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Abstract

Recent interest in distributed vector represen-
tations for words has resulted in an increased
diversity of approaches, each with strengths
and weaknesses. We demonstrate how di-
verse vector representations may be inexpen-
sively composed into hybrid representations,
effectively leveraging strengths of individual
components, as evidenced by substantial im-
provements on a standard word analogy task.
We further compare these results over differ-
ent sizes of training sets and find these ad-
vantages are more pronounced when training
data is limited. Finally, we explore the rela-
tive impacts of the differences in the learning
methods themselves and the size of the con-
texts they access.

1 Introduction

Distributed vector representations allow words to
be represented in a continuous space. By learning
these representations using unsupervised methods
over large corpora, these models capture key dis-
tributional aspects of word function and meaning.
In particular, such representations provide a valu-
able response to issues of data sparsity by providing
simple similarity measures between terms. Whether
used indirectly in terms of those similarity measures
(e.g. for smoothing in language models) or directly
as features to a model for tasks such as parsing (Lei
et al., 2014), these representations have proved in-
creasingly valuable to a variety of NLP tasks (Ben-
gio et al., 2013).

Given these benefits, a number of approaches
have been explored for generating these represen-
tations beginning with early work in connectionist

modeling (McClelland et al., 1986) and expanding
into applications in text analysis. Recently, in part
spurred by the resurgence of neural network meth-
ods, vector representations have enjoyed renewed at-
tention, expanding beyond their previous scope with
the appearance of a variety of new techniques for
their generation and applications for their use.

The various approaches have been shown to have
a variety of strengths and weaknesses and it is pre-
cisely in the context of this proliferation that our
work is focused. Presented with diversity of tech-
niques, other areas of machine learning have found
excellent results with the use of ensemble meth-
ods (Dietterich, 2000), combining multiple tech-
niques to capture the strengths of each. We exam-
ine whether similar gains are available here through
the combination of multiple existing techniques for
generating semantic vector representations.

Recent work has shown that relationships in these
models (such as gender differences or pluralization)
are often linear (Mikolov et al., 2013b). Drawing
on this, we explore composition through linear com-
binations of these representational spaces. In par-
ticular, we explore combinations of a popular neural
network method (Word2Vec) (Mikolov et al., 2013a)
with Distributed Vector Representations in Sigma
(DVRS) (Ustun et al., 2014), a method based on
prior work in holographic representation (Jones and
Mewhort, 2007). We demonstrate that various meth-
ods of composing these vectors can produce hybrid
representations which perform significantly better
than either method in isolation. This leap in per-
formance is particularly pronounced when working
with smaller datasets, opening up intriguing possi-
bilities for domains which lack large corpora.
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2 Related Work

Most techniques for generating semantic vector
spaces focus on the distributional properties of
texts, building representations based on word co-
occurrence patterns. Key factors differentiating
these methods include the size of the context used
in this process, and how the context is used.

Document-level representations consider co-
occurrences at the document level, often making use
of weighting factors such as tf-idf. Techniques such
as Latent Semantic Analysis (LSA) (Deerwester et
al., 1990) make use of this approach, building a
word-document co-occurrence matrix for an entire
corpus.

Other methods make use of a sliding window of
words in a corpus, considering only words which
occur within a certain distance of the target. The
skip gram and continuous bag of words methods in
Word2Vec are examples of this approach. Rather
than a fixed width sampling space, other approaches
make use of either sentence level (Levy and Gold-
berg, 2014a) (critical when using sentence-level
parsing information) or paragraph windows, making
use of the structure of the text itself to determine the
window size.

Yet another class of methods makes use of ran-
domly initialized word values with updates based
on the local context. Techniques such as as BEA-
GLE (Jones and Mewhort, 2007) capture ordering
information through the use of circular convolutions
while DVRS makes use of piecewise vector multi-
plications over random projections.

As we make particular use of DVRS and
Word2Vec, it is worth looking at the methods used
by each in more detail.

