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Abstract

We study non-deterministic oracles for
training non-projective beam search
parsers with swap transitions. We map out
the spurious ambiguities of the transition
system and present two non-deterministic
oracles as well as a static oracle that mini-
mizes the number of swaps. An evaluation
on 10 treebanks reveals that the difference
between static and non-deterministic
oracles is generally insignificant for beam
search parsers but that non-deterministic
oracles can improve the accuracy of
greedy parsers that use swap transitions.

1 Introduction

Training transition-based dependency parsers re-
lies on an oracle – a function that, given a parser
configuration and a gold dependency tree, returns
the correct transition. The sequence of transitions
required to derive a given dependency tree is, how-
ever, typically not unique, and for certain config-
urations more than one transition is correct. This
issue has typically been dealt with by defining a
canonical order among the transitions, thereby re-
solving such ambiguities in a deterministic way.
In addition to the determinism, standard oracles
also make the assumption that the gold tree can be
recovered from the current configuration. Oracles
with this behavior are known as static oracles.

Recently, much work has been devoted to the
development of dynamic oracles that do away with
both of these assumptions (Goldberg and Nivre,
2013; Goldberg et al., 2014; Gómez-Rodrı́guez et
al., 2014). Dynamic oracles have been shown to be
very successful for training greedy parsers. Since
greedy parsers typically suffer from error propa-
gation, dynamic oracles enable the parsers to learn
to do “the next best thing” after having made a
mistake, resulting in considerable improvements
in parsing accuracy.

Nevertheless, greedy transition-based parsers
still lag behind search-based parsers that explore a
larger set of possible transition sequences. Search-
based parsers are typically realized through beam
search and trained using global learning, where a
discriminative model is trained to score not just
single transitions, but a sequence of transitions
(Zhang and Clark, 2008). The combination of
non-greedy inference and global learning enables
search-based parsers to overcome the error prop-
agation problem. However, since the model is
globally trained, oracles that can recover from past
mistakes and do the next best thing are not ap-
plicable in this scenario. On the other hand, it
is an open question whether search-based parsers
should be trained using static oracles, or whether
their performance can be further increased by us-
ing a non-deterministic oracle, i.e., an oracle that
considers all possible transition sequences that can
derive the gold dependency tree.

We evaluate the hypothesis that transition-based
parsers with beam search can be improved by
using non-deterministic oracles during training.
We do this in the context of the transition sys-
tem by Nivre (2009), henceforth SwapStandard,
which extends the ArcStandard system (Nivre,
2004) with a swap transition to accommodate non-
projective dependency trees. This system has been
shown to be very effective with beam search, even
rivaling graph-based dependency parsers (Bohnet
and Nivre, 2012; Bohnet et al., 2013). Empiri-
cally, we find that the utility of non-deterministic
oracles for training beam search parsers is rather
limited and typically the difference compared to a
static oracle is insignificant. However, our experi-
ments also show that the non-deterministic oracles
can be beneficial when training greedy parsers, a
result that has not previously been shown for non-
projective systems.

The main contribution of this paper is the first
characterization of a non-deterministic oracle for
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the SwapStandard system, based on a thorough
analysis of spurious ambiguities. As a side-result,
we also arrive at a static oracle that minimizes the
number of swap transitions required to parse any
non-projective dependency tree, thereby solving
a previously open problem (Nivre, 2009; Nivre
et al., 2009). In addition, we provide the first
empirical evaluation of non-deterministic oracles
for training beam search parsers, as well as the
first evaluation with greedy parsers using a non-
projective transition system.

2 Related Work

During the last decade, a plethora of transition sys-
tems has been described. Early systems, such as
ArcEager (Nivre, 2003) and ArcStandard (Nivre,
2004) were restricted to projective structures. Sev-
eral systems that can accommodate non-projective
structures have subsequently been described (At-
tardi, 2006; Gómez-Rodrı́guez and Nivre, 2010,
inter alia). These systems are, however, re-
stricted to certain subsets of non-projective struc-
tures. In contrast, SwapStandard imposes no such
restrictions and is able to parse unrestricted non-
projective structures.

