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Abstract

Retrieving information about highly am-
biguous gene/protein homonyms is a chal-
lenge, in particular where their non-protein
meanings are more frequent than their pro-
tein meaning (e. g., SAH or HF). Due to
their limited coverage in common bench-
marking data sets, the performance of exist-
ing gene/protein recognition tools on these
problematic cases is hard to assess.

We uniformly sample a corpus of eight am-
biguous gene/protein abbreviations from
MEDLINEr and provide manual annota-
tions for each mention of these abbrevia-
tions.1 Based on this resource, we show
that available gene recognition tools such
as conditional random fields (CRF) trained
on BioCreative 2 NER data or GNAT tend
to underperform on this phenomenon.

We propose to extend existing gene recog-
nition approaches by combining a CRF
and a support vector machine. In a cross-
entity evaluation and without taking any
entity-specific information into account,
our model achieves a gain of 6 points
F1-Measure over our best baseline which
checks for the occurrence of a long form
of the abbreviation and more than 9 points
over all existing tools investigated.

1 Introduction

In pharmaceutical research, a common task is to
gather all relevant information about a gene, e. g.,
from published articles or abstracts. The task of rec-
ognizing the mentions of genes or proteins can be
understood as the classification problem to decide

1The annotated corpus is available for future research at
http://dx.doi.org/10.4119/unibi/2673424.

whether the entity of interest denotes a gene/protein
or something else. For highly ambiguous short
names, this task can be particularly challenging.
Consider, for instance, the gene acyl-CoA syn-
thetase medium-chain family member 3 which has
synonyms protein SA homolog or SA hypertension-
associated homolog, among others, with abbrevia-
tions ACSM3, and SAH.2 Standard thesaurus-based
search engines would retrieve results where SAH
denotes the gene/protein of interest, but also oc-
currences in which it denotes other proteins (e. g.,
ATX1 antioxidant protein 1 homolog3) or entities
from semantic classes other than genes/proteins
(e. g., the symptom sub-arachnoid hemorrhage).

For an abbreviation such as SAH, the use as de-
noting a symptom or another semantic class dif-
ferent from genes/proteins is more frequent by a
factor of 70 compared to protein-denoting men-
tions according to our corpus analysis, such that
the retrieval precision for acyl-CoA synthetase by
the occurrence of the synonym SAH is only about
0.01, which is totally unacceptable for practical
applications.

In this paper, we discuss the specific challenge
of recognizing such highly ambiguous abbrevia-
tions. We consider eight entities and show that
common corpora for gene/protein recognition are
of limited value for their investigation. The abbre-
viations we consider are SAH, MOX, PLS, CLU,
CLI, HF, AHR and COPD (cf. Table 1). Based
on a sample from MEDLINE4, we show that these
names do actually occur in biomedical text, but
are underrepresented in corpora typically used for
benchmarking and developing gene/protein recog-
nition approaches.

2http://www.ncbi.nlm.nih.gov/gene/6296
3http://www.ncbi.nlm.nih.gov/gene/

443451
4http://www.nlm.nih.gov/pubs/

factsheets/medline.html
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Synonym Other names Other meaning EntrezGene ID

SAH acyl-CoA synthetase medium-chain family
member 3; ACSM3

subarachnoid hemorrhage;
S-Adenosyl-L-homocysteine hydrolase

6296

MOX monooxygenase, DBH-like 1 moxifloxacin; methylparaoxon 26002
PLS POLARIS partial least squares; primary lateral sclerosis 3770598
CLU clusterin; CLI covalent linkage unit 1191
CLI clusterin; CLU clindamycin 1191
HF complement factor H; CFH high frequency; heart failure; Hartree-Fock 3075
AHR aryl hydrocarbon receptor; bHLHe76 airway hyperreactivity 196
COPD archain 1; ARCN1; coatomer protein

complex, subunit delta
Chronic Obstructive Pulmonary Disease 22819; 372

Table 1: The eight synonyms for genes/proteins which are subject of analysis in this paper and their long
names together with frequent other meanings.