2.1 DVRS

DVRS (Ustun et al., 2014) is a method for gener-
ating semantic vector representations based on ideas
introduced in Jones and Mewhort (2007)’s BEAGLE
system. Each word is represented by two vectors.
The fixed environmental vector, e(i), is randomly
generated by drawing each element of the vector
from a uniform distribution on [−1, 1). The lexical
vector l(i) captures the word’s distributional mean-
ing and is updated over the course of training.

As the corpus is processed, the lexical vector for

each encountered word is updated based on its para-
graph context c(k) and its sentence order context
o(k). The paragraph context is the sum of the en-
vironmental vectors in the paragraph, excluding the
word being updated.

c(k) =
n∑

i=1

e(i), where i 6= k

The order context is based on the sentence and
makes use of sequence vectors, random vectors
which correspond the relative positions from the tar-
get word (by defaults ±4). The word order informa-
tion, o(k), is then calculated as follows (where ∗ is
the pointwise product operation):

o(k) =
4∑

j=−4

s(j) ∗ e(k + j),

where j 6= 0 and 0 < (k + j) ≤ n.
DVRS updates via gradient descent where the gra-

dient is based on the weighted sum of the order and
context vectors.

l(k) = l(k) + wc
ˆc(k) + wo

ˆo(k)

In this update process, we see a precursor of the
compositional techniques described below in that
DVRS is already effectively composing two repre-
senations (the context and order spaces) into a com-
bined representation.

2.2 Word2Vec
The Word2Vec model learns word representations
through a pair of architectures similar to standard
feedforward neural net language models. The Con-
tinuous Bag-of-Words (CBOW) model effectively
averages the vectors of all the words in a given con-
text. The model is trained by predicting the cur-
rent word based on the projected average of the sur-
rounding context. The continuous Skip-gram model
is similar, but instead of predicting the current word
based on context, predicts the surrounding words
based on the current. Words within a certain dis-
tance before and after the current word are predicted
with the network optimized for these predictions.

3 Experiment 1: Methods of composing
word representations

We extend the underlying concept of DVRS, the no-
tion that multiple vector spaces can be linearly com-
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bined to provide more effective distributional rep-
resentations, by exploring the possibility of com-
bining vector representations from completely sep-
arate generation techniques and the impact of dif-
ferent methods of composition. In particular, we
explore the composition of Word2Vec and DVRS,
effectively combining vectors produced by a neu-
ral network approach (particularly the predictive ap-
proach provided by the skip-gram model) with the
larger context and count-based co-occurrence aggre-
gation of the DVRS model. Across these compo-
nents, we compare the compositional techniques of
direct vector addition with vector concatenation.

We began by exploring alternative methods of
combining vector representations. In particular, we
looked at the differences between vector addition
and concatenation. To get a better sense of the
strengths and limits of these methods, we also com-
pared against an oracle method where each of the in-
dividual models was tested and, if either was able to
provide the correct answer, the oracle provided the
answer from that model (exploring a hypothetically
ideal simple combination of the two models).

For each of the following methods, we trained
vectors against both the first 108 bytes of a
Wikipedia dump from March 3, 2006 (enwik8) and
the first 109 bytes of the same dump (enwik9)1. The
data was initially pre-processed to convert all text to
lower case, convert numbers to text, and eliminate
links and other references2.

For Word2Vec, we used the default settings (win-
dow size of 10, negative sampling (25), sampling
(1e-4), and trained over 15 iterations) to create vec-
tors of 300 and 1024 dimensions using both the
skip gram and CBOW models. For DVRS, we cre-
ated vectors of both 300 and 1024 dimensions, both
using the default DVRS combination of order and
context vectors and each of these components sepa-
rately. These numbers were chosen based on previ-
ously published results where these values produced
the best results for DVRS (1024 dimensions) and
Word2Vec (300) respectively.

We tested combining these representational
spaces through concatenation and addition. Addi-

1Obtained from http://cs.fit.edu/˜mmahoney/
compression/textdata.html.

