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Abstract

To help individuals with Alzheimer’s dis-
ease live at home for longer, we are de-
veloping a mobile robotic platform, called
ED, intended to be used as a personal care-
giver to help with the performance of ac-
tivities of daily living. In a series of ex-
periments, we study speech-based inter-
actions between each of 10 older adults
with Alzheimers disease and ED as the
former makes tea in a simulated home en-
vironment. Analysis reveals that speech
recognition remains a challenge for this
recording environment, with word-level
accuracies between 5.8% and 19.2% dur-
ing household tasks with individuals with
Alzheimer’s disease. This work provides a
baseline assessment for the types of tech-
nical and communicative challenges that
will need to be overcome in human-robot
interaction for this population.

1 Introduction

Alzheimer’s disease (AD) is a progressive neu-
rodegenerative disorder primarily impairing mem-
ory, followed by declines in language, ability to
carry out motor tasks, object recognition, and ex-
ecutive functioning (American Psychiatric Asso-
ciation, 2000; Gauthier et al., 1997). An accu-
rate measure of functional decline comes from
performance in activities of daily living (ADLs),
such as shopping, finances, housework, and self-
care tasks. The deterioration in language com-
prehension and/or production resulting from spe-
cific brain damage, also known as aphasia, is a
common feature of AD and other related con-
ditions. Language changes observed clinically
in older adults with dementia include increasing
word-finding difficulties, loss of ability to verbally
express information in detail, increasing use of

generic references (e.g., “it”), and progressing dif-
ficulties understanding information presented ver-
bally (American Psychiatric Association, 2000).

Many nations are facing healthcare crises in the
lack of capacity to support rapidly aging popula-
tions nor the chronic conditions associated with
aging, including dementia. The current healthcare
model of removing older adults from their homes
and placing them into long-term care facilities
is neither financially sustainable in this scenario
(Bharucha et al., 2009), nor is it desirable. Our
team has been developing “smart home” systems
at the Toronto Rehabilitation Institute (TRI, part
of the University Health Network) to help older
adults “age-in-place” by providing different types
of support, such as step-by-step prompts for daily
tasks (Mihailidis et al., 2008), responses to emer-
gency situations (Lee and Mihaildis, 2005), and
means to communicate with family and friends.
These systems are being evaluated within a com-
pletely functional re-creation of a one-bedroom
apartment located within The TRI hospital, called
HomeLab. These smart home technologies use
advanced sensing techniques and machine learn-
ing to autonomously react to their users, but they
are fixed and embedded into the environment, e.g.,
as cameras in the ceiling. Fixing the location of
these technologies carries a tradeoff between util-
ity and feasibility – installing multiple hardware
units at all locations where assistance could be re-
quired (e.g., bathroom, kitchen, and bedroom) can
be expensive and cumbersome, but installing too
few units will present gaps where a user’s activ-
ity will not be detected. Alternatively, integrat-
ing personal mobile robots with smart homes can
overcome some of these tradeoffs. Moreover, as-
sistance provided via a physically embodied robot
is often more acceptable than that provided by an
embedded system (Klemmer et al., 2006).

With these potential advantages in mind, we
conducted a ‘Wizard-of-Oz’ study to explore the20



feasibility and usability of a mobile assistive robot
that uses the step-by-step prompting approaches
for daily activities originally applied to our smart
home research (Mihailidis et al., 2008). We con-
ducted the study with older adults with mild or
moderate AD and the tasks of hand washing and
tea making. Our preliminary data analysis showed
that the participants reacted well to the robot itself
and the prompts that it provided, suggesting the
feasibility of using personal robots for this appli-
cation (Begum et al., 2013). One important iden-
tified issue is the need for an automatic speech
recognition system to detect and understand ut-
terances specifically from older adults with AD.
The development of such a system will enable
the assistive robot to better understand the be-
haviours and needs of these users for effective in-
teractions and will further enhance environmental-
based smart home systems.

This paper presents an analysis of the speech
data collected from our participants with AD when
interacting with the robot. In a series of exper-
iments, we measure the performance of modern
speech recognition with this population and with
their younger caregivers with and without signal
preprocessing. This work will serve as the basis
for further studies by identifying some of the de-
velopment needs of a speech-based interface for
robotic caregivers for older adults with AD.

