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Charles University in Prague, Faculty of Mathematics and Physics

Institute of Formal and Applied Linguistics
Prague, Czech Republic

{hana,hladka,luksova} (at) ufal.mff.cuni.cz

Abstract

The purpose of our work is to explore the possibility of using sentence diagrams produced by
schoolchildren as training data for automatic syntactic analysis. We have implemented a sentence
diagram editor that schoolchildren can use to practice morphology and syntax. We collect their
diagrams, combine them into a single diagram for each sentence and transform them into a form
suitable for training a particular syntactic parser. In this study, the object language is Czech,
where sentence diagrams are part of elementary school curriculum, and the target format is the
annotation scheme of the Prague Dependency Treebank. We mainly focus on the evaluation of
individual diagrams and on their combination into a merged better version.

1 Introduction

Syntactic parsing has been an attractive topic for both theoretical and computational linguists for many
years. In combination with supervised machine learning techniques, several corpus-based parsers have
been implemented (e.g., (Nivre et al., 2007), (de Marneffe et al., 2006), (McDonald et al., 2005)), com-
bined (e.g., (Surdeanu and Manning, 2010)), and adapted (e.g., (McClosky et al., 2010),(Zhang and
Wang, 2009)). The performance of such techniques directly correlates with the size of training data: the
more annotated data, the better. However, the annotation process is very resource consuming, thus we
have been seeking for alternative ways of faster and cheaper annotation. Namely, we have been inspired
by the solution of crowdsourcing, see e.g. (Brabham, 2013).

In Czech schools, practicing morphology and syntax is an obligatory part of the curriculum.
Schoolchildren draw sentence diagrams similar to syntactic trees in dependency grammar theories (Hud-
son, 1984; Sgall et al., 1986; Mel’čuk, 1988), with labeled nodes and edges. Our goal is to collect such
diagrams and transform them into the annotation scheme of the Prague Dependency Treebank (Hajič
et al., 2006). Thereby we enlarge training data for taggers and parsers of Czech. Traditionally, dia-
grams that we need are only in students’ notebooks so they are not accessible to us at all. Since we
require diagrams electronically, we have been developing a sentence diagram editor Čapek. We have
designed it both as a CALL (Computer-Assisted Language Learning) system for practicing morphology
and dependency-based syntax and as a crowdsourcing system for getting annotated data. In addition, the
editor can be used for drawing sentence diagrams in any natural language. On the other hand, transfor-
mation rules have to be specified with respect to a particular target annotation scheme. We introduced
this approach in (Hana and Hladká, 2012).

Data quality belongs to the most important issues related to crowdsourcing, see e.g. (Sabou et al.,
2012), (Wang et al., 2010), (Hsueh et al., 2009). We discuss the data quality from two aspects: (i)
evaluation of students’ diagrams against teachers’ and/or other students’ diagrams, i.e. we consider how
diagrams are similar; (ii) combination of students’ diagrams of one sentence to get a better diagram, i.e.
we deal with multiple, possibly noisy, annotations and we study if they are useful.

Our paper is organized as follows: in Section 2, we describe Czech sentence diagrams and how they
differ from the PDT annotation scheme. We introduce the Čapek editor in Section 3. Section 4 introduces
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a tree edit distance metric we use to quantify the difference between diagrams. Section 5 discusses an
algorithm combining alternative diagrams into a single structure. Finally, some initial evaluation and
other statistics are presented in Section 6.

2 Czech sentence diagrams

In the Czech sentence diagrams (hence SDs), a sentence is represented as a type of dependency structure.1

The structure is a directed acyclic graph (roughly a tree) with labeled nodes. The nodes correspond to
words: one (most common), multiple (auxiliary words are considered markings on their heads, e.g.
preposition and noun, or a complex verb form share a single node) or none (in case of dropped subjects).
The edges capture the dependency relation between nodes (e.g., between an object and its predicate).
The node label expresses the type of dependency, or syntactic function.
Formally, a sentence diagram over a sentence s = w1 w2 . . . wn is a directed acyclic graph D =
(Nodes,Edges), where Nodes is a partition of s. Moreover, the Nodes set might contain a dummy
node corresponding to a dropped subject. The first node N1 of an edge E = (N1, N2) is a child node of
the second node N2.

