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Abstract
While there has been significant recent work on 
learning semantic parsers for specific task/
domains, the results don’t transfer from one 
domain to another domains. We describe a 
project to learn a broad-coverage semantic 
lexicon for domain independent semantic 
parsing. The technique involves several 
bootstrapping steps starting from a semantic 
parser based on a modest-sized hand-built 
semantic lexicon. We demonstrate that the 
approach shows promise in building a semantic 
lexicon on the scale of WordNet, with more 
coverage and detail that currently available in 
widely-used resources such as VerbNet. We view 
having such a lexicon as a necessary prerequisite 
for any attempt at  attaining broad-coverage 
semantic parsing in any domain. The approach 
we described applies to all word classes,  but in 
this paper we focus here on verbs,  which are the 
most critical phenomena facing semantic 
parsing.

1. Introduction and Motivation 

Recently we have seen an explosion of work 
on learning semantic parsers (e.g., Matuszek, et 
al, 2012; Tellex et al, 2013; Branavan et  al, 2010, 
Chen et al, 2011). While such work shows 
promise, the results are highly domain dependent 
and useful only for that domain. One cannot, for 
instance, reuse a lexical entry learned in one 
robotic domain in another robotic domain, let 
alone in a database query domain. Furthermore, 
the techniques being developed require domains  
that are simple enough so that  the semantic 
models can be produced, either by hand or 
induced from the application. Language in 
general, however, involves  much more complex 
concepts and connections, including discussion 
of involves abstract concepts, such as plans, 
theories, political views, and so on. It is not  clear 
how the techniques currently being developed 
could be generalized to such language.

The challenge we are addressing is learning a  
broad-coverage, domain-independent  semantic 
parser, i.e., a semantic parser that  can be used in 
any domain. At present, there is a tradeoff 

between the depth of semantic representation 
produced and the coverage of the techniques.  
One of the critical gaps in enabling more general, 
deeper semantic systems is the lack of any broad-
coverage deep semantic lexicon. Such a lexicon 
must contain at least the following information:
i. an enumeration of the set of distinct  senses for 

the word (e.g., as  in WordNet, PropBank), 
linked into an ontology that supports reasoning

ii. For each sense, we would have
• Deep argument structure, i.e., semantic 

roles with selectional preferences
• Constructions that  map syntax to the deep 

argument structure (a.k.a. linking rules)
• Lexical entailments that characterize the 

temporal consequences of the event 
described by the verb

The closest example to such lexical entries can 
be found in VerbNet  (Kipper et  al, 2008), a hand-
built resource widely used for a range of general 
applications. An example entry from VerbNet  is 
seen in Figure 1, which describes a class of verbs 
called murder-42.1. VerbNet  clusters verbs by 
the constructions they take, not  by sense or 
meaning, although many times, the set  of 
constructions a verb takes is a good feature for 
clustering by semantic meaning. We see that the 
verbs in this class can take an AGENT, 
PATIENT  and INSTRUMENT role, and we see 
the possible constructions that  map syntactic 
structure to the deep argument  structure. For 
instance, the first  entry indicates that  the simple 
transitive construction has the AGENT as the 
subject and the PATIENT as the object. In 
addition, it  specifies lexical entailments in an 
informal notation, roughly stating that murder 
verbs involve causing a event that  is a transition 
f rom being a l ive to not be ing a l ive . 
Unfortunately, VerbNet  only covers a few 
thousand verbs. This paper reports on work to 
automatically build entries with much greater 
coverage and more detail than found in VerbNet, 
for all the senses in WordNet. This includes the 
deep argument  structure and constructions  for 
each sense, as well as axioms describing lexical 
entailments, expressed in a formally defined 
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temporal logic (Allen, 1984; Allen & Teng, 
2013).

2. Overview of the Approach
To attain broader coverage of the verbs (and their 
senses) for English, we look to WordNet.  
Though WordNet  has excellent  coverage, it does 
not contain information about argument 
structure, and has varying quality of ontological 
information (good for nouns, some information 
for verbs, and little for adjective and adverbs). 
But  it  does contain rich sources of information in 
unstructured form, i.e., each sense has a gloss 
that defines the word’s meaning, and often 
provides examples of the word’s usage. The 
technique we describe here uses an existing 
hand-built, but  relatively limited coverage, 
semant ic l ex icon to boots t rap in to a 
comprehensive lexicon by processing these 
definitions and examples. In other words, we are 
learning the lexicon by reading the dictionary.

