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Abstract

In this paper we describe the PKU system
for the CoNLL-2014 grammar error cor-
rection shared task. We propose a unified
framework for correcting all types of er-
rors. We use unlabeled news texts instead
of large amount of human annotated texts
as training data. Based on these data, a
tri-gram language model is used to cor-
rect the replacement errors while two extra
classification models are trained to correct
errors related to determiners and preposi-
tions. Our system achieves 25.32% in f0.5

on the original test data and 29.10% on the
revised test data.

1 Introduction

The task of grammar error correction is diffi-
cult yet important. An automatic grammar error
correction system can help second language(L2)
learners improve the quality of their writing. Pre-
vious shared tasks for grammar error correction,
such as the HOO shared task of 2012 (HOO-2012)
and the CoNLL-2013 shared task(CoNLL-2013),
focus on limited types of errors. For example,
HOO-2012 only considers errors related to de-
terminers and prepositions. CoNLL-2013 further
considers errors that are related to noun number,
verb form and subject-object agreement. In the
CoNLL-2014 shared task, all systems should con-
sider all the 28 kinds of errors, including errors
such as spelling errors which cannot be corrected
using a single classifier.

Most of the top-ranked systems in the CoNLL-
2013 shared task(Ng et al., 2013) train individ-
ual classifiers or language models for each kind
of errors independently. Although later systems
such as Wu and Ng (2013); Rozovskaya and Roth
(2013) use Integer Linear Programming (ILP) to
decode a global optimized result, the input scores

for ILP still come from the individual classifica-
tion confidence of each kind of errors. It is hard
to adapt these methods directly into the CoNLL-
2014 shared task. It will be both time-consuming
and impossible to train individual classifiers for all
the 28 kinds of errors.

Besides the classifier and language model
based methods, some systems(Dahlmeier and Ng,
2012a; Yoshimoto et al., 2013; Yuan and Felice,
2013) also use the machine translation approach.
Because there are a limited amount of training
data, this kind of approaches often need to use
other corpora of L2 learners, such as the Cam-
bridge Learner Corpus. Because these corpora use
different annotation criteria, the correction sys-
tems should figure out ways to map the error types
from one corpus to another. Even with these ad-
ditions and transformations, there are still too few
training data available to train a good translation
model.

In contrast, we think the grammar error correc-
tion system should 1) correct most kinds of er-
rors in a unified framework and 2) use as much
unlabeled data as possible instead of using large
amount of human annotated data. To be specific,
our system do not need to train individual clas-
sifiers for each kind of errors, nor do we need
to use manually corrected texts. Following the
observation that a correction can either replace a
wrong word or delete/insert a word, our system
is divided into two parts. Firstly, we use a Lan-
guage Model(LM) to correct errors with respect to
the wrongly used words. The LM only uses the
statistics from a large corpus. All errors related to
wrongly used words can be examined in this uni-
fied model instead of designing individual systems
for each kind of errors. Secondly, we train extra
classifiers for determiner errors and preposition er-
rors. We further consider these two kinds of errors
because many of the deletion and insertion errors
belongs to determiner or preposition errors. The
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training data of the two classification models also
come from a large unlabeled news corpus there-
fore no human annotation is needed.

Although we try to use a unified framework to
get better performance in the grammar error cor-
rection task, there are still a small portion of errors
we do not consider. The insertion and deletion of
words are not considered if the word is neither a
determiner nor a preposition. Our system is also
incapable of replacing a word sequence into an-
other word sequence. We do not consider these
kinds of errors because we find some of them are
hard to generate correction candidates without fur-
ther understanding of the context, and are not easy
to be corrected even by human beings.

The paper is structured as follows. Section 1
gives the introduction. In section 2 we describe
the task. In section 3 we describe our algorithm.
Experiments are described in section 4. We also
give a detailed analysis of the results in section 4.
In section 5 related works are introduced, and the
paper is concluded in the last section.

2 Task Description

The CoNLL-2014 shared task focuses on correct-
ing all errors that are commonly made by L2 learn-
ers of English. The training data released by
the task organizers come from the NUCLE cor-
pus(Dahlmeier et al., 2013). This corpus contains
essays written by L2 learners of English. These
essays are then corrected by English teachers. De-
tails of the CoNLL-2014 shared task can be found
in Ng et al. (2014).

3 System Overview

3.1 Overview

It is time-consuming to train individual models for
each kind of errors. We believe a better way is to
correct errors in a unified framework. We assume
that each word in the sentence may be involved in
some kinds of errors. We generate a list of cor-
rection candidates for each word. Then a Lan-
guage Model (LM) is used to find the most proba-
ble word sequences based on the original sentence
and the correction candidates for each word. An
illustrative example is shown in figure 1.

