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Preface

The Conference on Computational Natural Language Learning (CoNLL) is an annual meeting organized
by SIGNLL, the ACL special interest group on natural language learning. CoNLL-2014 is the eighteenth
meeting in this series and will be held in Baltimore, Maryland, USA on June 26-27, 2014, in conjunction
with ACL-2014.

In the main session of CoNLL, we invited papers on all aspects of computational approaches to natural
language learning, as well as on machine reading, the special topic of interest this year. We received
90 submissions, of which 7 were eventually withdrawn, and accepted 20 of the remaining 83 papers.
The final version of each accepted paper was allowed nine content pages plus two pages with only
bibliographic references.

As in previous years, CoNLL-2014 hosts a high-profile NLP shared task, Grammatical Error Correction,
a continuation of the shared task in 2013. Papers of the shared task are collected in a companion volume
of the CoNLL-2014 proceedings.

Similar to the arrangement in last year, each accepted paper in CoNLL-2014 will be given an 18 minute
oral presentation slot, as well as a poster. There will be a poster session in the afternoon of each day,
consisting of papers presented orally earlier on the same day. The shared task posters will also participate
in the same poster session on Day 1.

We thank all of the authors who submitted their work to CoNLL-2014, as well as the program committee
for helping us select from among the many strong submissions. We are also grateful to our invited
speakers, Morten Christiansen and Tom Mitchell, who graciously agreed to give talks at CoNLL. Special
thanks to the best paper award committee members, Walter Daelemans, Joakim Nivre and Dan Roth,
who helped choose the best paper winner. Also thanks to Xavier Carreras and Alexander Clark, for
their valuable advice, to the SIGNLL information officer, Erik Tjong Kim Sang, for publicity and to Ben
Verhoeven for maintaining the CoNLL Web site. We also appreciate the additional help we received
from the ACL program chairs, workshop chairs, and publication chairs.

Finally, many thanks to Microsoft Research and Google for sponsoring CoNLL-2014.

We hope you enjoy the conference!

Roser Morante and Scott Wen-tau Yih

CoNLL 2014 Conference Chairs
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Weakly-Supervised Bayesian Learning of a CCG Supertagger
Dan Garrette, Chris Dyer, Jason Baldridge and Noah A. Smith

Factored Markov Translation with Robust Modeling
Yang Feng, Trevor Cohn and Xinkai Du

Hallucinating Phrase Translations for Low Resource MT
Ann Irvine and Chris Callison-Burch

(12:30 AM - 2:00 PM) Lunch break

(2:00 PM - 3:30 PM) Session 6

Linguistic Regularities in Sparse and Explicit Word Representations
Omer Levy and Yoav Goldberg

Probabilistic Modeling of Joint-context in Distributional Similarity
Oren Melamud, Ido Dagan, Jacob Goldberger, Idan Szpektor and Deniz Yuret

A Rudimentary Lexicon and Semantics Help Bootstrap Phoneme Acquisition
Abdellah Fourtassi and Emmanuel Dupoux

Best Paper Award announcement and bussiness meeting

(3:30 PM - 5:00 PM) Poster session 2

x



Proceedings of the Eighteenth Conference on Computational Language Learning, pages 1–10,
Baltimore, Maryland USA, June 26-27 2014. c©2014 Association for Computational Linguistics

What’s in a p-value in NLP?

Anders Søgaard, Anders Johannsen, Barbara Plank, Dirk Hovy and Hector Martinez
Center for Language Technology

University of Copenhagen
soegaard@hum.ku.dk

Abstract

In NLP, we need to document that our pro-
posed methods perform significantly bet-
ter with respect to standard metrics than
previous approaches, typically by re-
porting p-values obtained by rank- or
randomization-based tests. We show that
significance results following current re-
search standards are unreliable and, in ad-
dition, very sensitive to sample size, co-
variates such as sentence length, as well as
to the existence of multiple metrics. We
estimate that under the assumption of per-
fect metrics and unbiased data, we need a
significance cut-off at ⇠0.0025 to reduce
the risk of false positive results to <5%.
Since in practice we often have consider-
able selection bias and poor metrics, this,
however, will not do alone.

1 Introduction
In NLP, we try to improve upon state of the art
language technologies, guided by experience and
intuition, as well as error analysis from previous
experiments, and research findings often consist in
system comparisons showing that System A is bet-
ter than System B.

Effect size, i.e., one system’s improvements
over another, can be seen as a random variable.
If the random variable follows a known distribu-
tion, e.g., a normal distribution, we can use para-
metric tests to estimate whether System A is bet-
ter than System B. If it follows a normal dis-
tribution, we can use Student’s t-test, for exam-
ple. Effect sizes in NLP are generally not nor-
mally distributed or follow any of the other well-
studied distributions (Yeh, 2000; Søgaard, 2013).
The standard significance testing methods in NLP
are therefore rank- or randomization-based non-
parametric tests (Yeh, 2000; Riezler and Maxwell,

2005; Berg-Kirkpatrick et al., 2012). Specifi-
cally, most system comparisons across words, sen-
tences or documents use bootstrap tests (Efron and
Tibshirani, 1993) or approximate randomization
(Noreen, 1989), while studies that compare perfor-
mance across data sets use rank-based tests such as
Wilcoxon’s test.

The question we wish to address here is: how
likely is a research finding in NLP to be false?
Naively, we would expect all reported findings to
be true, but significance tests have their weak-
nesses, and sometimes researchers are forced
to violate test assumptions and basic statistical
methodology, e.g., when there is no one estab-
lished metric, when we can’t run our models on
full-length sentences, or when data is biased. For
example, one such well-known bias from the tag-
ging and parsing literature is what we may refer to
as the WSJ FALLACY. This is the false belief that
performance on the test section of the Wall Street
Journal (WSJ) part of the English Penn treebank
is representative for performance on other texts in
English. In other words, it is the belief that our
samples are always representative. However, (the
unawareness of) selection bias is not the only rea-
son research findings in NLP may be false.

In this paper, we critically examine significance
results in NLP by simulations, as well as running
a series of experiments comparing state-of-the-art
POS taggers, dependency parsers, and NER sys-
tems, focusing on the sensitivity of p-values to var-
ious factors.

Specifically, we address three important factors:
Sample size. When system A is reported to be

better than system B, this may not hold across do-
mains (cf. WSJ FALLACY). More importantly,
though, it may not even hold on a sub-sample of
the test data, or if we added more data points to
the test set. Below, we show that in 6/10 of our
POS tagger evaluations, significant effects become
insignificant by (randomly) adding more test data.
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Covariates. Sometimes we may bin our results
by variables that are actually predictive of the out-
come (covariates) (Simmons et al., 2011). In some
subfields of NLP, such as machine translation or
(unsupervised) syntactic parsing, for example, it
is common to report results that only hold for sen-
tences up to some length. If a system A is reported
to be better than a system B on sentences up to
some length, A need not be better than B, neither
for a different length nor in general, since sentence
length may actually be predictive of A being better
than B.

Multiple metrics. In several subfields of NLP,
we have various evaluation metrics. However, if
a system A is reported to be better than a system
B with respect to some metric M1, it need not be
better with respect to some other metric M2. We
show that even in POS tagging it is sometimes the
case that results are significant with respect to one
metric, but not with respect to others.

While these caveats should ideally be avoided
by reporting significance over varying sample
sizes and multiple metrics, some of these effects
also stem from the p-value cut-off chosen in the
NLP literature. In some fields, p-values are re-
quired to be much smaller, e.g., in physics, where
the 5 � criterion is used, and maybe we should also
be more conservative in NLP?

We address this question by a simulation of the
interaction of type 1 and type 2 error in NLP and
arrive at an estimate that more than half of research
findings in NLP with p < 0.05 are likely to be
false, even with a valid metric and in the absence
of selection bias. From the same simulations, we
propose a new cut-off level at 0.0025 or smaller
for cases where the metric can be assumed to be
valid, and where there is no selection bias.1 We
briefly discuss what to do in case of selection bias
or imperfect metrics.

Note that we do not discuss false discovery rate
control or family wise error rate procedures here.
While testing with different sample sizes could
be be considered multiple hypothesis testing, as
pointed out by one of our anonymous reviewers,
NLP results should be robust across sample sizes.
Note that the p < 0.0025 cut-off level corresponds

1In many fields, including NLP, it has become good prac-
tice to report actual p-values, but we still need to understand
how significance levels relate to the probability that research
findings are false, to interpret such values. The fact that we
propose a new cut-off level for the ideal case with perfect
metrics and no bias does not mean that we do not recommend
reporting actual p-values.

to a Bonferroni correction for a family of m = 20
hypotheses.

Our contributions
Several authors have discussed significance test-
ing in NLP before us (Yeh, 2000; Riezler and
Maxwell, 2005; Berg-Kirkpatrick et al., 2012), but
while our discussion touches on many of the same
topics, this paper is to the best of our knowledge
the first to:

a) show experimentally how sensitive p-values
are to sample size, i.e., that in standard NLP
experiments, significant effects may actually
disappear by adding more data.

b) show experimentally that multiple metrics
and the use of covariates in evaluation in-
crease the probability of positive test results.

c) show that even under the assumption of per-
fect metrics and unbiased data, as well as our
estimates of type 1 and 2 error in NLP, you
need at least p < 0.0025 to reduce the prob-
ability of a research finding being false to be
< 5%.

2 Significance testing in NLP
Most NLP metric for comparing system outputs
can be shown to be non-normally distributed
(Søgaard, 2013) and hence, we generally cannot
use statistical tests that rely on such an assump-
tion, e.g., Student’s t-test. One alternative to such
tests are non-parametric rank-based tests such as
Wilcoxon’s test. Rank-based tests are sometimes
used in NLP, and especially when the number of
observations is low, e.g., when evaluating perfor-
mance across data sets, such tests seem to be the
right choice (Demsar, 2006; Søgaard, 2013). The
draw-back of rank-based tests is their relatively
weak statistical power. When we reduce scores to
ranks, we throw away information, and rank-based
tests are therefore relatively conservative, poten-
tially leading to high type 2 error rate (�, i.e., the
number of false negatives over trials). An alterna-
tive, however, are randomization-based tests such
as the bootstrap test (Efron and Tibshirani, 1993)
and approximate randomization (Noreen, 1989),
which are the de facto standards in NLP. In this
paper, we follow Berg-Kirkpatrick et al. (2012) in
focusing on the bootstrap test. The bootstrap test is
non-parametric and stronger than rank-based test-
ing, i.e., introduces fewer type 2 errors. For small
samples, however, it does so at the expense of a
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higher type 1 error (↵, i.e., the number of false
positives). The reason for this is that for the boot-
strap test to work, the original sample has to cap-
ture most of the variation in the population. If the
sample is very small, though, this is likely not the
case. Consequently, with small sample sizes, there
is a risk that the calculated p-value will be arti-
ficially low—simply because the bootstrap sam-
ples are too similar. In our experiments below, we
make sure only to use bootstrap when sample size
is > 200, unless otherwise stated. In our experi-
ments, we average across 3 runs for POS and NER
and 10 runs for dependency parsing.

DOMAIN #WORDS TASKS
POS Dep. NER

CONLL 2007
Bio 4k •
Chem 5k •
SWITCHBOARD 4
Spoken 162k •
ENGLISH WEB TREEBANK
Answers 29k • •
Emails 28k • •
Newsgrs 21k • •
Reviews 28k • •
Weblogs 20k • •
WSJ 40k • •
FOSTER
Twitter 3k •
CONLL 2003
News 50k •

Table 1: Evaluation data.

3 Experiments

Throughout the rest of the paper, we use four run-
ning examples: a synthetic toy example and three
standard experimental NLP tasks, namely POS
tagging, dependency parsing and NER. The toy
example is supposed to illustrate the logic behind
our reasoning and is not specific to NLP. It shows
how likely we are to obtain a low p-value for the
difference in means when sampling from exactly
the same (Gaussian) distributions. For the NLP
setups (2-4), we use off-the-shelf models or avail-
able runs, as described next.

3.1 Models and data
We use pre-trained models for POS tagging and
dependency parsing. For NER, we use the output
of the best performing systems from the CoNLL
2003 shared task. In all three NLP setups, we
compare the outcome of pairs of systems. The
data sets we use for each of the NLP tasks are
listed in Table 1 (Nivre et al., 2007a; Foster et

Figure 1: Accuracies of LAPOS VS. STANFORD

across 10 data sets.

al., 2011; Tjong Kim Sang and De Meulder, 2003,
LDC99T42; LDC2012T13).

POS tagging. We compare the performance
of two state-of-the-art newswire taggers across 10
evaluation data sets (see Table 1), namely the LA-
POS tagger (Tsuruoka et al., 2011) and the STAN-
FORD tagger (Toutanova et al., 2003), both trained
on WSJ00–18. We use the publicly available pre-
trained models from the associated websites.2

Dependency parsing. Here we compare the
pre-trained linear SVM MaltParser model for En-
glish (Nivre et al., 2007b) to the compositional
vector grammar model for the Stanford parser
(Socher et al., 2013). For this task, we use the sub-
set of the POS data sets that comes with Stanford-
style syntactic dependencies (cf. Table 1), exclud-
ing the Twitter data set which we found too small
to produce reliable results.