For illustration, let’s consider the sentence in (1) and its diagram in Figure 1:

(1) (—)
I

Ráno
in the morning

půjdu
will go

se
with

svým
my

kamarádem
friend

na houby.
mushrooming.

‘I will go mushrooming with my friend in the morning.’

Since our goal is to get more data annotated according to the PDT schema (the so-called a-layer or
surface syntax), we characterize certain aspects of SD with respect to the PDT conventions depicted in
Figure 2:

• Tokenization. There is a 1:1 correspondence between tokens and nodes in PDT; all punctuation
marks have their corresponding nodes. Cf. 8 tokens and 8 nodes in Example 1 and Figure 2. In
SDs, there is an N:1 correspondence between tokens and nodes (N can be 0 for dropped subjects);
punctuation is mostly ignored. Cf. 8 tokens and 6 nodes in Example 1 and Figure 1.

• Multi-token nodes. SDs operate on both single-token (půjdu ‘will go’) and multi-token nodes (se
kamarádem ‘with friend’, na houby ‘for mushrooms’). The tokens inside each multi-token node are
ordered in accordance with their surface word order. Auxiliary words, auxiliary verbs, prepositions,
modals etc. do not have their own nodes and are always part of a multi-token node. PDT handles
single-token nodes only.

• Subject and predicate. In PDT, predicate is the root and the subject depends on it; in Figure 1,
they are on the same level; cf. the nodes for (já) půjdu ‘I will go’.

• PRO subject. SDs introduce nodes for elided subjects (see the --- node in Figure 1), which are
common in Czech. PDT does not represent them explicitly.

• Morphological tags. We adopt the system of positional tags used in PDT to capture morphological
properties of words. Tags are assigned to each token in the sentence, not to the nodes.

• Syntactical tags (functors). Our SDs use 14 syntactical tags (Subject, Predicate, Attribute, Adver-
bial of time/place/manner/degree/means/cause/reason/condition/opposition, Verbal Complement).
PDT distinguishes significantly higher number of functors, but most of the additional tags are used
in rather specific situations that are captured by different means in school syntax (parenthesis, ellip-
sis), are quite technical (punctuation types), etc. In the vast majority of cases, it is trivial to map SD
functors to PDT functors.

1For expository reasons, in this paper, we ignore complex sentences consisting of multiple clauses. Their SD is a discon-
nected graph where each component is an SD of a single clause. Such sentences and graphs are however part of the evaluation
in Section 6.
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Figure 1: A sample of sentence diagram

Figure 2: A sample of PDT tree

Figure 3: A possible sentence diagram draw in Čapek

3 Čapek editor

Since we wanted to provide students with a sentence diagram editor that is easy to use, we have de-
cided not to use the TrEd editor,2 a versatile, flexible but also complex tool, which is used as the main
annotation tool of the Prague Dependency Treebanks. Instead, we decided to implement Čapek, a new
system. It exists as a desktop application, written in Java on top of the Netbeans Platform, 3 and as a web
application.4

Students use the editor in a similar way as they are used to use chalk/pen at school. A simple and
intuitive GUI supports the following operations:

• JOIN Merge two nodes into a single multi-token node.

• SPL Divide a multi-token into nodes corresponding to single tokens.

• INS Create a node for elided subject.

• LINK Link a node to its governing parent node.

• LAB Label a node with syntactic function.

• MLAB Label a token with morphological function.

Intentionally, we did not make Čapek to perform any consistency checks, except acyclicity of the graph.
Thus students can create a graph with several components, all nodes can be a subject, etc.

4 Similarity of sentence diagrams

We compute the similarity between sentence diagrams using a tree edit distance. Our definition is based
on a tree edit distance in (Bille, 2005). It assumes two trees T1, T2 and three edit operations: relabeling
a node, deleting a non-root node, and inserting a node. T1 is transformed into T2 by a sequence of edit

2http://ufal.mff.cuni.cz/tred
3http://platform.netbeans.org
4http://capek.herokuapp.com/
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operations S. Each operation has a particular cost, the cost of the sequence S is simply the sum of the
cost of individual operations. Then tree edit distance between two trees is the cost of a cheapest sequence
of operations turning one tree into another.