Specifically, we use the TRIPS parser (Allen et 
al, 2008) as the starting point, which has a 
semantic lexicon of verbs about the same size as 
VerbNet. To build the comprehensive semantic 
lexicon, we use two bootstrapping steps. The 
first  uses ontology mapping techniques to 
generate underspecified lexical entries for 
unknown words. This technique enables the 
parser to construct  interpretations of sentences 
involving words not encoded in the core lexicon. 
We then use information extracted from the 
definitions and examples to build much more 
detailed and deeper lexical entries. We have run 
this process over the entire set  of WordNet 
entries and provide preliminary results below  
evaluating the results along a number of key 
dimensions. 

2.1. The TRIPS Parsing System
The TRIPS system is a packed-forest  chart parser 
which builds constituents bottom-up using a 
best-first search strategy (Allen et  al, 2008). The 
core grammar is a hand-built, lexicalized 
context-free grammar, augmented with feature 
structures and feature unification, and driven by 
a semantic lexicon and ontology. The core 
semantic lexicon1  was constructed by hand and 
contains more than 7000 lemmas, For each word, 
it  specifies its possible senses (i.e., its ontology 
type), and for each sense, its semantic roles and 
semantic preferences, and constructions for 
mapping from syntax to semantics. 

The system uses variety of statistical and 
preprocessors to improve accuracy. These 
include the Stanford tools for POS tagging, 
named entity recognition and syntactic parsing. 
The parser produces and detailed logical form 
capturing the semantics of the sentence in a 
graphical notation equivalent  to an unscoped, 
modal logic (Manshadi et al, 2012).
2.2. Level One Bootstrapping: Generating 
Lexical Entries Foe Unknown Words
The key idea in generating abstract  lexical 
entries for unknown verbs builds from the same 
intuition the motivations underlying VerbNet - 

1 you can browse the lexicon and ontology at www.cs.rochester.edu/research/trips/lexicon/browse-ont-lex.html

Figure 2: WordNet Entry for murder

Figure 1: VerbNet Entry for murder

2



that the set of constructions a verb supports 
reflects its semantic meaning. While in VerbNet, 
the constructions are used to cluster verbs into 
semantic classes, we work in the opposite 
direction and use the semantic classes to predict 
the likely syntactic constructions. 

To generate the lexical entries for an unknown 
verb we use the synset hierarchy in WordNet, 
plus a hand-built  mapping between certain key 
synsets and the classes in the TRIPS ontology. 
The whole process operates as follows, given an 
unknown word w:
i. Look up word w in WordNet and obtain its 

possible synsets
ii. For each synset, find a mapping to the TRIPS 

ontology
i. If there is a direct mapping, we are done
ii. If not, traverse up the WordNet Hypernym 

hierarchy and recursively check for a 
mapping

iii. For each TRIPS ontology type found, gather 
all the words in the TRIPS lexicon that are 
associated with the type

iv. Take the union of all the constructions defined 
on the words associated with the TRIPS type

v. Generate a lexical entry for each possible 
combination of constructions and types

The result of this process is an over-generated set 
of underspecified lexical entries. Figure 3 
illustrates this with a very simple example of 
deriving the lexical entries for the verb 
“collaborate”: it is first looked up in WordNet, 
then we traverse the hypernym hierarchy until 
we find a mapping to the TRIPS ontology, from 
work%2:41:02 to ONT::WORKING. From there 
we find all the lexical entries associated with 
ONT::WORKING, and then take the union of the 
lexical information to produce new entries. The 
valid entries will be the ones that  contribute to 
successful parses of the sentences involving the 
unknown words. In addition to what  is shown, 
other lexical information is also derived in the 
same way, including weak select ional 
preferences for the argument roles.

While the result of this stage of bootstrapping 
produces lexical entries that  identify the TRIPS 
type, the semantic roles and constructions, many  
of the lexical entries are not  valid and not very 
deep. In particular, even considering just the 
correct entries, the semantic models are limited 
to the relatively small TRIPS ontology, and do 
not  capture lexical entailments. Also, the 
selectional preferences for the semantic roles are 
very weak. These problems are all addressed in 
the second bootstrapping step.  

2.3. Level Two Bootstrapping: Reading 
Definitions and Examples
The key idea in this stage of processing is to use 
the lexicon bootstrapped in level one to parse all 
the definitions and examples for each WordNet 
synset. We then use this information to build a 
richer ontology, better identify the semantic roles 
and their selectional preferences, and identify the 
appropr ia te cons t ruc t ions and lex ica l 
entailments. The hope is that the result  is this 
process will be lexical entries suitable for 
semantic parsing, and tightly coupled with an 
ontology and commonsense knowledge base 
suitable for reasoning.

