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Abstract

Statistical machine translation toolkits like
Moses have not been designed with gram-
matical error correction in mind. In or-
der to achieve competitive results in this
area, it is not enough to simply add more
data. Optimization procedures need to be
customized, task-specific features should
be introduced. Only then can the decoder
take advantage of relevant data.

We demonstrate the validity of the above
claims by combining web-scale language
models and large-scale error-corrected
texts with parameter tuning according to
the task metric and correction-specific fea-
tures. Our system achieves a result of
35.0% F0.5 on the blind CoNLL-2014 test
set, ranking on third place. A similar sys-
tem, equipped with identical models but
without tuned parameters and specialized
features, stagnates at 25.4%.

1 Introduction

There has been an increasing interest in using sta-
tistical machine translation (SMT) for the task
of grammatical error correction. Among the 16
teams that took part in the CoNLL-2013 Shared
Task (Ng et al., 2013), four teams described ap-
proaches that fully or partially used SMT in their
system. While in the previous year the correc-
tion task was restricted to just five error types,
the CoNLL-2014 Shared Task (Ng et al., 2014)
now requires a participating system to correct all
28 error types present in NUCLE (Dahlmeier et
al., 2013). Since the high number of error types
has made it harder to target each error category
with dedicated components, SMT with its abil-
ity to learn generic text transformations is now an
even more appealing approach.

With out-of-the-box machine translation toolk-
its like Moses (Koehn et al., 2007) being freely
available, the application of SMT to grammati-
cal error correction seems straightforward. How-
ever, Moses has not been designed as a grammar
correction system, the standard features and opti-
mization methods are geared towards translation
performance measured by the metrics used in the
SMT field. Training Moses on data that is relevant
for grammatical error correction is a step in the
right direction, but data alone is not enough. The
decoder needs to be able to judge the data based on
relevant features, parameter optimization needs to
be performed according to relevant metrics.

This paper constitutes the description of the
Adam Mickiewicz University (AMU) submission
to the CoNLL-2014 Shared Task on Grammatical
Error Correction. We explore the interaction of
large-scale data, parameter optimization, and task-
specific features in a Moses-based system. Related
work is presented in the next section, the system
setup is shortly described in Section 3. Sections 4
to 7 contain our main contributions.

In Section 4, we describe our implementation of
feature weights tuning according to the MaxMatch
(M2) metric by Dahlmeier and Ng (2012b) which
is the evaluation metric of the current CoNLL-
2014 Shared Task. Sections 5 and 6 deal with the
data-intensive aspects of our paper. We start by
extending the baseline system with a Wikipedia-
based language model and finish with a web-scale
language model estimated from CommonCrawl
data. Uncorrected/corrected data from the social
language learner’s platform Lang-8 is used to ex-
tend the translation models of our system.

Task-specific dense and sparse features are in-
troduced in Section 7. These features are meant to
raise the “awareness” of the decoder for grammat-
ical error correction. In Section 8, we discuss the
results of our submission and several intermediate
systems on the blind CoNLL-2014 test set.
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2 Related Work

Brockett et al. (2006) use SMT to correct count-
ability errors for a set of 14 mass nouns that pose
problems to Chinese ESL learners. For this very
restricted task they achieve a results of 61.81%
corrected mistakes. This work mentions minimum
error rate tuning according to BLEU.

A Moses-based system is described by Mizu-
moto et al. (2011) who correct grammatical errors
of learners of Japanese. This work is continued for
English in Mizumoto et al. (2012). The effect of
learner corpus size on various types of grammat-
ical errors is investigated. The additional large-
scale data originates from the social learner’s plat-
form Lang-8. We use similar resources.

Very interesting work is presented by
Dahlmeier and Ng (2012a). A custom beam-
search decoder for grammatical error correction
is introduced that incorporates discriminative
classifiers for specific error categories such as
articles and prepositions. The authors perform
parameter tuning and find PRO to work better
with M2

1 than MERT1. The specialized decoder
tuned with M2

1 is compared to Moses that has been
tuned with BLEU. As we show in Section 4.2, this
cannot be a fair comparison.

