
D S Sharma, R Sangal and J D Pawar. Proc. of the 11th Intl. Conference on Natural Language Processing, pages 177–185,
Goa, India. December 2014. c©2014 NLP Association of India (NLPAI)

A Domain-Restricted, Rule Based, English-Hindi
Machine Translation System Based on Dependency Parsing

Pratik Desai, Amit Sangodkar, Om P. Damani
Department of Computer Science and Engineering

Indian Institute of Technology Bombay
pratikdesai,amits,damani@cse.iitb.ac.in

Abstract
We present a domain-restricted rule based ma-
chine translation system based on dependency
parsing. We replace the transfer phase of
the classical analysis, transfer, and generation
strategy with a syntax planning algorithm that
directly linearizes the dependency parse of the
source sentence as per the syntax of the target
language. While we have built the system for
English to Hindi translation, the approach can
be generalized to other source languages too
where a dependency parser is available.

1 Introduction
We present the design of a domain-restricted rule based
machine translation system based on dependency pars-
ing (de Marneffe et al., 2006). In contrast with the
classical Analysis-Transfer-Generation model (Boitet,
2003), we combine the Transfer and Generation phases
in a single Generation phase based on the Descend-
ing Transfer. Figure 1 shows how our approach con-
trasts with the traditional approaches. Domain restric-
tion comes in the form of use of a domain-specific dic-
tionary with semantic properties. Other than restricting
the vocabulary, no other restriction on the lnaguage is
assumed.

We uses dependency parse of the source sentence
as an intermediate representation from which the tar-
get language sentence can be directly generated. In
contrast with the existing transfer-based, example-
based, and statistics based English-Hindi translation
systems (Bharati et al., 1997; Sinha and Jain, 2003;
Ananthakrishnan et al., 2006; Ramanathan et al., 2009;
Chaudhury et al., 2010; Venkatapathy, 2010), the key
contribution of this work is an architecture (Figure 2)
and a syntax planning algorithm(Algorithm 2) that di-
rectly linearizes the dependency parse tree of the source
sentence as per the syntax of the target language. Both
the architecture and the syntax planning algorithm are
adapted from (Singh et al., 2007). We present the re-
sults for English to Hindi translation and evaluate sev-
eral dependency parsers for this task. Our approach is
generalizable and can easily be adapted for translation
from English to several South-Asian languages. While
our word reordering rules are based on dependency re-
lations, we also make use of the phrase structure parse

to extract some of the information missing in a depen-
dency parse.

               
               
   Semantic Transfer 

  

 
 
      Syntactic Transfer 

 
 
 
 
  Direct Transfer 

      
           
           Words 

 
 
Words 

                           
 
     Syntactic 
                
     Structure 

 
 
 Syntactic 
 
 Structure 

 
       Semantic 
            
       Structure 

 
Semantic 
 
Structure 

 
 
   Interlingua 

Descending  
 
Transfer 
 
(our  
  approach) 
  

Figure 1: Situating our approach in the Vaquois Trian-
gle

The rest of the paper is organized as follows. Sec-
tion 2 gives an introduction to dependency parse rep-
resentation used. Section 3 explains the architecture
of our rule-based translation system using dependency
parse, algorithms of various stages in language genera-
tion and the necessary resources. Section 4 presents the
results of trying different dependency parsers and Sec-
tion 5 contains the error analysis. Section 6 concludes
the paper.

2 Dependency representation
Dependency parse represents semantic relations be-
tween words in a sentence. Dependencies are triplets
containing name of the relation, parent and dependent
like relation(parent, child). They can be
represented in the form of a graph with each edge repre-
senting the relation from a parent node to a child node.
Our current system uses Stanford Dependencies Rep-
resentation (de Marneffe et al., 2006) but our approach
can be adapted for any dependency scheme like those
used by Minipar (Lin, 1998) and Link parser (Sleator
and Temperley, 1993). Consider the following exam-
ple:177



Figure 2: Generation Architecture

Sentence 1 Many Bengali poets have sung songs in
praise of this land.