We propose a machine learning-based filtering
approach to detect whether a mention in question
actually denotes a gene/protein or not and show
that for the eight highly ambiguous abbreviations
that we consider, the performance of our approach
in terms of F1 measure is higher than for a state-of-
the-art tagger based on conditional random fields
(CRF), a freely available dictionary-based approach
and an abbreviation resolver. We evaluate differ-
ent parameters and their impact in our filtering
approach and discuss the results. Note that this
approach does not take any information about the
specific abbreviation into account and can therefore
be expected to generalize to names not considered
in our corpus.

The main contributions of this paper are:
(i) We consider the problem of recognizing

highly ambiguous abbreviations that fre-
quently do not denote proteins as a task that
has so far attracted only limited attention.

(ii) We show that the recognition of such ambigu-
ous mentions is important as their string rep-
resentation is frequent in collections such as
MEDLINE.

(iii) We show, however, that this set of ambiguous
names is underrepresented in corpora com-
monly used for system design and develop-
ment. Such corpora do not provide a suffi-
cient data basis for studying the phenomenon
or for training systems that appropriately han-
dle such ambiguous abbreviation. We con-
tribute a manually annotated corpus of 2174
occurrences of ambiguous abbreviations.

(iv) We propose a filtering method for classifying
ambiguous abbreviations as denoting a pro-
tein or not. We show that this method has a
positive impact on the overall performance of
named entity recognition systems.

2 Related Work

The task of gene/protein recognition consists in
the classification of terms as actually denoting a
gene/protein or not. The task is typically either
tackled by using machine learning or dictionary-
based approaches. Machine learning approaches
rely on appropriate features describing the local
context of the term to be classified and induce a
model to perform the classification from training
data. Conditional random fields have shown to
yield very good results on the task (Klinger et al.,
2007; Leaman and Gonzalez, 2008; Kuo et al.,
2007; Settles, 2005).

Dictionary-based approaches rely on an explicit
dictionary of gene/protein names that are matched
in text. Such systems are common in practice due
to the low overhead required to adapt and maintain
the system, essentially only requiring to extend the
dictionary. Examples of commercial systems are
ProMiner (Fluck et al., 2007) or I2E (Bandy et al.,
2009); a popular free system is made available by
Hakenberg et al. (2011).

Such dictionary-based systems typically incorpo-
rate rules for filtering false positives. For instance,
in ProMiner (Hanisch et al., 2003), ambiguous syn-
onyms are only accepted based on external dictio-
naries and matches in the context. Abbreviations
are only accepted if a long form matches all parts of
the abbreviation in the context (following Schwartz
and Hearst (2003)). Similarly, Hakenberg et al.
(2008) discuss global disambiguation on the doc-
ument level, such that all mentions of a string in
one abstract are uniformly accepted as denoting an
entity or not.

A slightly different approach is taken by the web-
service GeneE5 (Schuemie et al., 2010): Entering a
query as a gene/protein in the search field generates

5http://biosemantics.org/geneE
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MEDLINE BioCreative2 GENIA
Protein # Tokens % tagged # Tokens % of genes # Tokens % of genes

SAH 30019 6.1 % 2 0 % 0
MOX 16007 13.1 % 0 0
PLS 11918 25.9 % 0 0
CLU 1077 29.1 % 0 0
CLI 1957 4.8 % 4 0 % 0
HF 42563 7.9 % 8 62.5 % 4 0 %
AHR 21525 75.7 % 12 91.7 % 0
COPD 44125 0.6 % 6 0 % 0

Table 2: Coverage of ambiguous abbreviations in MEDLINE, BioCreative2 and GENIA corpora. The
percentage of tokens tagged as a gene/protein in MEDLINE (% tagged) is determined with a conditional
random field in the configuration described by Klinger et al. (2007), but without dictionary-based features
to foster the usage of contextual features). The percentages of genes/proteins (% of genes) in BC2 and
GENIA are based on the annotations in these corpora.

a query to e. g. PubMedr6 with the goal to limit
the number of false positives.