The CoNLL-2013 Shared Task (Ng et al., 2013)
saw a number of systems based entirely or par-
tially on translation approaches. Most notable
are Yuan and Felice (2013) and Yoshimoto et al.
(2013). Yuan and Felice (2013) apply Moses to all
five error types of the shared task and extend the
provided training data by adding other learner’s
corpora. They also experiment with generating
artificial errors. Improvement over the baseline
are small, but their approach to generate errors
shows promise. We successfully re-implement
their baseline. Yoshimoto et al. (2013) use Moses
for two error classes, prepositions and determin-
ers, for other classes they find classifier-based ap-
proaches and treelet language models to perform
better. None of the CoNLL-2013 SMT-based sys-
tems seems to use parameter tuning.

3 General System Setup

Our system is based on the phrase-based part of
the statistical machine translation system Moses
(Koehn et al., 2007). Only plain text data is used
for language model and translation model training.

1This is different from our findings for Moses, but may be
a property of their custom decoder.

External linguistic knowledge is introduced dur-
ing parameter tuning as the tuning metric relies on
the error annotation present in NUCLE. Phrase ta-
bles are binarized with the compact phrase table
(Junczys-Dowmunt, 2012), no reordering models
are used, the distortion limit is set to 0, effectively
prohibiting any reordering. Apart from that, our
basic setup is very similar to that of Yuan and Fe-
lice (2013). We adapted their 4-fold cross valida-
tion scheme on NUCLE to our needs and use a
similar baseline, now with 28 error types.

4 Parameter Tuning

The training of feature functions like translation
models or language models is only half the work
required to produce a state-of-the-art statistical
machine translation system. The other half relies
on parameter tuning.

During translation, Moses scores translations e
of string f by a log-linear model

log p(e|f) =
∑

i

λi log(hi(e, f))

where hi are feature functions and λi are feature
weights. Without parameter tuning, results may
be questionable as the choice of feature function
weights (everything else being identical) can turn
a mediocre system into a high-scoring system or
render a good system useless. This is illustrated in
Section 4.2 and by examples throughout the paper.

All our modifications to MERT, PRO, kb-MIRA
discussed in this section are publicly available2.

4.1 Tuning Scheme
To accommodate for parameter tuning, we mod-
ify the standard 4-fold cross validation procedure.
The test set in each of the four training/testing runs
is again divided into two halves. The first half is
treated as a tuning set, the second half as a test set.
Next, tuning set and test set are inverted in order
to tune and test a second time. Altogether, we per-
form four separate translation model training steps
and eight tuning/testing steps. Each tuning/test set
consists of ca. 7,000 sentences. We call this pro-
cedure 4×2-fold cross validation (4×2-CV). This
way the entire NUCLE corpus serves as training,
test, and tuning set. We also evaluate all our re-
sults on the CoNLL-2013 gold standard (ST-2013)
which has been made available with 28 error types
after the previous shared task.

2https://github.com/moses-smt/
mosesdecoder/fscorer
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4×2-CV ST-2013
Tuned with BLEU M2

0.5 BLEU M2
0.5

Untuned 85.52 14.02 70.38 19.05
BLEU 88.31 1.27 72.62 1.12
M2

0.5 87.76 15.43 71.99 16.73

Original 89.51 0.00 72.67 0.00

Table 1: Tuning with BLEU and M2

4.2 Tuning Metric

We refer to F0.5 computed by the M2 metric as
M2

0.5. Moses is bundled with several tuning tools
that can tune parameter vectors according to dif-
ferent MT tuning metrics. The most widely used
is BLEU (Papineni et al., 2002). We first attempt
minimum error rate tuning (MERT) (Och, 2003)
with BLEU, results are shown in Table 1. While
BLEU scores increase on both, 4×2-CV and ST-
2013, the effect on M2

0.5 is catastrophic3 though
not surprising. The baseline is so weak that it in-
troduces more errors than corrections, thus lower-
ing the similarity of the output and the reference
below the level of the similarity of the input and
the reference. MERT learns parameter weights
that disable nearly all correction attempts.