2 Related Work

Research in smart home systems, assistive robots,
and integrated robot/smart home systems for older
adults with cognitive impairments has often fo-
cused on assistance with activities of daily living
(i.e., reminders to do specific activities according
to a schedule or prompts to perform activity steps),
cognitive and social stimulation and emergency
response systems. Archipel (Serna et al., 2007)
recognizes the user’s intended plan and provides
prompts, e.g. with cooking tasks. Autominder,
(Pollack, 2006), provides context-appropriate re-
minders for activity schedules, and the COACH
(Cognitive Orthosis for Assisting with aCtivities
in the Home) system prompts for the task of hand-
washing (Mihailidis et al., 2008) and tea-making
(Olivier et al., 2009). Mynatt et al. (2004) have
been developing technologies to support aging-in-
place such as the Cooks Collage, which uses a se-
ries of photos to remind the user what the last step
completed was if the user is interrupted during a

cooking task. These interventions tend to be em-
bedded in existing environments (e.g., around the
sink area).

More recent innovations have examined in-
tegrated robot-smart home systems where sys-
tems are embedded into existing environments that
communicate with mobile assistive robots (e.g.,
CompanionAble, (Mouad et al., 2010); Mobiserv
Kompai, (Lucet, 2012); and ROBADOM (Tapus
and Chetouani, 2010)). Many of these projects
are targeted towards older adults with cognitive
impairment, and not specifically those with sig-
nificant cognitive impairment. One of these sys-
tems, CompanionAble, with a fully autonomous
assistive robot, has recently been tested in a simu-
lated home environment for two days each with
four older adults with dementia (AD or Pick’s
disease/frontal lobe dementia) and two with mild
cognitive impairment. The system provides assis-
tance with various activities, including appoint-
ment reminders for activities input by users or
caregivers, video calls, and cognitive exercises.
Participants reported an overall acceptance of the
system and several upgrades were reported, in-
cluding a speech recognition system that had to be
deactivated by the second day due to poor perfor-
mance.

One critical component for the successful use of
these technological interventions is the usability of
the communication interface for the targeted users,
in this case older adults with Alzheimer’s disease.
As in communication between two people, com-
munication between the older adult and the robot
may include natural, freeform speech (as opposed
to simple spoken keyword interaction) and non-
verbal cues (e.g., hand gestures, head pose, eye
gaze, facial feature cues), although speech tends to
be far more effective (Green et al., 2008; Goodrich
and Schultz, 2007). Previous research indicates
that automated communication systems are more
effective if they take into account the affective
and mental states of the user (Saini et al., 2005).
Indeed, speech appears to be the most powerful
mode of communication for an assistive robot to
communicate with its users (Tapus and Chetouani,
2010; Lucet, 2012).

2.1 Language use in dementia and
Alzheimer’s disease

In order to design a speech interface for individ-
uals with dementia, and AD in particular, it is21



important to understand how their speech differs
from that of the general population. This then can
be integrated into future automatic speech recog-
nition systems. Guinn and Habash (2012) showed,
through an analysis of conversational dialogs, that
repetition, incomplete words, and paraphrasing
were significant indicators of Alzheimer’s dis-
ease relative but several expected measures such
as filler phrases, syllables per minute, and pro-
noun rate were not. Indeed, pauses, fillers, for-
mulaic speech, restarts, and speech disfluencies
are all hallmarks of speech in individuals with
Alzheimer’s (Davis and Maclagan, 2009; Snover
et al., 2004). Effects of Alzheimer’s disease on
syntax remains controversial, with some evidence
that deficits in syntax or of agrammatism could be
due to memory deficits in the disease (Reilly et al.,
2011).

Other studies has applied similar analyses to
related clinical groups. Pakhomov et al. (2010)
identified several different features from the au-
dio and corresponding transcripts of 38 patients
with frontotemporal lobar degeneration (FTLD).
They found that pause-to-word ratio and pronoun-
to-noun ratios were especially discriminative of
FTLD variants and that length, hesitancy, and
agramatism correspond to the phenomenology of
FTLD. Roark et al. (2011) tested the ability of an
automated classifier to distinguish patients with
mild cognitive impairment from healthy controls
that include acoustic features such as pause fre-
quency and duration.

