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Abstract

Quantitative analysis of clinical language
samples is a powerful tool for assessing and
screening developmental language impair-
ments, but requires extensive manual tran-
scription, annotation, and calculation, result-
ing in error-prone results and clinical un-
derutilization. We describe a system that
performs automated morphological analy-
sis needed to calculate statistics such as
the mean length of utterance in morphemes
(MLUM), so that these statistics can be com-
puted directly from orthographic transcripts.
Estimates of MLUM computed by this sys-
tem are closely comparable to those pro-
duced by manual annotation. Our system
can be used in conjunction with other auto-
mated annotation techniques, such as maze
detection. This work represents an important
first step towards increased automation of
language sample analysis, and towards atten-
dant benefits of automation, including clini-
cal greater utilization and reduced variability
in care delivery.

1 Introduction

Specific language impairment (SLI) is a neurode-
velopmental disorder characterized by language de-
lays or deficits in the absence of other develop-
mental or sensory impairments (Tomblin, 2011).
A history of specific language impairment is as-
sociated with a host of difficulties in adolescence
and adulthood, including poorer quality friend-
ships (Durkin and Conti-Ramsden, 2007), a greater

risk for psychiatric disturbance (Durkin and Conti-
Ramsden, 2010), and diminished educational at-
tainment and occupational opportunities (Conti-
Ramsden and Durkin, 2012). SLI is common but
remains significantly underdiagnosed; one large-
scale study estimates that over 7% of kindergarten-
aged monolingual English speaking children have
SLI, but found that the parents of most of these chil-
dren were unaware that their child had a speech or
language problem (Tomblin et al., 1997).
Developmental language impairments are nor-

mally assessed using standardized tests such as
the Clinical Evaluation of Language Fundamen-
tals (CELF), a battery of norm-referenced language
tasks such as Recalling Sentences, in which the
child repeats a sentence, and Sentence Structure, in
which the child points to a picture matching a sen-
tence. However, there has been a recent push to
augment norm-referenced tests with language sam-
ple analysis (Leadholm and Miller, 1992; Miller
and Chapman, 1985), in which a spontaneous lan-
guage sample collected from a child is used to com-
pute various statistics measuring expressive lan-
guage abilities.
Natural language processing (NLP) has the po-

tential to open new frontiers in language sample
analysis. For instance, some recent work has
applied NLP techniques to quantify clinical im-
pressions that once were merely qualitative (e.g.,
Rouhizadeh et al. 2013, van Santen et al. 2013) and
other work has proposed novel computational fea-
tures for detecting language disorders (e.g., Gabani
et al. 2011). In this study, our goal is somewhat sim-
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pler: we attempt to apply novel NLP techniques to
assist the clinician by automating the computation
of firmly established spontaneous language statis-
tics.
Quantitative analysis of language samples is a

powerful tool for assessing and screening develop-
mental language impairments. Measures derived
from naturalistic language samples are thought to
be approximately as sensitive to language impair-
ment as are decontextualized tests like those that
make up the CELF (Aram et al., 1993); they may
also be less biased against speakers of non-standard
dialects (Stockman, 1996). Despite this, language
sample analysis is still underutilized in clinical set-
tings, in part due to the daunting amount of manual
transcription and annotation required.
Clinicians may avail themselves of software like

Systematic Analysis of Transcripts (SALT; Miller
and Iglesias 2012), which partially automates the
language sample analysis. But this tool (and oth-
ers like it) require the clinician to provide not only
a complete orthographic transcription, but also de-
tailed linguistic annotations using a complex and
unforgiving annotation syntax that itself takes sig-
nificant effort to master. In what follows, we de-
scribe a system which automates a key part of this
annotation process: the tedious and error-prone an-
notation of morphological structure.
In the next section, we describe mean length of

utterance in morphemes (MLUM), a widely used
measure of linguistic productivity, and associated
morphological annotations needed to compute this
measure. We then outline a computational model
which uses a cascade of linear classifiers and finite-
state automata to generate these morphological an-
notations; this allows MLUM to be computed di-
rectly from an orthographic transcription. Our eval-
uation demonstrates that this model produces esti-
mates of MLUM which are very similar to those
produced by manual annotation. Finally, we out-
line directions for future research.