The obvious solution is to tune directly with
M2. M2 provides per-sentence sufficient statistics
and can easily4 be integrated with MERT. We re-
tune with M2 and see an improvement on 4×2-CV
but a significant decrease for ST-2013. BLEU in-
creases for this system despite the drop in M2.

This seems contradictory, but actually proves
our point about the necessity of parameter tuning.
Good luck should not be a basis for choosing pa-
rameters, in the case of a blind submission we have
a much better chance to reach good results betting
on optimized parameters. As we see later, this sit-
uation does not occur again for the more advanced
systems, tuned parameters do generally better.

4.3 Parameter Smoothing

Based on the results of Clark et al. (2011), it has
become good practice to tune systems between
three and five times and report average results in
order to cope with optimizer instability. Cettolo et
al. (2011) expand on this work and explore param-

3Which might explain why none of the Moses-based
CoNLL-2013 systems used parameter tuning.

4We run the original m2scorer Python code with an em-
bedded Python interpreter in MERT’s C++ source code.

System Concat. Average

NUCLE 15.16 15.43
NUCLE+CCLM 22.03 22.19
Final 25.93 26.26

Table 2: Effects of parameter weight smoothing
on three selected systems for 4×2-CV (CoNLL-
2014)

eter smoothing methods for different parameter
vectors obtained on the same tuning sets. They re-
port that parameter vector centroids averaged over
several tuning runs yield better than average re-
sults and reduce variation. Tuning three to five
times would require 24 to 40 tuning runs in our
setup. However, we already have eight parame-
ter vectors obtained from distinct tuning sets and
decide to average these parameters. This way we
hope to obtain a single vector of smoothed param-
eters that represents the entire NUCLE corpus.

Eventually, we retranslate the test sets accord-
ing to 4-fold cross validation using the respective
training data with this parameter vector. The same
parameters are later used with the full training data
to translate the CoNLL-2013 test set and the blind
CoNLL-2014 test set. As it turns out, averaging
parameter vectors across all parts has a consis-
tently positive effect for M2. This is shown in
Table 2, systems mentioned in the table are intro-
duced in Section 5 and Section 7.2.

4.4 Tuning Sparse Feature Weights

Tuning sparse features (Section 7.2) with M2

poses an unexpected challenge. Moses im-
plements two methods for feature-rich tuning:
PRO (Hopkins and May, 2011) and Batch k-best
MIRA (kb-MIRA) (Cherry and Foster, 2012) that
both function as drop-in replacements for MERT.
MERT cannot be used directly with sparse fea-
tures. When BLEU is used as a tuning metric,
Koehn and Haddow (2012) report results for PRO
on a par with MERT for a system with only dense
features. Unfortunately, this cannot be confirmed
for M2; we consistently see worse results than for
MERT using PRO or kb-MIRA.

PRO and kb-MIRA operate on sentence-level
while MERT computes M2 for the complete cor-
pus. Similar to Dahlmeier and Ng (2012a), we use
sentence-level M2 as an approximation. We sus-
pect that M2 might not be distinctive enough in a
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Figure 1: Language model corpus size versus M2

sentence-based scenario.
Koehn and Haddow (2012) also explore a

method they call “PRO-MERT” where PRO and
MERT are run in turns. The parameter vector
calculated by PRO serves as a starting point for
MERT which optimizes dense features and in the
case of existing sparse features a scalar weight that
is multiplied with all sparse feature weights.

While this method does not seem to have any
advantage for BLEU-based tuning in a MT setting
it has a positive effect on tuning with M2. Re-
sults for sparse features are now not worse than
when tuned with MERT alone in a dense fea-
ture scenario. Additionally to “PRO-MERT”, we
implemented “kb-MIRA-MERT” which seems to
display better convergence. As in the case of
dense feature functions, we smooth sparse feature
weights by averaging over all eight tuning steps.

All reported results in this paper have been
tuned according to M2

0.5, systems with dense fea-
tures use MERT, systems with sparse features kb-
MIRA-MERT. All results are given for parameter
vectors that have been smoothed over eight opti-
mizer runs from 4×2-CV.