2.2 Human-robot interaction

Receiving assistance from an entity with a physi-
cal body (such as a robot) is often psychologically
more acceptable than receiving assistance from an
entity without a physical body (such as an em-
bedded system) (Klemmer et al., 2006). Physical
embodiment also opens up the possibility of hav-
ing more meaningful interaction between the older
adult and the robot, as discussed in Section 5.

Social collaboration between humans and
robots often depends on communication in which
each participant’s intention and goals are clear
(Freedy et al., 2007; Bauer et al., 2008; Green
et al., 2008). It is important that the human
participant is able to construct a useable ‘men-
tal model’ of the robot through bidirectional com-
munication (Burke and Murphy, 1999) which can
include both natural speech and non-verbal cues

(e.g., hand gestures, gaze, facial cues), although
speech tends to be far more effective (Green et al.,
2008; Goodrich and Schultz, 2007).

Automated communicative systems that are
more sensitive to the emotive and the mental states
of their users are often more successful than more
neutral conversational agents (Saini et al., 2005).
In order to be useful in practice, these commu-
nicative systems need to mimic some of the tech-
niques employed by caregivers of individuals with
AD. Often, these caregivers are employed by lo-
cal clinics or medical institutions and are trained
by those institutions in ideal verbal communica-
tion strategies for use with those having demen-
tia (Hopper, 2001; Goldfarb and Pietro, 2004).
These include (Wilson et al., 2012) but are not
limited to relatively slow rate of speech, verba-
tim repetition of misunderstood prompts, closed-
ended (e.g., ‘yes/no’) questions, and reduced syn-
tactic complexity. However, Tomoeda et al. (1990)
showed that rates of speech that are too slow
may interfere with comprehension if they intro-
duce problems of short-term retention of working
memory. Small et al. (1997) showed that para-
phrased repetition is just as effective as verbatim
repetition (indeed, syntactic variation of common
semantics may assist comprehension). Further-
more, Rochon et al. (2000) suggested that the syn-
tactic complexity of utterances is not necessarily
the only predictor of comprehension in individuals
with AD; rather, correct comprehension of the se-
mantics of sentences is inversely related to the in-
creasing number of propositions used – it is prefer-
able to have as few clauses or core ideas as possi-
ble, i.e., one-at-a-time.

3 Data collection

The data in this paper come from a study to
examine the feasibility and usability of a per-
sonal assistive robot to assist older adults with
AD in the completion of daily activities (Begum
et al., 2013). Ten older adults diagnosed with
AD, aged ≥ 55, and their caregivers were re-
cruited from a local memory clinic in Toronto,
Canada. Ethics approval was received from the
Toronto Rehabilitation Institute and the Univer-
sity of Toronto. Inclusion criteria included fluency
in English, normal hearing, and difficulty com-
pleting common sequences of steps, according to
their caregivers. Caregivers had to be a family
or privately-hired caregiver who provides regular22



care (e.g., 7 hours/week) to the older adult partici-
pant. Following informed consent, the older adult
participants were screened using the Mini Mental
State Exam (MMSE) (Folstein et al., 2001) to as-
certain their general level of cognitive impairment.
Table 1 summarizes relevant demographics.

Sex Age (years) MMSE (/30)
OA1 F 76 9
OA2 M 86 24
OA3 M 88 25
OA4 F 77 25
OA5 F 59 18
OA6 M 63 23
OA7 F 77 25
OA8 F 83 19
OA9 F 84 25
OA10 M 85 15

Table 1: Demographics of older adults (OA).

(a)

(b)

Figure 1: ED and two participants with AD during
the tea-making task in the kitchen of HomeLab at
TRI.