The dependency parse for the Sentence 1 given by
the Stanford Parser is:

amod (poets-3, Many-1)
nn (poets-3, Bengali-2)
nsubj (sung-5, poets-3)
aux (sung-5, have-4)
dobj (sung-5, songs-6)
prep_in (sung-5, praise-8)
det (land-11, this-10)
prep_of (praise-8, land-11)

The parse can be represented in a tree form as shown
in Figure 3. The words in the parse tree are num-
bered to distinguish between different occurrences of
the same word in a sentence.

In Figure 3, edge labels like nsubj and dobj are
dependency relations relating two words in the sen-
tence. The first word is called a head/parent/governor
and the second word is called a child/dependent. For
the dependency nsubj(sung-5, poets-3), sung
is the head and poets is the dependent and the two are
related by nsubj (subject) relation.

Figure 3: Dependency Tree for Sentence 1

2.1 Pre-processing the Dependency Tree
In our system, a dependency parse of the input sentence
is obtained and the dependency tree is pre-processed
before being fed to the generation sub-system. Follow-
ing types of pre-processing are performed:

• All auxiliary verbs are removed from the tree and
post-fixed to their respective main verbs. Rela-
tions aux and auxpass are removed from the tree
as well. For example, in case of Sentence 1, rela-178



Figure 4: Modified Dependency Tree for Sentence 1

tion aux (sung-5, have-4), is removed and have
is attached to sung to form the combined unit
sung have.

• In Stanford dependency representation, preposi-
tions are represented as prep xxx dependency re-
lations. During the pre-processing, prepositions
are extracted from corresponding relations and re-
inserted appropriately with the parent or the child
word. In Sentence 1, preposition in and of are ex-
tracted from prep in and prep of and post-fixed to
children praise and land respectively.

• part words (prt relation - e.g. shut down -
prt(shut,down)) are post-fixed to the parent word
to form a single word (shut down in this case) and
the prt relation is removed from the dependency
tree. Similarly nn relation is removed and both
child and parent nodes are combined to form a sin-
gle node if both are proper nouns.

• For adverbial clauses, mark and complm
relations are replaced with corresponding at-
tributes. For example, in the sentence, Forces
engaged in fighting because
insurgents attacked, the dependency
relations advcl(enagaged, attacked)
and mark(engaged, because) are col-
lapsed to a single relation advcl(enagaged,
attacked) and the attribute because is
added to parent engaged. This attribute helps
in adding the correct function word kyunki during
the case marking phase.

• det relation is removed and attribute def or
indef is added to the parent node.

The modified tree for Sentence 1 is shown in Fig-
ure 4. Note that the preprocessing steps in our sys-
tem are different from those in (Venkatapathy, 2010).
In particular, our syntax planning algorithm (given in
Section 3.5) does not require us to break cyclic depen-
dencies.

3 Generation Architecture

Having explained the concept of dependency parsing,
we now explain the the different subsystems of the gen-
eration system of Figure 2.

3.1 Lexeme selection and feature extraction

The dependency parse of the input sentence is a graph-
ical data structure with the nodes representing the con-
cepts and the arcs representing the dependency rela-
tions. The first stage of the translation process is the se-
lection of the target word corresponding to each source
word. Each word is looked up in the domain specific
dictionary, and the corresponding lexeme is obtained.
Since we are using a domain-specific dictionary, lex-
eme selection module is trivial in that most of the time
there is only one target word for a source word. In the
absence of a domain-specific dictionary, we will need a
better lexeme selection module that incorporates word
sense disambiguation.

We use three tools for feature extraction: Mor-
pha (Minnen and Pearce, 2001), RelEx (Richardson et
al., 2006), and Function Tagger (Blaheta and Charniak,
2000). All semantic and morphological properties of
source words are not extracted by these tools and hence
we assume the availability of a dictionary with various
semantic and morphological attributes for each target
word. Consider the following example:

Sentence 2 This association gives training for emu-
keeping and also supplies the birds.

yh s\G im� pAln k� Ele þEq"Z d�tA h{ aOr
pE"yo\ ko BF uplNT krAtA h{
yah sangh emu-paalan ke liye

prashikshan detaa hai aur pakshiyon
ko bhi uplabdh karata hai

Figure 5: Dependency Tree for Sentence 2

The dependency parse for Sentence 2 is shown in
Figure 5. Table 1 shows parts of the desired output
of the lexeme selection and feature extraction stage for
Sentence 2.