5 Adding Language Model Data

With parameter tuning working, we can now ex-
plore the effects of adding feature functions to our
system, starting with bigger language models.

All systems use one 5-gram language model
that has been estimated from the target side of the
parallel data available for training. In this section,
only NUCLE is used as parallel data, four times
3/4 of NUCLE for 4×2-CV and complete NUCLE

System 4×2-CV ST-2013

NUCLE 15.43 16.73
+WikiLM 19.18 23.10
+CCLM10% 21.57 25.71
+CCLM 22.19 27.43

Table 3: Results for increasing language models
size on both shared task scenarios

for ST-2013. If additional parallel data is added to
the training process (see Section 6), the target data
is concatenated with NUCLE and a new 5-gram
language model is estimated.

The additional language models discussed in
this section form separate feature functions,
i.e. they are weighted separately from the target
data language model. We experiment with three
models that have been estimated using KenLM’s
(Heafield, 2011) modified Kneser-Ney estimation
tool (Heafield et al., 2013):

WikiLM – a 3-gram model estimated from the
entire English Wikipedia (2014-01-02). The
raw text corpus consists of 3.2×109 tokens.

CCLM10% – a 3-gram model estimated from
10% of the English CommonCrawl data
(4.4×1010 tokens) described by Buck et al.
(2014). The full corpus data has been made
publicly available by the authors.

CCLM – a 5-gram model estimated from the en-
tire CommonCrawl data (4.4×1011 tokens).
This model has been created and made avail-
able to us by Kenneth Heafield. A newer ver-
sion is publicly available (Buck et al., 2014).

Results are shown in Table 3. Improvements
seem to be proportionate to the order of magnitude
of the language model training corpora (Figure 1).
M2

0.5 improves by nearly 7% for 4×2-CV and by
more than 10% on ST-2013.

6 Adding Translation Model Data

SMT systems for grammatical error correction can
be trained on unannotated data. For the 28 error-
type task from CoNLL-2014, we do not need the
linguistically rich error annotations present in NU-
CLE to add more training data. It suffices to have
parallel data in which the source text contains er-
rors and the target text has been corrected. For
English, such data is available.
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System 4×2-CV ST-2013

NUCLE+CCLM 22.19 27.43
+L8-NAIST 23.34 31.20
+L8 25.02 33.52

NUCLE+CCLM 17.50 29.01
+L8-NAIST 14.54 30.84
+L8 17.48 30.14

Table 4: Adding parallel data from Lang-8. Top
results are for tuned systems, bottom results for
untuned systems.

6.1 Lang-8

Mizumoto et al. (2011) published5 a list of
learner’s corpora that were scraped from the so-
cial language learning site Lang-8 (http://
lang-8.com). For our first experiments we use
entries from “Lang-8 Learner Corpora v1.0” with
English as the learned language, we do not care
for the native language of the user. Only entries
for which at least one sentence has been corrected
are taken into account. Sentences without correc-
tions from such entries are treated as error-free and
mirrored on the target side of the corpus. Even-
tually, we obtain a corpus of 2,567,969 sentence
pairs with 28,506,540 tokens on the uncorrected
source side. No noise-filtering is applied. We call
this resource L8-NAIST. Yoshimoto et al. (2013)
use this resource for sub-elements of their system
at the CoNLL-2013 Shared Task, but end up with
half the number of sentences. This seems to be
caused by noise-reduction.

We further investigate the effect of adding even
greater parallel resources. Lang-8 is scraped for
additional entries and we manage to nearly double
the size of the corpus to 3,733,116 sentences with
51,259,679 tokens on the source side. This joint
resource is labeled L8.

During training, the additional data is concate-
nated with all training corpora in our setup (3/4 of
NUCLE for 4×2-CV and all of NUCLE for the
final system).

Results are presented in Table 4. We extend the
previous best system NUCLE+CCLM with L8-
NAIST and L8. For tuned systems (top), results
improve for both evaluation settings with growing
corpus size. In the case of untuned systems (bot-
tom) results are entirely inconclusive.