NER. We use the publicly available runs of
the two best systems from the CoNLL 2003
shared task, namely FLORIAN (Florian et al.,
2003) and CHIEU-NG (Chieu and Ng, 2003).3

3.2 Standard comparisons
POS tagging. Figure 1 shows that the LAPOS

tagger is marginally better than STANFORD on
macro-average, but it is also significantly better? If
we use the bootstrap test over tagging accuracies,
the difference between the two taggers is only sig-
nificant (p < 0.05) in 3/10 cases (see Table 2),
namely SPOKEN, ANSWERS and REVIEWS. In
two of these cases, LAPOS is significantly better

2http://www.logos.ic.i.u-tokyo.ac.jp/
˜tsuruoka/lapos/ and http://nlp.stanford.
edu/software/tagger.shtml

3http://www.cnts.ua.ac.be/conll2003/
ner/
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TA (b) UA (b) SA (b) SA(w)
Bio 0.3445 0.0430 0.3788 0.9270
Chem 0.3569 0.2566 0.4515 0.9941
Spoken <0.001 <0.001 <0.001 <0.001
Answers <0.001 0.0143 <0.001 <0.001
Emails 0.2020 <0.001 0.1622 0.0324
Newsgrs 0.3965 0.0210 0.1238 0.6602
Reviews 0.0020 0.0543 0.0585 0.0562
Weblogs 0.2480 0.0024 0.2435 0.9390
WSJ 0.4497 0.0024 0.2435 0.9390
Twitter 0.4497 0.0924 0.1111 0.7853

Table 2: POS tagging p-values across tagging ac-
curacy (TA), accuracy for unseen words (UA) and
sentence-level accuracy (SA) with bootstrap (b)
and Wilcoxon (w) (p < 0.05 gray-shaded).

LAS UAS
Answers 0.020 <0.001
Emails 0.083 <0.001
Newsgroups 0.049 <0.001
Reviews <0.001 <0.001
Weblogs <0.001 <0.001
WSJ <0.001 <0.001

Table 3: Parsing p-values (MALT-LIN

VS. STANFORD-RNN) across LAS and UAS
(p < 0.05 gray-shaded).

than STANFORD, but in one case it is the other way
around. If we do a Wilcoxon test over the results
on the 10 data sets, following the methodology
in Demsar (2006) and Søgaard (2013), the differ-
ence, which is ⇠0.12% on macro-average, is not
significant (p ⇠ 0.1394). LAPOS is thus not sig-
nificantly better than STANFORD across data sets,
but as we have already seen, it is significantly bet-
ter on some data sets. So if we allow ourselves
to cherry-pick our data sets and report significance
over word-level tagging accuracies, we can at least
report significant improvements across a few data
sets.

Dependency parsing. Using the bootstrap test
over sentences, we get the p-values in Table 3.
We see that differences are always significant
wrt. UAS, and in most cases wrt. LAS.

NER. Here we use the macro-f1 as our stan-
dard metric. FLORIAN is not significantly bet-
ter than CHIEU-NG with p < 0.05 as our cut-
off (p ⇠ 0.15). The two systems were also re-
ported to have overlapping confidence intervals in
the shared task.

3.3 p-values across metrics
In several NLP subfields, multiple metrics are in
use. This happens in dependency parsing where
multiple metrics (Schwartz et al., 2011; Tsarfaty

et al., 2012) have been proposed in addition to un-
labeled and labeled attachment scores, as well as
exact matches. Perhaps more famously, in ma-
chine translation and summarization it is com-
mon practice to use multiple metrics, and there
exists a considerable literature on that topic (Pa-
pineni et al., 2002; Lin, 2004; Banerjee and Lavie,
2005; Clark et al., 2011; Rankel et al., 2011).
Even in POS tagging, some report tagging ac-
curacies, tagging accuracies over unseen words,
macro-averages over sentence-level accuracies, or
number of exact matches.

The existence of several metrics is not in it-
self a problem, but if researchers can cherry-pick
their favorite metric when reporting results, this
increases the a priori chance of establishing sig-
nificance. In POS tagging, most papers report sig-
nificant improvements over tagging accuracy, but
some report significant improvements over tag-
ging accuracy of unknown words, e.g., Denis and
Sagot (2009) and Umansky-Pesin et al. (2010).
This corresponds to the situation in psychology
where researchers cherry-pick between several de-
pendent variables (Simmons et al., 2011), which
also increases the chance of finding a significant
correlation.

Toy example. We draw two times 100 val-
ues from identical (0, 1)-Gaussians 1000 times
and calculate a t-test for two independent sam-
ples. This corresponds to testing the effect size
between two systems on a 1000 randomly cho-
sen test sets with N = 100. Since we are sam-
pling from the same distribution, the chance of
p <  should be smaller than . In our simula-
tion, the empirical chance of obtaining p < 0.01
is .8%, and the chance of obtaining p < 0.05 is
4.8%, as expected. If we simulate a free choice
between two metrics by introducing choice be-
tween a pair of samples and a distorted copy of
that pair (inducing random noise at 10%), simu-
lating the scenario where we have a perfect metric
and a suboptimal metric, the chance of obtaining
p < 0.05 is 10.0%. We see a significant correla-
tion (p < 0.0001) between Pearson’s ⇢ between
the two metrics, and the p-value. The less the two
metrics are correlated, the more likely we are to
obtain p < 0.05. If we allow for a choice between
two metrics, the chance of finding a significant dif-
ference increases considerably. If the two metrics
are identical, but independent (introducing a free
choice between two pairs of samples), we have
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P (A_B) = P (A) + P (B)� P (A)P (B), hence
the chance of obtaining p < 0.01 is 1.9%, and the
chance of obtaining p < 0.05 is 9.75%.

POS tagging. In our POS-tagging experiments,
we saw a significant improvement in 3/10 cases
following the standard evaluation methodology
(see Table 2). If we allow for a choice between
tagging accuracy and sentence-level accuracy, we
see a significant improvement in 4/10 cases, i.e.,
for 4/10 data sets the effect is significance wrt. at
least one metric. If we allow for a free choice be-
tween all three metrics (TA, UA, and SA), we ob-
serve significance in 9/10 cases. This way the ex-
istence of multiple metrics almost guarantees sig-
nificant differences. Note that there are only two
data sets (Answers and Spoken), where all metric
differences appear significant.

Dependency parsing. While there are multi-
ple metrics in dependency parsing (Schwartz et
al., 2011; Tsarfaty et al., 2012), we focus on
the two standard metrics: labeled (LAS) and un-
labeled attachment score (UAS) (Buchholz and
Marsi, 2006). If we just consider the results in
Table 3, i.e., only the comparison of MALT-LIN

VS. STANFORD-RNN, we observe significant im-
provements in all cases, if we allow for a free
choice between metrics. Bod (2000) provides a
good example of a parsing paper evaluating mod-
els using different metrics on different test sets.
Chen et al. (2008), similarly, only report UAS.

NER. While macro-f1 is fairly standard in
NER, we do have several available multiple met-
rics, including the unlabeled f1 score (collapsing
all entity types), as well as the f1 scores for each
of the individual entity types (see Derczynski and
Bontcheva (2014) for an example of only report-
ing f1 for one entity type). With macro-f1 and
f1 for the individual entity types, we observe that,
while the average p-value for bootstrap tests over
five runs is around 0.15, the average p-value with a
free choice of metrics is 0.02. Hence, if we allow
for a free choice of metrics, FLORIAN comes out
significantly better than CHIEU-NG.

3.4 p-values across sample size
We now show that p-values are sensitive to sam-
ple size. While it is well-known that studies with
low statistical power have a reduced chance of
detecting true effects, studies with low statistical
power are also more likely to introduce false pos-
itives (Button et al., 2013). This, combined with
the fact that free choice between different sample

Figure 2: The distribution of p-values with (above)
and without (below) multiple metrics.

Figure 3: POS tagging p-values varying sample
sizes (p < 0.05 shaded).

sizes also increases the chance of false positives
(Simmons et al., 2011), is a potential source of er-
ror in NLP.

Toy example. The plot in Figure 2 shows the
distribution of p-values across 1000 bootstrap tests
(above), compared to the distribution of p-values
with a free choice of four sample sizes. It is clear
that the existence of multiple metrics makes the
probability of a positive result much higher.

POS tagging. The same holds for POS tag-
ging. We plot the p-values across various sample
sizes in Figure 3. Note that even when we ignore
the smallest sample size (500 words), where re-
sults may be rather unreliable, it still holds that for
Twitter, Answers, Newsgrs, Reviews, Weblogs and
WSJ, i.e., more than half of the data sets, a sig-
nificant result (p < 0.05) becomes insignificant
by increasing the sample size. This shows how
unreliable significance results in NLP with cut-off
p < 0.05 are.
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Figure 4: Parsing p-values varying sample sizes
(p < 0.05 shaded)

Figure 5: NER p-values varying sample sizes (p <
0.05 shaded)

Dependency parsing. We performed simi-
lar experiments with dependency parsers, seeing
much the same picture. Our plots are presented in
Figure 4. We see that while effect sizes are al-
ways significant wrt. UAS, LAS differences be-
come significant when adding more data in 4/6
cases. An alternative experiment is to see how
often a bootstrap test at a particular sample size
comes out significant. The idea is to sample, say,
10% of the test data 100 times and report the ra-
tio of positive results. We only present the results
for MALT-LIN VS. STANFORD-RNN in Table 4,
but the full set of results (including comparisons of
more MaltParser and Stanford parser models) are
made available at http://lowlands.ku.dk.

For MALT-LIN VS. STANFORD-RNN differ-
ences on the full Emails data set are consistently
insignificant, but on small sample sizes we do get
significant test results in more than 1/10 cases. We
see the same picture with Newsgrs and Reviews.
On Weblogs and WSJ, the differences on the full
data sets are consistently significant, but here we
see that the test is underpowered at small sam-
ple sizes. Note that we use bootstrap tests over
sentences, so results with small samples may be
somewhat unreliable. In sum, these experiments
show how small sample sizes not only increase the
chance of false negatives, but also the chance of
false positives (Button et al., 2013).

NER. Our plots for NER are presented in Fig-
ure 5. Here, we see significance at small sam-
ple sizes, but the effect disappears with more data.

This is an example of how underpowered studies
may introduce false positives (Button et al., 2013).

3.5 p-values across covariates
Toy example. If we allow for a choice between
two subsamples, using a covariate to single out a
subset of the data, the chance of finding a signifi-
cant difference increases. Even if we let the subset
be a random 50-50 split, the chance of obtaining
p < 0.01 becomes 2.7%, and the chance of obtain-
ing p < 0.05 is 9.5%. If we allow for both a choice
of dependent variables and a random covariate, the
chance of obtaining p < 0.01 is 3.7%, and the
chance of obtaining p < 0.05 is 16.2%. So iden-
tical Gaussian variables will appear significantly
different in 1/6 cases, if our sample size is 100,
and if we are allowed a choice between two iden-
tical, but independent dependent variables, and a
choice between two subsamples provided by a ran-
dom covariate.

POS We see from Figure 6 that p-values are
also very sensitive to sentence length cut-offs. For
instance, LAPOS is significantly (p < 0.05) bet-
ter than STANFORD on sentences shorter than 16
words in EMAILS, but not on sentences shorter
than 14 words. On the other hand, when longer
sentences are included, e.g., up to 22 words, the
effect no longer appears significant. On full sen-
tence length, four differences seem significant, but
if we allow ourselves to cherry-pick a maximum
sentence length, we can observe significant differ-
ences in 8/10 cases.

Figure 6: POS tagging p-values varying sentence
length (p < 0.05 shaded)

We observe similar results in Dependency
parsing and NER when varying sentence length,
but do not include them here for space rea-
sons. The results are available at http://
lowlands.ku.dk. We also found that other
covariates are used in evaluations of dependency
parsers and NER systems. In dependency pars-
ing, for example, parsers can either be evaluated
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N Emails Newsgrs Reviews Weblogs WSJ
LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS

10% 14 % 100 % 9 % 100 % 33% 100 % 42 % 99 % 28 % 75 %
25% 15 % 100 % 23 % 100 % 52% 100 % 68 % 100 % 27 % 98 %
50% 19 % 100 % 25 % 100 % 78% 100 % 100 % 100 % 60 % 100 %
75% 22 % 100 % 41 % 100 % 97% 100 % 100 % 100 % 80 % 100 %

100% 0 % 100 % 36 % 100 % 100% 100 % 100 % 100 % 100 % 100 %

Table 4: Ratio of positive results (p < 0.05) for MALT-LIN VS. STANFORD-RNN at sample sizes (N )
.

on naturally occurring text such as in our experi-
ments or at tailored test suites, typically focusing
on hard phenomena (Rimell et al., 2009). While
such test suites are valuable resources, cf. Man-
ning (2011), they do introduce free choices for re-
searchers, increasing the a priori chance of posi-
tive results. In NER, it is not uncommon to leave
out sentences without any entity types from eval-
uation data. This biases evaluation toward high
recall systems, and the choice between including
them or not increases chances of positive results.

4 How likely are NLP findings to be
false?

The previous sections have demonstrated how
many factors can contribute to reporting an erro-
neously significant result. Given those risks, it is
natural to wonder how likely we are as a field to
report false positives. This can be quantified by
the positive predictive value (PPV), or probability
that a research finding is true. PPV is defined as

(1��)R
R��R+↵

(1)

The PPV depends on the type 1 and 2 error rates
(↵ and �) and the ratio of true relations over null
relations in the field (R) (Ioannidis, 2005).