Dynamic oracles were first introduced by Gold-
berg and Nivre (2012) for the ArcEager system.
They also proposed the standard way of exploiting
dynamic oracles for training greedy parsers known
as training with exploration. Here, the idea is that
sometimes erroneous transitions are predicted dur-
ing training. The dynamic oracle then comes into
play by guiding the model towards the best pos-
sible tree, subject to the mistakes that have al-
ready been made. However, search-based parsers
model the parsing problem as a structured pre-
diction problem and are trained to predict opti-
mal sequences of transitions for an entire sentence.
Training with exploration is thus not applicable.

More recent work on dynamic oracles has pri-
marily focused on developing dynamic oracles
for other transition systems. Goldberg et al.
(2014) present dynamic oracles for the ArcStan-
dard system and the LR-spine parser by Sarto-
rio et al. (2013). The only dynamic oracle for
non-projective dependency trees was introduced
by Gómez-Rodrı́guez et al. (2014) for a special
case of Attardi’s (2006) system. To date no dy-
namic oracle has been presented for transition sys-
tems that can handle unrestricted non-projective
dependencies.

The underlying idea in our work is that there
may be more than a single decomposition (i.e.,
transition sequence) that can recover the correct
output (dependency tree). Rather than selecting a
single unique such decomposition, the choice of
decomposition can be thought of as latent and de-
ferred to the machine learning algorithm. This ap-
proach has been shown to be successful for a num-
ber of tasks, including coreference resolution (Fer-
nandes et al., 2012), semantic parsing (Zhou et al.,
2013), and statistical machine translation (Yu et
al., 2013), to name a few.

3 Transition System

We begin by describing our notation and the
SwapStandard system. For simplicity we omit
the inclusion of arc labels from this description,
although for the experimental evaluation we im-
plement a labeled version of this system. For a
more formal description of the system, as well as
proofs of soundness and completeness, we refer
the reader to Nivre (2009).

The SwapStandard system operates on configu-
rations c = (Σ, B,A), where Σ denotes a stack
of partially processed tokens, B denotes a buffer
of remaining input tokens, and A is a set of arcs.
We denote stack items by si, i ≥ 0 where s0 de-
notes the topmost item on the stack. Similarly, let
bi, i ≥ 0 denote the items of the buffer, b0 denoting
the first element on the buffer. Finally, let h → d
denote an arc from the head h to the dependent d.

The system begins in an initial configuration
c0 = ([0], [1, 2, 3, ...], ∅), where the stack consists
solely of the root token (numbered 0), all input to-
kens are on the buffer (numbered 1, 2, ...), and the
arc set is the empty set. A configuration is termi-
nal when the buffer is empty and the stack consists
only of the root token 0.

The possible transitions of the system are

• Shift (SH) – removes b0 from the buffer and
pushes it onto the stack,

• LeftArc (LA) – introduces an arc s0 → s1 and
removes s1 from the stack,

• RightArc (RA) – introduces an arc s1 → s0 and
removes s0 from the stack,

• Swap (SW) – removes s1 from the stack and
places it as the first element on the buffer.

The SW transition reorders tokens from the input
on the fly, enabling the system to recover non-
projective trees. Informally, a dependency tree is
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root That ’s what they ’re after

nsubj
root pobj

nsubj

ccomp

prep

Figure 1: A non-projective dependency tree.

non-projective if it cannot be drawn without any
crossing arcs. An example sentence with a non-
projective tree is shown in Figure 1.

The total number of transitions required to parse
a sentence of length n is bounded from below by
2n since every token needs to be shifted onto the
stack once and attached to its head through an LA
or RA once. Additionally, every SW moves a token
back onto the buffer which subsequently needs to
be shifted again, adding 2k transitions for k SW.

Eager oracle. Nivre (2009) presents a static or-
acle for the SwapStandard system. A high-level
algorithmic description of this oracle is shown in
Algorithm 1. The functions CANLA, CANRA,
and CANSW define the requirements for the cor-
responding transitions. For LA the requirement is
that s0 is the head of s1 and that s1 has already
collected all of its own dependents, and vice versa
for RA.

To decide when SW can be applied, Nivre (2009)
introduces the notion of projective order which
is obtained through an inorder traversal of the de-
pendency tree. The projective order is a total or-
der over the tokens of a sentence. If the tokens
are sorted accordingly, the tree becomes projec-
tive. The SW transition is allowed when s0 pre-
cedes s1 according to the projective order.