2 Mean length of utterance and
morphological annotations

Mean length of utterance in morphemes is a widely-
used measure of linguistic productivity in children,

consisting essentially of the average number of
morphemes per utterance. Brown (1973), one of
the first users of MLUM, describes it as a sim-
ple, face-valid index of language development sim-
ply because nearly any linguistic feature newly
mastered by the child—be it obligatory morphol-
ogy, more complex argument structure, or clausal
recursion—results in an increase in the average
utterance length. MLUM has also proven use-
ful in diagnosing developmental language impair-
ments. For instance, typically-developing children
go through a stage where they omit affixes and/or
function words which are obligatory in their tar-
get language (e.g., Harris and Wexler 1996; Legate
and Yang 2007). Children with language impair-
ment are thought to omit obligatory morphemes at
a higher rate than their typically-developing peers
(Eisenberg et al., 2001; Rice and Wexler, 1996;
Rice et al., 1998; Rice et al., 2006), and differences
in omission rate can be detected, albeit indirectly,
with MLUM.
SALT (Miller and Chapman, 1985) provides

specific guidelines for estimating MLUM. These
guidelines are concerned both with what utter-
ances and tokens “count” towards MLUM, as
well as which tokens are to be considered mor-
phologically complex. The SALT guidelines re-
quire that complex words be written by writing
the free stem form of the word, followed by a
forward-slash (/) and an unambiguous signature
representing the suffix. SALT recognizes 13 “suf-
fixes”, including the noun plural (dog/s), posses-
sive (mom/z), preterite/past participle (walk/ed),
progressive/future (stroll/ing), and various en-
clitics (I/'m, we/'re, is/n't); some SALT suf-
fixes can also be combined (e.g., the plural posses-
sive boy/s/z). Each SALT suffix is counted as
a single morpheme, as are all stems and simplex
words. Irregulars affixes (felt), derivational affixes
(un-lock, write-r), and compounds (break-fast) are
not annotated, and words bearing them are counted
as a single morpheme unless these words happen to
contain one of the aforementioned SALT suffixes.
In the next section, we propose a computational

model which generates SALT-like morphological
annotations. Our highest priority is to be faith-
ful to the SALT specification, which has proved
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sufficient for the creators’ well-defined, clinically-
oriented aims. We do not claim that our system
will generalize to any other linguistic annotation
scheme, but only that we have successfully auto-
mated SALT-style morphological annotations. We
recognize the limitations of the SALT specification:
it draws little inspiration from linguistic theory, and
furthermore fails to anticipate the possibility of the
sort of automation we propose. As it happens,
there is a large body of work in natural language
processing on automated methods for morphologi-
cal segmentation and/or analysis, which could eas-
ily be applied to this problem. Yet, the vast ma-
jority of this literature is concerned with unsuper-
vised learning (i.e., inducing morphological analy-
ses from unlabeled data) rather than the (consider-
ably easier) task of mimicking morphological anal-
yses produced by humans, our goal here. (For one
exception, see the papers in Kurimo et al. 2010.)
While it would certainly be possible to adapt ex-
isting unsupervised morphological analyzers to im-
plement the SALT specification, the experiments
presented below demonstrate that simple statistical
models, trained on a small amount of data, achieve
near-ceiling performance at this task. Given this
result, we feel that adapting existing unsupervised
systems to this task would be a purely academic ex-
ercise.

3 The model

We propose a model to automatically generate
SALT-compatible morphological annotations, as
follows. First, word extraction identifies words
which count towards MLUM. Then, suffix predic-
tion predicts the most likely set of suffixes for each
word. Finally, stem analysis maps complex words
back to their stem form. These three steps generate
all the information necessary to compute MLUM.
We now proceed to describe each step in more de-
tail.

3.1 Word extraction
The SALT guidelines excludes any speech which
occurs during an incomplete or abandoned utter-
ance, speech in utterances that contain incompre-
hensible words, and speech duringmazes—i.e., dis-
fluent intervals, which encompass all incomplete

words and fillers—for the purpose of computing
MLUM and related statistics. A cascade of reg-
ular expressions are used to extract a list of eligi-
ble word tokens from individual lines of the ortho-
graphic transcript.

