosh et al., 2013).
This dataset consists of 8,000 images of people
and animals performing some action taken from
Flickr, with five crowd-sourced descriptive cap-
tions for each one. These captions are sought to
be concrete descriptions of what can be seen in
the image rather than abstract or conceptual de-
scriptions of non-visible elements (e.g. people or
street names, or the mood of the image).

We asked human annotators to annotate 250 im-
age captions, corresponding to 50 images taken
from the development set of Flickr-8K. In order
to ensure the alignment between the information
contained in the captions and their corresponding
semantic tuples, annotators were not allowed to
look at the referent image while annotating every
caption.

Annotators were asked to list all the unique tu-
ples present in the caption. Then, for each argu-
ment of the tuple, they had to decide if its value is
null, tacit or explicit (i.e. an argument value that
can be associated with a text span in the caption).
For explicit argument values we asked the anno-
tator to mark the corresponding span in the text.
That is, instead of giving a value for the argument,
we ask them to mark in the caption the evidence
for that argument.
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To create the STs that we use for evaluation we
first need to compute the argument values. We as-
sume that we can compute a function that maps
spans of text to argument variables, and we call
this the grounding function. Currently, we use a
very simple mapping from spans to argument val-
ues: they map to lowercase lemmatized forms.
Given the annotated data and a grounding func-
tion, we refer to the process of computing argu-
ment values for argument spans as projecting the
annotations.

With our approach for decoupling surface (i.e.
argument spans) from semantics (argument val-
ues) we can address some common problems in
caption generation evaluation. The idea is sim-
ple, we can use the same annotation with different
grounding functions to get useful projections of
the original annotation. One clear problem when
evaluating caption generation systems is how to
handle synonymity, i.e. the fact that two surface
forms might refer to the same semantic concept.
For example, if the reference caption is: “A boy
is playing in a park”, the candidate caption: “A
kid playing on the park” should not be penalized
for using the surface form boy instead of kid. We
can address this problem by building a grounding
function that maps the argument span boy and the
argument span kid to the same argument variable.
We could automatically build such function using
a thesaurus.

Another common problem when evaluating
caption generation is the fact that the same vi-
sual entity can be described with different levels
of specificity. For example, for the previous refer-
ence caption it is clear that “A person is playing in
a park” should have a higher evaluation score than
“A dog playing in a park”. This is because any hu-
man reading the caption would agree that person is
just a ‘coarser’ way of referring to the same entity.
With our approach we could handle this problem
by having a coarser grounding function that maps
the argument span kid and the argument span per-
son to the same argument value human. The im-
portant thing is that for any grounding function we
can project the annotations and compute the eval-
uation, thus we can analyze the performance of a
system in different dimensions.

Our goal is to define an evaluation metric that
measures the similarity between the STs of the
ground-truth captions for an image and the STs of
a generated image caption. We wish to define a

metric that is useful not only to compare systems,
but also that allows for error analysis and some in-
sight on the types of mistakes performed by any
given system.

To do this we will first use the STs correspond-
ing to the ground-truth captions to compute what
we call a Bag of Aggregated Semantic Tuples rep-
resentation (BAST). Figure 2 shows a reference
caption and its corresponding STs and BAST. No-
tice that for simplicity we show a single reference
caption, in reality if there are k captions for an im-
age, we will first compute the STs corresponding
to all of them. The BAST representation is com-
puted in the following manner:

1. For the locatives and predicate arguments
compute the union of all the corresponding
argument values appearing in any ST. For the
patient and agent we will compute a single
set which we refer to as the participants set.
We call this portion of the BAST the bag of
single arguments representation.

2. We compute the same representation but
now we look at pairs of argument val-
ues, meaning: predicate+participant, partic-
ipant+locative and predicate+locative. We
call these the bag of argument pairs.