Our situation is similar, however:

• the compared sentence diagrams are always over the same sentence, i.e. over the same set of tokens

• diagrams are not trees: they are acyclic graphs but unlike trees they might consist of several compo-
nents (either because they capture complex sentences, or because the students did not finish them).
In addition, a diagram usually has two “roots”: one for the subject and one for predicate. However,
it is trivial to transform them into the corresponding tree, considering the subject to be the daughter
of the predicate.

Thus, we modify the distance from (Bille, 2005). For an example, see Figure 4 with nodes of two
particular diagrams over a 6-token sentence. The arrows show a token-node mapping specified by the
annotator of D1:

• Let D1 and D2 be sentence diagrams; we are turning D2 into D1.

• We consider the following operations:

– SPL – detaching a token from a node

– JOIN – adding a token to a node

– INS – adding an empty node (used for elided subjects)

– LINK – linking a node with its parent and removing all inconsistent edges. If manipulating a
non-root node, relink the node to its new parent and remove the edge to its former parent. If
manipulating a root node, like a in Figure 5 a), link the node to its new parent, e.g. to e, see
Figure 5 b). Then the diagram consists of a single cycle. Thus remove the edge from e to its
former parent c and e becomes a root, see Figure 5 c).

– SLAB – change node syntactic label

All operations are assumed to have the cost of 1. Without loss of generality, we can assume that
operations are performed in stages: first all SPLs, then all JOINs, etc. In Figure 4, first we apply
SPL twice on the nodes [b, c], [d, e, f ] and then JOIN also twice on the nodes [a], [b] and [e], [f ].

• Finally, the measure is normalized by sentence length. Thus, we redefine the tree edit distance
TED(D1, D2, n) for diagrams D1, D2 and sentence of n tokens as follows:

TED(D1, D2, n) = (#SPL+ #JOIN + #INS + #LINK + #SLAB)/n

.

• We define the tree edit distance for annotators A1, A2 and a set of sentences S (si ∈ S) as the
average tree distance over those sentences:

TED(A1, A2, S) =
1
|S|

|S|∑
i=1

TED(Di
A1
, Di

A2
, |si|)

.
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Figure 4: Turning nodes of D2 into nodes of D1 Figure 5: Linking a root node

5 Combination of sentence diagrams

We deal with sentence diagrams and their differences before transformation into a target annotation
scheme. We propose a majority-voting method to combine m multiple diagrams D1, . . . , Dm created
by m different users over the sentence s = w1 w2 . . . wn. In some sense, our task is similar to the
task of combination independently-trained syntactic parsers. However, at least to our knowledge, the
experiments performed so far, e.g. (Surdeanu and Manning, 2010), are based on the assumption that all
input parsers build syntactic structures on the same set of nodes. Given that, we address a significantly
different task. We approach it using the concept of assigning each candidate node and edge a score
based on the number of votes it received from the input diagrams. The votes for edges are weighted by a
specific criterion.

To build a final diagram, we first create its set of nodes FinalNodes, then its set of edges FinalEdges
linking nodes in FinalNodes, and finally extend the set of nodes by any empty nodes. The method can
produce both nodes and edges that do not occur in any of the input diagrams.

Building FinalNodes

1. ∀t, u ∈ s . v(t, u) =
∑m

k=1 δ([t, u], Dk), where δ([t, u], D) = 1 if the tokens t and u are in the
same node in the diagram D, and 0 otherwise. We compute the number of votes v(t, u) to measure
user preferences for having token pair t, u in one node. In total, there are

(|s|
2

)
token pairs.