For a given sentence x, which is understood to
include a representation of x’s dependency tree
and projective order, Algorithm 1 can be used to
create a sequence of transitions that can derive the
corresponding dependency tree. Specifically, iter-
atively call the oracle starting from x’s initial con-
figuration until the terminal configuration has been
reached. This transition sequence is the oracle se-
quence for x.

In the example from Figure 1, the projective or-
der is That < ’s < they < ’re < what < after. The
difference compared to the original word order is
that what has been moved two tokens to the right.
This means that SW is permissible when either of
they or ’re are s0 and what is s1. The oracle would
apply SW when what is s1 and they is s0. It would
then continue with two more SH followed by an-

Algorithm 1 Generic static oracle
Input: Configuration c, sentence x
1: if CANLA(c, x) then
2: return LA
3: else if CANRA(c, x) then
4: return RA
5: else if CANSW(c, x) then
6: return SW
7: else
8: return SH

other SW, thereby obtaining the projective order.
Since this oracle applies SW whenever the projec-
tive order admits it, we refer to it as EAGER.

Lazy oracle. For non-projective trees, the se-
quence given by EAGER is often not the shortest
sequence, and shorter sequences that require fewer
SW transitions to produce the same parse may be
possible. Drawing upon this observation, Nivre et
al. (2009) present an improved oracle that consid-
erably reduces the number of swaps. Their oracle
is based on the same basic structure as the one in
Algorithm 1, but the semantics of CANSW are re-
defined. The oracle relies on a notion of maximal
projective components (MPCs). In addition to
requiring that s0 and s1 appear in the wrong or-
der with respect to the projective order, this oracle
also requires s0 and s1 not to be part of the same
MPCs. MPCs are defined as the resulting subtrees
obtained by running the oracle parser without SW
until it hits a dead end. Nivre et al. (2009) show
that this oracle substantially reduces the number
of SW transitions, sometimes by up to 80%.

In the example from Figure 1 this oracle would
not admit the first SW transition when what is s1

and they is s0. Instead, it would continue by shift-
ing ’re and then attaching they through an LA. As
this oracle tries to postpone SW transitions when
possible, we refer to it as LAZY.

4 Spurious Ambiguities

The static oracles presented above can produce a
sequence of transitions to derive any dependency
tree. By design, the algorithm selects among the
possible transitions using a pre-defined order, i.e.,
the order of the tests in the if-clauses. This pro-
cedure yields a deterministic sequence of transi-
tions for any dependency tree. This sequence is
not necessarily the only correct one for a given de-
pendency tree. In fact, most dependency trees seen
in standard treebanks can be derived from more
than one sequence of transitions. Different such
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root John likes Mary
0 1 2 3

subj
root

obj 2 → 1

2 → 3

2 → 1
2 → 1
2 → 3

2 → 1
2 → 3
0 → 2

SH
SH

RASH
LA

SH

RA

RA

LA

Figure 2: A dependency tree which exhibits the SH-LA ambiguity (left) and a lattice that encodes the
two alternative transition sequences (right).

sequences always start and end with the same tran-
sitions, however, somewhere along the way a fork
point occurs where more than one transition can be
applied while still keeping the desired dependency
tree reachable. We call these fork points spurious
ambiguities as they all lead to the same tree. We
have already seen one such ambiguity above, com-
paring EAGER and LAZY, namely the SH-SW am-
biguity. Below we review the remaining spurious
ambiguities of the SwapStandard system and give
examples of each kind.

SH-LA ambiguity. While the canonical way of
constructing the dependency tree is to attach left
dependents as early as possible, these decisions
can sometimes be delayed. Consider the exam-
ple sentence on the left in Figure 2. Here, the
left dependent of likes need not be attached be-
fore the right. The example thus has two possible
transition sequences that create the given depen-
dency tree. These sequences can be illustrated in
the form of a lattice, as depicted on the right in
Figure 2. Nodes in the lattice correspond to parser
configurations and arcs between them to transi-
tions (color-coded for different transitions). The
initial configuration is to the left, and the terminal
configuration is on the right (indicated by a dou-
ble circle). The text in the nodes show the arcs
that have been constructed thus far.1 The SH-LA
ambiguity gives rise to the fork point where there
are two parallel paths, corresponding to early and
late attachments of the left dependent. This am-
biguity is not specific to SwapStandard, but also
occurs in the projective ArcStandard system. In
the projective case, this type of ambiguity always
arises when the parser can make an LA attachment
but b0 is dominated by s0.