3.2 Suffix prediction
Once unannotatedword tokens have been extracted,
they are input to a cascade of two linear classifiers.
The first classifier makes a binary prediction as to
whether the token is morphologically simplex or
complex. If the token is predicted to be complex,
it is input to a second classifier which attempts to
predict which combination of the 13 SALT suffixes
is present.
Both classifiers are trained with held-out-data us-

ing the perceptron learning algorithm and weight
averaging (Freund and Schapire, 1999). We re-
port results using four feature sets. The baseline
model uses only a bias term. The φ0 set uses or-
thographic features inspired by “rare word” fea-
tures used in part-of-speech tagging (Ratnaparkhi,
1997) and intended to generalize well to out-of-
vocabulary words. In addition to bias, φ0 con-
sists of six orthographic features of the target token
(wi), including three binary features (“wi contains
an apostrophe”, “wi is a sound effect”, “wi is a hy-
phenated word”) and all proper string suffixes ofwi
up to three characters in length. The φ1 feature set
adds a nominal attribute, the identity of wi. Finally,
φ2 also includes four additional nominal features,
the identity of the nearest tokens to the left and right
(wi−2, wi−1, wi+1, wi+2). Four sample feature vec-
tors are shown in Table 1.

3.3 Stem analysis
Many English stems are spelled somewhat differ-
ently in free and bound (i.e., bare and inflected)
form. For example, stem-final usually changes to
i in the past tense (e.g., buried), and stem-final e
usually deletes before the progressive (e.g., bounc-
ing). Similarly, the SALT suffixes have different
spellings depending on context; the noun plural
suffix is spelled es when affixed to stems ending
in stridents (e.g., mixes), but as s elsewhere. To
model these spelling changes triggered by suffix-
ation, we use finite state automata (FSAs), math-
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I'm looking for one dinosaur

φ0 *apostrophe*
suf1="M" suf1="G" suf1="R" suf1="E" suf1="R"
suf2="'M" suf2="NG" suf2="OR" suf2="NE" suf2="UR"

suf3="ING" suf3="AUR"

φ1 w_i="I'M" w_i="LOOKING" w_i="FOR" w_i="ONE" w_i="DINOSAUR"

φ2 *initial* *peninitial* w_i-2="I'M" w_i-2="LOOKING" w_i-2="FOR"
w_i-1="I'M" w_i-1="LOOKING" w_i-1="FOR" w_i-1="ONE"

w_i+1="LOOKING" w_i+1="FOR" w_i+1="ONE" w_i+1="DINOSAUR" *ultimate*
w_i+2="FOR" w_i+2="ONE" w_i+2="PET" *penultimate*

Table 1: Sample features for the utterance I’m looking for one dinosaur; each column represents a separate feature
vector.

ematical models widely used in both natural lan-
guage processing and speech recognition. Finite
state automata can be used implement a cascade
of context-dependent rewrite rules (e.g., “α goes
to β in the context δ γ”) similar to those used
by linguists in writing phonological rules. This
makes FSAs particularly well suited for dealing
with spelling rules like the ones described above.
This spell-out transducer can also be adapted to

recover the stem of a wordform, once morpholog-
ical analysis has been performed. If I is the in-
put wordform, S is the spell-out transducer, and D
is a simple transducer which deletes whatever suf-
fixes are present, then the output-tape symbols of
I ◦ S−1 ◦ D contain the original stem.1 How-
ever, there may be multiple output paths for many
input wordforms. For instance, a doubled stem-
final consonant in the inflected form could either
be present in the bare stem (e.g., guess→ guessing)
or could be a product of the doubling rule (e.g., run
→ running); both are permitted by S−1. To resolve
these ambiguities, we employ a simple probabilis-
tic method. LetW be a weighted finite-state accep-
tor in which each path represents a stem, and the
cost of each path is proportional to that stem’s fre-

1An anonymous reviewer asks how this “stemmer” relates
to familiar tools such as the Porter (1980) stemmer. The stem-
mer described here takes morphologically annotated complex
words as input and outputs the uninflected (“free”) stem. In
contrast, the Porter stemmer takes unannotated words as input
and outputs a “canonical” form—crucially, not necessarily a
real word—to be used in downstream analyses.

quency.2 Then, the most likely stem given the input
wordform and analysis is given by the output-tape
symbols of

ShortestPath(I ◦ S−1 ◦ D ◦ W) .

Both the spell-out transducer and the stem-
mer were generated using the Thrax grammar-
compilation tools (Roark et al., 2012); a full speci-
fication of both models is provided in the appendix.

