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Tim Rocktäschel∗ Sebastian Riedel
University College London

London, UK
{t.rocktaschel,s.riedel}@cs.ucl.ac.uk

Abstract

Matrix factorization of knowledge bases in uni-
versal schema has facilitated accurate distantly-
supervised relation extraction. This factor-
ization encodes dependencies between textual
patterns and structured relations using low-
dimensional vectors defined for each entity
pair; although these factors are effective at
combining evidence for an entity pair, they are
inaccurate on rare pairs, or for relations that
depend crucially on the entity types. On the
other hand, tensor factorization is able to over-
come these shortcomings when applied to link
prediction by maintaining entity-wise factors.
However these models have been unsuitable
for universal schema. In this paper we first
present an illustration on synthetic data that ex-
plains the unsuitability of tensor factorization
to relation extraction with universal schemas.
Since the benefits of tensor and matrix factor-
ization are complementary, we then investigate
two hybrid methods that combine the benefits
of the two paradigms. We show that the combi-
nation can be fruitful: we handle ambiguously
phrased relations, achieve gains in accuracy
on real-world relations, and demonstrate that
entity embeddings encode entity types.

1 Introduction

Distantly-supervised relation extraction has gained
prominence as it utilizes automatically aligned data to
train accurate extractors. Universal schema, in partic-
ular, has found impressive accuracy gains by (1) treat-
ing the distant-supervision as a knowledge-base (KB)
containing both structured relations such as bornIn

∗First two authors contributed equally to the paper.

and surface form relations such as “was born in” ex-
tracted from text, and (2) by completing the entries
in such a KB using joint and compact encoding of
the dependencies between the relations (Riedel et al.,
2013; Fan et al., 2014; Chang et al., 2014). Matrix
factorization is at the core of this completion: Riedel
et al. (2013) convert the KB into a binary matrix with
entity-pairs forming the rows and relations forming
the columns. Factorization of this matrix results in
low-dimensional factors for entity-pairs and relations,
which are able to effectively combine multiple evi-
dence for each entity pair to predict unseen relations.

An important shortcoming of this matrix fac-
torization model for universal schema is that no
information is shared between the rows that con-
tain the same entity. This can significantly im-
pact accuracy on pairs of entities that are not
mentioned together frequently, and for relations
that depend crucially on fine-grained entity types,
such as schoolAttended, nationality, and
bookAuthor. On the other hand, tensor factoriza-
tion for knowledge-base completion maintains per-
entity factors that combine evidence from all the
relations an entity participates in, to predict its re-
lations to other entities – a task known as link predic-
tion (Nickel et al., 2012; Bordes et al., 2013). These
entity factors, as opposed to pairwise factors in ma-
trix factorization, can be quite effective in identifying
the latent, fine-grained entity types. Thus, in the light
of the above problems of matrix factorization, the use
of tensor factorization for universal schema is tempt-
ing. However, directly applying tensor factorization
to universal schema has not been successful. Strong
results were obtained only through a combination
with matrix factorization predictions, and the use of
predefined type information (Chang et al., 2014).
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In this paper, we explore the application of matrix
and tensor factorization for universal schema data.
On simple, synthetic relations, we contrast the rep-
resentational capabilities of these methods (in § 3.1)
and investigate their benefits and shortcomings.We
then propose two hybrid tensor and matrix factoriza-
tion approaches that, by combining their complemen-
tary advantages, is able to overcome the shortcom-
ings on synthetic data. We also present improved
accuracy on real-world relation extraction data, and
demonstrate that the entity embeddings are effective
at encoding entity types.

2 Matrix and Tensor Factorization

In this section we introduce universal schemas and
various factorization models that can be used to com-
plete knowledge bases of such schemas.

2.1 Universal Schema
A universal schema is defined as the union of all
OpenIE-like surface form patterns found in text and
fixed canonical relations that exist in a knowledge
base (Riedel et al., 2013). The task here is to com-
plete this schema by jointly reasoning over surface
form patterns and relations. A successful approach
to this joint reasoning is to embed both kinds of re-
lations into the same low-dimensional embedding
space, which can be achieved by matrix or tensor
factorization methods. We will study such represen-
tations for universal schema in this paper.