Previous to the common application of CRFs,
other machine learning methods have been popu-
lar as well for the task of entity recognition. For
instance, Mitsumori et al. (2005) and Bickel et al.
(2004) use a support vector machine (SVM) with
part-of-speech information and dictionary-based
features, amongst others. Zhou et al. (2005) use an
ensemble of different classifiers for recognition.

In contrast to this application of a classifier
to solve the recognition task entirely, other ap-
proaches (including the one in this paper) aim at
filtering specifically ambiguous entities from a pre-
viously defined set of challenging terms. For in-
stance, Al-mubaid (2006) utilize a word-based clas-
sifier and a mutual information-based feature selec-
tion to achieve a highly discriminating list of terms
which is applied for filtering candidates.

Similarly to our approach, Tsuruoka and Tsujii
(2003) use a classifier, in their case a naı̈ve Bayes
approach, to learn which entities to filter from
the candidates generated by a dictionary-based ap-
proach. They use word based features in the con-
text including the candidate itself. Therefore, the
approach is focused on specific entities.

Gaudan et al. (2005) use an SVM and a dictio-
nary of long forms of abbreviations to assign them
a specific meaning, taking contextual information
into account. However, their machine learning ap-
proach is trained on each possible sense of an ab-
breviation. In contrast, our approach consists in
deciding if a term is used as a protein or not. Fur-
ther, we do not train to detect specific, previously
given senses.

6http://www.ncbi.nlm.nih.gov/pubmed/

Xu et al. (2007) apply text similarity measures to
decide about specific meanings of mentions. They
focus on the disambiguation between different en-
tities. A corpus for word sense disambiguation is
automatically built based on MeSH annotations by
Jimeno-Yepes et al. (2011). Okazaki et al. (2010)
build a sense inventory by automatically applying
patterns on MEDLINE and use this in a logistic
regression approach.

Approaches are typically evaluated on freely
available resources like the BioCreative Gene Men-
tion Task Corpus, to which we refer as BC2 (Smith
et al., 2008), or the GENIA Corpus (Kim et al.,
2003). When it comes to identifying particular pro-
teins by linking the protein in question to some
protein in an external database – a task we do
not address in this paper – the BioCreative Gene
Normalization Task Corpus is a common resource
(Morgan et al., 2008).

In contrast to these previous approaches, our
method is not tailored to a particular set of entities
or meanings, as the training methodology abstracts
from specific entities. The model, in fact, knows
nothing about the abbreviations to be classified and
does not use their surface form as a feature, such
that it can be applied to any unseen gene/protein
term. This leads to a simpler model that is applica-
ble to a wide range of gene/protein term candidates.
Our cross-entity evaluation regime clearly corrobo-
rates this.

3 Data

We focus on eight ambiguous abbreviations of
gene/protein names. As shown in Table 2, these
homonyms occur relatively frequently in MEDLINE

but are underrepresented in the BioCreative 2 entity
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Protein Pos. Inst. Neg. Inst. Total

SAH 5 349 354
MOX 62 221 283
PLS 1 206 207
CLU 235 30 265
CLI 11 211 222
HF 2 353 355
AHR 53 80 133
COPD 0 250 250

Table 3: Number of instances per protein in the
annotated data set and their positive/negative distri-
bution

recognition data set and the GENIA corpus which
are both commonly used for developing and evalu-
ating gene recognition approaches. We compiled
a corpus from MEDLINE by randomly sampling
100 abstracts for each of the eight abbreviations (81
for MOX) such that each abstract contains at least
one mention of the respective abbreviation. One
of the authors manually annotated the mentions
of the eight abbreviations under consideration to
be a gene/protein entity or not. These annotations
were validated by another author. Both annotators
disagreed in only 2% of the cases. The numbers
of annotations, including their distribution over
positive and negative instances, are summarized
in Table 3. The corpus is made publicly available
at http://dx.doi.org/10.4119/unibi/
2673424 (Hartung and Zwick, 2014).

