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Abstract

Graph-based dependency parsing algorithms
commonly employ features up to third order
in an attempt to capture richer syntactic re-
lations. However, each level and each fea-
ture combination must be defined manually.
Besides that, input features are usually rep-
resented as huge, sparse binary vectors, of-
fering limited generalization. In this work,
we present a deep architecture for dependency
parsing based on a convolutional neural net-
work. It can examine the whole sentence
structure before scoring each head/modifier
candidate pair, and uses dense embeddings as
input. Our model is still under ongoing work,
achieving 91.6% unlabeled attachment score
in the Penn Treebank.

1 Introduction

Graph-based dependency parsing works by assign-
ing scores to each possible dependency arc between
two words (plus the root), and then creating a de-
pendency tree by selecting the arcs which yield the
highest score sum (McDonald et al., 2005). The
Chu-Liu-Edmonds algorithm is commonly used to
extract the maximum spanning tree (MST) of the re-
sulting graph in polynomial time, and inherently al-
lows for non-projective trees.

Most such parsing algorithms obtain the score
for an arc from word i to j as the dot product of
a weight vector and a vector of binary features,
s(i, j) = w · f(i, j). Their training procedure is
thus essentially optimizing the weight vector.

The features, however, often follow redundant
patterns: the same classifier may use as separate fea-

tures: (i) head word and its POS tag, (ii) head word,
and (iii) head word POS tag. This is justified first
by data sparseness, since a given word may not have
been seen many times in the training set (or not with
a given POS tag), and the last two features serve as
a fallback. Second, most approaches are based on
linear classifiers, which cannot learn complex inter-
actions between features.

Given that the scoring function deals with an arc
at a time, graph-based parsers are usually restricted
to features of local pairs. This is problematic when
determining the head of a given word depends on its
modifiers. For example, consider the two sentences
in Figure 1, where the preposition with may be at-
tached to a verb or a noun, depending on its com-
plement. Including neighboring words as features in
the arc scoring function may alleviate the problem,
but doesn’t account for long range dependencies. A
more efficient solution is second or high order fea-
tures, which include child or sibling arcs in the scor-
ing function (McDonald and Pereira, 2006). Some
authors explored higher order features, including,
for example, grandparents and grand-siblings (Koo
and Collins, 2010) or non-adjacent siblings (Car-
reras, 2007).

However, each new level (i.e., each higher order)
must be defined through manually designed features.
Furthermore, finding the exact non-projective MST
in such cases is computationally intractable, making
it necessary to resort to approximate solutions1.

Another disadvantage of such systems is that fea-

1The projective MST, however, can be obtained in O(nm+1)
time for a model of m-th order. A common practice is to find
the projective MST and then swap some edges.

56



He ate spaghetti with a fork

He ate spaghetti with meatballs

Figure 1: Example of dependency trees with different
head words for with, depending on its complement.

tures are usually binary. Thus, each word in the
system vocabulary is represented as a separate, in-
dependent feature. By contrast, a growing trend
in the NLP community is to use word embeddings,
which are low dimensional, dense vectors represent-
ing words (Turian et al., 2010; Collobert, 2011;
Mikolov et al., 2013). Word embeddings have the
advantage to deliver similar representations to words
that tend to occur in the same contexts (and usu-
ally have a related meaning), and lower out-of-
vocabulary impact.

In this work, we address the limitations described
above with a graph-based parser architecture in-
spired in the SENNA system (Collobert, 2011). It
takes word embeddings and POS tags as input, and
uses a convolutional neural network that allows it
to examine the whole sentence before giving a score
for each head-dependent pair. The complexity of the
scoring procedure is O(n3).

The remaining of this paper is organized as fol-
lows. Section 2 presents relevant related work with
dependency parsing, word embeddings and neural
architectures. Section 3 describes our model. Sec-
tion 4 shows our experimental setup and results
found for English, German and Dutch, and Section 5
presents our conclusions.