3.2 Feature transfer

This is one of the most important stage of the gener-
ation process. Attributes of the nodes are transferred179



Word Translation Attributes/Features
give d̂ present,Verb,...

training þEq"Z Noun,Male,Event,...
supply uplNT krA present,Verb,Conjunct,...

Table 1: parts of the output of Lexeme Selection & Fea-
ture Extraction stage for Sentence 2

to each other in this stage. Most of the transferred at-
tributes come from the nouns. The attributes are trans-
ferred to adjectives and verbs as follows:

• Transferring features from nouns to adjectives
Adjectives need to take the number and gender
information from the noun that it qualifies. This
can be done by using the amod relation which
has noun as parent node and adjective as child
node. For example, good boy and good girl
are translated to aQCA lXkA(accha ladka) and
aQCF lXkF(acchi ladki) respectively. Here,
whether good gets translated to aQCA(accha) or
aQCF(acchi) is dependent on the gender attribute
that it gets from the noun boy or girl.

• Transferring features from nouns to verbs
For verbs, gender and number information is ob-
tained from the subject in case of active voice and
object in the case of passive voice. For example,
in Sentence 2 the gender attribute M is transferred
from association to give.

A multi-phase algorithm is employed for transitive
feature transfer. For example, for the dependency tree
in Figure 5, after gender attribute M is transferred from
association to give, in next phase, attribute M is trans-
ferred from give to supply.

For feature transfer, rules with the following format
are used:

POS:Relation:with [p]arent or [c]hild:p+ve attr:p-
ve attr:c+ve attr:c-ve attr:attr to be transferred

Here +ve/-ve attributes are those attributes which
should/should not be possessed by the parent or child
for the transfer to take place. For the same relation, the
order of the rules application is important. For exam-
ple, consider the following sequence of rules:
V:nsubj:c:null:null:null:null:morph

V:dobj:c:null:null:topic:null:passive

In the above rules, the first one checks whether a
node with POS=V (verb) has the nsubj (subject) rela-
tion, and the second one checks for the dobj (object)
relation. These rules are to be applied in the given or-
der. The first rule in the above example refers to trans-
fer of morphological attributes without any conditions.
The second rule says that if the child node is the topic of
the sentence, and has passive attribute, then transfer
the passive attribute (and only this attribute) to the
parent verb. Morphological attributes are not trans-
ferred in this case.

Figure 6: Feature Transfer in Dependency Parse

For Sentence 2, feature transfer is shown in Figure 6.
As per the rules, child of nsubj relation (association)
transfers its morphological features, ‘M’(masculine)
for instance, to the parent verb (give). Similarly, child
of conjunction relation (supply), gets features (‘M’)
from its parent (give), if the child is not governed by
a subject, which is the case here.

3.3 Case marking

In this step, target language function words such as
prepositions, conjunctions, clause markers e.t.c. are
identified. Consider the following sentence

Sentence 3 Ram ate rice with a spoon.
rAm n� cMmc s� KAnA KAyA
ram ne chammach se khanna khaaya

In the corresponding Hindi sentence, s�/se is added
to indicate the relation that cMmc(chammach/spoon)
has with the verb KAyA(khaaya/eat) and n�/ne is
added to indicate the relation between Ram and
KAyA(khaaya/eat). Case marker to be inserted is de-
cided depending on the relation between two nodes
and the lexical information present in dictionary en-
try of both child and parent node of the relation, and
also some attributes that the parent node and child
node should satisfy and some attributes that should not
be satisfied. Therefore, an exhaustive list of rules is
needed. Also, the rules must be ordered so that the most
restrictive rule for a relation should be checked first and
subsequently, lesser restrictive rules are checked.