Consider an example processing a sense of the 
verb keep up, defined as prevent from  going to 
bed at night. We use sense tagged glosses 
obtained from the Princeton Gloss Corpus to 
provide guidance to the parser. The TRIPS parser 
produces the logical form for the definition as 
shown in Figure 4. Each node in the graph 
specifies the most specific TRIPS ontology class 
that covers the word plus the WordNet sense. For 
example, the verb prevent is captured by a node 
indicating its WordNet sense prevent%2:41:00 
and the TRIPS class ont::HINDERING. Note the 
verb go to bed, tagged as a multi-word verb in 
the Gloss corpus, has no information in the 
TRIPS ontology other than being an event of 
some sort. The semantic roles are indicated by 
the labelled arcs between the nodes. The nodes 
labelled IMPRO are the elided arguments in the 
definition (i.e., the missing subject and object). 

work%2:41:02

collaborate%2:41:01

WordNet Hypernym
Hierarchy

ONT::WORKING

ONT::INTENTIONALLY-ACT

TRIPS Ontology 

Ontology
Mapping

unknown verb:
"collaborate"

����
���	�
��
	���

�����
��

"labor": subj/AGENT PP(over)/AFFECTED

"labor": subj/AGENT

"work": subj/AGENT PP(on)/AFFECTED

"work": subj/AGENT
……

TRIPS Lexicon 

lookup in
WordNet

TRIPS Lexicon
lookup by type

"collaborate":ONT::WORKING subj/AGENT
"collaborate":ONT::WORKING  subj/AGENT PP(on)/AFFECTED 
"collaborate":ONT::WORKING subj/AGENT PP(over)/AFFECTED 

Automatically Generated Lexical Entries

Lexical Entry
Generation

Figure 3: Example of Ontology-based Automatic Lexicon Generation
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From this definition alone we can extract 
several key pieces of semantic information about 
the verb keep up, namely2

i. Ontological: keep_up  is a subclass of prevent
%2:41:00 and ont::HINDERING events

ii. Argument Structure: keep_up has two 
semantic roles: AGENT and AFFECTED3

iii. Lexical Entailment: When a keep_up event 
occurs, the AGENT  prevents the AFFECTED 
from going to bed

Definitions can be notoriously terse and complex 
to parse, and thus in many cases the parser can 
only extract key fragments of the definition. We 
use the TRIPS robust parsing mechanism to 
extract  the most meaningful parse fragments 
when a complete parse cannot be found. 

To identify the selectional preferences for the 
roles and the valid constructions, we parse the 
examples given in WordNet, plus synthetically 
produced sentences derived from the WordNet 
sentence frame information, plus additional 
examples extracted from SEMCOR, in which the 
words are tagged with their WordNet senses. 
From parsing the examples, we obtain a set of 
examples of the semantic roles used, plus the 
constructions used to produce them. We apply a 
heuristic process to combine the proposed role 
sets from the definitions and the glosses to arrive 
at  a final role set for the verb. We then gather the 
semantic types of all the arguments from the 
examples, and abstract  them using the derived 
ontology to produce the most  compact  set of 
types that  cover all the examples seen. Here we 
present a few more details of the approach.
Determining Semantic Roles
One of the interesting observations that  we 
discovered in this project is that  the missing parts 
of definitions are highly predictive of the roles of 
the verb being defined. For instance, looking at 
Figure 4, we see that the verb prevent, used in 
the definition, has three roles: AGENT, 
AFFECTED, and EFFECT. Two of these are 
filled by implicit  pro (IMPRO) forms (i.e., they 

were elided in the definition), and one is fully 
instantiated. Almost  all the time it is the IMPRO 
roles that  are promoted be the roles of keep up. 
We have found this technique to be highly 
reliable when we have fully accurate parsing. 
Because of the inevitable errors in parsing such 
terse language, however, we find the combining 
the information from the definition with 
additional evidence produced by parsing 
concrete examples gives better accuracy.
Computing Lexical Entailments
To compute lexical entailments, we use the 
definitions, often expanding them by recursively 
expanding the senses in the definition with their 
definitions. At  some stage, the definitions of 
certain verb verbs become quite abstract  and/or 
circular. To deal with this, we hand coded 
axiomatic definitions for a small set of aspectual 
verbs such as start, end, and continue, and causal 
verbs such as cause, prevent, stop, in a temporal 
logic. When a definition is expanded to the point 
of including one of these verbs, we can create a 
“temporal map” of entailments from the event. 
Thus, from the definition of keep up, we can 
infer that  the event of going to bed does not 
occur over the time over which the keep up event 
occurs. A description of our first  attempt  to 
generate entailments can be found in Allen et al 
(2011), and the temporal logic we have 
developed to support  compositional derivation of 
entailments is described in Allen & Teng (2013).
Computing Selectional Preferences
We compute selectional preferences by gathering 
the ontological types of elements that fill each 
argument position, using examples drawn from 
WordNet and SEMCOR.  We then generalize this 
set by trying to find non-trivial subsuming types 
that cover the examples. For example, for the 
verb kill, we might find examples of the 
AFFECTED role of being a person, a pig, and a 
plant. We try to find a subsuming type that 
covers all of these classes that  is more specific 
than the extremely abstract classes such as 

2 The ontology is represented in OWL-DL (www.w3.org/TR/owl-guide), and the entailments in a logic based on 
Allen’s (1984) Logic of Action and Time. There is no space to present these details in this paper.