3.1 ED, the personal caregiver robot
The robot was built on an iRobot base (operat-
ing speed: 28 cm/second) and both its internal
construction and external enclosure were designed
and built at TRI. It is 102 cm in height and has
separate body and head components; the latter is
primarily a LCD monitor that shows audiovisual
prompts or displays a simple ‘smiley face’ other-

wise, as shown in Figure 2. The robot has two
speakers embedded in its ‘chest’, two video cam-
eras (one in the head and one near the floor, for
navigation), and a microphone. For this study,
the built-in microphones were not used in favor of
environmental Kinect microphones, discussed be-
low. This was done to account for situations when
the robot and human participant were not in the
same room simultaneously.

The robot was tele-operated throughout the
task. The tele-operator continuously monitored
the task progress and the overall affective state
of the participants in a video stream sent by the
robot and triggered social conversation, asked
task-related questions, and delivered prompts to
guide the participants towards successful comple-
tion of the tea-making task (Fig. 1).

Figure 2: The prototype robotic caregiver, ED.

The robot used the Cepstral commercial text-to-
speech (TTS) system using the U.S. English voice
‘David’ and its default parameters. This system
is based on the Festival text-to-speech platform in
many respects, including its use of linguistic pre-
processing (e.g., part-of-speech tagging) and cer-
tain heuristics (e.g., letter-to-sound rules). Spo-
ken prompts consisted of simple sentences, some-
times accompanied by short video demonstrations
designed to be easy to follow by people with a cog-
nitive impairment.

For efficient prompting, the tea-making task
was broken down into different steps or sub-task.
Audio or audio-video prompts corresponding to23



each of these sub-tasks were recorded prior to
data collection. The human-robot interaction pro-
ceeded according to the following script when col-
laborating with the participants:

1. Allow the participant to initiate steps in each
sub-task, if they wish.

2. If a participant asks for directions, deliver the
appropriate prompt.

3. If a participant requests to perform the sub-
task in their own manner, agree if this does
not involve skipping an essential step.

4. If a participant asks about the location of an
item specific to the task, provide a full-body
gesture by physically orienting the robot to-
wards the sought item.

5. During water boiling, ask the participant to
put sugar or milk or tea bag in the cup. Time
permitting, engage in a social conversation,
e.g., about the weather.

6. When no prerecorded prompt sufficiently an-
swers a participant question, respond with the
correct answer (or “I don’t know”) through
the TTS engine.

3.2 Study set-up and procedures

Consent included recording video, audio, and
depth images with the Microsoft Kinect sensor in
HomeLab for all interviews and interactions with
ED. Following informed consent, older adults and
their caregivers were interviewed to acquire back-
ground information regarding their daily activi-
ties, the set-up of their home environment, and the
types of assistance that the caregiver typically pro-
vided for the older adult.

Participants were asked to observe ED mov-
ing in HomeLab and older adult participants were
asked to have a brief conversation with ED to
become oriented with the robot’s movement and
speech characteristics. The older adults were
then asked to complete the hand-washing and tea-
making tasks in the bathroom and kitchen, respec-
tively, with ED guiding them to the locations and
providing specific step-by-step prompts, as neces-
sary. The tele-operator observed the progress of
the task, and delivered the pre-recorded prompts
corresponding to the task step to guide the older
adult to complete each task. The TTS system
was used to respond to task-related questions and
to engage in social conversation. The caregivers

were asked to observe the two tasks and to in-
tervene only if necessary (e.g., if the older adult
showed signs of distress or discomfort). The
older adult and caregiver participants were then
interviewed separately to gain their feedback on
the feasibility of using such a robot for assis-
tance with daily activities and usability of the sys-
tem. Each study session lasted approximately 2.5
hours including consent, introduction to the robot,
tea-making interaction with the robot, and post-
interaction interviews. The average duration for
the tea-making task alone was 12 minutes.

4 Experiments and analysis

Automatic speech recognition given these data is
complicated by several factors, including a pre-
ponderance of utterances in which human care-
givers speak concurrently with the participants, as
well as inordinately challenging levels of noise.
The estimated signal-to-noise ratio (SNR) across
utterances range from−3.42 dB to 8.14 dB, which
is extremely low compared to typical SNR of 40
dB in clean speech. One cause of this low SNR
is that microphones are placed in the environment,
rather than on the robot (so the distance to the mi-
crophone is variable, but relatively large) and that
the participant often has their back turned to the
microphone, as shown in figure 1.