4 Evaluation

We evaluate the model with respect to its ability
to mimic human morphological annotations, using
three intrinsic measures. Suffix detection refers
to agreement on whether or not an eligible word
is morphologically complex. Suffix classification
refers to agreement as to which suffix or suffixes
are borne by a word which has been correctly clas-
sified as morphologically complex by the suffix de-
tector. Finally, token agreement refers agreement
as to the overall morphological annotation of an el-
igible word. We also evaluate the model extrinsi-
cally, by computing the Pearson product-moment
correlation between MLUM computed from man-
ual annotated data to MLUM computed from au-
tomated morphological annotations. In all evalu-

2To prevent composition failure with out-of-vocabulary
stems, the acceptor W is also augmented with additional arcs
permitting it to accept, with some small probability, the clo-
sure over the vocabulary.
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ations, we employ a “leave one child out” cross-
validation scheme.

4.1 Data

Our data comes from a large-scale study of autism
spectrum disorders and language impairment in
children. 110 children from the Portland, OR
metropolitan area, between 4–8 years of age, took
part in the study: 50 children with autism spectrum
disorders (ASD), 43 typically-developing children
(TD), and 17 children with specific language im-
pairment (SLI). All participants had full-scale IQ
scores of 70 or higher. All participants spoke En-
glish as their first language, and produced a mean
length of utterance in morphemes (MLUM) of at
least 3. During the initial screening, a certified
speech-language pathologist verified the absence
of speech intelligibility impairments. For more de-
tails on this sample, see van Santen et al. 2013.
The ADOS (Lord et al., 2000), a semi-structured

autism diagnostic observation, was administered to
all children in the current study. These sessions
were recorded and used to generate verbatim tran-
scriptions of the child and examiner’s speech. Tran-
scriptions were generated using SALT guidelines.
Conversational turns were segmented into individ-
ual utterances (or “C-units”), each of which con-
sisted of (at most) a main clause and any subordi-
nate clauses modifying it.

4.2 Interannotator agreement

Manual annotation quality was assessed using a
stratified sample of the full data set, consisting of
randomly-selected utterances per child. These ut-
terances were stripped of their morphological an-
notations and then re-annotated by two experienced
transcribers, neither of whom participated in the ini-
tial transcription efforts. The results are shown in
Table 2. On all three intrinsicmeasures, the original
and retrospective annotators agreed an overwhelm-
ing amount of the time; the Κ (chance-adjusted
agreement) values for the former two indicate “al-
most perfect” (Landis and Koch, 1977) agreement
according to standard qualitative guidelines.

Anno. 1 Anno. 2

Suffix detection Κ .9207 .9529
Suffix classification Κ .9135 .9452
Token agreement .9803 .9869

Table 2: Interannotator agreement statistics for suffix
detection, suffix identity, and overall token-level agree-
ment; the Κ values indicate “almost perfect agreement”
(Landis and Koch, 1977) according to qualitative guide-
lines.

4.3 Results

Table 3 summarizes the intrinsic evaluation results.
The baseline system performs poorly both in suf-
fix detection and suffix classification. Increasingly
complex feature sets result in significant increases
in both detection and classification. Even though
most eligible words are not morphologically com-
plex, the full feature set (φ2) produces a good bal-
ance of precision and recall and correctly labels
nearly 99% of all eligible word tokens. MLUMs
computed using the automated annotations and the
full feature set are almost identical to MLUMs de-
rived from manual annotations (R = .9998).
This table also shows accuracies for two particu-

larly difficult morphological distinctions, between
the noun plural S and the 3rd person active indica-
tive suffix 3s (seeks), and between the possessive
'S and Z (the contracted form of is), respectively.
These distinctions in particular appear to benefit in
particular from the contextual features of the φ2 fea-
ture set.
In the above experiments, the data contained

manually generated annotations of mazes. These
are required for computing measures like MLUM,
as speech in mazes is ignored when counting the
number of morphemes in an utterance. Like mor-
phological annotations, human annotation of mazes
is also tedious and time-consuming. However,
some recent work has attempted to automatically
generate maze annotations from orthographic tran-
scripts (Morley et al., 2014a), and automatic maze
annotation would greatly increase the utility of the
larger system described here.
We thus performed a simple “pipeline” evalu-

ation of the morphological annotation system, as
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Baseline φ0 φ1 φ2

Suffix detection

Accuracy .8122 .9667 .9879 .9913
Precision .8710 .9508 .9610
Recall .8393 .9451 .9644
F1 .8549 .9479 .9627