The case (function words) depends on the depen-
dency relation and the attributes of the two nodes in-
volved in the relation. The case marking rules have the
following format:

POS:p pre:p post:c pre:c post:p+ve attr:p-ve
attr:c+ve attr:c-ve attr
Pre/Post are the case markers to be applied be-

fore/after the node (pre/post-positioning). +ve/-ve at-
tributes are the attributes which a node should or should
not have.

Example: For Sentence 2, function words (case
markers) that are identified with dependency relations
are given in Table 2.180



Parent Node Child Node Relation Case
give(present,V,M,sg) supply(present,V,M,CJNCT) conj and aOr

training(N,M,sg) emu-keeping(N,M,oblique,sg) prep for k� Ele
supply(present,V,M,CJNCT) bird(pl,def,N,M,oblique) dobj ko

Table 2: Case Marking for Sentence 2

3.4 Morphology Generation

In this stage, words are inflected depending on the sur-
rounding words. In the earlier stages, transitive fea-
ture transfer between words has already been done.
Now all the inflection related information is available
locally and all nouns, verbs, pronouns, and adjectives
undergo inflections. Nouns and adjectives are inflected
based on gender, number, and case marker information.
For example, lXkA(ladka/boy) in plural form becomes
lXk�(ladke/boys). In addition if it has a case marker
like p�(pe), it becomes lXko(ladko/on boys). This case
marker information is identified by the oblique at-
tribute added to the noun boy during the case marking
stage.

Verbs inflect depending on gender, number, per-
son, tense, aspect and mood attributes and the voice
in which it is used(active or passive). For exam-
ple, Vinod plays cricket translates to Evnod E�k�V
K�ltA h{(Vinod kriket khelta hai) and Children play
cricket translates to bÎ� E�k�V K�lt� h{(Bacche kriket
khelte hai). Here the different inflections of the verb
K�l(khel/play) are due to the number information ob-
tained in feature transfer stage from the qualifying noun
Vinod or children.

Pronouns inflect purely based on case markers. For
example, m� and case marker ko are combined as m� J�.

Algorithm 1 is the Morphology generation algo-
rithm. The procedure is recursive and the initial ar-
gument is the root of the dependency graph. Several
morphology generation rules are required for each part
of speech because the inflections differ dependning on
the attributes.

Algorithm 1 Morphology(current)
1: if current is not marked then
2: mark current
3: for each unmarked parent pi of current do
4: Morphology(pi)
5: pos← POS of current
6: attrs← attribute set of current
7: for each rule ri for pos do
8: ruleAttrs← attribute set of ri
9: match(ri) =

|attrs∩ruleAttrs|
|ruleAttrs|

10: r = argmax(match)
11: inflect current as per rules associated with r
12: for each child ci of current do
13: Morphology(ci)

Resources
Morphology of a word depends solely on the at-

tributes of the word. The attributes obtained through
dictionary look-up and during feature transfer (if any),
decide the morphology on the word. For morphology
of nouns, verbs and adjectives, the rule format is:

PenDel:UltDel:PenIns:UltIns:Attrs
In Hindi and many other South-Asian languages,

morphological inflections apply to the last character
and/or the last but one character of the word. In the
above rules, <PenDel> is the character to be deleted
from the penultimate position in the root word, while
<UltDel> is the character to be deleted from the ulti-
mate position. Similarly, <PenIns> and <UltIns>
refer to the characters to be inserted in the penultimate
and ultimate positions of the root word. <Attrs> is
the attribute list. Since there are only small number of
pronoun forms, the result of the combination of pro-
nouns with case markers are pre-computed and stored.
For example, pronoun m{\(mein), with case marker k�(ke)
gives morphed word as m�r�(mere).

Example: In Sentence 2, bird has attributes
pl(plural) and oblique(the word takes case marker),
which results in the morphed word pE"yo\(pakshiyon).
Morphology example for several words are given in ta-
ble 3.