2. The set FinalNodes is formed as a partition over tokens induced by the v(t, u) equivalence rela-
tion:

FinalNodes = s/eq where eq(t, u)⇔ v(t, u) > m/2

For illustration, we start with the sentence a b c d and three diagrams with nodes displayed in Figure 6.
All of them consist of two nodes, namelyNodes1 = {[a, b, c], [d]},Nodes2 = {[a], [b, c, d]},Nodes3 =
{[a, b], [c, d]}. First, we calculate the votes for each possible token pairs, see Table 1. There are two
candidates with a majority of votes, namely (a, b) and (b, c), both with two votes. Thus, FinalNodes =
{[a, b, c], [d]}. A final diagram consists of n nodes [w1], . . . , [wn] if there is no candidate with majority
of votes, see Figure 7 and Table 2.

42



Figure 6: Sentence a b c d and nodes in three diagrams

a b c d

a x 2 1 0
b x x 2 1
c x x x 1
d x x x x

Table 1: Two candidates for joining

Figure 7: Sentence a b c d and nodes in three other diagrams

a b c d

a x 1 0 1
b x x 1 0
c x x x 1
d x x x x

Table 2: No candidates with the great majority of votes

Building FinalEdges

1. fn = |FinalNodes|

2. ∀Dk=1,...,m, ∀E = (N1, N2) ∈ Edgesk, ∀(t, u) ∈ tokens(N1) × tokens(N2) : vk(t, u) =
1/(|tokens(N1)||tokens(N2)|). We compute vk(t, u) to measure user preference for having token
t in a node dependent on a node containing u. We take it proportionally to the number of tokens in
two particular nodes.

3. We initialize a set of potential edges as a set of all possible edges over the final nodes. I.e.
PotentialEdges is formed as a variation of fn nodes choose 2. Let p = |PotentialEdges| =
fn(fn− 1). Then weights are assigned to the potential edges:

∀E = (N1, N2) ∈ PotentialEdges : vE =
∑m

k=1 v
k(t, u), (t, u) ∈ tokens(N1)× tokens(N2)

4. Sort PotentialEdges so that vE1 ≥ vE2 ≥ · · · ≥ vEp

5. FinalEdges := ∅

6. until PotentialEdges = ∅

• FinalEdges := FinalEdges ∪ E1

• PotentialEdges := PotentialEdges \ E1

• PotentialEdges := PotentialEdges \ −E1

• PotentialEdges := PotentialEdges \ {E : E ∪ FinalEdges has a cycle}

For illustration, we assume three diagrams D1, D2, D3 displayed in Figure 8. We compute weights
of token pairs proportionally to the number of tokens in nodes identifying a given edge, e.g. the edge
([a, b], [c]) in D1 determines two token pairs (a, c) and (b, c), each of them with the weight 1/2. See
Table 3 for other weights. Let FinalNodes = {[a, b], [c], [d]}. There are six possible edges connecting
the final nodes, namely ([a, b], [c]),([c], [a, b]),([a, b], [d]),([d], [a, b]),([c], [d]),([d], [c]). For each of them,
we compute its weight, see Table 4. Then we sort them – ([a, b], [c]), ([c], [d]), ([a, b], [d]), ([c], [a, b]),
([d], [a, b]), ([d], [c]). Table 5 traces the algorithm for adding edges into a final diagram. Finally, we get
the diagram D in Figure 8.
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([a, b], [c]) ([c], [a, b]) ([a, b], [d]) ([d], [a, b]) ([c], [d]) ([d], [c])
weight 13/6 0 1/2 0 1 0

Table 4: Computing weights of edges-candidates to be added into a final diagram

1st FinalEdges
PotentialEdges ([a, b], [c]) ([c], [d]) ([a, b], [d]) ([c], [a, b]) ([d], [a, b]) ([d], [c])

2nd FinalEdges ([a, b], [c])
PotentialEdges ([c], [d]) ([a, b], [d]) �����([c], [a, b]) ([d], [a, b]) ([d], [c])

3rd FinalEdges ([a, b], [c]) ([c], [d])
PotentialEdges ������([a, b], [d]) �����([d], [a, b]) ����([d], [c])