Suffix classification

Overall accuracy .1917 .8916 .9689 .9880
S vs. 3S accuracy .7794 .9478 .9788
'S vs. Z accuracy .9341 .9469 .9923

Token accuracy .8267 .9663 .9878 .9899

Table 3: Intrinsic analysis results on suffix detection, suffix classification, and overall token accuracy.

follows. First, maze annotations are automati-
cally generated for each transcript. We then feed
the maze-annotated transcripts into the morpholog-
ical analyzer described above, which is then used
to compute MLUM. The maze annotation system
used here was originally developed by Qian and
Liu (2013) for detecting fillers in Switchboard as
an early step in a larger disfluency detection sys-
tem; Morley et al. (2014a) adapted it for maze de-
tection. This system is trained from a dataset of
transcripts with manually-annotated mazes; here
we depart from the prior work in training it using a
leave-one-child-out strategy. Features used are de-
rived from tokens and automatically generated part-
of-speech tags. This system treats maze detection
as a sequence labeling task performed using a max-
margin Markov network (Taskar et al., 2004); for
more details, see Morley et al. 2014a.

We hypothesized that the errors introduced by au-
tomated maze annotation would not greatly affect
MLUM estimates, as maze detection errors do not
necessarily impact MLUM. For example, an utter-
ance like I went to I go to school might be brack-
eted as either (I went to) I go to school
and I went to (I go to) school, but either
analysis results in the same MLUM. And in fact,
MLUMs computed using the combined maze de-

tection/morphological annotation system are com-
petitive with MLUMs derived from manual annota-
tions (R = .9991).

4.4 Discussion

Our results show that the proposed morphologi-
cal analysis model produces accurate annotations,
which then can be used to compute relatively pre-
cise estimates of MLUM. Furthermore, automa-
tion of other SALT-style annotations (such as maze
detection) does not negatively impact automatic
MLUM estimates.
We experimented with other feature sets in the

hopes of approving accuracy and generalizability.
We hypothesized that suffix classification would
benefit from part-of-speech features. Since our
data was not manually part-of-speech tagged, we
extracted these features using an automated tagger
similar to the one described in (Collins, 2002).3
The tagger was trained on a corpus of approxi-
mately 150,000 utterances of child-directed speech
(Pearl and Sprouse, 2013) annotated with a 39-tag
set comparable to the familiar PTB tagset. Addi-

3The tagger was tested using the traditional “standard split”
of the Wall St. Journal portion of the Penn Treebank, with sec-
tions 0–18 for training, sections 19–21 for development, and
sections 22–24 for evaluation. The tagger correctly assigned
96.69% of the tags for the evaluation set.
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tional POS features were also generated by map-
ping the 39-tag set down to a smaller set of 11 “uni-
versal” tags (Petrov et al., 2012). However, neither
set of POS features produced any appreciable gains
in performance. We speculate that these features
are superfluous given the presence of the φ2 word
context features.

5 Conclusions

Wehave described a principled and accurate system
for automatic calculation of widely-used measures
of expressive language ability in children. The sys-
tem we propose does not require extensive man-
ual annotation, nor does it require expensive or
difficult-to-use proprietary software, another poten-
tial barrier to use of these measures in practice. It
is trained using a small amount of annotated data,
and could easily be adapted to similar annotation
conventions in other languages.
We view this work as a first step towards increas-

ing the use of automation in language assessment
and other language specialists. We foresee two ben-
efits to automation in this area. First, it may re-
duce time spent in manual annotation, increasing
the amount of time clinicians spend interactingwith
patients face to face. Second, increased automation
may lead to decreased variability in care delivery, a
necessary step towards improving outcomes (Ran-
som et al., 2008).
One remaining barrier to wider use of language

sample analysis is the need for manual transcrip-
tion, which is time-consuming even when later an-
notations are generated automatically. Future work
will consider whether transcripts derived from auto-
matic speech recognition are capable of producing
valid, unbiased estimates of measures like MLUM.
Our group has made progress towards automat-

ing other clinically relevant annotations, including
grammatical errors (Morley et al., 2014b) and repet-
itive speech (van Santen et al., 2013), and we are
actively studying ways to integrate our various sys-
tems into a full suite of automated language sam-
ple analysis utilities. More importantly, however,
we anticipate collaborating closely with our clini-
cal colleagues to develop new approaches for inte-
grating automated assessment tools into language
assessment and treatment workflows—an area in

which far too little research has taken place.
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