R. The likelihood that a research finding is true
depends on the ratio of true relations over null re-
lations in the field, usually denoted R (Ioannidis,
2005). Out of the systems that researchers in the
field would test out (not rejecting them a priori),
how many of them are better than the current state
of the art? The a priori likelihood of a relation be-
ing true, i.e., a new system being better than state
of the art, is R/(R + 1). Note that while the space
of reasonably motivated methods may seem big to
researchers in the field, there is often more than
one method that is better than the current state of
the art. Obviously, as the state of the art improves,
R drops. On the other hand, if R becomes very
low, researchers are likely to move on to new ap-
plications where R is higher.

The type 1 error rate (↵) is also known as the
false positive rate, or the likelihood to accept a
non-significant result. Since our experiments are
fully automated and deterministic, and precision
usually high, the type 1 error rate is low in NLP.
What is not always appreciated in the field is that
this should lead us to expect true effects to be
highly significant with very low p-values, much
like in physics. The type 2 error rate (�) is the
false negative rate, i.e., the likelihood that a true
relation is never found. This factors into the recall
of our experimental set-ups.

So what values should we use to estimate PPV?
Our estimate for R (how often reasonable hy-
potheses lead to improvements over state of the
art) is around 0.1. This is based on a sociolog-
ical rather than an ontological argument. With
↵ = 0.05 and R = 0.1, researchers get positive
results in R+(1�R)↵ cases, i.e.,⇠ 1/7 cases. If
researchers needed to test more than 7 approaches
to ”hit the nail”, they would never get to write pa-
pers. With ↵ = 0.05, and � set to 0.5, we find that
the probability of a research finding being true –
given there is no selection bias and with perfectly
valid metrics – is just 50%:

PPV = (1��)R
R��R+↵

= 0.5⇥0.1
0.1�0.05+0.05

= 0.05
0.1

= 0.5
(2)

In other words, if researchers do a perfect experi-
ment and report p < 0.05, the chance of that find-
ing being true is the chance of seeing tail when
flipping a coin. With p < 0.01, the chance is 5/6,
i.e., the chance of not getting a 3 when rolling a
die. Of course these parameters are somewhat ar-
bitrary. Figure 7 shows PPV for various values of
↵.

In the experiments in Section 3, we consistently
used the standard p-value cut-off of 0.05. How-
ever, our experiments have shown that significance
results at this threshold are unreliable and very
sensitive to the choice of sample size, covariates,
or metrics. Based on the curves in Figure 7, we
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Figure 7: PPV for different ↵ (horizontal line is PPV for p = 0.05, vertical line is ↵ for PPV=0.95).

could propose a p-value cut-off at p < 0.0025.
This is the cut-off that – in the absence of bias and
with perfect metrics – gives us the level of con-
fidence we expect as a research community, i.e.,
PPV = 0.95. Significance results would thus be
more reliable and reduce type 1 error.

5 Discussion
Incidentally, the p < 0.0025 cut-off also leads to
a 95% chance of seeing the same effect on held-
out test data in Berg-Kirkpatrick et al. (2012) (see
their Table 1, first row). The caveat is that this
holds only in the absence of bias and with perfect
metrics. In reality, though, our data sets are of-
ten severely biased (Berg-Kirkpatrick et al., 2012;
Søgaard, 2013), and our metrics are far from per-
fect (Papineni et al., 2002; Lin, 2004; Banerjee
and Lavie, 2005; Schwartz et al., 2011; Tsarfaty et
al., 2012). Here, we discuss how to address these
challenges.

Selection bias. The WSJ FALLACY (Section
1) has been widely discussed in the NLP litera-
ture (Blitzer et al., 2006; Daume III, 2007; Jiang
and Zhai, 2007; Plank and van Noord, 2011). But
if our test data is biased, how do we test whether
System A performs better than System B in gen-
eral? Søgaard (2013) suggests to predict signif-
icance across data sets. This only assumes that
data sets are randomly chosen, e.g., not all from

newswire corpora. This is also standard practice in
the machine learning community (Demsar, 2006).

Poor metrics. For tasks such as POS tagging
and dependency parsing, our metrics are subopti-
mal (Manning, 2011; Schwartz et al., 2011; Tsar-
faty et al., 2012). System A and System B may
perform equally well as measured by some met-
ric, but contribute very differently to downstream
tasks. Elming et al. (2013) show how parsers
trained on different annotation schemes lead to
very different downstream results. This suggests
that being wrong with respect to a gold standard,
e.g., choosing NP analysis over a “correct” DP
analysis, may in some cases lead to better down-
stream performance. See the discussion in Man-
ning (2011) for POS tagging. One simple ap-
proach to this problem is to report results across
available metrics. If System A improves over Sys-
tem B wrt. most metrics, we obtain significance
against the odds. POS taggers and dependency
parsers should also be evaluated by their impact
on downstream performance, but of course down-
stream tasks may also introduce multiple metrics.

6 Conclusion
In sum, we have shown that significance results
with current research standards are unreliable, and
we have provided a more adequate p-value cut-off
under the assumption of perfect metrics and unbi-
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ased data. In the cases where these assumptions
cannot be met, we suggest reporting significance
results across datasets wrt. all available metrics.
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Abstract

We present a data-driven framework for
image caption generation which incorpo-
rates visual and textual features with vary-
ing degrees of spatial structure. We pro-
pose the task of domain-specific image
captioning, where many relevant visual
details cannot be captured by off-the-shelf
general-domain entity detectors. We ex-
tract previously-written descriptions from
a database and adapt them to new query
images, using a joint visual and textual
bag-of-words model to determine the cor-
rectness of individual words. We imple-
ment our model using a large, unlabeled
dataset of women’s shoes images and nat-
ural language descriptions (Berg et al.,
2010). Using both automatic and human
evaluations, we show that our caption-
ing method effectively deletes inaccurate
words from extracted captions while main-
taining a high level of detail in the gener-
ated output.

1 Introduction

Broadly, the task of image captioning is: given a
query image, generate a natural language descrip-
tion of the image’s visual content. Both the im-
age understanding and language generation com-
ponents of this task are challenging open problems
in their respective fields. A wide variety of ap-
proaches have been proposed in the literature, for
both the specific task of caption generation as well
as related problems in understanding images and
text.

Typically, image understanding systems use su-
pervised algorithms to detect visual entities and
concepts in images. However, these typically re-
quire accurate hand-labeled training data, which
is not available in most specific domains. Ideally,

1. Extract existing human-authored caption according to
similarity of coarse visual features.

Query Image Nearest-Neighbor

Nearest-neighbor caption: This sporty sneaker clog keeps
foot cool and comfortable and fully supported.

2. Estimate correctness of extracted words using domain-
specific joint model of text and visual bag-of-word features.

This sporty sneaker clog keeps foot cool and comfortable and
fully supported.

3. Compress extracted caption to adapt its content while
maintaining grammatical correctness.

Output: This clog keeps foot comfortable and supported.

a domain-specific image captioning system would
learn in a less supervised fashion, using captioned
images found on the web.

This paper focuses on image caption genera-
tion for a specific domain – images of women’s
shoes, collected from online shopping websites.
Our framework has three main components. We
extract an existing description from a database
of human-captions, by projecting query images
into a multi-dimensional space where structurally
similar images are near each other. We also
train a joint topic model to discover the latent
topics which generate both captions and images.
We combine these two approaches using sentence
compression to delete modifying details in the ex-
tracted caption which are not relevant to the query
image.

Our captioning framework is inspired by sev-
eral recent approaches at the intersection of Nat-
ural Language Processing and Computer Vision.
Previous work such as Farhadi et al. (2010) and
Ordonez et al. (2011) explore extractive methods
for image captioning, but these rely on general-
domain visual detection systems, and only gener-
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ate extractive captions. Other models learn corre-
spondences between domain-specific images and
natural language captions (Berg et al., 2010; Feng
and Lapata, 2010b) but cannot generate descrip-
tions for new images without the use of auxil-
iary text. Kuznetsova et al. (2013) propose a
sentence compression model for editing image
captions, but their compression objective is not
conditioned on a query image, and their system
also requires general-domain visual detections.
This paper proposes an image captioning frame-
work which extends these ideas and culminates in
the first domain-specific image caption generation
system.

More broadly, our goal for image caption gener-
ation is to work toward less supervised captioning
methods which could be used to generate detailed
and accurate descriptions for a variety of long-tail
domains of captioned image data, such as in nature
and medicine.

2 Related Work

Our framework for domain-specific image cap-
tioning consists of three main components: ex-
tractive caption generation, image understanding
through topic modeling, and sentence compres-
sion. 1 These methods have previously been ap-
plied individually to related tasks such as gen-
eral domain image captioning and annotation. We
briefly describe some of the related work:

2.1 Extractive Caption Generation

In previous work on image caption extraction, cap-
tions are generated by retrieving human-authored
descriptions from visually similar images. Farhadi
et al. (2010) and Ordonez et al. (2011) retrieve
whole captions to apply to a query image, while
Kuznetsova et al. (2012) generate captions using
text retrieved from multiple sources. The descrip-
tions are related to visual concepts in the query
image, but these models use visual similarity to
approximate textual relevance; they do not model
image and textual features jointly.

2.2 Image Understanding

Recent improvements in state-of-the-art visual ob-
ject class detections (Felzenszwalb et al., 2010)

1A research proposal for this framework and other image
captioning ideas was previously presented at NAACL Stu-
dent Research Workshop in 2013 (Mason, 2013). This paper
presents a completed project including implementation de-
tails and experimental results.

have enabled much recent work in image caption
generation (Farhadi et al., 2010; Ordonez et al.,
2011; Kulkarni et al., 2011; Yang et al., 2011;
Mitchell et al., 2012; Yu and Siskind, 2013). How-
ever, these systems typically rely on a small num-
ber of detection types, e.g. the twenty object cate-
gories from the PASCAL VOC challenge.2 These
object categories include entities which are com-
monly described in general domain images (peo-
ple, cars, cats, etc) but these require labeled train-
ing data which is not typically available for the vi-
sually relevant entities in specific domains.

Our caption generation system employs a multi-
modal topic model from our previous work (Ma-
son and Charniak, 2013) which generates descrip-
tive words, but lacks the spatial structure needed
to generate a full sentence caption. Other previ-
ous work uses topic models to learn the semantic
correspondence between images and labels (e.g.
Blei and Jordan (2003)), but learning from natural
language descriptions is considerably more diffi-
cult because of polysemy, hypernymy, and mis-
alginment between the visual content of an im-
age and the content humans choose to describe.
The MixLDA model (Feng and Lapata, 2010b;
Feng and Lapata, 2010a) learns from news images
and natural language descriptions, but to generate
words for a new image it requires both a query
image and query text in the form of a news arti-
cle. Berg et al. (2010) use discriminative models
to discover visual attributes from online shopping
images and captions, but their models do not gen-
erate descriptive words for unseen images.

2.3 Sentence Compression

Typical models for sentence compression (Knight
and Marcu, 2002; Furui et al., 2004; Turner and
Charniak, 2005; Clarke and Lapata, 2008) have a
summarization objective: reduce the length of a
source sentence without changing its meaning. In
contrast, our objective is to change the meaning of
the source sentence, letting its overall correctness
relative to the query image determine the length
of the output. Our objective differs from that of
Kuznetsova et al. (2013), who compress image
caption sentences with the objective of creating a
corpus of generally transferrable image captions.
Their compression objective is to maximize the
probability of a caption conditioned on the source

2http://pascallin.ecs.soton.ac.uk/
challenges/VOC/
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Two adjustable buckle
straps top a classic rubber
rain boot grounded by a
thick lug sole for excellent
wet-weather traction.

Available in Plus Size. Faux
snake skin flats with a large
crossover buckle at the toe.
Padded insole for a comfort-
able all day fit.

Glitter-covered elastic up-
per in a two-piece dress san-
dal style with round open
toe. Single vamp strap with
contrasting trim matching
elasticized heel strap criss-
crosses at instep.

Explosive! These white
leather joggers are sure to
make a big impression. De-
tails count, including a toe
overlay, millennium trim
and lightweight raised sole.

Table 1: Example data from the Attribute Discovery Dataset (Berg et al., 2010). See Section 3.

image, while our objective is conditioned on the
query image that we are generating a caption for.
Additionally, their model also relies on general-
domain trained visual detections.

3 Dataset and Preprocessing

The dataset we use is the women’s shoes sec-
tion of the publicly available Attribute Discov-
ery Dataset3 from Berg et al. (2010), which con-
sists of product images and captions scraped from
the shopping website Like.com. We use the
women’s shoes section of the dataset which has
14764 captioned images. Product descriptions de-
scribe many different attributes such as styles, col-
ors, fabrics, patterns, decorations, and affordances
(activities that can be performed while wearing the
shoe). Some examples are shown in Table 1.

For preprocessing in our framework, we first de-
termine an 80/20% train test split. We define a tex-
tual vocabulary of “descriptive words”, which are
non-function words – adjectives, adverbs, nouns
(except proper nouns), and verbs. This gives us
a total of 9578 descriptive words in the training
set, with an average of 16.33 descriptive words per
caption.

4 Image Captioning Framework

4.1 Extraction

To repeat, our overall process is to first find a cap-
tion sentence from our database to use as a tem-
plate, and then correct the template sentences us-
ing sentence compresion. We compress by remov-

3http://tamaraberg.com/
attributesDataset/index.html

ing details that are probably not correct for the test
image. For example, if the sentence describes “a
red slipper” but the shoe in the query image is yel-
low, we want to remove “red” and keep the rest.