In order to alleviate the imbalance of positive
and negative examples in the data, additional pos-
itive examples have been gathered by manually
searching PubMed7. At this point, special attention
has been paid to extract only instances denoting the
correct gene/protein corresponding to the full long
name, as we are interested in assessing the impact
of examples of a particularly high quality. This
process yields 69 additional instances for AHR
(distributed over 11 abstracts), 7 instances (3 ab-
stracts) for HF, 14 instances (2 abstracts) for PLS
and 15 instances (7 abstracts) for SAH. For the
other gene/proteins in our dataset, no additional
positive instances of this kind could be retrieved
using PubMed. In the following, this process will
be referred to as manual instance generation. This
additional data is used for training only.

7http://www.ncbi.nlm.nih.gov/pubmed

4 Gene Recognition by Filtering

We frame gene/protein recognition from ambigu-
ous abbreviations as a filtering task in which a set
of candidate tokens is classified into entities and
non-entities. In this paper, we assume the candi-
dates to be generated by a simple dictionary-based
approach taking into account all tokens that match
the abbreviation under consideration.

4.1 Filtering Strategies
We consider the following filtering approaches:
• SVM classifies the occurring terms based on a

binary support vector machine.
• CRF classifies the occurring terms based on

a conditional random field (configured as de-
scribed by Klinger et al. (2007)) trained on the
concatenation of BC2 data and our newly gen-
erated corpus. This setting thus corresponds
to state-of-the-art performance on the task.
• CRF∩SVM considers the candidate an entity

if both the standard CRF and the SVM from
the previous steps yield a positive prediction.
• HRCRF∩SVM is the same as the previous

step, but the output of the CRF is optimized
towards high recall by joining the recognition
of entities of the five most likely Viterbi paths.
• CRF→SVM is similar to the first setting, but

the output of the CRF is taken into account as
a feature in the SVM.

4.2 Features for Classification
Our classifier uses local contextual and global fea-
tures. Local features focus on the immediate con-
text of an instance, whereas global features encode
abstract-level information. Throughout the follow-
ing discussion, ti denotes a token at position i that
corresponds to a particular abbreviation to be classi-
fied in an abstract A. Note that we blind the actual
representation of the entity to be able to generalize
to all genes/proteins, not being limited to the ones
contained in our corpus.

4.2.1 Local Information
The feature templates context-left and context-right
collect the tokens immediately surrounding an ab-
breviation in a window of size 6 (left) and 4 (right)
in a bag-of-words-like feature generation. Addi-
tionally, the two tokens from the immediate context
on each side are combined into bigrams.

The template abbreviation generates features if
ti occurs in brackets. It takes into account the min-
imal Levenshtein distance (ld, Levenshtein (1966))
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between all long forms L of the abbreviation (as
retrieved from EntrezGene) in comparison to each
string on the left of ti (up to a length of seven,
denoted by tk:i as the concatenation of tokens
tk, . . . , ti). Therefore, the similarity value sim(ti)
taken into account is given by

sim(ti) = max
l∈L;k∈[1:7]

1− ld(tk:i−1, l)
max(|ti|, |l|) ,

where the denominator is a normalization term.
The features used are generated by cumulative bin-
ning of sim(ti).

The feature taggerlocal takes the prediction of the
CRF for ti into account. Note that this feature is
only used in the CRF→SVM setting.

4.2.2 Global Information
The feature template unigrams considers each word
in A as a feature. There is no normalization or
frequency weighting. Stopwords are ignored8. Oc-
currences of the same string as ti are blinded.