As in previous work (Rudzicz et al., 2012),
we enhance speech signals with the log-spectral
amplitude estimator (LSAE) which minimizes the
mean squared error of the log spectra given a
model for the source speech Xk = Ake

(jωk),
where Ak is the spectral amplitude. The LSAE
method is a modification of the short-time spectral
amplitude estimator that finds an estimate of the
spectral amplitude, Âk, that minimizes the distor-
tion

E

[(
logAk − log Âk

)2]
, (1)

such that the log-spectral amplitude estimate is

Âk = exp (E [lnAk |Yk])

=
ξk

1 + ξk
exp

(
1

2

∫ ∞

vk

e−t

t
dt

)
Rk,

(2)

where ξk is the a priori SNR,Rk is the noisy spec-
tral amplitude, vk = ξk

1+ξk
γk, and γk is the a pos-

teriori SNR (Erkelens et al., 2007). Often this is
based on a Gaussian model of noise, as it is here
(Ephraim and Malah, 1985).24



As mentioned, there are many utterances in
which human caregivers speak concurrently with
the participants. This is partially confounded by
the fact that utterances by individuals with AD
tend to be shorter, so more of their utterance is lost,
proportionally. Examples of this type where the
caregiver’s voice is louder than the participant’s
voice are discarded, amounting to about 10% of
all utterances. In the following analyses, func-
tion words (i.e., prepositions, subordinating con-
junctions, and determiners) are removed from con-
sideration, although interjections are kept. Proper
names are also omitted.

We use the HTK (Young et al., 2006) toolchain,
which provides an implementation of a semi-
continuous hidden Markov model (HMM) that al-
lows state-tying and represents output densities by
mixtures of Gaussians. Features consisted of the
first 13 Mel-frequency cepstral coefficients, their
first (δ) and second (δδ) derivatives, and the log
energy component, for 42 dimensions. Our own
data were z-scaled regardless of whether LSAE
noise reduction was applied.

Two language models (LMs) are used, both tri-
gram models derived from the English Gigaword
corpus, which contains 1200 word tokens (Graff
and Cieri, 2003). The first LM uses the first 5000
most frequent words and the second uses the first
64,000 most frequent words of that corpus. Five
acoustic models (AMs) are used with 1, 2, 4, 8,
and 16 Gaussians per output density respectively.
These are trained with approximately 211 hours
of spoken transcripts of the Wall Street Journal
(WSJ) from over one hundred non-pathological
speakers (Vertanen, 2006).

Table 2 shows, for the small- and large-
vocabulary LMs, the word-level accuracies of the
baseline HTK ASR system, as determined by
the inverse of the Levenshtein edit distance, for
two scenarios (sit-down interviews vs. during
the task), with and without LSAE noise reduc-
tion, for speech from individuals with AD and
for their caregivers. These values are computed
over all complexities of acoustic model and are
consistent with other tasks of this type (i.e., with
the challenges associated with the population and
recording set up), with this type of relatively un-
constrained ASR (Rudzicz et al., 2012). Apply-
ing LSAE results in a significant increase in ac-
curacy for both the small-vocabulary (right-tailed
homoscedastic t(58) = 3.9, p < 0.005, CI =

[6.19,∞]) and large-vocabulary (right-tailed ho-
moscedastic t(58) = 2.4, p < 0.01, CI =
[2.58,∞]) tasks. For the participants with AD,
ASR accuracy is significantly higher in inter-
views (paired t(39) = 8.7, p < 0.0001, CI =
[13.8,∞]), which is expected due in large part
to the closer proximity of the microphone. Sur-
prisingly, ASR accuracy on participants with ASR
was not significantly different than on caregivers
(two-tailed heteroscedastic t(78) = −0.32, p =
0.75, CI = [−5.54, 4.0]).