3. Similarly we can also compute a
bag of argument triplets for predi-
cate+participant+locative

We can also compute the BAST representation
of an automatically generated caption. This can
be done via human annotation of the caption’s STs
or using a model that predicts STs from captions
(such a model is described in the next section).
Now if we have the ground-truth BAST and the
BAST of the candidate caption we can compute
standard precision, recall and F1 metrics over the
different components of the BAST. More specif-
ically, for the single argument component of the
BAST we compute:

• Predicate-Precision: This is the number of
predicted predicates present in the BAST of
the candidate caption that where also present
in the BAST of the ground-truth reference
captions for the corresponding image. That is
this is the number of correctly predicted pred-
icates.

23



• Predicate-Recall: This is the number of pre-
dicted predicates present in the BAST of the
ground-truth captions that were also present
in the BAST of the candidate caption.

• Predicate-F1: This is the standard metric,
i.e. the harmonic mean of precision and re-
call.

We can compute the same metrics for other ar-
guments and for argument pairs and triplets of ar-
guments. Figure 3 shows an example of comput-
ing the BAST evaluation metric for two captions.

5 Automatic Prediction of Semantic
Tuples from Captions

To compute the BAST metric we need to have STs
for the candidate captions, one option is to perform
a human annotation. The problem is that collect-
ing human annotations is an expensive and time
consuming task. Instead we would prefer to have
a fully automated metric. In our case that means
that we need an automated way of generating STs
for candidate captions. We show in this section
that we can use the Flickr-ST dataset to train a
model that maps captions to their underlying ST
representation.

We would like to point out that while this task
has some similarities to semantic-role labeling, it
is different enough so that the STs can not be di-
rectly derived from the output of an SRL system,
in fact our model uses the output of an SRL sys-
tem in conjunction with other lexical and syntactic
features.

Our model exploits several linguistic features
of the caption extracted with state-of-the-art tools.
These features range from shallow part of speech
tags to dependency parsing and semantic role la-
beling(SRL). More specifically, we use the FreeL-
ing lemmatizer (Carreras et al., 2004), Stanford
part of speech(POS) tagger (Toutanova et al.,
2003), TurboParser (Martins et al., 2013) for de-
pendency parsing and Senna (Collobert et al.,
2011) for semantic role labeling. We also tried
using state-of-the art SRL system from Roth and
Woodsend (2014), but we observed that Senna per-
formed better on our dataset.

We extract the predicates by looking at the
words tagged as verbs by the POS tagger. Then,
the extraction of arguments for each predicate is
resolved as a classification problem. More specifi-
cally, for each detected predicate in a sentence we

Model 1 Model 2
Participants (PA) 0.967 0.865
Predicates (PR) 0.703 0.808
Locatives (LO) 0.793 0.819
PA-PR 0.884 0.812
PR-LO 0.779 0.723
PA-LO 0.849 0.757
PA-PR-LO 0.815 0.704

Table 1: F1 score of the automatic BAST extractor
taking as reference the manually annotated tuples
for the sentences generated by the two models.

regard each noun as a positive or negative training
example of a given relation depending on whether
the candidate noun is or is not an argument of the
predicate. We use these examples to train an SVM
that decides if a candidate noun is or is not an argu-
ment of a given predicate in a given sentence. This
classifier exploits several linguistic features com-
puted over the syntactic path of the dependency
tree connecting the candidate noun and the pred-
icate and features of the predicted semantic roles
of the predicate.

Table 1 shows the F1 of our predicted STs com-
pared against manually annotated STs for the two
caption generation systems that we evaluate in the
experiments section.

6 Related Work

Our definition of semantic tuple is reminiscent in
spirit to Farhadi et al. (2010) scene-object-action
triplets. In that work, the authors proposed to use
a triplet meaning representation as a bridge be-
tween images and natural language descriptions.
However, the similarity ends there because their
goal was neither to develop a formal semantic
representation of VDL nor to provide a semanti-
cally annotated dataset that could be used for au-
tomatic evaluation of captioning systems. At the
end, their dataset was created in a very simplis-
tic manner by extracting subject-verb, object-verb
and locative-verb pairs from a labeled dependency
tree by checking for dependencies where the head
and modifier matched a small fix set of possible
objects, actions and scenes. As we have illus-
trated with multiple caption examples, the seman-
tics of VDL can be quite complex and it can be
very ‘loosely aligned’ with the syntactic (e.g. de-
pendency structure) of the sentence. There has
also been some recent work on semantic image
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retrieval based on scene graphs (Johnson et al.,
2015), where they model semantic representation
of image content to retrieve semantically related
images.