Table 5: Adding edges into a final diagram

Figure 8: Input diagrams D1, D2, D3 and final diagram D

D1 D2 D3

token weight token weight token weight
pair pair pair

(a, c) 1/2 (a, c) 1/4 (a, c) 1/3
(b, c) 1/2 (a, d) 1/4 (b, c) 1/3
(c, d) 1 (b, c) 1/4 (d, c) 1/3

(b, d) 1/4

Table 3: Assigning weights to token pairs

6 Data and initial experiments

We randomly selected a workbench of 101 sentences from a textbook of Czech language for elementary
schools (Styblı́k and Melichar, 2005) with the average length of 8.5 tokens, for details see Figure 9.
These sentences were manually analysed according to the school system with the emphasis placed on
syntactic analysis. Namely, elementary school teachers T1 and T2 and secondary school students S1 and
S2 drew school system diagrams using Čapek 1.0. Teachers T1 and T2 are colleagues from the same
school but they were drawing diagrams separately. Students S1 and S2 study at different schools and
they are students neither of T1 nor T2. In Table 6, we present TED for pairs of teachers and students.
As we expected, the teachers’ diagrams are the most similar ones and on the other hand, the students’
diagrams are the most different one. Taking teacher T1 as a gold-standard data, student S1 made less
errors that student S2. We analyzed differences in details considering two aspects:

• Do nodes closer to the root node cause more differences? A diagram D2 is transformed into a
diagram D1 by a sequence of operations (SPL, JOIN, INS, LINK, SLAB) where the first operation

Figure 9: Length of sentences in the workbench

Figure 10: TED vs. Sentence length
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(T1,T2) (T1,S1) (T1,S2) (S1,S2) U1 U2 U3 U4 U5 U6 U7 MV
# of sentences 101 91 101 91 10 10 10 10 10 10 10 10
TED 0.26 0.49 0.56 0.69 0.78 0.63 0.56 0.76 0.38 0.62 1.21 0.40

Table 6: TED for pairs of teachers and students, for pairs of teacher T1 and users U1,...,U7 and their combination MV

Figure 11: First Error Depth

is applied on the node in some depth of D2 (where the depth of a node is the length of the path from
the root to that node). Figure 11 illustrates this depth for pairs of teachers and students. We observe
that the very first operation is applied in the root nodes mostly. So we can suppose that recognizing
predicate and its dependent nodes is the most difficult step for users.

• Do longer sentences cause more difficulties? In Figure 10, we observe that the sentence length does
not influence discrepancies between teachers at all (measured by TED). For students, we can see
peaks for sentences of 12, 15, 17, 23 tokens. However, we suppose that longer sentences do not
cause obstacles for them.

A group of 7 users U1, . . . , U7, graduate and undergraduate students, drew diagrams for 10 (S10)
sentences randomly selected from the workbench using Čapek 2.0. We merged their analyses using
the MV algorithm. When the final diagrams are compared to the diagrams by the T1 teacher, we get
TED(T1,MV (U1, . . . , U8), S10) = 0.4. To see whether we built a better final diagram, we computed
TED(T1, Ui, S10) for each user – see columns U1,. . . ,U7 in Table 6. One can see that only one user
(U5) has a slightly better agreement with the T1 diagrams. The user U7 actually managed to have more
than one error (differences from T1) per annotated token.

7 Conclusion

In this paper, we have shown our motivation for getting more syntactically annotated data by sentence
diagrams transformation. We have implemented Čapek, a diagram editor, which allows students to per-
form sentence analysis electronically. We can then collect their diagrams easily. The editor is designed
as both a CALL and crowdsourcing system for practicing morphology and syntax and for collecting dia-
grams over a given set of sentences. Both aspects have to deal with a quantitative measure of agreement,
therefore we designed a tree edit distance metric comparing two or multiple diagrams. In addition, we
have formulated an algorithm combining multiple crowdsourced diagrams into a single better diagram.
Finally, we presented the results of a pilot study with promising results.

In the near future, to get more statistically significant results, we plan to address the following issues:

• evaluating the combination algorithm on complex sentences

• specifying the practice of crowdsourcing: how to distribute tasks, and how to assign voting weights
to users based on their past results

• getting more diagrams
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