As in this simple example, the basic paradigm
for compression is to keep the head words of
phrases (“slipper”) and remove modifiers. Thus
we want to extraction stage of our scheme to be
more likely to find a candidate sentence with cor-
rect head words, figuring that the compression
stage can edit the mistakes. Our hypothesis is that
headwords tend to describe more spatially struc-
tured visual concepts, while modifier words de-
scribe those that are more easily represented using
local or unstructured features.4 Table 2 contains
additional example captions with parses.

GIST (Oliva and Torralba, 2001) is a com-
monly used feature in Computer Vision which
coarsely localizes perceptual attributes (e.g. rough
vs smooth, natural vs manmade). By computing
the GIST of the images, we project them into a
multi-dimensional Euclidean space where images
with semantically similar structures are located
near each other. Thus the extraction stage of our
caption generation process selects a sentence from
the GIST nearest-neighbor to the query image.5

4.2 Joint Topic Model

The second component of our framework incorpo-
rates visual and textual features using a less struc-
tured model. We use a multi-modal topic model

4For example, the color “red” can be described using a
bag of random pixels, while a “slipper” is a spatial configura-
tion of parts in relationship to each other.

5See Section 5.1 for additional implementation details.
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Table 2: Example parses of women’s shoes descriptions. Our hypothesis is that the headwords in phrases
are more likely to describe visual concepts which rely on spatial locations or relationships, while modi-
fiers words can be represented using less-structured visual bag-of-words features.

to learn the latent topics which generate bag-of-
words features for an image and its caption.

The bag-of-words model for Computer Vision
represents images as a mixture of topics. Mea-
sures of shape, color, texture, and intensity are
computed at various points on the image and clus-
tered into discrete “codewords” using the k-means
algorithm.6 Unlike text words, an individual code-
word has little meaning on its own, but distri-
butions of codewords can provide a meaningful,
though unstructured, representation of an image.

An image and its caption do not express exactly
the same information, but they are topically re-
lated. We employ the Polylingual Topic Model
(Mimno et al., 2009), which is originally used to
model corresponding documents in different lan-
guages that are topically comparable, but not par-
allel translations. In particular, we employ our
previous work (Mason and Charniak, 2013) which
extends this model to topically similar images and
natural language captions. The generative process
for a captioned image starts with a single topic
distribution drawn from concentration parameter
α and base measure m:

θ ∼ Dir(θ, αm) (1)

Modality-specific latent topic assignments zimg

and ztxt are drawn for each of the text words and
codewords:

zimg ∼ P (zimg|θ) =
∏
n

θ
zimg
n

(2)

6While space limits a more detailed explanation of visual
bag-of-word features, Section 5.2 provides a brief overview
of the specific visual attributes used in this model.

ztxt ∼ P (ztxt|θ) =
∏
n

θztxt
n

(3)

Observed words are generated according to their
probabilities in the modality-specific topics:

wimg ∼ P (wimg|zimg,Φimg) = φimg

wimg
n |zimg

n
(4)

wtxt ∼ P (wtxt|ztxt,Φtxt) = φtxt
wtxt

n |ztxt
n

(5)

Given the uncaptioned query image qimg and
the trained multi-modal topic model, it is now pos-
sible to infer the shared topic proportion for qimg

using Gibbs sampling:

P (zn = t|qimg, z\n,Φimg, αm)

∝ φimg

qimg
n |t

(Nt)\n + αmt∑
tNt − 1 + α

(6)

4.3 Sentence Compression

Let w = w1, w2, ..., wn be the words in the ex-
tracted caption for qimg. For each word, we de-
fine a binary decision variable δ, such that δi = 1
if wi is included in the output compression, and
δi = 0 otherwise. Our objective is to find values
of δ which generate a caption for qimg which is
both semantically and grammatically correct.

We cast this problem as an Integer Linear Pro-
gram (ILP), which has previously been used for
the standard sentence compression task (Clarke
and Lapata, 2008; Martins and Smith, 2009). ILP
is a mathematical optimization method for deter-
mining the optimal values of integer variables in
order to maximize an objective given a set of con-
straints.
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4.3.1 Objective
The ILP objective is a weighted linear combina-
tion of two measures which represent the correct-
ness and fluency of the output compression:

Correctness: Recall in Section 3 we defined
words as either descriptive words or function
words. For each descriptive word, we estimate
P (wi|qimg), using topic proportions estimated us-
ing Equation 6:

P (wi|qimg) =
∑

t

P (wi|ztxt
t )P (zt|qimg) (7)

This is used to find I(wi), a function of the likeli-
hood of each word in the extracted caption:

I(wi) =

{
P (wi|qimg)− P (wi), if descriptive
0, function word

(8)
This function considers the prior probability of wi

because frequent words often have a high posterior
probability even when they are inaccurate. Thus
the sum

∑n
i=1 δi · I(wi) is the overall measure of

the correctness of a proposed caption conditioned
on qimg.

Fluency: We formulate a trigram language
model as an ILP, which requires additional binary
decision variables: αi = 1 if wi begins the out-
put compression, βij = 1 if the bigram sequence
wi, wj ends the compression, γijk = 1 if the tri-
gram sequence wi, wj , wk is in the compression,
and a special “start token” δ0 = 1. This language
model favors shorter sentences, which is not nec-
essarily the objective for image captioning, so we
introduce a weighting factor, λ, to lessen the ef-
fect.

Here is the combined objective, using P to rep-
resent logP :

max z =

(
n∑

i=1

αi · P (wi|start)

+
n−2∑
i=1

n−1∑
j=i+1

n∑
k=j+1

γijk · P (wk|wi, wj)

+
n−1∑
i=0

n∑
j=i+1

βij · P (end|wi, wj)

)
· λ

+
n∑

i=1

δi · I(wi) (9)

Sequential

1.)
∑

i αi = 1

2.) δk − αk −
∑k−2

i=0

∑k−1
j=1 γijk = 0

∀k : k ∈ 1...n

3.) δj−∑j−1
i=0

∑n
k=j+1 γijk−

∑j−1
i=0 βij = 0
∀j : j ∈ 1...n

4.)
∑n−1

j=i+1

∑n
k=j+1 γijk −

∑n
j=i+1 βij −∑i−1

h=0 βhi − δi = 0
∀i : i ∈ 1...n

5.)
∑n−1

i=0

∑n
j=i+1 βij = 1

Modifier
1. If head of the extracted sentence= wi, then
δi = 1
2. If wi is head of a noun phrase, then δi = 1
3. Punctuation and coordinating conjunctions
follow special rules (below). Otherwise, if
headof(wi) = wj , then δi ≤ δj

Other 1.
∑

i δi ≥ 3
2. Define valid use of puncutation and coordi-
nating conjunctions.

Table 3: Summary of ILP constraints.

4.3.2 ILP Constraints

The ILP constraints ensure both the mathematical
validity of the model, and the grammatical correct-
ness of its output. Table 3 summarizes the list of
constraints. Sequential constraints are defined as
in Clarke (2008) ensure that the ordering of the tri-
grams is valid, and that the mathematical validity
of the model holds.

5 Implementation Details

5.1 Extraction

GIST features are computed using code by Oliva
and Torralba (2001)7. GIST is computed with im-
ages converted to grayscale; since color features
tend to act as modifiers in this domain. Nearest-
neighbors are selected according to minimum dis-
tance from qimg to both a regularly-oriented and a
horizontally-flipped training image.

Only one sentence from the first nearest-
neighbor caption is extracted. In the case of multi-
sentence captions, we select the first suitable sen-
tence according to the following criteria 1.) has
at least five tokens, 2.) does not contain NNP or
NNPS (brand names), 3.) does not fail to parse
using Stanford Parser (Klein and Manning, 2003).
If the nearest-neighbor caption does not have any
sentences meeting these criteria, caption sentences
from the next nearest-neighbor(s) are considered.

7http://people.csail.mit.edu/torralba/
code/spatialenvelope/
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5.2 Joint Topic Model

We use the Joint Topic Model that we imple-
mented in our previous work; please see Mason
and Charniak (2013) for the full model and imple-
mentation details. The topic model is trained with
200 topics using the polylingual topic model im-
plementation from MALLET8. Briefly, the code-
words represent the following attributes:

SHAPE: SIFT (Lowe, 1999) describes the
shapes of detected edges in the image, using de-
scriptors which are invariant to changes in rotation
and scale.

COLOR: RGB (red, green, blue) and HSV (hue,
saturation, value) pixel values are sampled from a
central area of the image to represent colors.

TEXTURE: Textons (Leung and Malik, 2001)
are computed by convolving images with Gabor
filters at multiple orientations and scales, then
sampling the outputs at random locations.

INTENSITY: HOG (histogram of gradients)
(Dalal and Triggs, 2005) describes the direction
and intensity of changes in light. These features
are computed on the image over a densely sam-
pled grid.

5.3 Compression

The sentence compression ILP is implemented us-
ing the CPLEX optimization toolkit9. The lan-
guage model weighting factor in the objective is
λ = 10−3, which was hand-tuned according to
observed output. The trigram language model
is trained on training set captions using Berke-
leyLM (Pauls and Klein, 2011) with Kneser-Ney
smoothing. For the constraints, we use parses
from Stanford Parser (Klein and Manning, 2003)
and the “semantic head” variation of the Collins
headfinder Collins (1999).

6 Evaluation

6.1 Setup

We compare the following systems and baselines:
KL (EXTRACTION): The top performing ex-

tractive model from Feng and Lapata (2010a), and
the second-best captioning model overall. Using
estimated topic distributions from our joint model,
we extract the source with minimum KL Diver-
gence from qimg.

8http://mallet.cs.umass.edu/
9http://www-01.ibm.com/

software/integration/optimization/
cplex-optimization-studio/

ROUGE-2 Average 95% Confidence int.
KL (EXTRACTION)
P .06114 ( .05690 - .06554 )
R .02499 ( .02325 - .02686)
F .03360 ( .03133 - .03600 )
GIST (EXTRACTION)
P .10894 ( .09934 - .11921 )
R .05474 ( .04926 - .06045)
F .06863 ( .06207 - .07534)
LM-ONLY (COMPRESSION)
P .13782 ( .12602 - .14864 )
R .02437 ( .02193 - .02700 )
F .03864 ( .03512 - .04229)
SYSTEM (COMPRESSION)
P .16752 (.15679 -.17882 )
R .05060 ( .04675 - .05524 )
F .07204 ( .06685 - .07802 )

Table 4: ROUGE-2 (bigram) scores. The pre-
cision of our system compression (bolded) sig-
nificantly improves over the caption that it com-
presses (GIST), without a significant decrease in
recall.

GIST (EXTRACTION): The sentence extracted
using GIST nearest-neighbors, and the uncom-
pressed source for the compression systems.

LM-ONLY (COMPRESSION): We include this
baseline to demonstrate that our model is effec-
tively conditioning output compressions on qimg,
as opposed to simply generalizing captions as in
Kuznetsova et al. (2013)10. We modify the com-
pression ILP to ignore the content objective and
only maximize the trigram language model (still
subject to the constraints).

SYSTEM (COMPRESSION): Our full system.
Unfortunately, we cannot compare our system

against prior work in general-domain image cap-
tioning, because those models use visual detec-
tion systems which train on labeled data that is not
available in our domain.

6.2 Automatic Evaluation
We perform automatic evaluation using similar-
ity measures between automatically generated and
human-authored captions. Note that currently
our system and baselines only generate single-
sentence captions, but we compare against entire

10Technically their model is conditioned on the source im-
age, in order to address alignment issues which are not appli-
cable in our setup.
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BLEU@1
KL (EXTRACTION) .2098

GIST (EXTRACTION) .4259
LM-ONLY (COMPRESSION) .4780
SYSTEM (COMPRESSION) .4841

Table 5: BLEU@1 scores of generated captions
against human authored captions. Our model
(bolded) has the highest BLEU@1 score with sig-
nificance.

held-out captions in order to increase the amount
of text we have to compare against.

ROUGE (Lin, 2004) is a summarization eval-
uation metric which has also been used to eval-
uate image captions (Yang et al., 2011). It is
usually a recall-oriented measure, but we also re-
port precision and f-measure because our sen-
tence compressions do not improve recall. Table 4
shows ROUGE-2 (bigram) scores computed with-
out stopwords.

We observe that our system very significantly
improves ROUGE-2 precision of the GIST ex-
tracted caption, without significantly reducing re-
call. While LM-Only also improves precision
against GIST extraction, it indiscriminately re-
moves some words which are relevant to the
query image. We also observe that GIST extrac-
tion strongly outperforms the KL model, which
demonstrates the importance of visual structure.

We also report BLEU (Papineni et al., 2002)
scores, which are the most popularly accepted au-
tomatic metric for captioning evaluation (Farhadi
et al., 2010; Kulkarni et al., 2011; Ordonez et
al., 2011; Kuznetsova et al., 2012; Kuznetsova
et al., 2013). Results are very similar to the
ROUGE-2 precision scores, except the difference
between our system and LM-Only is less pro-
nounced because BLEU counts function words,
while ROUGE does not.

6.3 Human Evaluation

We perform human evaluation of compressions
generated by our system and LM-Only. Users are
shown the query image, the original uncompressed
caption, and a compressed caption, and are asked
two questions: does the compression improve the
accuracy of the caption, and is the compression
grammatical.

We collect 553 judgments from six women who
are native English-speakers and knowledgeable

Query Image GIST Nearest-Neighbor

Extraction: Shimmering snake-embossed leather upper in a
slingback evening dress sandal style with a round open toe.