2We used the script provided with the Wikipedia dump by
Matt Mahoney.

tion required that the two spaces have the same rank
and was accomplished using simple vector addition.
The value for each word in the new space was the
normalized sum of its two component spaces.

xnew = x1 + x2

We compared this against the direct concatenation
of the two vectors for a given word. This allowed for
the use of vectors with different underlying ranks.

xnew = x_
1 x2

3.1 Results
There are a number of ways of evaluating the qual-
ity of vector representations. The space can be
evaluated directly, for example by considering tar-
get words in terms of their evaluated similarity to
their nearest neighbors in the space. Alternately, the
space itself can be evaluated in terms of its useful-
ness as a feature for a known task.

We make use of the set of approximately 20,000
word analogy tests introduced by Mikolov et al
(Mikolov et al., 2013a). Covering a mix of semantic
and syntactic categories, each problem is based on
a simple pattern of the form “A is to A* as B is to
B*.” Given A, A*, and B, the system is required to
predict the correct B*. The test set includes 8,869
semantic test instances (with categories such as na-
tional capitals of the form “Athens is to Greece as
Helsinki is to [Finland]”) and 10,675 syntactic test
instances (with categories such as superlatives such
as “strong is to strongest as warm is to [warmest]”).
We randomly split these tests, reserving 20% of the
data for development and optimization and making
use of the remaining 80% (15646 questions) for the
test results below.

For experiment 1, the results are summarized
in Table 1 (representations trained on the enwik8
dataset) and Table 2 (representations trained on the
enwik9 dataset). For enwik8, among the individual-
model directly-trained vectors, the Word2Vec skip
gram model produced the best results with an overall
accuracy of 30% on the test set compared to DVRS’
best perfromance of 27%. However, while the skip
gram model was always the top performer on the
syntactic categories, DVRS turned in the best results
on the semantic categories.

We then explored several methods of combining
these vectors with the results summarized in Ta-
ble 1. The addition of the 300-dimensional DVRS

97



vectors (overall performance 0.23) with the 300-
dimensional skip gram vectors (overall performance
0.30) led to an overall improvement to 0.32. How-
ever, concatenating these two vectors improved the
overall performance to 39%. Concatenating the
best two performing vector sizes for each method
(DVRS-1024, SG-300), yielded a slightly below
peak overall accuracy of 0.38. Finally, we compared
these results to an oracle method where, rather than
composing the representations, we had each repre-
sentation make its prediction and, if either was cor-
rect, used that as the oracle’s response. This yielded
an overall accuracy of 41%.

Next, we tested the methods against enwik9 as
seen in Table 2. With additional training data,
the performance of both methods jumped, with
Word2Vec’s skip gram model improving to an ac-
curacy of 0.64 and DVRS improving to 0.43. While
DVRS no longer showed the strong advantage on the
semantic categories, nonetheless the concatenation
of the two results showed a significant improvement
to 0.67.

4 Experiment 2: Impacts of varying model
parameters and input data

Following up on the initial experiment, we began to
explore how much of the differences came from the
structures of the algorithms versus the data available
to the models. We varied the size of the context
available to both Word2Vec and DVRS and the win-
dow size used by Word2Vec. In particular, we var-
ied the parameters available to the best performing
combinations from the previous experiment. Given
the results of our prior experiment, we focused on
concatenation rather than additive combinations.

We trained vectors against two versions of the en-
wik9 dump, one divided into paragraphs, the other
into sentences. For Word2Vec, we varied the win-
dow size from 10 to 50, testing against both para-
graph and sentence versions. Given the expanded
window size, we chose to include the continuous
bag of words (CBOW) model for Word2Vec. This
is an alternative to the skip gram model which does
not take into account word ordering. Given this, it
seemed like this model might do better given the
larger window size. DVRS structurally makes use of
the full context available, so running it against para-

graphs and sentences provided an analogous shift in
effective window size.