3 The AFFECTED role in TRIPS includes most cases using the PATIENT role in VerbNet

Figure 4: The parse of prevent from going to bed at night

(F  ont::HINDERING prevent%2:41:00)

(IMPRO agent)  
(F  ont::SITUATION-ROOT go_to_bed%2:29:00)

(IMPRO affected)

:effect
:affected:agent

(BARE ont::TIME-INTERVAL night%1:28:00)

:time-clock-rel
:agent
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REFERENTIAL-SEM (the class of all things that 
can be referred to). We compute this over a 
combined ontology using the TRIPS ontology 
plus the ontology that we derive from parsing all 
the WordNet definitions. Using both allows us to 
avoid the pitfalls of lack of coverage in one 
source or the other. As an example, in this case 
we would find the class LIVING-THING covers 
the three examples above, so this would be the 
derived selectional preference for this role of kill. 
Selectional preferences derived by the method 
have been shown to be useful in automatically 
identifying metaphors (Wilks et al, 2013).

3. Evaluations
This is a work in progress, so we do not  yet have 
a comprehensive evaluation. We do have 
preliminary evaluations of specific aspects of the 
lexical entries we are producing, however. For 
the most part, our evaluations have been 
performed using set  of human judges (some 
fellow colleagues and some recruited using 
Amazon Turk). Because of the complexity of 
such judging tasks, we generally use at  least 
seven judges, and sometimes up to eleven. We 
then eliminate cases where there is not 
substantial human agreement, typically at  least 
75%. We have found that this eliminates less that 
20% of the potential test cases. The remaining 
cases provide a gold standard.
The Event Ontology
To evaluate the derived event  ontology, we 
randomly created a evaluation set consisting of 
1) subclass pairs derived by our system, 2) 
hypernym pairs extracted from WordNet, and 3) 
random pairs of classes. We used eleven human 
judges to judge whether one class is a subclass of 
the other, and evaluated the system on the cases 
where at  least eight judges in agreement  (83% of 
cases). The system had 83% precision and 42% 
recall in this test, indicating good accuracy. The 
low recall score, however, indicates our 
techniques do not extract many of the hypernym 
relations present in WordNet. It suggests that  we 
should also incorporate the hypernym relations 
as a ontology source when constructing the final 
deep semantic lexicon. More details can be found 
in Allen et al (2013).
Causal Relations Between Events
We used a similar technique to evaluate our 
ability to extract causal relationships between 
events classes (e.g., kill causes die). We tested on 
a similar blend of derived casual relations, 
explicitly annotated causal relations in WordNet 
and random other pairs. The system achieved 
100% precision and 55% recall on this test. 

Interestingly, there was almost no overlap 
between the system-derived causal relations and 
those in WordNet, indicating that combining the 
two sources will produce a much richer resource. 
More details can be found in Allen et al (2013).
Selectional Preferences for Roles
We performed a preliminary evaluation on the 
correctness of the selectional preferences by 
comparing our derived classes with the 
restrictions in VerbNet. This is not an ideal 
evaluation as the VerbNet restrictions are quite 
abstract. For instance, VerbNet  has one class for 
abstract  objects, whereas the our derived 
ontology has a much richer classification, 
including plans, words, properties, beliefs, and so 
on. Thus, we expected that often our derived 
preferences would be more specific than the 
VerbNet  restrictions. On a test  set  of 50 
randomly selected verbs, 51% of the restrictions 
were exactly correct, 26% were too specific, 
19% too general, and 2% were inconsistent. 
These results suggest promise for the approach. 
We are designing a more refined experiment 
using human judges to attempt to drill deeper.

4. Conclusion
The preliminary evaluations are promising and 
suggest  it  could be feasible to automatically 
build a deep semantic lexicon on the scale of 
WordNet, tightly integrated with an ontology 
also derived from the same sources.  We are 
continuing this work in a number of directions, 
and designing better evaluation metrics. In 
addition, as many researchers find the WordNet 
inventory of word senses too fine grained, we are 
developing techniques that used the derived 
information to automatically cluster sets of 
senses in more abstract senses that cover them.
When the project is completed, we will be 
releasing the full semantic lexicon for use by 
other researchers.
As a final note, while the TRIPS system is an 
essential part of the bootstrapping process, it is 
trivial to remove all traces of TRIPS in the final 
resource, removing the hand-built  lexical entries 
and the TRIPS ontology, leaving a resource 
entirely grounded in WordNet.
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