Compression: Shimmering upper in a slingback evening
dress sandal style with a round open toe.

Query Image GIST Nearest-Neighbor

Extraction: This sporty sneaker clog keeps foot cool and
comfortable and fully supported.

Compression: This clog keeps foot comfortable and sup-
ported.

Query Image GIST Nearest-Neighbor

Extraction: Italian patent leather peep-toe ballet flat with a
signature tailored grosgrain bow.

Compression: leather ballet flat with a signature tailored
grosgrain bow.

Query Image GIST Nearest-Neighbor

Extraction: Platform high heel open toe pump with horsebit
available in silver guccissima leather with nickel hardware
with leather sole.

Compression: Platform high heel open toe pump with
horsebit available in leather with nickel hardware with
leather sole.

Table 6: Example output from our full system.
Red underlined words indicate the words which
are deleted by our compression model.
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SYSTEM LM-ONLY

Yes No Yes No

Compression
improves
accuracy

63.2% 36.8% 42.6% 57.4%

Compression is
grammatical

73.1% 26.9% 82.2% 17.8%

Table 7: Human evaluation results.

about fashion.11 Users were recruited via email
and did the study over the internet.

Table 7 reports the results of the human evalu-
ation. Users report 63.2% of SYSTEM compres-
sions improve accuracy over the original, while
the other 36.8% did not improve accuracy. (Keep
in mind that a bad compression does not make the
caption less accurate, just less descriptive.) LM-
ONLY improves accuracy for less than half of the
captions, which is significantly worse than SYS-
TEM captions (Fisher exact test, two-tailed p less
than 0.01).

Users find LM-Only compressions to be slightly
more grammatical than System compressions, but
the difference is not significant. (p > 0.05)

7 Conclusion

We introduce the task of domain-specific image
captioning and propose a captioning system which
is trained on online shopping images and natu-
ral language descriptions. We learn a joint topic
model of vision and text to estimate the correct-
ness of extracted captions, and use a sentence
compression model to propose a more accurate
output caption. Our model exploits the connection
between image and sentence structure, and can be
used to improve the accuracy of extracted image
captions.

The task of domain-specific image caption
generation has been overlooked in favor of the
general-domain case, but we believe the domain-
specific case deserves more attention. While
image captioning can be viewed as a complex
grounding problem, a good image caption should
do more than label the objects in the image. When
an expert looks at images in a specific domain, he
or she makes inferences that would not be made by
a non-expert. Providing this information to non-

11About 15% of output compressions are the same for both
systems, and about 10% have no deleted words in the output
compression. We include the former in the human evaluation,
but not the latter.

Query Image GIST Nearest-Neighbor

Extraction: Classic ballet flats with decorative canvas
strap and patent leather covered buckle.

Compression: Classic ballet flats covered.

Query Image GIST Nearest-Neighbor

Extraction: This shoe is the perfect shoe for you , fea-
turing an open toe and a lace up upper with a high heel
, and a two tone color .

Compression: This shoe is the shoe , featuring an open toe
and upper with a high heel .

Table 8: Examples of bad performance. The top
example is a parse error, while the bottom exam-
ple deletes modifiers that are not part of the image
description.

expert users in the form of an image caption will
greatly expand the utility for automatic image cap-
tioning.
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Abstract

Linguists and psychologists have long
been studying cross-linguistic transfer, the
influence of native language properties on
linguistic performance in a foreign lan-
guage. In this work we provide empirical
evidence for this process in the form of a
strong correlation between language simi-
larities derived from structural features in
English as Second Language (ESL) texts
and equivalent similarities obtained from
the typological features of the native lan-
guages. We leverage this finding to re-
cover native language typological similar-
ity structure directly from ESL text, and
perform prediction of typological features
in an unsupervised fashion with respect to
the target languages. Our method achieves
72.2% accuracy on the typology predic-
tion task, a result that is highly competi-
tive with equivalent methods that rely on
typological resources.

1 Introduction

Cross-linguistic transfer can be broadly described
as the application of linguistic structure of a
speaker’s native language in the context of a
new, foreign language. Transfer effects may be
expressed on various levels of linguistic perfor-
mance, including pronunciation, word order, lex-
ical borrowing and others (Jarvis and Pavlenko,
2007). Such traces are prevalent in non-native
English, and in some cases are even cele-
brated in anecdotal hybrid dialect names such as
“Frenglish” and “Denglish”.

Although cross-linguistic transfer was exten-
sively studied in Psychology, Second Language
Acquisition (SLA) and Linguistics, the conditions
under which it occurs, its linguistic characteristics
as well as its scope remain largely under debate

(Jarvis and Pavlenko, 2007; Gass and Selinker,
1992; Odlin, 1989).

In NLP, the topic of linguistic transfer was
mainly addressed in relation to the Native Lan-
guage Identification (NLI) task, which requires to
predict the native language of an ESL text’s au-
thor. The overall high performance on this classi-
fication task is considered to be a central piece of
evidence for the existence of cross-linguistic trans-
fer (Jarvis and Crossley, 2012). While the success
on the NLI task confirms the ability to extract na-
tive language signal from second language text, it
offers little insight into the linguistic mechanisms
that play a role in this process.

In this work, we examine the hypothesis that
cross-linguistic structure transfer is governed by
the typological properties of the native language.
We provide empirical evidence for this hypothe-
sis by showing that language similarities derived
from structural patterns of ESL usage are strongly
correlated with similarities obtained directly from
the typological features of the native languages.

This correlation has broad implications on the
ability to perform inference from native language
structure to second language performance and vice
versa. In particular, it paves the way for a novel
and powerful framework for comparing native
languages through second language performance.
This framework overcomes many of the inher-
ent difficulties of direct comparison between lan-
guages, and the lack of sufficient typological doc-
umentation for the vast majority of the world’s lan-
guages.

Further on, we utilize this transfer enabled
framework for the task of reconstructing typolog-
ical features. Automated prediction of language
typology is extremely valuable for both linguistic
studies and NLP applications which rely on such
information (Naseem et al., 2012; Täckström et
al., 2013). Furthermore, this task provides an ob-
jective external testbed for the quality of our native
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language similarity estimates derived from ESL
texts.

Treating native language similarities obtained
from ESL as an approximation for typological
similarities, we use them to predict typological
features without relying on typological annotation
for the target languages. Our ESL based method
yields 71.4% – 72.2% accuracy on the typology re-
construction task, as compared to 69.1% – 74.2%
achieved by typology based methods which de-
pend on pre-existing typological resources for the
target languages.

To summarize, this paper offers two main con-
tributions. First, we provide an empirical result
that validates the systematic existence of linguistic
transfer, tying the typological characteristics of the
native language with the structural patterns of for-
eign language usage. Secondly, we show that ESL
based similarities can be directly used for predic-
tion of native language typology. As opposed to
previous approaches, our method achieves strong
results without access to any a-priori knowledge
about the target language typology.

The remainder of the paper is structured as fol-
lows. Section 2 surveys the literature and positions
our study in relation to previous research on cross-
linguistic transfer and language typology. Section
3 describes the ESL corpus and the database of
typological features. In section 4, we delineate
our method for deriving native language similar-
ities and hierarchical similarity trees from struc-
tural features in ESL. In section 5 we use typolog-
ical features to construct another set of language
similarity estimates and trees, which serve as a
benchmark for the typological validity of the ESL
based similarities. Section 6 provides a correla-
tion analysis between the ESL based and typology
based similarities. Finally, in section 7 we report
our results on typology reconstruction, a task that
also provides an evaluation framework for the sim-
ilarity structures derived in sections 4 and 5.

2 Related Work

Our work integrates two areas of research, cross-
linguistic transfer and linguistic typology.

2.1 Cross-linguistic Transfer

The study of cross-linguistic transfer has thus far
evolved in two complementary strands, the lin-
guistic comparative approach, and the computa-
tional detection based approach. While the com-

parative approach focuses on case study based
qualitative analysis of native language influence
on second language performance, the detection
based approach revolves mainly around the NLI
task.

Following the work of Koppel et al. (2005), NLI
has been gaining increasing interest in NLP, cul-
minating in a recent shared task with 29 partici-
pating systems (Tetreault et al., 2013). Much of
the NLI efforts thus far have been focused on ex-
ploring various feature sets for optimizing classifi-
cation performance. While many of these features
are linguistically motivated, some of the discrimi-
native power of these approaches stems from cul-
tural and domain artifacts. For example, our pre-
liminary experiments with a typical NLI feature
set, show that the strongest features for predicting
Chinese are strings such as China and in China.
Similar features dominate the weights of other lan-
guages as well. Such content features boost clas-
sification performance, but are hardly relevant for
modeling linguistic phenomena, thus weakening
the argument that NLI classification performance
is indicative of cross-linguistic transfer.

Our work incorporates an NLI component, but
departs from the performance optimization orien-
tation towards leveraging computational analysis
for better understanding of the relations between
native language typology and ESL usage. In par-
ticular, our choice of NLI features is driven by
their relevance to linguistic typology rather than
their contribution to classification performance. In
this sense, our work aims to take a first step to-
wards closing the gap between the detection and
comparative approaches to cross-linguistic trans-
fer.

2.2 Language Typology

The second area of research, language typology,
deals with the documentation and comparative
study of language structures (Song, 2011). Much
of the descriptive work in the field is summa-
rized in the World Atlas of Language Structures
(WALS)1 (Dryer and Haspelmath, 2013) in the
form of structural features. We use the WALS fea-
tures as our source of typological information.

Several previous studies have used WALS fea-
tures for hierarchical clustering of languages and
typological feature prediction. Most notably, Teh
et al. (2007) and subsequently Daumé III (2009)

1http://wals.info/
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predicted typological features from language trees
constructed with a Bayesian hierarchical cluster-
ing model. In Georgi et al. (2010) additional clus-
tering approaches were compared using the same
features and evaluation method. In addition to the
feature prediction task, these studies also evalu-
ated their clustering results by comparing them to
genetic language clusters.

Our approach differs from this line of work
in several aspects. First, similarly to our WALS
based baselines, the clustering methods presented
in these studies are affected by the sparsity of
available typological data. Furthermore, these
methods rely on existing typological documen-
tation for the target languages. Both issues are
obviated in our English based framework which
does not depend on any typological information
to construct the native language similarity struc-
tures, and does not require any knowledge about
the target languages except from the ESL essays of
a sample of their speakers. Finally, we do not com-
pare our clustering results to genetic groupings,
as to our knowledge, there is no firm theoretical
ground for expecting typologically based cluster-
ing to reproduce language phylogenies. The em-
pirical results in Georgi et al. (2010), which show
that typology based clustering differs substantially
from genetic groupings, support this assumption.

3 Datasets

3.1 Cambridge FCE

We use the Cambridge First Certificate in English
(FCE) dataset (Yannakoudakis et al., 2011) as our
source of ESL data. This corpus is a subset of
the Cambridge Learner Corpus (CLC)2. It con-
tains English essays written by upper-intermediate
level learners of English for the FCE examination.

The essay authors represent 16 native lan-
guages. We discarded Dutch and Swedish speak-
ers due to the small number of documents avail-
able for these languages (16 documents in total).
The remaining documents are associated with the
following 14 native languages: Catalan, Chinese,
French, German, Greek, Italian, Japanese, Korean,
Polish, Portuguese, Russian, Spanish, Thai and
Turkish. Overall, our corpus comprises 1228 doc-
uments, corresponding to an average of 87.7 doc-
uments per native language.

2http://www.cambridge.org/gb/elt/
catalogue/subject/custom/item3646603

3.2 World Atlas of Language Structures

We collect typological information for the FCE
native languages from WALS. Currently, the
database contains information about 2,679 of
the world’s 7,105 documented living languages
(Lewis, 2014). The typological feature list has 188
features, 175 of which are present in our dataset.
The features are associated with 9 linguistic cat-
egories: Phonology, Morphology, Nominal Cate-
gories, Nominal Syntax, Verbal Categories, Word
Order, Simple Clauses, Complex Sentences and
Lexicon. Table 1 presents several examples for
WALS features and their range of values.

One of the challenging characteristics of WALS
is its low coverage, stemming from lack of avail-
able linguistic documentation. It was previously
estimated that about 84% of the language-feature
pairs in WALS are unknown (Daumé III, 2009;
Georgi et al., 2010). Even well studied languages,
like the ones used in our work, are lacking values
for many features. For example, only 32 of the
WALS features have known values for all the 14
languages of the FCE corpus. Despite the preva-
lence of this issue, it is important to bear in mind
that some features do not apply to all languages by
definition. For instance, feature 81B Languages
with two Dominant Orders of Subject, Object, and
Verb is relevant only to 189 languages (and has
documented values for 67 of them).

We perform basic preprocessing, discarding 5
features that have values for only one language.
Further on, we omit 19 features belonging to the
category Phonology as comparable phonological
features are challenging to extract from the ESL
textual data. After this filtering, we remain with
151 features, 114.1 features with a known value
per language, 10.6 languages with a known value
per feature and 2.5 distinct values per feature.

Following previous work, we binarize all the
WALS features, expressing each feature in terms
of k binary features, where k is the number of
values the original feature can take. Note that
beyond the well known issues with feature bi-
narization, this strategy is not optimal for some
of the features. For example, the feature 111A
Non-periphrastic Causative Constructions whose
possible values are presented in table 1 would
have been better encoded with two binary features
rather than four. The question of optimal encoding
for the WALS feature set requires expert analysis
and will be addressed in future research.
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ID Type Feature Name Values
26A Morphology Prefixing vs. Suffixing in Little affixation, Strongly suffixing, Weakly

Inflectional Morphology suffixing, Equal prefixing and suffixing,
Weakly prefixing, Strong prefixing.