The feature taggerglobal collects all tokens in A
other than ti that are tagged as an entity by the CRF.
In addition, the cardinality of these entities in A is
taken into account by cumulative binning.

The feature long form holds if one of the long
forms previously defined to correspond with the ab-
breviation occurs in the text (in arbitrary position).

Besides using all features, we perform a greedy
search for the best feature set by wrapping the best
model configuration. A detailed discussion of the
feature selection process follows in Section 5.3.

4.2.3 Feature Propagation
Inspired by the “one sense per discourse” heuristic
commonly adopted in word sense disambiguation
(Gale et al., 1992), we apply two feature combi-
nation strategies. In the following, n denotes the
number of occurrences of the abbreviation in an
abstract.

In the setting propagationall, n − 1 identical
linked instances are added for each occurrence.
Each new instance consists of the disjunction of
the feature vectors of all occurrences. Based on
the intuition that the first mention of an abbrevia-
tion might carry particularly valuable information,
propagationfirst introduces one additional linked in-
stance for each occurrence, in which the feature
vector is joined with the first occurrence.

8Using the stopword list at http://www.ncbi.nlm.
nih.gov/books/NBK3827/table/pubmedhelp.
T43/, last accessed on March 25, 2014

Setting P R F1

SVM 0.81 0.45 0.58
CRF∩SVM 0.99 0.26 0.41
HRCRF∩SVM 0.95 0.27 0.42
CRF→SVM 0.83 0.49 0.62

CRF→SVM+FS 0.97 0.74 0.84

GNAT 0.73 0.45 0.56
CRF 0.55 0.43 0.48
AcroTagger 0.92 0.63 0.75
Long form 0.98 0.65 0.78
lex 0.18 1.00 0.32

Table 4: Overall micro-averaged results over eight
genes/proteins. For comparison, we show the re-
sults of a default run of GNAT (Hakenberg et al.,
2011), a CRF trained on BC2 data (Klinger et al.,
2007), AcroTagger (Gaudan et al., 2005), and a
simple approach of accepting every token of the
respective string as a gene/protein entity (lex). Fea-
ture selection is denoted with +FS.

In both settings, all original and linked instances
are used for training, while during testing, original
instances are classified by majority voting on their
linked instances. For propagationall, this results in
classifying each occurrence identically.

5 Experimental Evaluation

5.1 Experimental Setting
We perform a cross-entity evaluation, in which we
train the support vector machine (SVM) on the ab-
stracts of 7 genes/proteins from our corpus and test
on the abstracts for the remaining entities, i. e., the
model is evaluated only on tokens representing en-
tities which have never been seen labeled during
training. The CRFs are trained analogously with
the difference that the respective set used for train-
ing is augmented with the BioCreative 2 Training
data. The average numbers of precision, recall and
F1 measure are reported.

As a baseline, we report the results of a simple
lexicon-based approach assuming that all tokens
denote an entity in all their occurrences (lex). In ad-
dition, the baseline of accepting an abbreviation as
gene/protein if the long form occurs in the same ab-
stract is reported (Long form). Moreover, we com-
pare our results with the publicly available toolkit
GNAT (Hakenberg et al., 2011)9 and the CRF ap-

9The gene normalization functionality of GNAT is not
taken into account here. We acknowledge that this comparison
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proach as described in Section 4. In addition, we
take into account the AcroTagger10 that resolves
abbreviations to their most likely long form which
we manually map to denoting a gene/protein or not.

5.2 Results
5.2.1 Overall results
In Table 4, we summarize the results of the recogni-
tion strategies introduced in Section 4. The lexical
baseline clearly proves that a simple approach with-
out any filtering is not practical. GNAT adapts well
to ambiguous short names and turns out as a com-
petitive baseline, achieving an average precision of
0.73. In contrast, the filtering capacity of a stan-
dard CRF is, at best, mediocre. The long form
baseline is very competitive with an F1 measure of
0.78 and a close-to-perfect precision. The results of
AcroTagger are similar to this long form baseline.