4.1 Results

For this experiment, the results are summarized in
Table 3. As seen in the previous experiment, the
concatenated models generally did better than the
component models. While window size made a
slight difference for all the models, the differences
in the algorithms seemed more important (with the
caveat that more data is required for a definitive
statement on this). In particular, the Word2Vec mod-
els and DVRS responded in opposite directions to
having access to a larger window of data. DVRS per-
formance improved slightly (from 0.407 to 0.409)
while the Word2Vec models degraded slightly (for
skip grams, from 0.640 to 0.594). This seems nat-
ural given that both Word2Vec models make use of
sampling. Given that, a larger window simply dis-
tributes those samples over a larger and, likely, less
meaningful space. Meanwhile, DVRS combines the
complete context window to which it has access into
a single factor, making larger windows more valu-
able to it (although at the cost of obscuring more
local relations such as syntactic factors).

Nonetheless, as seen with DVRS where, in spite
of inferior overall performance, it still proved effec-
tive as a concatenative element, we wanted to ex-
plore whether Word2Vec-trained vectors with larger
windows might prove more effective in an ensemble.
The results suggest that this may be the case. In par-
ticular, the concatenation of the two best perform-
ing Word2Vec models (the skip gram and CBOW
models trained on sentences with a window size of
10) performed slightly worse (accuracy 0.655) than
models which blended the best individual Word2Vec
vectors (skip gram, sentence, window 10) with oth-
ers (CBOW, paragraph, window 50) trained on a
larger window (accuracy 0.664). However, the re-
sults here are sufficiently close that it will require
more tests on a larger range of data before a general
rule can be suggested.

Overall, the best performing concatenations were
those where the differences in the two components
was greatest. So, within Word2Vec-trained vectors,
the skip gram with window 10 trained on sentences
with the CBOW model with window 50 trained
on paragraphs (0.664). As in the previous experi-
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Vector size Overall Semantic Syntactic
DVRS 300 0.23 0.31 0.15
DVRS 1024 0.27 0.40 0.17
Skip gram (SG) 300 0.30 0.24 0.34
SG 1024 0.25 0.17 0.32

Add DVRS-300, SG-300 300 0.32 0.31 0.33
Concatenate DVRS-300, SG-300 600 0.39 0.38 0.39
Add DVRS-1024, SG-1024 2048 0.36 0.33 0.38
Concatenate DVRS-1024, SG-1024 2048 0.38 0.36 0.40
Concatenate DVRS-1024, SG-300 1324 0.38 0.38 0.39

Oracle DVRS-1024, SG-300 1024/300 0.41 0.44 0.39

Table 1: Performance on word analogy problems with vectors trained against the first 108 bytes of Wikipedia.

Vector size Overall Semantic Syntactic
DVRS 300 0.41 0.59 0.26
DVRS 1024 0.43 0.62 0.28
SG 300 0.64 0.69 0.60
SG 1024 0.57 0.60 0.55

Add 300-DVRS, 300-SG 300 0.64 0.72 0.58
Concatenate 300-DVRS, 300-SG 600 0.67 0.74 0.60
Add 1024-DVRS, 1024-SG 1024 0.60 0.66 0.55
Concatenate 1024-DVRS, 1024-SG 2048 0.61 0.68 0.55
Concatenate DVRS-1024, SG-300 1324 0.66 0.73 0.60

Oracle DVRS-1024, SG-300 1024/300 0.70 0.79 0.62

Table 2: Performance on word analogy problems with vectors trained against the first 109 bytes of Wikipedia.

ments, the best overall result (although marginally
so) came from the concatenation of skip gram, sen-
tence, window 10 with DVRS trained on paragraphs
(0.671). Finally, even in cases where we were com-
bining vectors from the same model but with differ-
ent window sizes, we still found a small but consis-
tent improvement in overall performance (for skip
grams from 0.640 to 0.662, for CBOW from 0.635
to 0.660, and for DVRS from 0.409 to 0.426).

Care must be taken not to take these results as a
claim that a specific combination recipe is correct
or preferred. Instead, what our results show con-
vincingly is that the combination of diverse repre-
sentations can leverage strengths of individual rep-
resentations, and that the effects of vector combina-
tion should be investigated in the context of specific
tasks, which we leave as future work.