Node Attributes Morphed Word
give present,V,M,sg d�tA h{

supply present,V,CJNCT,M uplNT krAtA h{
bird pl,def,N,ANIMT,M,oblique pE"yo\

Table 3: Results for morphology processing of Sen-
tence 2

3.5 Syntax planning

This stage rearranges the words (nodes in the depen-
dency tree) as per the syntax of the target language.
It is this stage that determines the fluency of the ob-
tained translation. For example, in the sentence I
like apples, the words have to be reordered as I
apples like, to finally get the translation m{ s�b
ps�d krtA h� \. Syntax planning algorithm works di-
rectly on the dependency parse of the sentence and is
based on two parameters:

1. Parent-child precedence within a relation: De-
pending on the relation involved, parent has to be
ordered before or after the child. Dependencies
like conj(conjunction), appos(appos),
advcl(adverbial clause) follow parent181



before child order while nsubj, dobj follow
child before parent order. For example, the depen-
dencies for the sentence I like apples are:

dobj(like,apples)

nsubj(like,I)

For both these dependencies the child has to be
ordered before parent to get I apples like.

2. Priority across relations: For a node with multiple
children, left to right ordering of children nodes
is done based on the priority given to their cor-
responding relations with the parent. For exam-
ple, nsubj has a higher priority than dobj. Tak-
ing the previous example, Iwill be ordered before
apples for the parent like which gives us the
required word order I apples like.

Resources
For resolving parent-child precedence, all depen-

dency relations are marked as parent-before-child or
child-before-parent. For resolving the relation priority,
a pair wise relation priority matrix is used. The order
of the matrix equals the number of relations present. A
part of the matrix for dependency relations is shown in
the Table 4.

An ‘L’ in the ith row and jth column means that the
child of ith relation is ordered before the child of the
jth relation in the final translation. From Table 4, it
can be seen that nsubj (subject) has higher priority
than dobj (object) and prep (preposition) has a lower
priority than nsubj but higher priority than dobj, so
prep’s child word is ordered between those of nsubj
and dobj.

nsubj dobj prep amod nn
nsubj - L L - -
dobj R - R - -
prep R L - L L
amod - - R - L

nn - - R R -

Table 4: Relation Priority

The details of our syntax planning algorithm are
given in Algorithm 2.

Example: For Sentence 2, syntax planning details
are shown in Table 5. The output list at the end of the
algorithm, gives the final ordering of the words in the
target language syntax. For Sentence 2, the final output
list is:
(this, association, emu-keeping,

training, give, bird, also, supply)
This word order is as per the expected translation and

the final output sentence generated is:
yh s\G im� pAln k� Ele þEq"Z d�tA h{ aOr

pE"yo\ ko BF uplNT krAtA h{
yah sangh emu-paalan ke liye

prashikshan detaa hai aur pakshiyon
ko bhi uplabdh karata hai

Algorithm 2 Syntax Planning
Require: 1. root node placed on Stack, and, 2. all

nodes unmarked
1: while Stack is not empty do
2: current← POP node from Stack
3: if current is not marked then
4: mark current
5: separate unmarked relatas of current into

beforeCurrent and afterCurrent lists
{depending on parent-child precedence, sin-
gle and multiple rules }

6: sort beforeCurrent and afterCurrent
{depending on relation priority rules}

7: push nodes on the Stack in the order,
sorted afterCurrent, current, sorted
beforeCurrent respectively

8: else
9: Output current node

This completes the description of our system.