2 Related Work

Graph based parsers were combined with transition
based ones in studies aimed at exploiting global fea-
tures, which fit better with the latter (Martins et al.,
2008; Nivre and McDonald, 2008). Beam search has
also been used instead of exact inference in order to
allow more complex features and keep the problem
computationally tractable (Zhang and Clark, 2008).
In contrast, our method works by examining the
whole sentence in a straightforward manner before

assigning a score to an arc.
There has also been studies on generating word

embeddings based on syntactic relations of each
word instead of its neighbors in a fixed size win-
dow (Padó and Lapata, 2007). Recently, Bansal et
al. (2014) and Levy and Goldberg (2014) used sim-
ilar variants of the skip-gram model (Mikolov et al.,
2013) to this end: both studies parsed huge corpora
with a dependency parser and then used dependency
relations as context for the skip-gram algorithm.

The skip-gram model induces word representa-
tions such as to maximize the capabilities of pre-
dicting neighboring words w′ given a word w. By
considering neighbors the words with a dependency
edge between them, instead of merely occurring
near each other, the embeddings are able to capture
more syntactic knowledge.

Some other studies employed neural architectures
and word embeddings to address parsing. Socher
et al. (2013), for example, recurrently combined
word vectors into phrase vectors in constituency-
based parse trees. Chen and Manning (2014) used
an MLP network with one hidden layer to perform
transition-based dependency parsing. Their network
decides, for each state configuration, which action to
take next.

More related to this work, Collobert (2011) used
a convolutional network to address constituent pars-
ing. Words are tagged in multiple levels, according
to the constituents they are part of. A key compo-
nent of the network is the convolution layer, which
is capable of turning the representation of a sentence
of variable size into a fixed size vector.

A very similar architecture had been previously
used by Collobert et al. (2011) to perform semantic
role labeling. For this task, the network had to clas-
sify each token with respect to each predicate in the
sentence. We draw on this idea, making our depen-
dency parser, implemented as a convolutional neural
network, score each word with respect with a candi-
date head.

3 Deep Architecture

A way to avoid the need of defining each higher level
of features manually is a deep architecture that ex-
amines the whole sentence before making each local
decision.
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Our parser first identifies unlabeled dependency
arcs between words and then labels them. In the first
stage, it computes a score s(h,m, x) for assigning a
given head h to a modifier wordm within a sentence
x. After having computed scores for all (h,m) com-
binations, we perform the Chu-Liu-Edmond’s algo-
rithm to find the maximum spanning tree.

Then, in the second stage, for each pair (h,m)
previously detected, we must label the arc connect-
ing the words. We assign a score s(l, h,m, x) for
each possible label l, and the label l′ with the high-
est score is selected by the parser.

3.1 Word Representations
Each word t is represented as a concatenation of four
embedding vectors: one representing the word it-
self, one for its POS tag, one for the relative dis-
tance between t and h and one for the relative dis-
tance between t and m. As such, the final repre-
sentation varies according to each pair (h,m) being
processed.

The four vectors mentioned above have indepen-
dent dimensions dword, dPOS , dhdist and dmdist.
The vectors are drawn from matricesMword,MPOS ,
Mhdist and Mmdist. As usual in research with vec-
tor space models, we take advantage of previously
trained embeddings to initialize Mword. The other
three matrices are initialized randomly; all four are
adjusted during training.

The relative distance between two words t1 and t2
is determined as the difference in their positions in
the sentence, clipped to a maximum absolute value:

dist(t1, t2) = min(α,max(−α, i− j)) (1)

Where i and j are the numerical positions of t1
and t2 in x, and α is a threshold value. A positive
distance means that t1 comes first in the sentence,
and a negative distance means otherwise. The ma-
trices Mhdist and Mmdist need 2α+ 3 entries: each
positive and negative distance, plus a vector for dis-
tances greater than the threshold (also positive and
negative) and zero. Zero distance means that t1 and
t2 are the same.

3.2 Edge Detection
For the edge detection stage, the neural network per-
forms as follows. All possible (h,m) pairs are con-

sidered, and all words in the sentence are examined
for each decision. A convolution layer turns a vari-
able sized input (i.e., the sentence) into a fixed size
intermediate vector.