Because the LM is designed for the replace-
ment errors rather than insertion and deletion er-
rors, we train two extra classifiers for determiners
and prepositions. The determiner model and the

preposition model can improve the performance in
our experiment.

3.2 Correction Candidate Generation
The correction candidate generation phase aims to
generate a list of correction candidates for each
word in the original sentence. We generate cor-
rection candidates based on the following rules:

1. Words with the same stem

2. Similar words based on edit distance

The first rule includes the words with the
same stem as candidates. These candidates
can be used later to correct the errors re-
lated to word form. For example, candidates
for the word ‘time’ in the original sentence
‘This is a timely rain indeed.’ may include
‘timed’,‘time’,‘timed’,‘times’,‘timings’,‘timely’,
‘timees’ and ‘timing’, which all have the stem
’time’. The correct candidate ‘timely’ is also
included in the candidate list and can be detected
through further processing.

The candidate generated by the second rule are
mainly used for spelling correction. For exam-
ple, a such candidate for ‘beleive’ may be ‘belive’
or ‘believe’. To generate meaningful candidates
while guarantee accuracy, we require that the can-
didate and the original word should have the same
initial character. By examining the training data
we experimentally find that very few L2 learn-
ers make spelling errors on the initial characters.
For example, they may spell “believe” as “belive”.
However, very few of them may spell “believe” as
“pelieve” or “delieve”.

In our system, we generate 10 candidates for
each word. To keep the decoding of the best word
sequence controllable, we do not generate candi-
dates for every word in the original sentence. We
only generate the edit distance based candidates
for the following words:

1. Words that never appear in the English giga-
word corpus1

2. Words that appear in the gigaword corpus but
with frequency below a threshold (we use 10
in the experiment)

Besides, we do not generate candidates for the
words whose POS tags are “NNP” or “NNPS”.

1http://catalog.ldc.upenn.edu/
LDC2003T05
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Figure 1: Correction of the original sentence “Thera is no spaces for Tom”. We use red nodes to represent
the original words in the sentence, and use blue nodes below each word to represent the candidate list of
each word. We use arrows to show the final corrected word sequence with the highest probability.

These words are proper nouns. The correction
of this kind of words should depend on more
contextual information. For the stemming tools
we use the snowball stemmer2. To generate
candidates based on edit distance, we use the
org.apache.lucene.search.spell.SpellChecker in
Lucene3. Note that unlike other context based
spell checkers such as the one in Microsoft Office,
the SpellChecker class in Lucene is actually not
a spell checker. For an input word w, it can only
suggest words that are similar to w given a pre-
defined dictionary. We build the dictionary using
all words collected from the English Gigaword
corpus.

3.3 Language Model for Candidate Selection
After given each word a list of candidates, we can
now find the word sequence which is most likely to
be the correct sentence. The model we use is the
language model. The probability P (s) of a sen-
tence s = w0w1...wn−1 is calculated as:

P (s) =
n−1∏
i=0

P (wi|w0, ..., wi−1) (1)

The transition probability P (wi|w0, ..., wi−1)
is calculated based on language model. In
our system we use a tri-gram language
model trained on the gigaword corpus.

2http://snowball.tartarus.org/
3https://lucene.apache.org/

Therefore, P (wi|w0, ..., wi−1) is reduced to
P (wi|wi−2, wi−1). We do not use a fixed smooth-
ing method. We just set the probability of an
unseen string to be a positive decimal which is
very close to zero.

The decoding of the word sequence that max-
imize p(s) can be tackled through dynamic
programming using Viterbi algorithm(Forney Jr,
1973). One useful trick is that to multiply
p(wi|wi−2, wi−1) with a coefficient (4 in our sys-
tem) if wi−2, wi−1 and wi are all words in the orig-
inal sentence. This is because most of the original
word sequences are correct. If the system needs to
make a correction, the corrected sequence should
have a much higher score than the original one.

We do not generate candidates for determin-
ers and prepositions. Firstly, they are all frequent
words that are excluded by the rules we men-
tioned in this section. Secondly, the determiner
and preposition errors are the main kinds of errors
made by L2 learners. Some of the errors are re-
lated to the wrong deletions or insertions. There-
fore we choose to take special care of determiners
and prepositions to correct all their replacement,
deletion and insertion errors instead of generating
candidates for them in this stage.