BLEU has been the most popular metric used
for evaluation, its limitations when used in the
context of evaluation of caption quality have been
investigated in several works (Kulkarni et al.,
2013; Elliott and Keller, 2013; Callison-Burch et
al., 2006; Hodosh et al., 2013). Another com-
mon metric is ROUGE which has been shown to
have some weak correlation with human evalua-
tions (Elliott and Keller, 2013). An alternative
metric for caption evaluation is METEOR which
seems to be better correlated with human evalua-
tions than BLEU and ROUGE (Elliott and Keller,
2014). Recently a new consensus based metric
was proposed by Vedantam et al. (2014), here, the
main idea is to measure similarity of a caption to
the majority of ground-truth reference captions.
One of the limitations of metrics based on con-
sensus is that they are better suited for cases when
many ground-truth annotations exist for each im-
age. We take a different approach, instead of aug-
menting a dataset with more captions, we directly
augment it with annotations which reflect what
are the most relevant pieces of information in the
available captions.

Hodosh et al. (2013) propose a different metric
for evaluating image-caption ranking systems and
it can not be directly applied to evaluate sentence
generation systems (i.e. systems that output novel
sentences).

7 Experiments

7.1 The evaluated models

The evaluated models are two instances of the
Multimodal Recurrent Neural Network described
in (Simonyan and Zisserman, 2014a) and (Karpa-
thy and Fei-Fei, 2014), that takes an image and
generates a caption. content of the image in natu-
ral language).

This model addresses the caption generation
task combining recent advances in Machine Trans-
lation and Image Recognition: it combines a
Convolutional Neural Network (CNN) initially
trained to extract image features, and a Long Short
Term Memory Recurrent Neural Network (RNN-
LSTM), which is used as a Language Model con-
ditioned by the image features to generate the cap-
tions one word at a time.

Both networks can then be re-trained (or fine-
tuned) together by back-propagation for the task
of generating sentences. However, in this work
we use the pre-trained models provided by Karpa-
thy 2 for both the CNN and the RNN, which have
been trained sequentially. is fed by the features ex-
tracted by the CNN during the training process).

The CNN used in our experiments is the 16-
layer model described in (Simonyan and Zisser-
man, 2014b), which achieves state-of-the-art re-
sult in many image recognition tasks, provided by
the authors of the paper, and we used the standard
feature extraction procedure.

For the RNN-LSTM part, we have evaluated
two models to generate two distinct sets of cap-
tions that then could be evaluated using the BAST
metric. The architecture is the same in both
networks but one is trained using the Flickr-
8K (LSTM-RNN-Flickr-8K) train set, dubbed
Model 1 in the rest of the paper, and the other
is trained using MicrosoftCOCO (LSTM-RNN-
MsCOCO) training set, dubbed Model 2. Both
networks can be downloaded from the NeuralTalk
project web-page. Results for the two models
using the existing metrics3 can be seen in Ta-
ble 2; notice that our installation reproduces ex-
actly these results (third row).

7.2 BAST Metric Results
Figure 5 shows BAST scores for the two caption
generation models, we show both results with the
manually annotated STs and with the ones auto-
matically predicted by the models. The first obser-
vation is that the automatically generated STs are
a good proxy for the human evaluation. For all ar-
gument combinations, with the exception of loca-
tives (where the differences between the two sys-
tems are small) both the BAST computed from au-
tomatic and manually annotated STs sort the two
systems in the same way. Figure 4 shows some
example images and generated captions with the
extracted BAST tuples.

Another observation is that overall the numbers
are quite low. Despite all the enthusiasm with the
latest NN models for sentence generation the F1
of the system for locatives and predicates is quite

2We have used the open source project NeuralTalk
https://github.com/karpathy/neuraltalk
which makes it easy to use different pre-trained models for
each network.