2.2 Matrix Factorization with Factors over
Entity-Pairs

In matrix factorization for universal schema, Riedel
et al. (2013) construct a sparse binary matrix of size
|P| × |R| whose rows are indexed by entity-pairs
(a, b) ∈ P and columns by surface form and Free-
base relations s ∈ R. Subsequently, generalized
PCA (Collins et al., 2001) is used to find a rank-k
factorization, i.e., with relation factors r ∈ R|R|×k

and entity-pair factors p ∈ R|P|×k, the probability of
a relation s and two entities a and b is:

P (s(a, b)) = σ(rs · pab) (1)

where σ is the sigmoid function. Using this factor-
ization, similar entity-pairs and relations are embed-
ded close to each other in a k-dimensional vector

space. Since this model uses embeddings for pairs
of entities, as opposed to per-entity embeddings, we
refer to such models as pairwise models. Pairwise
embeddings are especially suitable when working
with universal schema data, since they can represent
correlations between surface pattern relations and
structured relations compactly. Furthermore, they
combine multiple evidences specific to an entity-pair
to predict a relation between them. Since the ob-
served data matrix contains only true entries, the
parameters are learned using Bayesian personalized
Ranking (Rendle et al., 2009) that supports implicit
feedback.

Riedel et al. (2013) explore a number of variants
of this factorization, including a neighborhood model
that learns local classifiers, and an entity model that
includes entity representations (we revisit this formu-
lation in Section 2.3.4). In the rest of this paper we
will only use the basic factorization model (referred
to as Model F) as the primary pairwise embedding
model, however the ideas apply directly to these vari-
ants as well.

There are a few shortcomings of models that rely
solely on pairwise embeddings. To learn an appropri-
ate representation of an entity-pair, the two entities
need to be mentioned together frequently, which is
not the case for many entity-pairs of interest. Since
predicting relations often relies on the entity types,
this lack of ample relational evidence for an entity
pair can result in poor estimation of their types, and
hence, of their relations. Further, a large number
of pairwise relation instances (relative to the num-
ber of entities) results in a large number of model
parameters, leading to scalability concerns.

2.3 Tensor Factorization with Entity Factors

Instead of using a matrix, it can be natural to rep-
resent the binary relations in universal schema as a
mode-3 tensor. Here we allocate one mode for re-
lations, one for entities appearing as first argument
of relations, and the last mode for entities as second
argument. This formulation allows the use of tensor
factorization approaches that we will describe here.
We use ea ∈ Rk to refer to the embedding of an
entity a. In cases where the position of the entity re-
quires different embeddings, we use ea,1 and ea,2 to
represent its occurrence as first and second argument,
respectively.
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2.3.1 CANDECOMP/PARAFAC-Decomposition
In CANDECOMP/PARAFAC-decomposition (Harsh-

man, 1970) the data tensor is approximated using a
finite sum of rank one tensors, i.e.,

P (s(a, b)) = σ

(∑
k

r(k)
s e(k)

a e
(k)
b

)
. (2)

This decomposition was originally introduced with-
out the logistic function, i.e., in its linear form. How-
ever since the additional non-linearity is beneficial
for factorizing for binary data (Collins et al., 2001;
Bouchard et al., 2015), we use the version above for
our relational data.