30A Nominal Number of Genders None, Two, Three, Four, Five or more.
Categories

83A Word Order Order of Object and Verb OV, VO, No dominant order.
111A Simple Clauses Non-periphrastic Causative Neither, Morphological but no compound,

Constructions Compound but no morphological, Both.

Table 1: Examples of WALS features. As illustrated in the table examples, WALS features can take
different types of values and may be challenging to encode.

4 Inferring Language Similarities from
ESL

Our first goal is to derive a notion of similarity be-
tween languages with respect to their native speak-
ers’ distinctive structural usage patterns of ESL. A
simple way to obtain such similarities is to train
a probabilistic NLI model on ESL texts, and in-
terpret the uncertainty of this classifier in distin-
guishing between a pair of native languages as a
measure of their similarity.

4.1 NLI Model
The log-linear NLI model is defined as follows:

p(y|x; θ) =
exp(θ · f(x, y))∑

y′∈Y exp(θ · f(x, y′))
(1)

where y is the native language, x is the observed
English document and θ are the model parame-
ters. The parameters are learned by maximizing
the L2 regularized log-likelihood of the training
data D = {(x1, y1), ..., (xn, yn)}.

L(θ) =
n∑

i=1

log p(yi|xi; θ)− λ‖θ‖2 (2)

The model is trained using gradient ascent with L-
BFGS-B (Byrd et al., 1995). We use 70% of the
FCE data for training and the remaining 30% for
development and testing.

As our objective is to relate native language and
target language structures, we seek to control for
biases related to the content of the essays. As pre-
viously mentioned, such biases may arise from the
essay prompts as well as from various cultural fac-
tors. We therefore define the model using only un-
lexicalized morpho-syntactic features, which cap-
ture structural properties of English usage.

Our feature set, summarized in table 2, contains
features which are strongly related to many of the
structural features in WALS. In particular, we use
features derived from labeled dependency parses.
These features encode properties such as the types
of dependency relations, ordering and distance be-
tween the head and the dependent. Additional
syntactic information is obtained using POS n-
grams. Finally, we consider derivational and in-
flectional morphological affixation. The annota-
tions required for our syntactic features are ob-
tained from the Stanford POS tagger (Toutanova
et al., 2003) and the Stanford parser (de Marneffe
et al., 2006). The morphological features are ex-
tracted heuristically.

4.2 ESL Based Native Language Similarity
Estimates

Given a document x and its author’s native lan-
guage y, the conditional probability p(y′|x; θ) can
be viewed as a measure of confusion between lan-
guages y and y′, arising from their similarity with
respect to the document features. Under this in-
terpretation, we derive a language similarity ma-
trix S′ESL whose entries are obtained by averaging
these conditional probabilities on the training set
documents with the true label y, which we denote
as Dy = {(xi, y) ∈ D}.

S′ESLy,y′ =
1

|Dy |
∑

(x,y)∈Dy

p(y′|x; θ) if y′ 6= y

1 otherwise
(3)

For each pair of languages y and y′, the matrix
S′ESL contains an entry S′ESLy,y′ which captures
the average probability of mistaking y for y′, and
an entry S′ESLy′,y

, which represents the opposite
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Feature Type Examples
Unlexicalized labeled dependencies Relation = prep Head = VBN Dependent = IN
Ordering of head and dependent Ordering = right Head = NNS Dependent = JJ
Distance between head and dependent Distance = 2 Head = VBG Dependent = PRP
POS sequence between head and dependent Relation = det POS-between = JJ
POS n-grams (up to 4-grams) POS bigram = NN VBZ
Inflectional morphology Suffix = ing
Derivational morphology Suffix = ity

Table 2: Examples of syntactic and morphological features of the NLI model. The feature values are set
to the number of occurrences of the feature in the document. The syntactic features are derived from the
output of the Stanford parser. A comprehensive description of the Stanford parser dependency annotation
scheme can be found in the Stanford dependencies manual (de Marneffe and Manning, 2008).

confusion. We average the two confusion scores to
receive the matrix of pairwise language similarity
estimates SESL.

SESLy,y′ = SESLy′,y =
1
2
(S′ESLy,y′ + S′ESLy′,y)

(4)
Note that comparable similarity estimates can

be obtained from the confusion matrix of the clas-
sifier, which records the number of misclassifica-
tions corresponding to each pair of class labels.
The advantage of our probabilistic setup over this
method is its robustness with respect to the actual
classification performance of the model.

4.3 Language Similarity Tree

A particularly informative way of representing
language similarities is in the form of hierarchi-
cal trees. This representation is easier to inspect
than a similarity matrix, and as such, it can be
more instrumental in supporting linguistic inquiry
on language relatedness. Additionally, as we show
in section 7, hierarchical similarity trees can out-
perform raw similarities when used for typology
reconstruction.

We perform hierarchical clustering using the
Ward algorithm (Ward Jr, 1963). Ward is a
bottom-up clustering algorithm. Starting with a
separate cluster for each language, it successively
merges clusters and returns the tree of cluster
merges. The objective of the Ward algorithm is
to minimize the total within-cluster variance. To
this end, at each step it merges the cluster pair
that yields the minimum increase in the overall
within-cluster variance. The initial distance ma-
trix required for the clustering algorithm is de-
fined as 1 − SESL. We use the Scipy implemen-

tation3 of Ward, in which the distance between a
newly formed cluster a ∪ b and another cluster c
is computed with the Lance-Williams distance up-
date formula (Lance and Williams, 1967).

5 WALS Based Language Similarities

In order to determine the extent to which ESL
based language similarities reflect the typological
similarity between the native languages, we com-
pare them to similarities obtained directly from the
typological features in WALS.

The WALS based similarity estimates between
languages y and y′ are computed by measuring the
cosine similarity between the binarized typologi-
cal feature vectors.

SWALSy,y′ =
vy · vy′

‖vy‖‖vy′‖ (5)

As mentioned in section 3.2, many of the WALS
features do not have values for all the FCE lan-
guages. To address this issue, we experiment with
two different strategies for choosing the WALS
features to be used for language similarity compu-
tations. The first approach, called shared-all, takes
into account only the 32 features that have known
values in all the 14 languages of our dataset. In
the second approach, called shared-pairwise, the
similarity estimate for a pair of languages is deter-
mined based on the features shared between these
two languages.

As in the ESL setup, we use the two matrices
of similarity estimates to construct WALS based
hierarchical similarity trees. Analogously to the
ESL case, a WALS based tree is generated by the

3http://docs.scipy.org/.../scipy.
cluster.hierarchy.linkage.html
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Figure 1: shared-pairwise WALS based versus
ESL based language similarity scores. Each point
represents a language pair, with the vertical axis
corresponding to the ESL based similarity and
the horizontal axis standing for the typological
shared-pairwise WALS based similarity. The
scores correlate strongly with a Pearson’s coeffi-
cient of 0.59 for the shared-pairwise construction
and 0.50 for the shared-all feature-set.

Ward algorithm with the input distance matrix 1−
SWALS .

6 Comparison Results

After independently deriving native language sim-
ilarity matrices from ESL texts and from typo-
logical features in WALS, we compare them to
one another. Figure 1 presents a scatter plot
of the language similarities obtained using ESL
data, against the equivalent WALS based similar-
ities. The scores are strongly correlated, with a
Pearson Correlation Coefficient of 0.59 using the
shared-pairwise WALS distances and 0.50 using
the shared-all WALS distances.

This correlation provides appealing evidence
for the hypothesis that distinctive structural pat-
terns of English usage arise via cross-linguistic
transfer, and to a large extent reflect the typologi-
cal similarities between the respective native lan-
guages. The practical consequence of this result is
the ability to use one of these similarity structures
to approximate the other. Here, we use the ESL
based similarities as a proxy for the typological
similarities between languages, allowing us to re-
construct typological information without relying
on a-priori knowledge about the target language
typology.

In figure 2 we present, for illustration purposes,

the hierarchical similarity trees obtained with the
Ward algorithm based on WALS and ESL similar-
ities. The trees bear strong resemblances to one
other. For example, at the top level of the hier-
archy, the Indo-European languages are discerned
from the non Indo-European languages. Further
down, within the Indo-European cluster, the Ro-
mance languages are separated from other Indo-
European subgroups. Further points of similarity
can be observed at the bottom of the hierarchy,
where the pairs Russian and Polish, Japanese and
Korean, and Chinese and Thai merge in both trees.

In the next section we evaluate the quality of
these trees, as well as the similarity matrices used
for constructing them with respect to their ability
to support accurate nearest neighbors based recon-
struction of native language typology.

7 Typology Prediction

Although pairwise language similarities derived
from structural features in ESL texts are highly
correlated with similarities obtained directly from
native language typology, evaluating the absolute
quality of such similarity matrices and trees is
challenging.

We therefore turn to typology prediction based
evaluation, in which we assess the quality of
the induced language similarity estimates by their
ability to support accurate prediction of unseen ty-
pological features. In this evaluation mode we
project unknown WALS features to a target lan-
guage from the languages that are closest to it in
the similarity structure. The underlying assump-
tion of this setup is that better similarity structures
will lead to better accuracies in the feature predic-
tion task.

Typological feature prediction not only pro-
vides an objective measure for the quality of the
similarity structures, but also has an intrinsic value
as a stand-alone task. The ability to infer typolog-
ical structure automatically can be used to create
linguistic databases for low-resource languages,
and is valuable to NLP applications that exploit
such resources, most notably multilingual parsing
(Naseem et al., 2012; Täckström et al., 2013).

Prediction of typological features for a target
language using the language similarity matrix is
performed by taking a majority vote for the value
of each feature among the K nearest languages of
the target language. In case none of the K nearest
languages have a value for a feature, or given a tie
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(a) Hierarchical clustering using WALS based shared-
pairwise distances.

(b) Hierarchical clustering using ESL based distances.

Figure 2: Language Similarity Trees. Both trees
are constructed with the Ward agglomerative hi-
erarchical clustering algorithm. Tree (a) uses the
WALS based shared-pairwise language distances.
Tree (b) uses the ESL derived distances.

between several values, we iteratively expand the
group of nearest languages until neither of these
cases applies.

To predict features using a hierarchical cluster
tree, we set the value of each target language fea-
ture to its majority value among the members of
the parent cluster of the target language, excluding
the target language itself. For example, using the
tree in figure 2(a), the feature values for the target
language French will be obtained by taking ma-
jority votes between Portuguese, Italian and Span-
ish. Similarly to the matrix based prediction, miss-
ing values and ties are handled by backing-off to a

larger set of languages, in this case by proceeding
to subsequent levels of the cluster hierarchy. For
the French example in figure 2(a), the first fall-
back option will be the Romance cluster.

Following the evaluation setups in Daumé III
(2009) and Georgi et al. (2010), we evaluate the
WALS based similarity estimates and trees by con-
structing them using 90% of the WALS features.
We report the average accuracy over 100 random
folds of the data. In the shared-all regime, we pro-
vide predictions not only for the remaining 10%
of features shared by all languages, but also for all
the other features that have values in the target lan-
guage and are not used for the tree construction.

Importantly, as opposed to the WALS based
prediction, our ESL based method does not re-
quire any typological features for inferring lan-
guage similarities and constructing the similarity
tree. In particular, no typological information is
required for the target languages. Typological fea-
tures are needed only for the neighbors of the tar-
get language, from which the features are pro-
jected. This difference is a key advantage of our
approach over the WALS based methods, which
presuppose substantial typological documentation
for all the languages involved.

Table 3 summarizes the feature reconstruction
results. The ESL approach is highly competitive
with the WALS based results, yielding comparable
accuracies for the shared-all prediction, and lag-
ging only 1.7% – 3.4% behind the shared-pairwise
construction. Also note that for both WALS based
and ESL based predictions, the highest results are
achieved using the hierarchical tree predictions,
confirming the suitability of this representation for
accurately capturing language similarity structure.

Figure 3 presents the performance of the
strongest WALS based typological feature com-
pletion method, WALS shared-pairwise tree, as a
function of the percentage of features used for ob-
taining the language similarity estimates. The fig-
ure also presents the strongest result of the ESL
method, using the ESL tree, which does not re-
quire any such typological training data for ob-
taining the language similarities. As can be seen,
the WALS based approach would require access to
almost 40% of the currently documented WALS
features to match the performance of the ESL
method.

The competitive performance of our ESL
method on the typology prediction task underlines
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Method NN 3NN Tree
WALS shared-all 71.6 71.4 69.1
WALS shared-pairwise 73.1 74.1 74.2
ESL 71.4 70.7 72.2

Table 3: Typology reconstruction results. Three
types of predictions are compared, nearest neigh-
bor (NN), 3 nearest neighbors (3NN) and near-
est tree neighbors (Tree). WALS shared-all are
WALS based predictions, where only the 32 fea-
tures that have known values in all 14 languages
are used for computing language similarities. In
the WALS shared-pairwise predictions the lan-
guage similarities are computed using the WALS
features shared by each language pair. ESL re-
sults are obtained by projection of WALS features
from the closest languages according to the ESL
language similarities.

its ability to extract strong typologically driven
signal, while being robust to the partial nature of
existing typological annotation which hinders the
performance of the baselines. Given the small
amount of ESL data at hand, these results are
highly encouraging with regard to the prospects
of our approach to support typological inference,
even in the absence of any typological documen-
tation for the target languages.