SH-RA ambiguity. While the SH-RA ambiguity
is not possible in the plain ArcStandard system the
introduction of SW enables this ambiguity. In the
ArcStandard system, applying an SH when an RA

1While the nodes only display the arc set so far, the merge
points in the lattice truly correspond to equivalent states
where the stack, buffer, and arc set are all identical.

root Ausgelöst wurde sie durch Intel

OC
–

SB

MO

NK

Figure 3: A non-projective dependency tree
which exhibits the SH-RA ambiguity.

is possible results in “burying” tokens on the stack
such that they are irretrievable. Since the SW tran-
sition moves tokens out of the stack and back onto
the buffer, it is sometimes possible to recover these
buried tokens and thus do the RA at a later point.

Consider the German sentence in Figure 3. The
static oracle would parse this sentence by first ap-
plying three SH followed by an RA, attaching sie to
wurde. However, the projective order of this sen-
tence is Ausgelöst < durch < Intel < wurde < sie.
The system is thus able to delay the RA transition,
do another SH and then swap wurde and sie past
durch and handle this attachment later. The lattice
in Figure 4 shows all ambiguities for this sentence.
The first SH-RA ambiguity is highlighted.

In comparison to the SH-LA ambiguity seen ear-
lier, the SH-RA ambiguity always relies on addi-
tional SW transitions and thus leads to longer tran-
sition sequences. Note that the same logic also
holds for LA – sometimes both the head and de-
pendent of an LA transition can be swapped out,
creating a second kind of SH-LA ambiguity in ad-
dition to the one seen already.

4.1 Non-deterministic oracles

Recall that the main hypothesis of our work is that
a search-based parser can be further improved by
using a non-deterministic oracle. So far we have
seen three types of spurious ambiguities. It is easy
to convince oneself that no other ambiguities are
possible – by sheer enumeration of the possible
pairs of transitions, any other ambiguities would
involve one of the pairs LA-RA, LA-SW, or RA-SW.
An LA-RA ambiguity would only be possible if s0

is the head of s1 and s1 is the head of s0 which
implies that the tree has a cycle. The LA-SW and
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Figure 4: A lattice which encodes all possible transition sequences to parse the sentence from Figure 3.
The initial SH-RA ambiguity is highlighted in the red box.

Algorithm 2 Can shift
Input: Configuration c, sentence x
1: if |c.B| = 0 then . Not possible if buffer is empty
2: return false
3: c = DOSH(c) . Initial shift
4: while ¬TERMINAL(c) do
5: if CANLA(c, x) then
6: c = DOLA(c)
7: else if CANRA(c, x) then
8: c = DORA(c)
9: else if CANSWEager(c, x) then

10: c = DOSW(c)
11: else if |c.B| > 0 then . SH if buffer is not empty
12: c = DOSH(c)
13: else
14: return false . Hit dead end
15: return true

RA-SW ambiguities would swap a dependent past
its head, or a head past its dependent. This would,
however, violate the projective order and is there-
fore also not possible.

The key question that needs to be resolved in or-
der to construct a non-deterministic oracle is when
an SH transition can be applied. The EAGER ora-
cle defines when the other three transitions can be
applied, but treats SH as a fallback when no other
transitions are possible. So when is SH applica-
ble? One way to find out is to try an SH and see if
there is any way to recover the full parse. This pro-
cedure is described in Algorithm 2. The algorithm
applies an initial shift (line 3) and uses the EAGER

oracle from then on (lines 4 to 14). If the parser
can recover the correct parse, then SH is permis-
sible. If not, the parser will eventually end up in
a dead end where the buffer is empty, the stack
contains several items, but no other transitions are
applicable (line 14).2

The reason this algorithm works is that after ap-
plying the initial SH, it prefers all the other tran-
sitions over additional SH transitions. The other

2The worst case runtime of this algorithm is O(n2), al-
though it is enough to halt the search when the stack has been
reduced to only two tokens (one being root), since from that
point on the gold tree has to be recoverable. In practice we
observed that applying Algorithm 2 during training had neg-
ligible effect on overall training time.

transitions are all taking clear steps towards avoid-
ing dead ends, either by introducing arcs (remov-
ing tokens from the system) or by applying swaps
(permuting the words in the direction of the pro-
jective order by moving tokens back from the stack
onto the buffer).