2.3.2 Tucker2 Decomposition and RESCAL

CP-decomposition is quite restrictive since it does
not take advantage of correlations between multi-
ple entities and relations (Nickel et al., 2012). A
more expressive factorization is Tucker decompo-
sition (Tucker, 1966), where in its standard formu-
lation, a mode-3 tensor is decomposed into a core
tensor and three matrices. However, it is computa-
tionally expensive to estimate the core tensor, thus
in practice the data tensor is often factorized only
along two (instead of three) modes, which is referred
to as Tucker2 decomposition. A natural choice for
relational data is to keep the relational mode fixed,
and thus represent each relation as a k × k matrix
(e.g. Rs for relation s) and entities as k-vectors:

P (s(a, b)) = σ((Rs × ea,1) · eb,2). (3)

Like PARAFAC, the Tucker2 model was originally
introduced in the linear form, however we use the
logistic version here. A variant of Tucker2 decom-
position that has been applied very successfully in
knowledge base completion is RESCAL (Nickel et
al., 2012), where each entity in has a single shared
embedding irrespective of its argument position. Al-
though a logistic version of RESCAL has also been
introduced by Nickel and Tresp (2013), we use the
linear form since an open-source implementation of
the logistic version is not available.

2.3.3 TransE
Another formulation that is based on entity rep-

resentations is the translating embeddings model by

Bordes et al. (2013). The idea is that if a relation s be-
tween two entities a and b holds, that relation’s vector
representation rs should translate the representation
ea to the second argument eb, i.e.,

score(s(a, b)) = −‖(ea + rs)− eb‖2. (4)

In this work we use a variant of TransE in which
different embeddings are learned for an entity for
each argument position.

2.3.4 Model E

Furthermore, we isolate the entity factorization in
Riedel et al. (2013) by viewing it as tensor factor-
ization. In this model, each relation is assigned an
embedding for each of its two arguments, i.e.,

P (s(a, b)) = σ(rs,1 · ea + rs,2 · eb). (5)

Although not explored in isolation by Riedel et al.
(2013), model E can be used on its own to predict
relations between entities, even if they have not been
observed to be in a relation.

3 Combined Tensor and Matrix
Factorization for Universal Schema

In the previous section, we provided background on
matrix factorization with pairwise factors, followed
by a tensor factorization based formulation of univer-
sal schema. Although matrix factorization performs
well for universal schema (Riedel et al., 2013), it is
not robust to sparse data and does not capture latent
entity types that can be crucial for accurate relation
extraction. On the other hand, although tensor factor-
ization models are able to compactly represent entity
types using unary embeddings, they are unable to
adequately represent the pair-specific information
that is necessary for modeling relations. It is worth
noting that tensor factorization for universal schema
has been proposed by Chang et al. (2014), who also
observed that tensor factorization by itself performs
poorly (even with additional type constraints), and
the predictions need to be combined with matrix fac-
torization to be accurate. In this section we will
present the fundamental differences between matrix
and tensor factorization, and examine a few hybrid
models that can address these concerns.
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Figure 1: RGB Relations: Best viewed in color.
Black is a sparsely observed relation between any
pair of entities. Red relations correspond to each
black edge, and a model that learns this implication
can generalize to test instances (red dotted edge).
Green relation exists between white and gray entities
(we omit many of these edges for clarity), requiring
the model to learn latent entity types. Finally, Blue
relations exist for pairs where both a black and green
relation is observed.

3.1 Illustration Using Synthetic Relations

As an illustration of the limitations, we present exper-
iments on a simple, synthetic relation extraction task.
The generated data consists of entities that belong
to one of two types, and the following four types of
relations (see Figure 1 for an example): (a) Black
relations that are observed randomly between any
two entities (with probability 0.5), (b) Red relations
that exist between all pairs for which a Black relation
exists, similar to a bornIn relation corresponding
to each observed “X was born in Y” surface pat-
tern, (c) Green relations that appear between all pairs
of entities of different types, and (d) Blue relations
that appear between entity pairs that are of different
types and a Black relation was observed between
them. These Blue relation instances represent the
relations that often occur in real-data: an ambiguous
surface pattern such as “X went to Y” corresponds to
schoolAttended relation only if the arguments
are of certain types. We create such a dataset over
100 entities, and with 5 different sets of such relations
(thus 20 total relations, and each entity is assigned 5
of 10 types), and hold out a random 10% of the Red,
Green, and Blue relations for evaluation.