3Evaluation metrics other than BAST have been com-
puted using the tools available at the MsCOCO Challenge
website (Lin et al., 2014)
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Dataset test RNN CIDEr Bleu 4 Bleu 3 Bleu 2 Bleu 1 ROUGE L METEOR
MSCOCO* web ref. 0.666 0.220 0.317 0.461 0.646 0.469 0.205
MSCOCO* Model 1 0.146 0.068 0.127 0.253 0.448 0.341 0.128
MSCOCO* Model 2 0.666 0.220 0.317 0.461 0.646 0.469 0.205
Flickr-ST Model 1 0.356 0.157 0.242 0.377 0.559 0.422 0.178
Flickr-ST Model 2 0.208 0.101 0.179 0.316 0.528 0.374 0.145

Table 2: Results with current metrics for the two models described in the text. MSCOCO* is the subset
of MSCOCO used in the NeuralTalk reference experiments. The first row are the results reported in the
NeuralTalk project web-site.

A dog is standing in the 
grass with a frisbee.

Model 1 <dog, run, grass><dog, run, grass>A dog runs through the grass.
Manual annotation Automatic extractionGenerated sentence

Model 2 <dog, stand, grass> <dog, be, {grass, frisbee}>
<dog, stand, {grass, frisbee}>

A dog chases a nerf ball in the grass.
A dog playing fetch in a green field.
A multicolor dog chasing after a ball across the grass.
A dog chasing after a ball on the grass.
Wolf-like dog chasing white wiffle ball through a green 

<{dog, ball}, chase, grass>
<{dog, fetch}, play, field>
<{dog, ball}, chase-after, grass>
<{dog, ball}, chase-after, grass>
<{dog, ball}, chase, field>

Gold captions Gold tuples

A bird is standing on a 
rock in the water.

Model 1 <dog, jump, log><dog, jump, log>A dog jumps over a log.
Manual annotation Automatic extractionGenerated sentence

Model 2 <bird, stand, {water, 
rock}>

<bird, be, {water, rock}>
<bird stand, {water, rock}>

A large white bird goes across the water.
A white bird is flying off the water surface.
A white bird is preparing to catch something in the water.
The large white bird's reflection shows in the water.
White bird walking across wet sand.

<bird, go, water>
<bird, fly, water>
<{bird, something}, catch, water>
<reflection, show, water>
<bird, walk, sand>

Gold captions Gold tuples

Figure 4: Example results of the two caption generation systems and BAST tuples.

modest, below 25%. Of all the argument types the
participants seem to be the easiest to predict for
both models, followed by locatives and predicates.
This is not surprising since object recognition is
probably a more mature research problem in com-
puter vision and state-of-the-art models perform
quite well. Overall, however, it seems that caption
generation is by no means a solved problem and
that there is quite a lot of room for improvement.

8 Conclusion

In this paper we have studied the problem of rep-
resenting the semantics of visually descriptive lan-
guage. We defined a simple, yet useful, repre-
sentation and a corresponding evaluation metric.
With the proposed metric we can better quantify
the agreement between the visual semantics ex-
pressed in the gold captions and a generated cap-
tion. We show that the metric can be implemented
in a fully automatic manner by training models
that can accurately predict the semantic represen-
tation from sentences. To allow for an objective
comparison of caption generation systems we cre-
ated a new manually annotated dataset of images,
captions and underlying visual semantics repre-

PA PR LO PA−PR PR−LO PA−LOPA−PR−LO
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Model 1 (hand)
Model 1 (auto)
Model 2 (hand)
Model 2 (auto)

Figure 5: F1 score of the BAST tuples, manu-
ally and automatically extracted, from the captions
generated by the two evaluated systems for the 50
annotated Flickr-8k validation set images.
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sentation by augmenting the widely used Flickr-
8K dataset.

Our metric can be used to compare systems but,
more importantly, we can use the metric to do a
better error analysis. Another nice property of our
approach, is that by decoupling the realization of
a concept as a lexical item from the underlying vi-
sual concept (i.e. the real world entity or event)
our annotated corpus can be used to derive differ-
ent evaluation metrics.
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