5 Discussion and Future Work

The question remains of how and why these compo-
sitions are working. While we do not claim a final
answer to this question, we can point to several fac-
tors given these experiments. For the concatenated
composition technique, we are left with the two vec-
tors from the original spaces normalized into a sin-
gle vector. For cosine similarity, the key factor is the
dot product. For two vectors xc and yc which were
formed by concatenating the corresponding vectors
x1 and x2 from the original spaces, this yields:

xc · yc = x1 · y1 + x2 · y2

As such, cosine similarity in the concatenated
space is determined by a linear combination of the
dot products of the component vectors. This pro-
vides an intuitive story for some of the behaviors
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Vector size Overall Semantic Syntactic
skip gram (SG), paragraph (para), window 50 200 0.596 0.648 0.554
SG, sentence (sent), win 50 200 0.594 0.648 0.550
SG, sent, win 10 200 0.640 0.682 0.607
CBOW, para, win 50 200 0.603 0.672 0.547
CBOW, sent, win 50 200 0.599 0.661 0.548
CBOW, sent, win 10 200 0.635 0.673 0.604
DVRS, sent 300 0.407 0.590 0.259
DVRS, para 300 0.409 0.592 0.261

concat SG sent win 10, CBOW sent win 10 400 0.655 0.711 0.609
concat SG sent win 10, CBOW para win 50 400 0.664 0.735 0.607
concat SG sent win 10, SG para win 50 400 0.662 0.720 0.614
concat CBOW sent win 10, CBOW para win 50 400 0.660 0.727 0.605
concat DVRS para, SG sent win 10 500 0.671 0.744 0.612
concat DVRS sent, DVRS para 600 0.426 0.616 0.273
concat DVRS sent, CBOW para win 50 500 0.645 0.741 0.566
concat DVRS sent, SG sent win 10 500 0.666 0.739 0.606

Table 3: Variations on window size and data structure with vectors trained against the first 109 bytes of Wikipedia.

seen in that a close match with the correct answer
in one space will tend to overcome drift in the other.
However, a precise accounting of the variations in
this behavior is one area where further work is re-
quired. In particular, exploring the impact of varia-
tions in the weights of this linear combination (eas-
ily done simply by weighting one of the vectors prior
to concatenation) is an obvious first step. Addition-
ally, it will be interesting to explore the combination
of more than two vectors, effectively defining a new
semantic space over those bases.

Generally, in the continuing discussion about the
relative merits of count-based and prediction-based
methods (Baroni et al., 2014), the present work sug-
gests that there may not be a need to choose. By
combining both methods through simple composi-
tional functions, we show that it is possible to com-
bine the benefits of both models in a single hy-
brid representation. Given the extensive work put
into the development of distributed representations
and the known variations in relative strengths and
weaknesses, the benefit of these simple combination
schemes is intriguing. We plan to explore the effects
of vector combination in downstream tasks.

This work provides several key initial pieces. The
first is an existence proof that, even with the most

basic approaches and settings, it is possible to im-
prove on the performance of individual models with
only minimal increases in system complexity. Sec-
ond, these experiments demonstrate that the local
performance of a given representation is not nec-
essarily a complete representation of its value as a
component. In particular, inferior representations
may still encode information which proves valuable
to an ensemble. Finally, the observed improvements
when vectors trained using the same method but
with differing window sizes suggests that it may be
possible to improve the performance of these algo-
rithms (both Word2Vec models and DVRS) by mak-
ing use of these observations, perhaps through the
use of variable window sizes. In particular, we do
not suggest that vector combination is the only way
to achieve these improvements. There are multiple
routes to incorporating this information within a sin-
gle method.

One clear next step is to explore optimizing the
weights of the components of the combinations
in the context of particular tasks. Additionally,
given recent discussions over alternative similar-
ity measures (Levy and Goldberg, 2014b), it will
be interesting to explore the generalization across
spaces where non-linear composition may be re-
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quired. More generally, the combination of repre-
sentations may point towards tensor methods where
multiple factors are preserved in the tensor structure
itself.
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