The procedure outlined in Algorithm 2 allows
us to construct a non-deterministic oracle for the
SwapStandard system. Specifically, whenever ei-
ther of LA, RA, or SW are permissible, the oracle
also checks if SH is possible. If neither of LA, RA,
or SW are permissible, SH is returned. This oracle
allows for all possible ambiguities and we refer to
it as ND-ALL.

It could be argued that a parser could profit
from having a more eager treatment of arc attach-
ments and that the SH-LA and SH-RA ambiguities
should be avoided. As for the SH-SW ambiguity,
we have seen that there is a continuum of how
eagerly SW transitions should be applied, ranging
from EAGER to LAZY (and beyond, as we will see
shortly). The static oracles apply SW according to
the predefined rules that are primarily grounded in
tree structural characteristics. These rules may not
be the most motivated from a linguistic perspec-
tive, and there could be a more systematic treat-
ment of swaps lying somewhere in between that is
easier to learn. In order to investigate whether the
parser is able to learn better such patterns latently,
we also construct an oracle that only permits the
SH-SW ambiguity but no others. We will refer to
this oracle as ND-SW.

4.2 Minimally swapping oracle

While the LAZY oracle considerably reduces the
number of SW transitions, this oracle still does not
always yield the minimal number of swaps for a
given dependency tree. Given the possibility to
tell when an SH is possible (Algorithm 2), we can
construct lattices as those shown above for any de-
pendency tree. By searching this lattice for the
shortest path from the initial state to the terminal
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state, the shortest possible transition sequence can
be found. As this oracle minimizes the number of
SW transitions, we refer to it as MINIMAL.3

This procedure cannot be formalized as con-
cisely as Algorithm 1 and relies on searching the
corresponding lattice. But it should be noted that
when a static oracle is used for training, the tran-
sition sequence for each sentence only needs to be
computed once before training.

The lattices can grow extremely large, to the
point where the lattice of a single sentence can-
not be kept in main memory.4 A depth-first search
that keeps a stack of fork points in memory cir-
cumvents this problem. After reaching the termi-
nal state the first time, only the path chosen and
the number of transitions need to be remembered.
Any further paths that have not reached the termi-
nal state after as many transitions as the currently
seen shortest path can be terminated immediately.
While this oracle is clearly slower than the other
static ones, we found that the extra overhead is
negligible in comparison to overall training time.

5 Training

We train the parser with a variant of the structured
perceptron (Collins, 2002) and use a beam size of
20. We follow Bohnet et al. (2013) and use the
the Passive-Aggressive algorithm (Crammer et al.,
2006). We deviate slightly from the previous work
and use the Max-Violation framework (Huang et
al., 2012) rather than early update (Collins and
Roark, 2004), as we found that it required fewer
iterations and yielded slightly higher scores, both
for static and non-deterministic oracles. Following
standard practice, we also apply parameter averag-
ing (Collins, 2002).

When training with a static oracle the correct
configuration to update against is well-defined, but
with a non-deterministic oracle there may be more
than one correct configuration and it is unclear
against which to update. Yu et al. (2013) suggest
to compare with the highest scoring correct con-
figuration at every step but in initial experiments
we found that this performed rather poorly. In-
stead, we apply beam search in a constrained set-

3It should be noted that in certain cases the number of SW
transitions can be reduced even further by swapping tokens
that are already in the projective order. The MINIMAL oracle
ensures that the number of SW transitions is minimal while
still respecting the projective order.

4Even with 256gb of main memory we were unable to
keep some of the lattices of the training sets in memory de-
spite an efficient implementation.

ting to arrive at a single best correct sequence us-
ing the current parameters. This sequence is the
latent gold sequence and is recomputed for every
sentence during every iteration.