These relations target the strengths of the factoriza-
tion representations. Red relations, as they directly
correlate with observed Black instances, should be
trivial for matrix factorization.1 Similarly, Green rela-

1In fact, the set of all Red relations can be represented by
rank 2 factors, see Bouchard et al. (2015).
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Figure 2: Matrix versus Tensor Factorization on
RGB Data: illustrating that the tensor factoriza-
tion approaches (E, RESCAL, PARAFAC, TransE,
and Tucker2) are effective only on Green, while ma-
trix factorization (F) only on Red. On Blue, both
paradigms are unable to generalize.

tions are based on, and clearly define, the latent types
of the entities, and thus tensor factorization with en-
tity embeddings should be able to near-perfectly gen-
eralize these relations. The converse is more difficult
to anticipate; it is unclear how matrix factorization
can represent the types needed for Green relations,
or whether tensor factorization can encode the Black-
Red correspondence. Further, it is not easy to see
how any of these approaches will generalize to the
Blue relation.

We show the average precision curves on held-out
relations for a pairwise embedding approach (matrix
factorization F from §2.2) and many of the unary em-
beddings methods from §2.3, with rank 6 in Figure 2.
As expected, matrix factorization (F) is able to cap-
ture the Red relation accurately, however unary em-
beddings are not able to generalize to it. On the other
hand, unary embeddings are able to learn the Green
relation which the pairwise approach fail to predict
accurately. Blue relations, which most closely model
many kinds of relations that occur in text, unfortu-
nately, are not represented well by these approaches
that use either unary or pairwise embeddings.

3.2 Hybrid Factorization Models

Since matrix and tensor factorization techniques are
quite limited in their representations even on the sim-
ple, synthetic data, we now turn to hybrid matrix and
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Figure 3: Overview of the Models: Some of the models explored in this work, showing pairwise (F) and
unary (E) models, along with their combinations (FE and RFE), for computing P (s(a, b)).

tensor factorization models that represent entity types
for universal schema. We describe two possible com-
binations, models FE and RFE, summarized in Fig-
ure 3. Note that these approaches are distinct from
collective factorization (Singh and Gordon, 2008)
that can be used when extra entity information is
available as unary relations.

3.2.1 Combined Model (FE)

As the direct combination of a pairwise model (Eq.
1) with an entity model (Eq. 5), we consider the FE
model from Riedel et al. (2013), i.e., the additive
combination of the two:

P (s(a, b)) = σ(rs · eab + rs,1 · ea + rs,2 · eb) (6)

Both the matrix factorization model F and entity
model E can de defined as special cases of this model,
by setting rs,1/2 or rs to zero, respectively.

3.2.2 Rectifier Model (RFE)

A problem with combining the two models addi-
tively, as in FE, is that one model can easily override
the other. For instance, even if the type constraints of
a relation are violated, a high score by the pairwise
model score might still yield a high prediction for
that triplet. To alleviate this shortcoming, we experi-
mented with rectifier units (Nair and Hinton, 2010)
so that a score of model F or model E first needs to
reach a certain threshold to influence the overall pre-
diction for a triplet. Specifically, we use the smooth
approximation of a rectifier ⊕(x) = log(1 + ex) and
define the probability for a triplet as follows:

P (s(a, b)) = ⊕(rs · pab)⊕ (rs,1 · ea + rs,2 · eb)

3.3 Parameter Estimation

As by Riedel et al. (2013), we use a Bayesian person-
alized ranking objective (Rendle et al., 2009) to esti-
mate parameters, i.e., for each observed training fact,
we sample an unobserved fact for the same relation,
and maximize their relative ranking using AdaGrad.
For all models we use k = 100 as dimension of la-
tent representations, an initial learning rate of 0.1,
and `2-regularization of all parameters with a weight
of 0.01. For CANDECOMP/PARAFAC and RESCAL

we use the open-source scikit-tensor2 package
with default hyper-parameters.

4 Experiments

In order to evaluate whether the hybrid models are
able to effectively combine the benefits of matrix
and tensor factorization, we first present experiments
on synthetic data in Section 4.1. For a more real-
world evaluation, we also experiment with universal
schema for distantly-supervised relation extraction
in Section 4.2.