We observe that the SVM outperforms the CRF
in terms of precision and recall (by 10 percentage
points in F1). Despite not being fully satisfactory
either, these results indicate that global features
which are not implemented in the CRF are of im-
portance. This is confirmed by the CRF∩SVM
setting, where CRF and SVM are stacked: This fil-
tering procedure achieves the best precision across
all models and baselines, whereas the recall is still
limited. Despite being designed for exactly this
purpose, the HRCRF∩SVM combination can only
marginally alleviate this problem, and only at the
expense of a drop in precision.

The best trade-off between precision and recall
is offered by the CRF→SVM combination. This
setting is not only superior to all other variants of
combining a CRF with an SVM, but outperforms
GNAT by 6 points in F1 score, while being inferior
to the long form baseline. However, performing
feature selection on this best model using a wrapper
approach (CRF→SVM+FS) leads to the overall
best result of F1 = 0.84, outperforming all other
approaches and all baselines.

5.2.2 Individual results
Table 5 summarizes the performance of all filter-
ing strategies broken down into individual entities.
Best results are achieved for AHR, MOX and CLU.
COPD forms a special case as no examples for the

might be seen as slightly inappropriate as the focus of GNAT
is different.

10ftp://ftp.ebi.ac.uk/pub/software/
textmining/abbreviation_resolution/, ac-
cessed April 23, 2014

occurrence as a gene/protein are in the data; how-
ever the results show that the system can handle
such a special distribution.

SVM and CRF are mostly outperformed by a
combination of both strategies (except for CLI and
HF), which shows that local and global features
are highly complementary in general. Complemen-
tary cases generally favor the CRF→SVM strategy,
except for PLS, where stacking is more effective.

In SAH, the pure CRF model is superior to all
combinations of CRF and SVM. Apparently, the
global information as contributed by the SVM is
less effective than local contextual features as avail-
able to the CRF in these cases. In SAH and CLI,
moreover, the best performance is obtained by the
AcroTagger.

5.2.3 Impact of instance generation
All results reported in Tables 4 and 5 refer to con-
figurations in which additional training instances
have been created by manual instance generation.
The impact of this method is analyzed in Table 6.
The first column reports the performance of our
models on the randomly sampled training data. In
order to obtain the results in the second column,
manual instance generation has been applied.

The results show that all our recognition mod-
els generally benefit from additional information
that helps to overcome the skewed class distribu-
tion of the training data. Despite their relatively
small quantity and uneven distribution across the
gene/protein classes, including additional exter-
nal instances yields a strong boost in all mod-
els. The largest difference is observed in SVM
(∆F1 = +0.2) and CRF→SVM (∆F1 = +0.16).
Importantly, these improvements include both pre-
cision and recall.

5.3 Feature Selection
The best feature set (cf. CRF→SVM+FS in Ta-
ble 4) is determined by a greedy search using a
wrapper approach on the best model configuration
CRF→SVM. The results are depicted in Table 7.
In each iteration, the table shows the best feature
set detected in the previous iteration and the results
for each individual feature when being added to
this set. In each step, the best individual feature
is kept for the next iteration. The feature analysis
starts from the long form feature as strong base-
line. The added features are, in that order, context,
taggerglobal, and propagationall.

Overall, feature selection yields a considerable
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AHR CLI CLU COPD

Setting P R F1 P R F1 P R F1 P R F1

SVM 1.00 0.72 0.84 0.30 0.27 0.29 1.00 0.41 0.58 0.00 1.00 0.00
CRF∩SVM 1.00 0.70 0.82 0.00 0.00 0.00 1.00 0.15 0.26 1.00 1.00 1.00
HRCRF∩SVM 1.00 0.70 0.82 1.00 0.00 0.00 1.00 0.16 0.28 1.00 1.00 1.00
CRF→SVM 0.96 0.83 0.89 0.30 0.27 0.29 1.00 0.40 0.57 0.00 1.00 0.00