3.4 Determiner Correction

After using LM, the spelling errors as well as ordi-
nary word form errors such as noun numbers, verb
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forms are supposed to be corrected. As we men-
tioned in the introduction, we should now handle
the deletion and insertion errors. We choose to use
special models for determiner and prepositions be-
cause many of the deletion and insertion errors are
related to determiner errors or preposition errors.
Also, these two kinds of errors have been consid-
ered in HOO-2012 and CoNLL2013. Therefore
it’s easier to make meaningful comparison with
previous works. We use Maximum Entropy (ME)
classifiers to correct the determiner and preposi-
tion errors. In this section we consider the deter-
miner errors. The preposition errors will be con-
sidered in the next section. For both of the two
parts, we use the open source tool MaxEnt4 as the
implementation of ME.

We consider the determiner correction task as a
multi-class classification task. The input instances
for classification are the space between words. We
consider whether the space should keep empty, or
insert ‘a’ or ‘the’. Therefore, 3 labels are con-
sidered to indicate ‘a’, ‘the’ and ‘NULL’. We use
‘’NULL’ to denote that the correct space does not
need an article. We leave the clarification between
‘a’ and ‘an’ as a post-process by manually de-
signed rules. We do not consider other determiners
such as ‘this’ or ‘’these’ because further informa-
tion such as the coreference resolution results is
needed.

Instead of considering all spaces in a sen-
tence, some previous works(AEHAN et al., 2006;
Rozovskaya and Roth, 2010; Rozovskaya et al.,
2013) only consider spaces at the beginning of
noun phrases. Compared to these methods, our
system do not need a POS tagger or a phrase chun-
ker (which is sometimes not accurate enough) to
filter the positions. All the operations are done on
the word level. We list the features we use in ta-
ble 1. Note that for 3-grams and 4-grams we do
not use all combinations of characters because it
will generate more sparse features while the per-
formance is not improved.

Because there are limited amount of training
data, we choose to use the English Gigaword cor-
pus to generate training instances instead of us-
ing the training data of CoNLL-2014. Because the
texts in the Gigaword corpus are all news texts,
most of them are well written by native speakers
and are proofread by the editors. Therefore they

4http://homepages.inf.ed.ac.uk/
lzhang10/maxent_toolkit.html

1-gram w−3, w−2, w−1, w1, w2, w3

2-gram all combinations of wiwj where
i, j ∈ {−3,−2,−1, 1, 2, 3}

3-gram w−3w−2w−1,w−2w−1w1,
w−1w1w2, w1w2w3

4-gram w−3w−2w−1w1,
w−2w−1w1w2,w−1w1w2w3

Table 1: The features used in our system. For a
given blank(space), wi means the next ith word
and w−i means the previous ith word. For the
example of “I do not play balls .”, if the current
considered instance is the space between ‘play’
and ‘balls’, then w−2 means ‘not’ and w1 means
‘balls’.

can serve as implicit gold annotations. We gener-
ate the training instances from the sentences in the
Gigaword corpus with the following rules:

1. for each space between words, we treat it as
an instance with label ‘NULL’, which means
no article is needed. We use the 3 words be-
fore the space as w−3, w−2, w−1 and the 3
words after the space as w1, w2, w3 to gener-
ate features. We name this kind of instances
‘Space Instance’ to indicate we operate on
a space. This kind of training instances can
convey the information that in this context no
article is needed.

2. for each word that is an article, we assume it
as an instance, with the label ‘a’ or ‘the’ de-
pending on itself. We use the 3 words before
it as w−3, w−2, w−1 and the 3 words after
is as w1, w2, w3. In this case we do not use
the article itself as the context. We name this
kind of instances ‘article Instance’ to indicate
we operate on an article. This kind of train-
ing instances can convey the information that
in this context a particular article should be
added.

The testing instance are also generated follow-
ing the previously mentioned rules. The decoding
process is as follows. If an instance is a ‘space
instance’ and is predicted as ‘a’ or ‘the’, we then
add ‘a’ or ‘the’ in this space. If an instance is an
‘article instance’, the situation is a bit complex. If
it is predicted as another article, we replace it with
the predicted one. If it is predicted as ‘NULL’, we
should delete the article to make it a space.
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To guarantee a certain level of precision, we re-
quire the decoding should only be based on confi-
dent predictions. We use the probability calculated
by the classifier as the confidence score and re-
quire the probability of the considered predictions
should exceed a threshold.

3.5 Preposition Correction

The preposition model is similar to the article
model. We use the same set of features as in ta-
ble 1. The training and testing instance generation
is similar except now we consider prepositions in-
stead of articles. The decoding phase is also iden-
tical to the determiner model.