4.1 Synthetic RGB Relations

In Section 3.1 we described a simple synthetic data
set consisting of multiple Red, Green, and Blue rela-
tions constructed in order to illustrate the restrictions
in the representation capabilities of matrix and tensor
factorization models. Here we revisit the dataset us-
ing the proposed combined tensor and matrix factor-
ization approaches to evaluate whether these hybrid
models are able to compete with tensor and matrix
factorization on the relations they are good at (Green
and Red, respectively), but more importantly, whether
the combined approaches can represent the Blue rela-

2http://github.com/mnick/scikit-tensor
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Figure 4: Hybrid Methods on RGB Data: Average precision as the rank is varied. FE and RFE perform as
well (or better than) tensor factorization on Green and matrix factorization on Red, but importantly, are able
to encode the Blue relations that matrix or tensor factorization fail to model.

R13-F TR-R13 E F RFE FE

MAP 60 57 56 59 57 62
Weighted MAP 64 61 51 66 60 66

Table 1: Distantly-Supervised Relation Extrac-
tion: Weighted and unweighted mean average preci-
sion for Freebase relations, as achieved by a number
of relation extractors, including pairwise (F), unary
(E), and hybrid (FE and RFE) models.

tions that matrix and tensor factorization approaches
fail to generalize to. In Figure 4 we present the av-
erage precision on the held-out data as the rank is
varied for a number of approaches (we omit the re-
maining tensor factorization approaches for clarity
since they perform similar to RESCAL and Model E).
On the Red relation (Figure 4a), tensor factorization
is close to random, while combined factorization ap-
proaches (FE and RFE) are competitive to, and often
outperform, matrix factorization (F). Similarly, on the
Green relation (Figure 4b), the combined approaches
perform as well as tensor factorization, while matrix
factorization is not much better than random. Finally,
on the Blue relation on which matrix and tensor fac-
torization fare poorly, the combined approaches are
able to obtain high accuracy, in particular achieve
close to 90% average precision with only a rank of 5.
Although the same rank corresponds to different num-
bers of parameters for each method, the trend clearly
indicates these results do not depend significantly on
the number of parameters.

4.2 Universal Schema Relation Extraction

With the promising results shown on synthetic data,
we now turn to evaluation on real-world information
extraction. In particular, we evaluate the models on
universal schema for distantly-supervised relation ex-
traction. Following the experiment setup of Riedel et
al. (2013), we instantiate the universal schema ma-
trix over entity pairs and text/Freebase relations for
New York Times data, and compare the performance
using average precision of the presented models. Ta-
ble 1 summarizes the performance of our models,
as compared to existing approaches (see Riedel et
al. (2013) for an overview). In particular, TR-R13
takes the output predictions of matrix factorization,
and combines it with an entity-type aware RESCAL

model (Chang et al., 2014).3 Tensor factorization
approaches perform poorly on this data. We present
results for Model E, but other formulations such as
PARAFAC, TransE, RESCAL, and Tucker2 achieved
even lower accuracy; this is consistent with the results
in Chang et al. (2014). Models that use the matrix fac-
torization (F, FE, R13-F and RFE) are significantly
better, but more importantly, the hybrid appraoch FE
achieves the highest accuracy. It is unclear why RFE
fails to provide similar gains, in particular, perform-
ing slightly worse than matrix factorization. Note
that we are not introducing a new state-of-art here,
the neighborhood model (NF) that achieves a higher
accuracy is omitted for clarity.

3Here, as in Riedel et al. (2013), we only evaluate on entity
pairs that are linked to Freebase, thus the performance of Chang
et al. (2014) is lower than their reported results.
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LG Electronics
Genentech, Industrial and Commercial Bank of China,

Broadway Video, Pollack, Bank Hapoalim, Caremark Rx,
Mitchell Gold, Tellabs, Cathay Pacific, Eircom

La Stampa
Toronto Star, O Globo, The Daily Telegraph,

El Diario, Le Devoir, Politika, The Straits Times,
The Day, RedEye, The Globe

Fatherland
Answered Prayers, Age of Innocence, Auntie Mame,
House of Meetings, Bergdorf Blondes, Berlin Diary,

Clarissa, Eminent Victorians, Darkness Visible, Gossamer

Table 2: Nearest-Neighbors for a few randomly-
selected entities based on their embeddings, demon-
strating that similar entities are close to each other.