CRF→SVM+FS 0.93 0.98 0.95 0.50 0.09 0.15 0.99 0.84 0.91 1.00 1.00 1.00

GNAT 0.74 0.66 0.70 1.00 0.18 0.31 0.97 0.52 0.68 1.00 1.00 1.00
CRF 0.52 0.98 0.68 0.00 0.00 0.00 1.00 0.20 0.33 0.00 1.00 0.00
AcroTagger 1.00 0.60 0.75 1.00 0.82 0.90 1.00 0.00 0.00 1.00 1.00 1.00
Long form 1.00 0.96 0.98 1.00 0.09 0.17 0.99 0.80 0.88 1.00 1.00 1.00
lex 0.40 1.00 0.57 0.05 1.00 0.09 0.89 1.00 0.94 0.00 1.00 0.00

HF MOX PLS SAH

Setting P R F1 P R F1 P R F1 P R F1

SVM 0.25 1.00 0.40 0.87 0.44 0.58 0.14 1.00 0.25 0.00 0.00 0.00
CRF∩SVM 1.00 0.00 0.00 1.00 0.39 0.56 1.00 1.00 1.00 1.00 0.00 0.00
HRCRF∩SVM 1.00 0.00 0.00 1.00 0.39 0.56 0.20 1.00 0.33 1.00 0.00 0.00
CRF→SVM 0.25 1.00 0.40 0.91 0.63 0.74 0.50 1.00 0.67 1.00 0.00 0.00

CRF→SVM+FS 1.00 0.00 0.00 1.00 0.37 0.54 0.00 0.00 0.00 1.00 0.00 0.00

GNAT 1.00 0.00 0.00 0.38 0.08 0.14 0.00 0.00 0.00 0.00 0.00 0.0
CRF 0.00 0.00 0.00 0.43 0.90 0.59 0.14 1.00 0.25 1.00 0.50 0.67
AcroTagger 0.33 1.00 0.50 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.60 0.75
Long form 1.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00
lex 0.01 1.00 0.02 0.22 1.00 0.36 0.00 1.00 0.01 0.01 1.00 0.03

Table 5: Results for the eight genes/proteins and results for our different recognition schemes.

randomly sampled +instance generation
P R F1 ∆P ∆R ∆F1

SVM 0.73 0.25 0.38 +0.08 +0.20 +0.20
CRF∩SVM 1.00 0.17 0.29 -0.01 +0.09 +0.13
HRCRF∩SVM 0.97 0.18 0.30 -0.02 +0.09 +0.12
CRF→SVM 0.79 0.32 0.46 +0.05 +0.17 +0.16

CRF→SVM+FS 0.99 0.60 0.75 -0.02 +0.14 +0.09

Table 6: Impact of increasing the randomly sampled training set by adding manually curated additional
positive instances (+instance generation), measured in terms of the increase in precision, recall and F1

(∆P, ∆R, ∆F1).

boost in recall, while precision remains almost con-
stant. Surprisingly, the unigrams feature has a par-
ticularly strong negative impact on overall perfor-
mance.

While the global information contributed by the
CRF turns out very valuable, accounting for most
of the improvement in recall, local tagger informa-
tion is widely superseded by other features. Like-
wise, the abbreviation feature does not provide any
added value to the model beyond what is known
from the long form feature.

Comparing the different feature propagation
strategies, we observe that propagationall outper-
forms propagationfirst.

5.4 Discussion
Our experiments show that the phenomena inves-
tigated pose a challenge to all gene recognition
paradigms currently available in the literature, i. e.,
dictionary-based, machine-learning-based (e. g. us-
ing a CRF), and classification-based filtering.