3.6 Post Processing

The post processing in our system is listed as fol-
lows:

1. Distinguish between “a” and “an”. We use
rule based method for this issue.

2. Splitting words. If a word is not in the dic-
tionary but one of its splitting results has a
high frequency, we will split the word into
two words. For example, “dailylife” is an
out of vocabulary word and the splitting re-
sult “daily life” is common in English. Then
we split “dailylife” into “daily life”.

3. We capitalize the first character of each sen-
tence.

4 Experiment and Analysis

We experiment on the CoNLL-2014 test data. We
evaluate our system based on the M2 scorer which
is provided by the organizers. Details of the M2
scorer can be found in Dahlmeier and Ng (2012b).
We tune the additional parameters like all the
thresholds on the CoNLL-2014 official training
data. We use all the text in the Gigaword corpus to
train the language model. We use 2.5 million sen-
tences in the Gigaword corpus to train the extra
two classifier.

Results of our system are shown in table 2. LM
refers to using language model alone. LM+det
refers to using a determiner classifier after using
a language model. LM+prep refers to using a
preposition classifier after using a language model.
LM+det+preposition refers to using a preposition
classifier after LM+det, which is the method used
in our final system.

Model P R F0.5
LM 29.89% 10.04% 21.42%

LM+det 32.23% 13.64% 25.33%
LM+prep 29.73% 10.04% 21.35%

LM+det+prep(all) 32.21% 13.65% 25.32%

Table 2: The experimental results of our system in
the CoNLL-2014 shared task. The threshold for
determiner model and preposition model is 0.99
and 0.99. Parameters are tuned on the CoNLL-
2014 training data.

Model P R F0.5
LM+det+prep(all) 36.64% 15.96% 29.10%

Table 3: The experimental results of our system
in the CoNLL-2014 shared task on the revised an-
notations. The threshold for determiner model and
preposition model is 0.99 and 0.99. Parameters are
tuned on the CoNLL-2014 training data.

From the results we can see that the main con-
tribution comes from the LM model and deter-
miner model. The preposition model can correct
part of the errors while introduce new errors. The
preposition model may harm the overall perfor-
mance. But considering the fact that the grammar
error correction systems are always used for rec-
ommending errors, we still keep the preposition
model in real applications and suggest the errors
predicted by the preposition model.

One limitation of our system is that we only
use a tri-gram based language model as well as up
to 4-gram features for limited instances. Previous
works(Rozovskaya et al., 2013; Kao et al., 2013)
have shown that other resources like the Google 5-
gram statistics can help improve performance. For
the determiner and preposition models, we exper-
iment on different size of training data, from near
zero to the upper bound of our server’s memory
limit (about 72GB). We find that under this lim-
itation, the performance is still improving when
adding more training instances. We believe the
performance can be further improved.

Scores based on the revised annotations is
shown in table 3.

For the convenience of future meaningful com-
parison, we report the result of our system on the
CoNLL-2013 data set in table 4. We tune the ad-
ditional parameters like all the thresholds on the
CoNLL-2013 official training data. Note that in
CoNLL-2013 the scorer considers F1 score in-
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Model P R F1
CoNLL13 1st 23.49% 46.45% 31.20 %
CoNLL13 2nd 26.35% 23.80% 25.01 %

LM 18.92% 14.55% 16.45%
LM+det 23.76% 36.15% 28.67%

LM+prep 18.89% 14.55% 16.44%
LM+det+prep 23.74% 36.15% 28.66%

Table 4: The experimental results of our system
on the CoNLL-2013 shared task data. The thresh-
old for determiner model and preposition model
is 0.75 and 0.99. Parameters are tuned on the
CoNLL-2013 training data. CoNLL13 1st is Ro-
zovskaya et al. (2013) and the 2nd is Kao et al.
(2013)

stead of F0.5. Therefore some of the thresholds are
different with the ones in the CoNLL-2014 sys-
tem. Because the CoNLL-2013 shared task only
considers 5 types of errors, it will be much easier
to design components specially for each kind of
errors. Therefore our system is a bit less accurate
than the best system. In this system, we restrict the
candidates to be either noun or verb, and omit the
spell checking model. We also omit some post-
processings like deciding whether a word should
be split into two words, because these kinds of er-
rors are not included.

5 Conclusion

In this paper we describe the PKU system for
the CoNLL-2014 grammar error correction shared
task. We propose a unified framework for correct-
ing all types of errors. A tri-gram language model
is used to correct the replacement errors while two
extra classification models are trained to correct
errors related to determiners and prepositions. Our
system achieves 25.32% in f0.5 on the original test
data and 29.10% on the revised test data.
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