5http://cl.naist.jp/nldata/lang-8

6.2 Error Selection

Yuan and Felice (2013) generate artificial errors
to add more training data to their system. We
prefer actual errors, but the Lang-8 data may be
too error-prone as the general level of proficiency
seems to be lower than that of the NUCLE essays.
We therefore select errors that match NUCLE er-
ror types and replace all other errors with their cor-
responding corrections.

For each pair of sentences, a sequence of dele-
tions and insertions is computed with the LCS al-
gorithm (Maier, 1978) that transform the source
sentence into the target sentence. Adjacent deleted
words are concatenated, adjacent inserted words
result in a phrase insertion. A deleted phrase fol-
lowed directly by a phrase insertion is interpreted
as a phrase substitution. Substitutions are gener-
alized if they consist of common substrings. Gen-
eralizations are encoded by the regular expression
(\w{3,}) and a back-reference, e.g. \1. Ta-
ble 5 contains the 20 most frequent patterns ex-
tracted from NUCLE, 666 patterns with a fre-
quency of five or higher remain. Next, we perform
the same computation for the to-be-adapted data.
Edits that match patterns from our list are kept,
other edits are replaced with their corrections.

Although results (Table 6) with error selection
increase for 4×2-CV, the NUCLE+CCLM+L8A
seems to generalize poorly to new data, there is a
significant drop for the external test set. Compared
to NUCLE+CCLM+L8 (prec.: 59.80, rec.: 15.95)
the error adapted (prec.: 70.07, rec.: 8.52) is much
more conservative.

Inspired by this, we also try a combination
(NUCLE+CCLM+L8AT as in Adapted Tuning)
of both systems by tuning with the adapted NU-
CLE+CCLM+L8A, but applying the weights to
the unadapted system NUCLE+CCLM+L8. This
results in a gain of 5% for ST-2013. It seems that
the unadapted Lang8 data introduces a substan-
tial amount of noise that interferes with the tuning
process. Weights obtained from the cleaned data
seem to better approximate the true weight vector
and also work with unadapted data without sac-
rificing recall. In the remainder of the paper we
use this training/tuning scheme for all newly in-
troduced systems.

7 Task-Specific Features

The systems presented so far relied on default fea-
tures available in Moses. In this section we will
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Pattern Freq. Pattern Freq.

sub(«(\w{3,})»,«\1s») 2441 ins(«an») 222
ins(«the») 2364 sub(«(\w{3,})d»,«\1») 181
del(«the») 1624 del(«of») 178
sub(«(\w{3,})s»,«\1») 1110 sub(«is»,«are») 166
ins(«,») 961 ins(«of») 166
ins(«a») 663 del(«a») 160
sub(«(\w{3,})»,«\1d») 253 sub(«(\w{3,})y»,«\1ies») 150
del(«,») 244 ins(«to») 148
del(«.») 227 sub(«is»,«was») 147
sub(«(\w{3,})»,«\1ed») 222 sub(«the»,«a») 132

Table 5: 20 most frequent patterns extracted from NUCLE 3.0

System 4×2-CV ST-2013

NUCLE+CCLM+L8 25.02 33.52
NUCLE+CCLM+L8A 26.82 28.67
NUCLE+CCLM+L8AT 26.82 38.59

Table 6: Results of error selection

extend the translation model with features tailored
to the task of grammatical error correction.

7.1 Dense Features

In Moses, translation models are described by a
set of dense features: phrase translation probabil-
ities, lexical scores, and a phrase penalty (Koehn
et al., 2003). In the grammatical error correction
scenario where source and target phrases are often
identical or similar, it might be useful to inform
the decoder about the differences in a phrase pair.