For each (h,m) candidate pair, the convolution
layer applies a default weight matrix multiplication
over the vectors representing all words and stores the
results:

[C]i = W1 · wr(i, h,m), 1 ≤ i ≤ |x| (2)

Where W1 is a weight matrix, wr(i, h,m) is the
representation (concatenation of the four vectors)
for the i-th word in the sentence, considering a pair
(h,m), C is a matrix containing the convolution re-
sults over the whole sentence and [C]i denotes its
i-th row.

After all words in the sentence have been exam-
ined, each convolution neuron outputs the maximum
value it found2 and a bias is added to the resulting
vector. The whole operation is described in Equa-
tions 3 and 4.

[cmax]j = max
1≤i≤|x|

[C]ij , 1 ≤ j ≤ |cmax| (3)

cout = cmax + b1 (4)

Where cmax is the fixed size vector obtained after
the convolution and cout has the values forwarded
to the next layer. Their dimension is equal to the
number of convolution neurons. [cmax]j indicates
the j-th element in the vector, and [C]ij indicates
the element at cell (i, j) of the matrix. b1 is a bias
vector.

The second hidden layer performs another matrix
multiplication and adds another bias vector. We ap-
ply a non-linear function over the resulting values:
for speed, we use a hard version of the hyperbolic
tangent, which just clips values greater than 1 or

2In fact, the actual implementation is slightly different in or-
der to avoid repeated calculations: we store a lookup table with
pre-computed values in the convolution layer considering only
distance vectors, and when scoring a sentence, we create an-
other lookup table with the results without considering distance
vectors. Then, for each (h, m), we just have to sum the appro-
priate entries.
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smaller than -1. Equation 5 describes the hidden
layer operation.

h = f(W2 · cout + b2) (5)

h represents the resulting vector in the layer, f(·)
is our non-linear function, W2 is a weight matrix
and b2 is a bias vector. The output layer in our net-
work has a single neuron which outputs the score
s(h,m, x), obtained by a dot product between h and
a weight vector w:

s(h,m, x) = w · h (6)

The representation of the root dependency has
been discussed and shown to be a non-trivial deci-
sion (Ballesteros and Nivre, 2013). We found that a
simple and elegant way to treat a dependency to the
dummy root node is to model it as s(t, t, x); that is,
the score of a spurious dependency from a word to
itself. When s(t, t, x) is higher than s(u, t, x) for all
other words u in the sentence, word t can be viewed
as not having any other word as a likely head.

During training, we perform stochastic gradient
descent, sampling one sentence at a time. After the
network has produced all head scores for a modifier,
we apply a softmax to the output to obtain a proba-
bility distribution:

p(h|m,x) =
es(h,m,x)∑
j∈x e

s(j,m,x)
(7)

The error gradient in the output layer is calculated
in a way to increase the score for the correct pair
(h∗,m) at the expense of all others:

δh,m =

{
1− p(h|m,x), if h = h∗

−p(h|m,x), otherwise
(8)

The error is backpropagated until all feature ma-
trices. The details of calculating the gradients at
each layer can be found in Collobert et al. (2011).

3.3 Determining Labels
In order to label each dependency arc, we use a sim-
ilar architecture. Instead of calculating the distance
from each word t to every possible pair (h,m), we
only need to consider the pairs that have an actual
dependency, which lowers complexity to O(n2).

Also, the output layer has one neuron for each
possible label, requiring a weight matrix instead of a
weight vector. Thus, instead of Equation 6, we have
Equation 9 for determining the network output.

y = W3 · h+ b3 (9)

W3 and b3 are, respectively, a weight matrix and a
bias vector. We pick the label with the highest score
in the output vector y as the parser answer. During
training, we apply a softmax on it in order to deter-
mine probabilities for each label. Error gradients are
found with the same rationale than edge detection,
the only difference being that we maximize the log
probability of the correct label instead of the correct
head.