4 Exploring other parsers

Parsing is the first and a very important stage of the
rule based machine translation system discussed here.
A wrong parse is bound to give a wrong translation and
hence severely affects accuracy. It is important to have
the most accurate dependency parser for the translation
system for improving translation accuracy. The current
system uses Stanford Parser for dependency parsing.
A performance study of dependency parsers accuracies
has been presented in (Cer et al., 2010). As per their
results, the two parsers that rank higher than Stanford
parser are CJ reranking parser (McClosky et al., 2006)
and Berkley parser (Petrov and Klein, 2007). Both of
these parsers can generate Stanford Typed Dependen-
cies. Note that there are other dependencies schemes
such as those used by Link parser (Sleator and Temper-
ley, 1993) and Minipar (Lin, 1998). In (Popel et al.,
2011), several dependency parsers were compared for
a English-to-Czech dependency-based statistical trans-
lation system. Use of these other parsers will require
rewriting of the rules in our system since they deploy
different dependency schemes. Hence we restrict our
comparison to CJ and Berkeley parsers since they em-
ploy Stanford Dependencies. The main difference be-
tween these three parsers is in their phrase structure
parsing algorithm.

Stanford parser is an unlexicalized PCFG parser. CJ
reranking parser consists of two components - a coarse-
to-fine generative parser and a reranker for the parses
generated from the parser. Berkeley parser uses a un-
lexicalized parsing with hierarchically split PCFG. All
three use the same methodology for generating Stan-
ford Dependencies from the phrase structure tree.182



Step State
1 Stack={give}
2 current={give} Stack={} output={}
5 before-current={training,association} after-current={supply}
6 sorted-before-current={association,training} after-current={supply}
7 Stack={supply,give,training,association}
2 current={association} Stack={supply,give,training}
5 before-current={this} after-current={}
7 Stack={supply,give,training,association,this}
2 current={this} Stack={supply,give,training,association}
9 output={this}
2 current={association} Stack={supply,give,training} output={this}
9 output={this, association}
2 current={training} Stack={supply,give} output={this, association}
5 before-current={emu-keeping} after-current={}
7 Stack={supply,give,training,emu-keeping}
2 current={emu-keeping} Stack={supply,give,training}
9 output={this, association, emu-keeping}
2 current={training} Stack={supply,give}

output={this, association, emu-keeping}
9 output={this, association, emu-keeping, training}
2 current={give} Stack={supply}

output={this, association, emu-keeping, training}
9 output={this, association, emu-keeping, training, give}
2 current={supply} Stack={}

output={this, association, emu-keeping, training, give}
5 before-current={also,bird} after-current={}
6 sorted-before-current={bird,also}
7 Stack={supply,also,bird}
2 current={bird} Stack={supply,also}
9 output={this, association, emu-keeping, training, give, bird}
2 current={also} Stack={supply}

output={this, association, emu-keeping, training, give, bird}
9 output={this, association, emu-keeping, training, give, bird, also}
2 current={supply} Stack={}

output={this, association, emu-keeping, training, give, bird, also}
9 output={this, association, emu-keeping, training, give, bird, also,

supply}
1 current={null} Stack={}

output={this, association, emu-keeping, training, give, bird, also,
supply}

Table 5: Syntax planning steps during the execution of Algorithm 2 for Sentence 2

183



4.1 Experimental Evaluation and Analysis
We use an 100 English sentences (1403 words) from
agricultural domain for evaluation. The gold-standard
Hindi translation contains 1231 words. These 100
sentences were chosen from 10 different discussion
threads in an agricultural question-answer corpus. The
average sentence length in words was 14. The input
sentences were translated using Stanford typed depen-
dencies from the three parsers. The output was eval-
uated against reference translations using BLEU (Pa-
pineni et al., 2002) score which ranges from 0 to 1.
Despite the known limitations (Callison-Burch et al.,
2006; Ananthakrishnan et al., 2007) we use BLEU,
since it is the most popular translation evaluation met-
ric. For completeness, we also evaluate Google Trans-
late on the same test set.

Results in Table 6 show that for the task at hand,
Stanford parser performs best and it is the only one
that performs better than Google Translate. Note that
we have used a domain-specific dictionary which also
gives semantic properties of words. This plays an im-
portant part in improving the translation quality. In the
absence of a domain-specific dictionary, we will need a
better lexeme selection module that incorporates word
sense disambiguation.