We extend translation models with a word-
based Levenshtein distance feature (Levenshtein,
1966) that captures the number of edit operations
required to turn the source phrase into the target
phrase. Each phrase pair in the phrase table is
scored with ed(s,t) where d is the word-based dis-
tance function, s is the source phrase, t is the tar-
get phrase. The exponential function is used be-
cause Moses relies on a log-linear model. In the
log-linear model, the edit distances of all phrase
pairs used to translate a sentence sum to the total
number of edits that have been applied to produce
the target sentence. Note that the Lang-8 data has
not been processed for noise-reduction, this fea-
ture should take care of the problem and penal-
ize sentences that have diverged to much from the
source. Table 7 contains examples of phrase pairs

Source (s) Target (t) ed(s,t)

a short time . short term only . 20.0855
a situation into a situation 2.7183
a supermarket . a supermarket . 1.0000
able unable 2.7183

Table 7: Dense Levenshtein feature examples.

and their Levenshtein distance feature.
We extend the currently best system NU-

CLE+CCLM+L8AT with the Levenshtein dis-
tance feature. Results are shown in Table 8
(+LD). For 4×2-CV small improvements can be
observed, the effect is more significant for ST-
2013. It can be concluded that this very simple
modification of the standard translation model is a
beneficial extension of SMT for grammatical cor-
rection.

7.2 Sparse Features

Sparse features are a relatively new addition to
Moses (Hasler et al., 2012). Unlike dense fea-
tures, they are optional and unrestricted in num-
ber, thousands of different sparse features may
be used. A verbose version of the above men-
tioned LD feature is implemented as a sparse
feature. Each edit operation is annotated with
the operation type and the words that take part
in the operation. The decoder can now learn
to favor or penalize specific edits during tuning.
As before in the case of error adaption patterns
from Section 6.2, we generalize substitution op-
erations if common substrings of a length equal
to or greater than three characters appear in corre-
sponding source and target phrases. In the end,
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System 4×2-CV ST-2013

NUCLE+CCLM+L8AT 26.82 38.59
+LD 27.34 40.21

+SF 27.58 40.60

Table 8: Results for dense Levenshtein distance
(LD) and sparse pattern features (SF). Each com-
ponent extends the previous system cumulatively.

we obtain sparse features that look exactly like
these patterns. Features that correspond to pat-
terns that had a frequency below 5 in NUCLE are
mapped to del(OTHER), ins(OTHER), and
sub(OTHER1,OTHER2). Contrary to the Lev-
enshtein distance feature, the sparse features are
computed during decoding.

Sparse features are added to the system which
has already been extended with the dense Lev-
enshtein feature. Results in Table 8 (+SF) show
small, but consistent gains. LD and SF are linearly
dependent as the total sum of triggered sparse fea-
tures should be equal to the value of LD for a sen-
tence, but we still observe positive effects. Sparse
feature tuning is currently a work-around with du-
bious effects, it can be expected that results might
be more significant once this problem is solved.
Based on these results, we choose the last system
NUCLE+CCLM+L8AT+LD+SF as our final sys-
tem for the CoNLL-2014 Shared Task.

8 Results for blind CoNLL-2014 test set

Our final system achieves an official result of
35.01% M2

0,5 (“Submission” in Table 9) on the
blind CoNLL-2014 Shared Task test set (ST-
2014). Due to a tight time frame, this system suf-
fered from missing words in an incorrectly filtered
language model and too few tuning iterations. Af-
ter the submission we retrained the same system
and achieve a score of 35.38% M2

0,5. Table 9
contains the results for incrementally added fea-
tures, starting with the baseline, ending with the
final system. The addition of a web-scale lan-
guage model results in similar improvements as
for 4×2-CV and ST-2013. Additional unadapted
parallel training data from Lang-8 (+L8) has a very
modest effect on ST-2014. This improves with
the mixed tuning scheme (+L8AT) which shows
that the gains for ST-2013 are not a one-time ef-
fect. Surprising are the substantial gains due to
the dense Levenshtein feature and the sparse fea-

System P R M2
0.5

Submission 41.62 21.40 35.01

NUCLE 49.85 5.19 18.32
+CCLM 50.39 9.90 27.72

+L8 37.67 14.07 28.21
+L8AT 37.02 17.94 30.53

+LD 39.41 22.15 34.10
+SF 41.72 22.00 35.38

NUCLE 36.59 9.96 23.84
+CCLM 27.92 18.68 25.41

+L8 25.06 26.75 25.38
+L8AT 24.49 34.89 26.04

+LD 25.94 36.41 27.52
+SF 25.94 36.41 27.52

Table 9: Performance of chosen systems on the
CoNLL-2014 test set. Bottom results are untuned.

tures. We suspect that the task-specific features
allow the decoder to better exploit the potential of
the Lang-8 data. This is verified by training NU-
CLE+CCLM+LD+SF which scores only 25.82%.