8 Conclusion and Outlook

We present a novel framework for utilizing cross-
linguistic transfer to infer language similarities
from morpho-syntactic features of ESL text. Trad-
ing laborious expert annotation of typological fea-
tures for a modest amount of ESL texts, we
are able to reproduce language similarities that
strongly correlate with the equivalent typology
based similarities, and perform competitively on
a typology reconstruction task.

Our study leaves multiple questions for future
research. For example, while the current work ex-
amines structure transfer, additional investigation
is required to better understand lexical and phono-
logical transfer effects.

Furthermore, we currently focuse on native lan-
guage typology, and assume English as the foreign
language. This limits our ability to study the con-
straints imposed on cross-linguistic transfer by the
foreign language. An intriguing research direction
would be to explore other foreign languages and
compare the outcomes to our results on English.

Figure 3: Comparison of the typological fea-
ture completion performance obtained using the
WALS tree with shared-pairwise similarities and
the ESL tree based typological feature comple-
tion performance. The dotted line represents the
WALS based prediction accuracy, while the hor-
izontal line is the ESL based accuracy. The
horizontal axis corresponds to the percentage of
WALS features used for constructing the WALS
based language similarity estimates.

Finally, we plan to formulate explicit models
for the relations between specific typological fea-
tures and ESL usage patterns, and extend our ty-
pology induction mechanisms to support NLP ap-
plications in the domain of multilingual process-
ing.
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Abstract
In this paper, we address the problem
of converting Dialectal Arabic (DA) text
that is written in the Latin script (called
Arabizi) into Arabic script following the
CODA convention for DA orthography.
The presented system uses a finite state
transducer trained at the character level
to generate all possible transliterations for
the input Arabizi words. We then filter
the generated list using a DA morpholog-
ical analyzer. After that we pick the best
choice for each input word using a lan-
guage model. We achieve an accuracy of
69.4% on an unseen test set compared to
63.1% using a system which represents a
previously proposed approach.

1 Introduction

The Arabic language is a collection of varieties:
Modern Standard Arabic (MSA), which is used
in formal settings and has a standard orthogra-
phy, and different forms of Dialectal Arabic (DA),
which are commonly used informally and with in-
creasing presence on the web, but which do not
have standard orthographies. While both MSA
and DA are commonly written in the Arabic script,
DA (and less so MSA) is sometimes written in
the Latin script. This happens when using an Ara-
bic keyboard is dispreferred or impossible, for ex-
ample when communicating from a mobile phone
that has no Arabic script support. Arabic written
in the Latin script is often referred to as “Arabizi”.
Arabizi is not a letter-based transliteration from
the Arabic script as is, for example, the Buck-
walter transliteration (Buckwalter, 2004). Instead,
roughly speaking, writers use sound-to-letter rules
inspired by those of English1 as well as informally

1In different parts of the Arab World, the basis for the
Latin script rendering of DA may come from different lan-

established conventions to render the sounds of the
DA sentence. Because the sound-to-letter rules
of English are very different from those of Ara-
bic, we obtain complex mappings between the two
writing systems. This issue is compounded by the
underlying problem that DA itself does not have
any standard orthography in the Arabic script. Ta-
ble 1 shows different plausible ways of writing an
Egyptian Arabic (EGY) sentence in Arabizi and
in Arabic script.

Arabizi poses a problem for natural language
processing (NLP). While some tools have recently
become available for processing EGY input, e.g.,
(Habash et al., 2012b; Habash et al., 2013; Pasha
et al., 2014), they expect Arabic script input (or a
Buckwalter transliteration). They cannot process
Arabizi. We therefore need a tool that converts
from Arabizi to Arabic script. However, the lack
of standard orthography in EGY compounds the
problem: what should we convert Arabizi into?
Our answer to this question is to use CODA, a
conventional orthography created for the purpose
of supporting NLP tools (Habash et al., 2012a).
The goal of CODA is to reduce the data sparseness
that comes from the same word form appearing in
many spontaneous orthographies in data (be it an-
notated or unannotated). CODA has been defined
for EGY as well as Tunisian Arabic (Zribi et al.,
2014), and it has been used as part of different ap-
proaches for modeling DA morphology (Habash
et al., 2012b), tagging (Habash et al., 2013; Pasha
et al., 2014) and spelling correction (Eskander et
al., 2013; Farra et al., 2014).

This paper makes two main contributions. First,
we clearly define the computational problem of
transforming Arabizi to CODA. This improves
over previous work by unambiguously fixing the

guages that natively uses the Latin script, such as English
or French. In this paper, we concentrate on Egyptian Arabic,
which uses English as its main source of sound-to-letter rules.
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target representation for the transformation. Sec-
ond, we perform experiments using different com-
ponents in a transformation pipeline, and show
that a combination of character-based transduc-
tion, filtering using a morphological analyzer, and
using a language model outperforms other archi-
tectures, including the state-of-the-art system de-
scribed in Darwish (2013). Darwish (2013) pre-
sented a conversion tool, but did not discuss con-
version into a conventionalized orthography, and
did not investigate different architectures. We
show in this paper that our proposed architecture,
which includes an EGY morphological analyzer,
improves over Darwish’s architecture.

This paper is structured as follows. We start out
by presenting relevant linguistic facts (Section 2)
and then we discuss related work. We present our
approach in Section 4 and our experiments and re-
sults in Section 5.

2 Linguistic Facts

2.1 EGY Spontaneous Orthography

An orthography is a specification of how to use
a particular writing system (script) to write the
words of a particular language. In cases where
there is no standard orthography, people use a
spontaneous orthography that is based on dif-
ferent criteria. The main criterion is phonol-
ogy: how to render a word pronunciation in
the given writing system. This mainly de-
pends on language-specific assumptions about the
grapheme-to-phoneme mapping. Another crite-
rion is to use cognates in a related language (sim-
ilar language or a language variant), where two
words represent a cognate if they are related et-
ymologically and have the same meaning. Ad-
ditionally, a spontaneous orthography may be af-
fected by speech effects, which are the lengthen-
ing of specific syllables to show emphasis or other
effects (such as Q�
J
J
�
�J» ktyyyyr 2 ‘veeeery’).

EGY has no standard orthography. Instead,
it has a spontaneous orthography that is related
to the standard orthography of Modern Standard
Arabic. Table 1 shows an example of writing a
sentence in EGY spontaneous orthography in dif-
ferent variants.

2Arabic transliteration is presented in the Habash-Soudi-
Buckwalter scheme (Habash et al., 2007): (in alphabetical
order) AbtθjHxdðrzsšSDTĎςγfqklmnhwy and the additional
symbols: ’ Z, Â


@, Ǎ @, Ā

�
@, ŵ ð', ŷ Zø', h̄ �è, ý ø.

2.2 Arabizi

Arabizi is a spontaneous orthography used to write
DA using the Latin script, the so-called Arabic
numerals, and other symbols commonly found on
various input devices such as punctuation. Arabizi
is commonly used by Arabic speakers to write in
social media and SMS and chat applications.

The orthography decisions made for writing
in Arabizi mainly depend on a phoneme-to-
grapheme mapping between the Arabic pronunci-
ation and the Latin script. This is largely based
on the phoneme-to-grapheme mapping used in En-
glish. Crucially, Arabizi is not a simple transliter-
ation of Arabic, under which each Arabic letter in
some orthography is replaced by a Latin letter (as
is the case in the Buckwalter transliteration used
widely in natural language processing but nowhere
else). As a result, it is not straightforward to con-
vert Arabizi to Arabic. We discuss some specific
aspects of Arabizi.

Vowels While EGY orthography omits vocalic
diacritics representing short vowels, Arabizi uses
the Latin script symbols for vowels (a, e, i, o, u, y)
to represent EGY’s short and long vowels, making
them ambiguous. In some cases, Arabizi words
omit short vowels altogether as is done in Arabic
orthography.

Consonants Another source of ambiguity is the
use of a single Latin letter to refer to multiple Ara-
bic phonemes. For example, the Latin letter "d" is
used to represent the sounds of the Arabic letters
X d and 	� D. Additionally, some pairs of Arabizi
letters can ambiguously map to a single Arabic let-
ter or pairs of letters: "sh" can be use to represent

�� š or é� sh. Arabizi also uses digits to repre-
sent some Arabic letters. For example, the dig-
its 2, 3, 5, 6, 7 and 9 are used to represent the
Hamza (glottal stop), and the sounds of the letters
¨ ς , p x,   T, h H and � S, respectively. How-
ever, when followed by "’", the digits 3, 6, 7 and
9 change their interpretations to the dotted version
of the Arabic letter:

	̈
γ, 	  Ď, p x and 	� D, re-

spectively. Moreover, "’" (as well as "q") may also
refer to the glottal stop.

Foreign Words Arabizi contains a large num-
ber of foreign words, that are either borrowings
such as mobile or instances of code switching such
as I love you.

Abbreviations Arabizi may also include some
abbreviations such as isa which means é<Ë @ Z A �� 	à@
Ǎn šA’ Allh ‘God willing’.
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Orthography Example
CODA hPAJ.Ó@ 	áÓ ú
G. Am

�� ���� 	® �� AÓ
mA šftš SHAby mn AmbArH

Non-CODA hPAJ.Ó@ 	áÓ úG. Agñ� ���� 	̄ñ ��AÓ
Arabic Script mAšwftš SwHAbý mn AmbArH

hPAJ. 	K @ 	áÓ úG. Am
�� ���� 	® ��Ó

mšftš SHAbý mn ǍnbArH
hPAJ.Ó@ 	áÓ ú
G. Am

�� ���
�J 	® �� AÓ
mA šftyš SHAby mn ǍmbArH

Arabizi
mashoftesh sohaby men embare7
ma shftesh swhabi mn imbareh
mshwftish swhaby min ambare7

Table 1: The different spelling variants in EGY and Arabizi for writing the sentence "I have not seen my
friends since yesterday" versus its corresponding CODA form.

2.3 CODA

CODA is a conventionalized orthography for Di-
alectal Arabic (Habash et al., 2012a). In CODA,
every word has a single orthographic representa-
tion. CODA has five key properties (Eskander
et al., 2013). First, CODA is an internally con-
sistent and coherent convention for writing DA.
Second, CODA is primarily created for computa-
tional purposes, but is easy to learn and recognize
by educated Arabic speakers. Third, CODA uses
the Arabic script as used for MSA, with no ex-
tra symbols from, for example, Persian or Urdu.
Fourth, CODA is intended as a unified framework
for writing all dialects. CODA has been defined
for EGY (Habash et al., 2012a) as well as Tunisian
Arabic (Zribi et al., 2014). Finally, CODA aims
to maintain a level of dialectal uniqueness while
using conventions based on similarities between
MSA and the dialects. For a full presentation of
CODA and a justification and explanation of its
choices, see (Habash et al., 2012a).

CODA has been used as part of different ap-
proaches for modeling DA morphology (Habash
et al., 2012b), tagging (Habash et al., 2013; Pasha
et al., 2014) and spelling correction (Eskander et
al., 2013; Farra et al., 2014). Converting Dialec-
tal Arabic (written using a spontaneous Arabic or-
thography or Arabizi) to CODA is beneficial to
NLP applications that better perform on standard-
ized data with less sparsity (Eskander et al., 2013).

Table 1 shows the CODA form corresponding
to spontaneously written Arabic.

3 Related Work

Our proposed work has some similarities to Dar-
wish (2013). His work is divided into two sec-
tions: language identification and transliteration.
He used word and sequence-level features to iden-
tify Arabizi that is mixed with English. For Arabic
words, he modeled transliteration from Arabizi to
Arabic script, and then applied language model-
ing on the transliterated text. This is similar to our
proposed work in terms of transliteration and lan-
guage modeling. However, Darwish (2013) does
not target a conventionalized orthography, while
our system targets CODA. Additionally, Darwish
(2013) transliterates Arabic words only after filter-
ing out non-Arabic words, while we transliterate
the whole input Arabizi. Finally, he does not use
any morphological information, while we intro-
duce the use of a morphological analyzer to sup-
port the transliteration pipeline.

Chalabi and Gerges (2012) presented a hybrid
approach for Arabizi transliteration. Their work
relies on the use of character transformation rules
that are either handcrafted by a linguist or au-
tomatically generated from training data. They
also employ word-based and character-based lan-
guage models for the final transliteration choice.
Like Darwish (2013), the work done by Chalabi
and Gerges (2012) is similar to ours except that
it does not target a conventionalized orthography,
and does not use deep morphological information,
while our system does.

There are three commercial products that con-
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vert Arabizi to Arabic, namely: Microsoft Maren,3

Google Ta3reeb4 and Yamli.5 However, since
these products are for commercial purposes, there
is not enough information about their approaches.
But given their output, it is clear that they do
not follow a well-defined standardized orthogra-
phy like we do. Furthermore, these tools are pri-
marily intended as input method support, not full
text transliteration. As a result, their users’ goal
is to produce Arabic script text not Arabizi text.
We expect, for instance, that users of these input
method support systems will use less or no code
switching to English, and they may employ char-
acter sequences that help them arrive at the target
Arabic script form, which otherwise they would
not write if they are targeting Arabizi.

Eskander et al. (2013) introduced a system
to convert spontaneous EGY to CODA, called
CODAFY. The difference between CODAFY and
our proposed system is that CODAFY works on
spontaneous text written in Arabic script, while
our system works on Arabizi, which involves a
higher degree of ambiguity. However, we use
CODAFY as a black-box module in our prepro-
cessing.