4.3 Entity Embeddings and Types

Although the focus of this work is relation extraction,
and the models are trained primarily for finding rela-
tions, in this section we explore the learned entity em-
beddings. The low-dimensional entity embeddings
have been trained to predict the binary relations that
the entity participates in, and thus we expect entities
that participate in similar relations to have similar
embeddings. To investigate whether the embeddings
capture this intuition, we compute similarities of a
few randomly selected entities with every other entity
using the cosine distance of the FE entity embed-
dings, and show the 10 nearest neighbors in Table 2.
The nearest neighbors definitely capture the entity
types, for example all the neighbors of “La Stampa”
are newspapers in other parts of the world, which is
quite impressive considering no explicit type informa-
tion was available during training. However, the gran-
ularity of the types depends on the textual patterns
and relations in the schema; for “LG Electronics”,
the neighbors are mostly generic commercial institu-
tions, perhaps because the observed surface patterns
are similar across these types of organizations.

Since the embeddings enable us to compute the
similarity between any two entities, we also present
a 2D visualization of the entities in the data using
the t-Distributed Stochastic Neighbor Embedding
(t-SNE) (van der Maaten and Hinton, 2008) tech-
nique for dimensionality reduction. Further, to in-
vestigate whether the embeddings represent correct

Figure 5: Visualizing entity embeddings, where the
colors correspond to their types (person, location,
organization, author, actor/musician, sports per-
son, politician). Best viewed in color.

entity types, we perform an automatic, error-prone
alignment of the entity strings to Freebase by finding
a prominent entity that has the string as its name,
and extract its types. Figure 5 shows the projection
for 10 000 randomly selected entities, colored as per
their type. We see that the entity embeddings are
able to separate most of the coarse level types, as
locations are clustered quite separately from the or-
ganizations and people, but further, even fine-grained
person types occur as distinct collections, for exam-
ple politicians and sportsmen. There is some clus-
ter overlap as well, especially between the different
person types such as authors, actors/musicians, and
politicians; it is unclear whether this arises due to
incorrect entity linking, inexact two-dimensional pro-
jection, entities that belong to multiple types, or from
inaccurate embeddings caused by insufficient data.

5 Conclusions and Future Work

Although tensor factorization has been widely used
for knowledge-base completion for structured data,
it performs poorly on universal schema for relation
extraction. Matrix factorization, on the other hand,
is appropriate for the task as it is able to compactly
represent the correlations between surface pattern and
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structured KB relations, however learning pairwise
factors is not effective for entity pairs with sparse
observations or for identifying latent entity types.
We illustrate the differences between these matrix
and tensor factorization using simple relations, and
further, construct an additional relation that none of
these approaches are able to model. Motivated by this
need for combining their complementary benefits, we
explore two hybrid matrix and tensor factorization
approaches. Along with being able to model our
constructed relations, these approaches also provided
improvements on real-world relation extraction. We
further provide qualitative exploration of the entity
embedding vectors, showing that the embeddings
learn fine-grained entity types from relational data.

Our investigations suggest a number of possible
avenues for future work. Foremost, we would like to
investigate why the hybrid models, which perform
significantly better on synthetic data, fail to achieve
similar gains on real-world relations. Second, in-
cluding tensor factorization in the universal schema
model enables us to augment the model with external
entity information such as observed unary patterns
and Freebase types, in order to aid both relation ex-
traction and entity type prediction. Lastly, these hy-
brid approaches also enable extension of universal
schema directly to n-ary relations, allowing a variety
of models based on the choice of matrix or tensor
representation for each relation.
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