To support our claim concerning the impor-
tance of parameter tuning, we also provide the per-
formance of the same systems on ST-2014 with
standard parameters (bottom of Table 9). With
one exception, we see significant improvements
with tuning. The untuned systems display very
similar results which would make it difficult to
choose among the configurations (untuned +LD
and +LD+SF are actually the same system). One
might conclude incorrectly that the new features
and additional resources have very little effect on
the final results and miss a gain of ca. 8%.

Table 10 contains the ranking for all participat-
ing systems. Our system ranks on third place (see
the Shared Task proceedings (Ng et al., 2014) for
more information on the other systems), loosing
by 2.32% and 1.78% against the first two teams.
We win with a quite significant margin of 4.13%
over the next best system. Compared to the top-
two systems we suffer from lower recall, a prob-
lem which should be attacked in the future.

Participants were invited to submit alternative
answers for evaluation, i.e. answers that were gen-
erated by their system and considered to be cor-
rect alternatives to the provided gold standard.
These answers were checked by human annota-
tors. Only three teams submitted alternative an-
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Rank Team ID P R M2
0.5

1 CAMB 39.71 30.10 37.33
2 CUUI 41.78 24.88 36.79
3 AMU 41.62 21.40 35.01
4 POST 34.51 21.73 30.88
5 NTHU 35.08 18.85 29.92
6 RAC 33.14 14.99 26.68
7 UMC 31.27 14.46 25.37
8 PKU 32.21 13.65 25.32
9 NARA 21.57 29.38 22.78
10 SJTU 30.11 5.10 15.19
11 UFC 70.00 1.72 7.84
12 IPN 11.28 2.85 7.09
13 IITB 30.77 1.39 5.90

Table 10: Shared Task results for submission with-
out alternative answers. AMU is our result.

swers: CAMB, CUUI, and UMC. The results for
all teams improved when evaluated on these addi-
tional answers, naturally those teams that submit-
ted answers had the greatest gains. Our result with
additional answers is 38.58%, we remain on third
place after CUUI (45.57%) and CAMB (43.55%)
which switched places. However, we do not con-
sider the evaluation on alternative answers to be
meaningful as it is strongly biased.6

9 Conclusions

We have shown that pure-surface phrase-based
SMT can be used to achieve state-of-the-art re-
sults for grammatical error correction if suffi-
ciently large resources are combined with cor-
rectly executed parameter tuning and task-specific
features. For noisy data, it seems beneficial to tune
on cleaned data, but noise can be useful when cor-
recting unseen texts.

Most of the previous work that we reviewed
lacked the detail of parameter tuning that is com-
monly applied in SMT. In consequence, poten-
tially useful contributions rarely improved over the
baselines or were beaten by classifier-based ap-
proaches. Many good features might have been
overlooked or dismissed as unhelpful. Our find-
ings invite to re-evaluate these previous results.
The tools we extended for parameter tuning ac-

6We would accept alternative answers if all original sys-
tem submissions were to be analyzed by annotators not asso-
ciated with any team. If this is not possible due to consid-
erable costs and efforts, we would advocate to abandon the
current practice altogether.

cording to the M2 metric are publicly available and
we strongly suggest to use them in the future or to
adapt them to the particular task at hand. Param-
eter tuning of sparse features according to the M2

metric is ongoing research, but it seems the pro-
posed work-around is a viable option.

Since it is quite simple to implement the task-
specific features introduced in this paper, we rec-
ommend to use them whenever Moses is applied
in a similar setting.
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