Our results indicate that stacking different meth-
ods suffers from a low recall in early steps of the
workflow. Instead, a greedy approach that consid-
ers all occurrences of an abbreviation as input to
a filtering approach yields the best performance.
Incorporating information from a CRF as features
into a SVM outperforms all baselines at very high
levels of precision; however, the recall still leaves
room for improvement.
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Iter. Feature Set P R F1 ∆F1

1 long form 0.98 0.65 0.78

+propagation1st 0.98 0.65 0.78 +0.00
+propagationall 0.98 0.65 0.78 +0.00

+taggerlocal 0.72 0.81 0.76 -0.02
+taggerglobal 0.55 0.79 0.65 -0.13

+context 0.98 0.67 0.79 +0.01
+abbreviation 0.98 0.65 0.78 +0.00

+unigrams 0.71 0.43 0.53 -0.25

2 long form
+context 0.98 0.67 0.79

+propagation1st 0.98 0.67 0.79 +0.00
+propagationall 0.96 0.70 0.81 +0.02

+taggerlocal 0.98 0.70 0.82 +0.03
+taggerglobal 0.97 0.72 0.83 +0.04

+abbreviation 0.98 0.67 0.80 +0.01
+unigrams 0.77 0.39 0.52 -0.27

3 long form
+context

+taggerglobal 0.97 0.72 0.83

+propagation1st 0.97 0.71 0.82 -0.01
+propagationall 0.97 0.74 0.84 +0.01

+taggerlocal 0.97 0.72 0.82 -0.01
+abbreviation 0.97 0.72 0.82 -0.01

+unigrams 0.77 0.44 0.56 -0.27

4 long form
+context

+taggerglobal
+propagationall 0.97 0.74 0.84

+taggerlocal 0.90 0.66 0.76 -0.08
+abbreviation 0.97 0.74 0.84 -0.00

+unigrams 0.80 0.49 0.61 -0.23

Table 7: Greedy search for best feature combina-
tion in CRF→SVM (incl. additional positives).

In a feature selection study, we were able to show
a largely positive overall impact of features that
extend local contextual information as commonly
applied by state-of-the-art CRF approaches. This
ranges from larger context windows for collecting
contextual information over abstract-level features
to feature propagation strategies. However, feature
selection is not equally effective in all individual
classes (cf. Table 5).

The benefits due to feature propagation indi-
cate that several instances of the same abbreviation
in one abstract should not be considered indepen-
dently of one another, although we could not verify
the intuition that the first mention of an abbrevia-
tion introduces particularly valuable information
for classification.

Overall, our results seem encouraging as the ma-
chinery and the features used are in general suc-

cessful in determining whether an abbreviation ac-
tually denotes a gene/protein or not. The best pre-
cision/recall balance is obtained by adding CRF
information as features into the classifier.

As we have shown in the cross-entity experi-
ment setting, the system is capable of generalizing
to other unseen entities. For a productive system,
we assume our workflow to be applied to specific
abbreviations such that the performance on other
entities (and therefore on other corpora) is not sub-
stantially influenced.

6 Conclusions and Outlook

The work reported in this paper was motivated from
the practical need for an effective filtering method
for recognizing genes/proteins from highly ambigu-
ous abbreviations. To the best of our knowledge,
this is the first approach to tackle gene/protein
recognition from ambiguous abbreviations in a
systematic manner without being specific for the
particular instances of ambiguous gene/protein
homonyms considered.

The proposed method has been proven to allow
for an improvement in recognition performance
when added to an existing NER workflow. Despite
being restricted to eight entities so far, our approach
has been evaluated in a strict cross-entity manner,
which suggests sufficient generalization power to
be extended to other genes as well.

In future work, we plan to extend the data set
to prove the generalizability on a larger scale and
on an independent test set. Furthermore, an inclu-
sion of the features presented in this paper into the
CRF will be evaluated. Moreover, assessing the
impact of the global features that turned out benefi-
cial in this paper on other gene/protein inventories
seems an interesting path to explore. Finally, we
will investigate the prospects of our approach in an
actual black-box evaluation setting for information
retrieval.
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