Figure 3 shows the mean ASR accuracy, with
standard error (σ/

√
n), for each of the small-

vocabulary and large-vocabulary ASR systems.
The exponential function b0 + b1 exp(b2x) is fit
to these data for each set, where bi are coef-
ficients that are iteratively adjustable via mean
squared error. For the small-vocabulary data,
R2 = 0.277 and F8 = 3.06, p = 0.12 ver-
sus the constant model. For the large-vocabulary
data, R2 = 0.445 and F8 = 2.81, p = 0.13
versus the constant model. Clearly, there is an
increasing trend in ASR accuracy with MMSE
scores, however an n-way ANOVA on ASR ac-
curacy scores reveals that this increase is not sig-
nificant (F1 = 47.07, p = 0.164). Furthermore,
neither the age (F1 = 1.39, p = 0.247) nor the sex
(F1 = 0.98, p = 0.33) of the participant had a sig-
nificant effect on ASR accuracy. An additional n-
way ANOVA reveals no strong interaction effects
between age, sex, and MMSE.
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Figure 3: MMSE score versus mean ASR accu-
racy (with std. error bars) and fits of exponential
regression for each of the small-vocabulary and
large-vocabulary ASR systems.
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Scenario Noise reduction AD caregiver

Small vocabulary
Interview

None 25.1 (σ = 9.9) 28.8 (σ = 6.0)
LSAE 40.9 (σ = 5.6) 40.2 (σ = 5.3)

In task
None 13.7 (σ = 3.7) -
LSAE 19.2 (σ = 9.8) -

Large vocabulary
Interview

None 23.7 (σ = 12.9) 27.0 (σ = 10.0)
LSAE 38.2 (σ = 6.3) 35.1 (σ = 11.2)

In task
None 5.8 (σ = 3.7) -
LSAE 14.3 (σ = 12.8) -

Table 2: ASR accuracy (means, and std. dev.) across speakers, scenario (interviews vs. during the task),
and presence of noise reduction for the small and large language models.

5 Discussion

This study examined low-level aspects of speech
recognition among older adults with Alzheimer’s
disease interacting with a robot in a simulated
home environment. The best word-level accura-
cies of 40.9% (σ = 5.6) and 39.2% (σ = 6.3)
achievable with noise reduction and in a quiet in-
terview setting are comparable with the state-of-
the-art in unrestricted large-vocabulary text entry.
These results form the basis for ongoing work in
ASR and interaction design for this domain. The
trigram language model used in this work encap-
sulates the statistics of a large amount of speech
from the general population – it is a speaker-
independent model derived from a combination
of English news agencies that is not necessarily
representative of the type of language used in the
home, or by our target population. The acoustic
models were also derived from newswire data read
by younger adults in quiet environments. We are
currently training and adapting language models
tuned specifically to older adults with Alzheimer’s
disease using data from the Carolina Conversa-
tions database (Pope and Davis, 2011) and the De-
mentiaBank database (Boller and Becker, 1983).

Additionally, to function realistically, a lot of
ambient and background noise will need to be
overcome. We are currently looking into deploy-
ing a sensor network in the HomeLab that will in-
clude microphone arrays. Another method of im-
proving rates of correct word recognition is to aug-
ment the process from redundant information from
a concurrent sensory stream, i.e., in multimodal
interaction (Rudzicz, 2006). Combining gesture
and eye gaze with speech, for example, can be
used to disambiguate speech-only signals.

Although a focus of this paper, verbal infor-
mation is not the only modality in which human-

robot interaction can take place. Indeed, Wil-
son et al. (2012) showed that experienced human
caregivers employed various non-verbal and semi-
verbal strategies to assist older adults with demen-
tia about 1/3 as often as verbal strategies (see sec-
tion 2.2). These non-verbal and semi-verbal strate-
gies included eye contact, sitting face-to-face, us-
ing hand gestures, a calm tone of voice, instru-
mental touch, exaggerated facial expressions, and
moving slowly. Multi-modal communication can
be extremely important for individuals with de-
mentia, who may require redundant channels for
disambiguating communication problems, espe-
cially if they have a language impairment or a sig-
nificant hearing impairment.

It is vital that our current technological ap-
proaches to caring for the elderly in their homes
progresses quickly, given the demographic shift
in many nations worldwide. This paper provides
a baseline assessment for the types of technical
and communicative challenges that will need to be
overcome in the near future to provide caregiving
assistance to a growing number of older adults.
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