Based on the error analysis given next, we have iden-
tified several possible improvements to our system. In
future, we plan to strengthen the rule base to the extent
possible. We also need to strengthen the lexeme selec-
tion module by incorporating word sense disambigua-
tion and multi-word expression identification modules.
We have assumed the existence of a dictionary with
various semantic attributes of target words. Automatic
construction of such dictionaries from various paral-
lel and monolingual sources is needed. We also plan
to explore semantic parsers like Swirl (Surdeanu and
Turmo, 2005) and Senna (Collobert et al., 2011) for
determing source word attributes.

B
er

ke
le

y

C
J

re
ra

nk
in

g

St
an

fo
rd

G
oo

gl
e

Tr
an

sl
at

e

BLEU 0.23 0.18 0.27 0.25

Table 6: Translation quality for different parsers and
Google Translate

5 Error analysis
There are two types of errors in our system - those re-
lated to the parsers, and those related to the rest of the
generation system. For parsers under considerations,
dependency parse is derived from the phrase structure
parse, hence parsing errors themselves can be divided
into two categories:

• Errors in the phrase structure parse For exam-
ple, in What are its advantages? the Stanford
parser labels the phrase are its advantages accu-
rately with SQ and gets the correct dependency
attr(are-2, what-1). Berkeley parser la-
bels it inaccurately as SINV and hence gen-
erates the incorrect dependency dep(are-2,
what-1). CJ reranker gives wrong POS tag for
are and hence generates nsubj instead of attr.

• Errors in deriving the dependency parse In the
sentence Also, remove all the rotten fruits and tips
and destroy them, all three parsers derive accurate
phrase structure parses. But, CJ and Berkeley did
not label tip as an NP and therefore they could
not add label predet to the dependency between
fruit and all.

Main errors in the rest of the system are:

1. Limited rule base: The current rule base of the
system does not have enough coverage.

2. Inaccurate phrase translations: Dependency
parsers give prt(part of) relation between words
of some of the multi-word expressions. For rest of
the phrases, system performs word by word trans-
lation. For example, phrases like as soon as pos-
sible end up getting translated word by word.

3. Missing word properties: Currently we depend
on the parser and the dictionary for providing se-
mantic properties of the words. Many semantic
properties of the words are missing in the current
system.

We use RelEx and Function Tagger for obtaining
word attributes. In case of Relex, all the semantic
attributes are not obtained for many words due to
a incomplete and small rule base, while Function
tagger provides a very limited set of attributes.
Other semantic parsers like Swirl (Surdeanu and
Turmo, 2005) and Senna (Collobert et al., 2011)
need to be explored for this. Also, for Function
tagger and Relex, better mapping of the attributes
given by them to the attributes needed in the rule
base(eg. LOC given by Function tagger is mapped
to PLACE currently) needs to be done.

4. Lack of sense disambiguation: The current sys-
tem does not take into account the sense of the
word while selecting its translation from the dic-
tionary.

5. Imperfect syntax planning: The syntax plan-
ning algorithm assumes fixed parent-child prece-
dences. However, natural languages abound in
exceptions. For example, nsubj generally has
a higher priority than advcl. But for translat-
ing the sentence the accident happened before he
fell unconscious, the priority of advcl should be
greater than nsubj. The priority rules need to be
extended and lexicalized.184



6 Conclusions
In this work, we have shown that it is feasible to make
a domain-retricted rule based machine translation sys-
tem based on dependency parsing by directly lineariz-
ing the dependency parse tree of the source sentence as
per the syntax of the target language. We experimented
with three different parsers and found that the Stanford
parser is the best among the three parsers for the task
at hand. We have also identified a number of issues for
improvement in our system.

References
R. Ananthakrishnan, M. Kavitha, J Hegde Jayprasad,

Ritesh Shah Chandra Shekhar, and Sasikumar M.
Sawani Bade. 2006. Matra: A practical approach
to fully-automatic indicative english-hindi machine
translation. In Symposium on Modeling and Shallow
Parsing of Indian Languages (MSPIL’06).

R. Ananthakrishnan, Pushpak Bhattacharyya,
M. Sasikumar, and Ritesh M. Shah. 2007. Some
issues in automatic evaluation of english-hindi mt:
More blues for bleu. In Intl. Conf. on Natural
Language Processing (ICON).