When we train a greedy parser we fall back
to the standard perceptron algorithm using a non-
deterministic oracle (Goldberg and Nivre, 2013;
Goldberg et al., 2014). Since this model is not
globally trained, only the choice of the next tran-
sition is latent but the basic principle is the same.

The feature model we use is primarily based on
that of Zhang and Nivre (2011) with the obvious
adaptations to the SwapStandard setting. Addi-
tional features are taken from other recent work on
parsers using the SwapStandard system (Bohnet
and Nivre, 2012; Bohnet et al., 2013). Follow-
ing the line of work presented by Bohnet et al.
we also replace the feature mapping function by
a hash function which enables the use of negative
features and yields a considerable speed improve-
ment (Bohnet, 2010).5

6 Experiments

In total we experiment with five different ora-
cles. The three static ones, EAGER, LAZY, and
MINIMAL, all use a single unique transition se-
quence for every sentence in the training data.
The two non-deterministic oracles, ND-SW and
ND-ALL, create latent transition sequences on the
fly relying on the current parameters and may
change across training iterations. Our main hy-
pothesis is that the latent sequences created by
the non-deterministic oracles are easier to learn
and generalize better to unseen data, leading to in-
creased accuracy.

Data sets. We evaluate the oracles on ten tree-
banks. Specifically, we use the nine treebanks
from the SPMRL 2014 Shared Task (Seddah et
al., 2014), comprising Arabic, Basque, French,
German, Hebrew, Hungarian, Korean, Polish,
and Swedish. For these treebanks we use the
train/dev/test splits provided by the Shared Task
organizers. Additionally, we use the English Penn
Treebank (Marcus et al., 1993) converted to Stan-
ford dependencies (de Marneffe et al., 2006) with
the standard split, sections 2-21 for training, sec-
tion 24 for development, and section 23 for test.

A breakdown of the characteristics of the train-
ing sets of each treebank is shown in Table 1. The

5For the sake of reproducibility we make our implemen-
tation available on the first author’s website.
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ar de en eu fr he hu ko pl sv
# Sent. 15,762 40,472 39,832 7,577 14,759 5,000 8,146 23,010 6,578 5,000
% Proj. Sent. 97.32% 67.23% 99.90% 94.71% 99.97% 99.82% 87.75% 100% 99.54% 93.62%
# EAGER Swaps 6,481 155,041 146 984 6 12 3,654 0 91 2,062
% Swap Red. (LAZY) 80.59% 75.09% 71.92% 53.46% 16.67% 8.33% 51.07% - 59.34% 75.90%
% Swap Red. (MINIMAL) 80.79% 83.88% - - - - 54.24% - - 77.79%
% Sent. w/ Unique tr. seq. 9.94% 7.81% 1.31% 1.06% 2.66% 2.82% 10.25% 0.27% 10.57% 7.28%

Table 1: Data set statistics (training sets).
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Figure 5: Learning curves of the different oracles for German (left) and Hungarian (right).

table shows the total number of sentences and the
percentage of projective sentences. It also shows
the total number of swap transitions required by
EAGER, and the reduction of swaps of LAZY and
MINIMAL relative to EAGER. For instance, in the
Arabic treebank 97.32% of the sentences are pro-
jective and the LAZY and MINIMAL reduce the
number of swaps by 80.59% and 80.79%, respec-
tively. For about half the treebanks LAZY is al-
ready minimal and we exclude MINIMAL.

Korean is the only strictly projective treebank,
although some of the treebanks have very few non-
projective arcs in their training sets, particularly
Hebrew and French. This means that the num-
ber of SH-SW ambiguities considered by the non-
deterministic oracles during training is extremely
small. The ND-SW oracle thus exhibits a very tiny
amount of spurious ambiguity in these cases. Nev-
ertheless, ND-ALL will still consider the SH-LA
ambiguity. The last row of Table 1 shows the per-
centage of sentences that exhibit no spurious am-
biguity under the ND-ALL oracle. This fraction
ranges between almost 0% and up to about 10%,
which means that there are indeed plenty of spuri-
ous ambiguities in the training data.

Preprocessing. We adopt a realistic evaluation
setting and use predicted part-of-speech tags and
morphological features. Specifically, we use Mar-
MoT (Mueller et al., 2013), a state-of-the-art CRF
tagger that jointly predicts part-of-speech tags and

morphology. We train the parsers on 10-fold jack-
knifed training data. For the development and test
sets the tagger is trained on the full training set.