4 Experiments

We performed experiments with English, German
and Dutch data. For English, we used the de-
fault Penn Treebank data set, converted to con-
stituency trees to CoNLL dependencies (Johansson
and Nugues, 2007) using the LTH conversion tool3

We trained on sections 2-21, validated on 22, and
tested on section 23. We trained and validated mod-
els using gold POS tags; for testing, we used a neu-
ral network based tagger trained on the default WSJ
POS tagging data set (sections 0-18).

For German and Dutch, we used the CoNLL
2006 datasets. We chose these two languages be-
cause they have the highest rate of non-projective
edges among all languages in CoNLL 2006, and one
of our method’s strengths is precisely finding non-
projective edges as easily as it would find projec-
tive ones. As common practice, we used gold POS
tags in training, validating and testing on these lan-
guages.

We report results obtained with the English word
embedding matrix Mword initialized with data from
SKIPDEP and Levy and Goldberg (2014)4 (L&G for
short). For German and Dutch, we used word em-
beddings provided by the Polyglot project5 (Al-Rfou
et al., 2013), generated by a neural language model.

3http://nlp.cs.lth.se/software/treebank_
converter/

4It is important to note that neither of them included the WSJ
corpus in the data used to generate the embeddings.

5Available at http://bit.ly/embeddings

59



Parameter Value
Mword embeddings size (en)6 100
Mword embeddings size (de/nl) 64
MPOS embeddings size 10
Mmdist embeddings size 5
Mhdist embeddings size 5
Distance threshold α 7 10
Iterations 15
Learning rate at epoch i 0.01

i
Convolution layer size (U) 100
Convolution layer size (L) 200
Second hidden layer size (U) 500
Second hidden layer size (L) 200

Table 1: Parameter values used in experiments. (U) indi-
cates the unlabeled stage, and (L) the labeled one. When
neither is present, the same configuration was used in
both.

The other matrices were initialized randomly.
Since they have a relatively low number of entries,
we can expect good embeddings to be obtained dur-
ing supervised training. Table 1 summarizes the ad-
justable parameters in our model and their values.

Results are shown in Table 2. SKIPDEP embed-
dings yielded slightly better accuracy than L&G,
but still considerably low when compared to state-
of-the-art parsers, which achieve 93.3%, 87.4% and
92.7% UAS on the WSJ, Dutch and German data,
respectively (Zhang et al., 2014). On the other hand,
the first-order parsers from Zhang et al. (2014) have
91.94%, 84.79% and 90.54% UAS.

Thus, despite our theoretical motivation, our
parser’s performance is on par with that of first-order
models. This suggests that the simpler, local features
commonly used by such models are just as effective
as examining the whole sentence before issuing each
local decision.

Training time is another drawback, with each
epoch in edge detection for the WSJ taking around 4
hours (running on an Intel Xeon E7 2.4 GHz). How-

6L&G embeddings originally had 300 dimensions. We ap-
plied Principal Component Analysis in order to reduce them to
100.

7The maximum distance is counted separately to the right
and to the left. In other words, there are 10 different vectors
encoding distance before a head/modifier, and 10 encoding dis-
tance after. Additionally, there is a vector for distance 0 and
two for 11 or more, totaling 23 vectors.

Dev Test
Vectors UAS LAS UAS LAS
SKIPDEP 91.9% 89.0% 91.6% 88.9%
L&G 91.6% 88.6% 91.4% 88.7%
Dutch — — 83.4% 78.4%
German — — 90.1% 87.7%

Table 2: Accuracy values

ever, as this was preliminary work on evaluating the
architecture, we didn’t focus on speeding up execu-
tion (e.g., using pruning). On the other hand, mem-
ory consumption is low: training uses around 1.5 GB
of RAM and running a model needs around 320 MB.

5 Conclusions

We have presented a graph-based dependency parser
built upon a deep architecture as an alternative to
explicitly engineered high order features. However,
contrary to some advancements recently obtained by
such models, ours fell short of state-of-the-art accu-
racy.

We believe that a more elaborate version of our
architecture could achieve competitive performance,
while still avoiding the problems related to the input
representation pointed out in the introduction. Our
code and trained models are available at https:
//github.com/erickrf/nlpnet.
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