A. Bharati, V. Chaitanya, A. P. Kulkarni, and R. Sangal.
1997. Anusaaraka: Machine translation in stages. A
Quarterly in Artificial Intelligence, NCST, Bombay
(renamed as CDAC, Mumbai).

Don Blaheta and Eugene Charniak. 2000. Assigning
function tags to parsed text. In 1st Annual Meeting
of the North American Chapter of the Association for
Computational Linguistics (NAACL).

C. Boitet. 2003. Revue franaise de linguistique ap-
plique. Automated Translation , VIII:99–121.

C. Callison-Burch, M. Osborne, and P. Koehn. 2006.
Re-evaluating the role of bleu in machine translation
research. In EACL.

Daniel Cer, Marie-Catherine de Marneffe, Daniel Ju-
rafsky, and Christopher D. Manning. 2010. Parsing
to stanford dependencies: Trade-offs between speed
and accuracy. In 7th International Conference on
Language Resources and Evaluation (LREC 2010).

S. Chaudhury, A. Rao, and D. M. Sharma. 2010.
Anusaaraka: An expert system based machine trans-
lation system. In Natural Language Processing and
Knowledge Engineering (NLP-KE).

R. Collobert, J. Weston, L. Bottou, M. Karlen,
K. Kavukcuoglu, and P. Kuksa. 2011. Natural lan-
guage processing (almost) from scratch. Journal of
Machine Learning Research (JMLR).

Marie-Catherine de Marneffe, Bill MacCartney, and
Christopher D. Manning. 2006. Generating typed
dependency parses from phrase structure parses.
In 5th International Conference on Language Re-
sources and Evaluation (LREC 2006).

Dekang Lin. 1998. Dependency-based evaluation of
minipar. In Workshop on the Evaluation of Parsing
Systems.

D. McClosky, E. Charniak, and M. Johnson. 2006. Ef-
fective self-training for parsing. In HLT/NAACL.

J. Carroll Minnen, G. and D. Pearce. 2001. Applied
morphological processing of english. Natural Lan-
guage Engineering, 7(3):207–223.

K. Papineni, S. Roukos, T. Ward, and W. J. Zhu. 2002.
Bleu: a method for automatic evaluation of machine
translation. In 40th Annual meeting of the Associa-
tion for Computational Linguistics (ACL).

S. Petrov and D. Klein. 2007. Improved inference for
unlexicalized parsing. In NAACL.

Martin Popel, David Mareek, and Nathan Green. 2011.
Influence of parser choice on dependency-based mt.
In EMNLP 6th Workshop on Statistical Machine
Translation.

A. Ramanathan, H. Choudhary, A. Ghosh, and P. Bhat-
tacharyya. 2009. Case markers and morphol-
ogy: Addressing the crux of the fluency problem in
english-hindi smt. In ACL-IJCNLP 2009.

R. Richardson, B. Goertzel, H. Pinto, and E. A. Fox.
2006. Automatic creation and translation of concept
maps for computer science-related theses and disser-
tations. In Second Int. Conference on Concept Map-
ping.

Smriti Singh, Mrugank Dalal, Vishal Vachhani, Push-
pak Bhattacharyya, and Om P. Damani. 2007. Hindi
generation from interlingua (unl). In MT Summit XI.

R. Sinha and A. Jain. 2003. Anglahindi: an english
to hindi machine-aided translation system. In MT
Summit IX.

Daniel D. Sleator and Davy Temperley. 1993. Parsing
english with a link grammar. In Third International
Workshop on Parsing Technologies.

M. Surdeanu and J. Turmo. 2005. Semantic role label-
ing using complete syntactic analysis. In 9th Confer-
ence on Computational Natural Language Learning
(CoNLL).

Sriram Venkatapathy. 2010. Statistical Models Suited
for Machine Translation from English to Indian Lan-
guages. Ph.D. thesis, Centre for Language Tech-
nologies Research Centre, IIIT, Hyderabad, India.

185