Evaluation. We evaluate the parsers using la-
beled attachment score (LAS), i.e., the percent-
age of arcs that have the correct heads and labels.
We omit the unlabeled version of this metric as
we observed that it is closely correlated with LAS.
We test for significance using the Wilcoxon signed
rank test and mark significance at the p < 0.05 and
p < 0.01 levels with † and ‡, respectively.

Training iterations. Since the parsers trained
using the non-deterministic oracles rely on a latent
sequence, they might require more training itera-
tions before reaching good performance. More-
over, during initial experiments on the develop-
ment data we saw that the learning curves are not
monotonically increasing. To test our main hy-
pothesis – that beam-search parsers can profit from
training with a non-deterministic oracle – we tune
the number of training iterations on the develop-
ment sets for each oracle and treebank.

Figure 5 shows the learning curves of the beam
search parser on German and Hungarian. These
two plots are chosen since they paint a rather di-
vergent picture, where EAGER is clearly under-
performing for German, and ND-ALL is consider-
ably worse than other oracles for Hungarian. For
most of the other treebanks, however, the learning
curves are surprisingly similar for all oracles.
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ar de en eu fr he hu ko pl sv
ND-SW 85.92 91.12 89.08 80.53 83.49 77.89 82.44 - 82.50 74.75
ND-ALL 86.10 91.12 88.80 80.88 83.66 78.00 81.80 85.18 83.98 74.60
EAGER 85.88 90.34 88.96 80.54 83.49 77.85 82.30 85.30 82.74 75.01
LAZY 85.93 91.11 88.94 80.87 83.65 77.99 82.44 - 82.99 75.25
MINIMAL 85.96 91.18 - - - - 82.52 - - 75.41

Table 2: Beam search results on dev sets. The best non-deterministic and static oracles are bold.

ar de en-sd eu fr he hu ko pl sv
Static 85.05 87.53 90.35 79.97 83.10 78.65 83.60 85.03 82.08 79.05
Non-det. +0.06 -0.23 +0.13 +0.55 -0.11 -0.39 +0.08 +0.09 +1.26‡ -0.07

Table 3: Test set result with beam search comparing the best static and non-deterministic oracles.

6.1 Results

Table 2 displays the LAS on the development sets
for each oracle after tuning. When LAZY is al-
ready minimal, we omit MINIMAL. Since Ko-
rean is projective, we only compare ND-ALL and
EAGER, which thus reduces to comparing a static
and a non-deterministic oracle for ArcStandard.

The differences between the oracles are rather
small. The most interesting differences occur for
German, where the EAGER oracle is clearly be-
hind, and Polish, where ND-ALL is considerably
ahead of all the other oracles. Polish is also the
only case where one of the non-deterministic ora-
cles appears to be clearly ahead of the static ones.

Among the static oracles the oracle that requires
the least amount of SW transitions generally per-
forms best. The only exception is English, where
EAGER is marginally ahead of LAZY. While the
English treebank has relatively few non-projective
sentences, the case is even more extreme for He-
brew and French. For these treebanks the differ-
ence between EAGER and LAZY amounts to a sin-
gle swap, yet the difference in LAS is greater than
0.1%. This tiny difference in transition sequences
in the training data appears to have a butterfly ef-
fect during the online learning, such that a single
different update changes the outcome of the result-
ing weight vector to this effect.

For the non-deterministic oracles the picture is
more mixed. Which oracle is better appears to be
rather treebank specific, although for the most part
the differences are not that big.

Finally we compare the best static with the best
non-deterministic oracle on the test sets of each
language. The results are shown in Table 3. In
about half the cases the non-deterministic oracle
does slightly better than the static one, but in the
other half it is the other way around. The only sig-
nificant difference is the improvement of the non-

deterministic oracle for Polish. All in all, however,
we conclude that static oracles generally perform
as well as non-deterministic oracles.

6.2 What about greedy?

Since the non-deterministic oracles do not seem
to be that helpful for the beam search parser, we
wonder if the effect is the same in the greedy set-
ting. This case has previously only been studied
for projective parsers (Goldberg and Nivre, 2012;
Goldberg et al., 2014). Table 4 shows the results
of the greedy parser on the development sets af-
ter tuning. The greedy parser exhibits a clearer
pattern compared to the beam search parser. For
the non-deterministic oracles, ND-ALL is typi-
cally the best. For the static oracles the trend is
that fewer swaps are better.

The final evaluation on the test sets of the
greedy parser is shown in Table 5. In four cases
the non-deterministic oracle is significantly bet-
ter than the best static one, and overall the non-
deterministic oracle is never harmful.

Comparing the results between the greedy and
beam search parsers, it is clear that the greedy
parser generally is behind by one or two points ab-
solute. A peculiar exception is Korean, where the
differences between the two parsers are remark-
ably small, yet in favor of the beam search parser.

6.3 Discussion

So what do the latent transition sequences look
like? Figure 6 shows two plots of the average num-
ber of SW transitions per sentence for German and
Hungarian as a function of the number of training
iterations. The static oracles render straight lines
since the transition sequences do not change be-
tween iterations, while the non-deterministic or-
acles do. Also here these two treebanks exhibit
different extremes. In the case of German, the
EAGER oracle is clearly applying SW much more
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ar de en eu fr he hu ko pl sv
ND-SW 83.84 88.44 86.83 79.34 81.57 75.75 79.17 - 80.31 72.74
ND-ALL 84.12 88.76 87.57 79.59 81.99 76.18 78.87 85.06 80.47 72.72
EAGER 83.68 87.45 86.55 79.07 81.52 75.62 79.04 84.92 80.18 72.53
LAZY 83.74 88.45 86.70 79.40 81.57 75.75 79.18 - 79.60 73.29
MINIMAL 83.76 88.81 - - - - 79.15 - - 73.08

Table 4: Greedy results on dev sets. The best non-deterministic and static oracles are bold.

ar de en eu fr he hu ko pl sv
Static 82.99 84.22 87.85 78.58 81.12 75.27 81.45 84.52 79.10 75.89
Non-det. +0.04 +0.03 +0.60‡ +0.24 +0.40‡ +0.70† +0.22 +0.30 +1.33‡ +0.39

Table 5: Test set result with greedy search comparing the best static and non-deterministic oracles.
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Figure 6: Average number of swaps per sentence during training for German (left) and Hungarian (right).

than any other oracle. The non-deterministic ora-
cles tend to stay very close to the minimal number
of SW transitions. For Hungarian the picture is dra-
matically different. The ND-ALL oracle has a ten-
dency to overswap and gradually applies more and
more SW transitions. These results bear a strik-
ing resemblance to those shown in the learning
curves from Figure 5, where EAGER and ND-ALL

are bad for German and Hungarian, respectively.
For most of the other treebanks the corresponding
curves are much closer. Indeed, as the other tree-
banks exhibit considerably less non-projectivity,
the amount of spurious ambiguity and choice of
swaps is much more constrained.

But why do the non-deterministic oracles seem
to be beneficial for the greedy parser but not for
the beam search parser? One reason might be that
the non-deterministic oracle provides greater di-
versity in the training data. This is the same ef-
fect that dynamic oracles achieve with training by
exploration, although it is less pronounced when
only using a non-deterministic oracle. The beam
search parser, on the other hand, is already ex-
posed to many mistakes during training because of
the global learning. Since the beam search parser
actually does explore multiple possible transition

sequences, it is probably also more lenient towards
only seeing a single (static) sequence of transitions
for every training instance.

7 Conclusion

The SwapStandard transition system for depen-
dency parsing has proven very useful, especially
for parsing languages with a high degree of non-
projectivity, but until now it has not been known
how to define non-deterministic oracles for this
system. By mapping out the spurious ambigui-
ties of the system, we have managed to solve this
problem as well as the open problem of finding
the minimal number of swaps using a static ora-
cle. This has enabled us, for the first time, to eval-
uate the utility of non-deterministic oracles when
training non-projective dependency parsers using
beam search as well as greedy search. In the
beam search case, the results indicate that there
is no real benefit non-deterministic oracles, pre-
sumably because beam search compensates for the
non-determinism. In the greedy case, we have ex-
tended previous results to the non-projective do-
main, showing that non-deterministic oracles are
at least as good as, and sometimes significantly
better than, static ones.
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