Additionally, there is some work on convert-
ing from dialectal Arabic to MSA, which is sim-
ilar to our work in terms of processing a dialec-
tal input. However, our final output is in EGY
and not MSA. Shaalan et al. (2007) introduced a
rule-based approach to convert EGY to MSA. Al-
Gaphari and Al-Yadoumi (2010) also used a rule-
based method to transform from Sanaani dialect to
MSA. Sawaf (2010), Salloum and Habash (2011)
and Salloum and Habash (2013) used morpholog-
ical analysis and morphosyntactic transformation
rules for processing EGY and Levantine Arabic.

There has been some work on machine translit-
eration by Knight and Graehl (1997). Al-Onaizan
and Knight (2002) introduced an approach for ma-
chine transliteration of Arabic names. Freeman
et al. (2006) also introduced a system for name
matching between English and Arabic, which
Habash (2008) employed as part of generating
English transliterations from Arabic words in the
context of machine translation. This work is sim-
ilar to ours in terms of text transliteration. How-
ever, our work is not restricted to names.

3http://www.getmaren.com
4http://www.google.com/ta3reeb
5http://www.yamli.com/

4 Approach

4.1 Defining the Task
Our task is as follows: for each Arabizi word in
the input, we choose the Arabic script word which
is the correct CODA spelling of the input word
and which carries the intended meaning (as deter-
mined in the context of the entire available text).

We do not merge two or more input words into
a single Arabic script word. If CODA requires
two consecutive input Arabizi words to be merged,
we indicate this by attaching a plus to the end of
the first word. On the other hand, if CODA re-
quires an input Arabizi word to be broken into two
or more Arabic script words, we indicate this by
inserting a dash between the words. We do this
to maintain the bijection between input and out-
put words, i.e., to allow easy tracing of the Arabic
script back to the Arabizi input.

4.2 Transliteration Pipeline
The proposed system in this paper is called 3AR-
RIB.6 Using the context of an input Arabizi word,
3ARRIB produces the word’s best Arabic script
CODA transliteration. Figure 1 illustrates the dif-
ferent components of 3ARRIB in both the train-
ing and processing phases. We summarize the full
transliteration process as follows. Each Arabizi
sentence input to 3ARRIB goes through a pre-
processing step of lowercasing (de-capitalization),
speech effects handling, and punctuation split-
ting. 3ARRIB then generates a list of all possi-
ble transliterations for each word in the input sen-
tence using a finite-state transducer that is trained
on character-level alignment from Arabizi to Ara-
bic script. We then experiment with different com-
binations of the following two components:

Morphological Analyzer We use CALIMA
(Habash et al., 2012b), a morphological analyzer
for EGY. For each input word, CALIMA provides
all possible morphological analyses, including the
CODA spelling for each analysis. All generated
candidates are passed through CALIMA. If CAL-
IMA has no analysis for a candidate, then that
candidate gets filtered out; otherwise, the CODA
spellings of the analyses from CALIMA become
the new candidates in the rest of the transliteration
pipeline. For some words, CALIMA may sug-
gest multiple CODA spellings that reflect different
analyses of the word.

63ARRIB (pronounced /ar-rib/) means “Arabize!”.
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Figure 1: An illustration of the different components of the 3ARRIB system in both the training and
processing phases. FST: finite-state Transducer; LM: Language Model; CALIMA: Morphological Ana-
lyzer for Dialectal Arabic; MADAMIRA: Morphological Tagger for Arabic.

Language Model We disambiguate among the
possibilities for all input words (which consti-
tute a “sausage” lattice) using an n-gram language
model.

4.3 Preprocessing

We apply the following preprocessing steps to the
input Arabizi text:

• We separate all attached emoticons such as
(:D, :p, etc.) and punctuation from the words.
We only keep the apostrophe because it is
used in Arabizi to distinguish between dif-
ferent sounds. 3ARRIB keeps track of any
word offset change, so that it can reconstruct
the same number of tokens at the end of the
pipeline.

• We tag emoticons and punctuation to protect
them from any change through the pipeline.

• We lowercase all letters.

• We handle speech effects by replacing any
sequence of the same letter whose length is
greater than two by a sequence of exactly
length two; for example, iiiii becomes ii.

4.4 Character-Based Transduction

We use a parallel corpus of Arabizi-Arabic words
to learn a character-based transduction model.
The parallel data consists of two sources. First,

we use 2,200 Arabizi-to-Arabic script pairs from
the training data used by (Darwish, 2013). We
manually revised the Arabic side to be CODA-
compliant. Second, we use about 6,300 pairs
of proper names in Arabic and English from
the Buckwalter Arabic Morphological Analyzer
(Buckwalter, 2004). Since proper names are typ-
ically transliterated, we expect them to be a rich
source for learning transliteration mappings.

The words in the parallel data are turned into
space-separated character tokens, which we align
using Giza++ (Och and Ney, 2003). We then use
the phrase extraction utility in the Moses statistical
machine translation system (Koehn et al., 2007) to
extract a phrase table which operates over char-
acters. The phrase table is then used to build a
finite-state transducer (FST) that maps sequences
of Arabizi characters into sequences of Arabic
script characters. We use the negative logarithmic
conditional probabilities of the Arabizi-to-Arabic
pairs in the phrase tables as costs inside the FST.
We use the FST to transduce an input Arabizi word
to one or more words in Arabic script, where ev-
ery resulting word in Arabic script is given a prob-
abilistic score.

As part of the preprocessing of the parallel data,
we associate all Arabizi letters with their word
location information (beginning, middle and end-
ing letters). This is necessary since some Arabizi
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mapping phenomena happen only at specific loca-
tions. For example, the Arabizi letter "o" is likely
to be transliterated into


@ Â in Arabic if it appears

at the beginning of the word, but almost never so
if it appears in the middle of the word.

For some special Arabizi cases, we directly
transliterate input words to their correct Arabic
form using a table, without going through the FST.
For example, isa is mapped to é�<Ë @ Z A �� 	à@ Ǎn šA’
Allh ‘God willing’. There are currently 32 entries
in this table.

4.5 Morphological Analyzer

For every word in the Arabizi input, all the candi-
dates generated by the character-based transduc-
tion are passed through the CALIMA morpholog-
ical analyzer. For every candidate, CALIMA pro-
duces a list of all the possible morphological anal-
yses. The CODA for these analyses need not be
the same. For example, if the output from the char-
acter based transducer is Aly, then CALIMA pro-
duces the following CODA-compliant spellings:
úÍ@ Ǎlý ‘to’, ú
Í@ Ǎlý ‘to me’ and ú
Í

�
@ Āly ‘automatic’

or ‘my family’. All of these CODA spellings are
the output of CALIMA for that particular input
word. The output from CALIMA then becomes
the set of final candidates of the input Arabizi in
the rest of the transliteration pipeline. If a word
is not recognized by CALIMA, it gets filtered out
from the transliteration pipeline. However, if all
the candidates of some word are not recognized
by CALIMA, then we retain them all since there
should be an output for every input word.

We additionally run a tokenization step that
makes use of the generated CALIMA morphologi-
cal analysis. The tokenization scheme we target is
D3, which separates all clitics associated with the
word (Habash, 2010). For every word, we keep
a list of the possible tokenized and untokenized
CODA-compliant pairs. We use the tokenized or
untokenized forms as inputs to either a tokenized
or untokenized language model, respectively, as
described in the next subsection. The untokenized
form is necessary to retain the surface form at the
end of the transliteration process.

Standalone clitics are sometimes found in Ara-
bizi such as lel ragel (which corresponds to
Ég. @P +ÉË ll+ rAjl ‘for the man’). Since CALIMA
does not handle most standalone clitics, we keep
a lookup table that associates them with their tok-
enization information.

4.6 Language Model

We then use an EGY language model that is
trained on CODA-compliant text. We investi-
gate two options: a language model that has stan-
dard CODA white-space word tokenization con-
ventions (“untokenized”), and a language model
that has a D3 tokenized form of CODA in which
all clitics are separated (“tokenized”). The output
of the morphological analyzer (which is the input
to the LM component) is processed to match the
tokenization used in the LM.

The language models are built from a large
corpus of 392M EGY words.7 The corpus is
first processed using CODAFY (Eskander et al.,
2013), a system for spontaneous text convention-
alization into CODA. This is necessary so that
our system remains CODA-compliant across the
whole transliteration pipeline. Eskander et al.
(2013) states that the best conventionalization re-
sults are obtained by running the MLE component
of CODAFY followed by an EGY morphological
tagger, MADA-ARZ (Habash et al., 2013). In the
work reported here, we use the newer version of
MADA-ARZ, named MADAMIRA (Pasha et al.,
2014). For the tokenized language model, we run
a D3 tokenization step on top of the processed text
by MADAMIRA. The processed data is used to
build a language model with Kneser-Ney smooth-
ing using the SRILM toolkit (Stolcke, 2002).

We use A* search to pick the best transliteration
for each word given its context. The probability of
any path in the A* search space combines the FST
probability of the words with the probability from
the language model. Thus, for any certain path of
selected Arabic possibilities A0,i = {a0, a1, ...ai}
given the corresponding input Arabizi sequence
W0,i = {w0, w1, ...wi}, the transliteration prob-
ability can be defined by equation (1).

P (A0,i|W0,i) =

i∏
j=0

(P (aj |wj) ∗ P (aj |aj−N+1,j−1)) (1)

Where, N is the maximum affordable n-
gram length in the LM, P (aj |wj) is the
FST probability of transliterating the Ara-
bizi word wj into the Arabic word aj , and
P (aj |aj−N+1,j−1) is the LM probability of the se-
quence {aj−N+1, aj−N+2, ...aj}.

7All of the resources we use are available from the Lin-
guistic Data Consortium: www.ldc.upenn.edu.
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5 Experiments and Results

5.1 Data

We use two in-house data sets for development
(Dev; 502 words) and blind testing (Test; 1004
words). The data contains EGY Arabizi SMS
conversations that are mapped to Arabic script in
CODA by a CODA-trained EGY native speaker.

5.2 Experiments

We conducted a suite of experiments to evaluate
the performance of our approach and identify op-
timal settings on the Dev set. The optimal result
and the baseline are then applied to the blind Test
set. During development, the following settings
were explored:

• INV-Selection: The training data of the finite
state transducer is used to generate the list of
possibilities for each input Arabizi word. If
the input word cannot be found in the FST
training data, the word is kept in Arabizi.

• FST-ONLY: Pick the top choice from the list
generated by the finite state transducer.

• FST-CALIMA: Pick the top choice from the
list after the CALIMA filtering.

• FST-CALIMA-Tokenized-LM-5: Run the
full pipeline of 3ARRIB with a 5-gram to-
kenized LM.8

• FST-CALIMA-Tokenized-LM-5-MLE:
The same as FST-CALIMA-Tokenized-
LM-5, but for an Arabizi word that appears
in training, force its most frequently seen
mapping directly instead of running the
transliteration pipeline for that word.

• FST-CALIMA-Untokenized-LM-5: Run
the full pipeline of 3ARRIB with a 5-gram
untokenized LM.

• FST-Untokenized-LM-5: Run the full
pipeline of 3ARRIB minus the CALIMA fil-
tering with a 5-gram untokenized LM. This
setup is analogous to the transliteration ap-
proach proposed by (Darwish, 2013). Thus
we use it as our baseline.

Each of the above experiments is evaluated
with exact match, and with Alif/Ya normalization
(El Kholy and Habash, 2010; Habash, 2010).

83, 5, and 7-gram LMs have been tested. The 3 and 5-
gram LMs give the same performance while the 7-gram LM
is the worst.

5.3 Results

Table 2 summarizes the results on the Dev set.
Our best performing setup is FST-CALIMA-
Tokenized-LM-5 which has 77.5% accuracy and
79.1% accuracy with normalization. The baseline
system, FST-Untokenized-LM-5, gives 74.1% ac-
curacy and 74.9 % accuracy with normalization.
This highlights the value of morphological filter-
ing as well as sparsity-reducing tokenization.

Table 3 shows how we do (best system and best
baseline) on a blind Test set. Although the accu-
racy drops overall, the gap between the best sys-
tem and the baseline increases.

5.4 Error Analysis

We conducted two error analyses for the best per-
forming transliteration setting on the Dev set. We
first analyze in which component the Dev set er-
rors occur. About 29% of the errors are cases
where the FST does not generate the correct an-
swer. An additional 15% of the errors happen be-
cause the correct answer is not covered by CAL-
IMA. The language model does not include the
correct answer in an additional 8% of the errors.
The rest of the errors (48%) are cases where the
correct answer is available in all components but
does not get selected.

Motivated by the value of Arabizi transliteration
for machine translation into English, we distin-
guish between two types of words: words that re-
main the same when translated into English, such
as English words, proper nouns, laughs, emoti-
cons, punctuations and digits (EN-SET) versus
EGY-only words (EGY-SET). Examples of words
in EN-SET are: love you very much (code switch-
ing), Peter (proper noun), haha (laugh), :D (emoti-
con), ! (punctuation) and 123 (digits).

While the overall performance of our best set-
tings is 77.5%, the accuracy of the EGY-SET by
itself is 84.6% as opposed to 46.2% for EN-SET.
This large difference reflects the fact that we do
not target English word transliteration into Arabic
script explicitly.

We now perform a second error analysis only on
the errors in the EGY-SET, in which we categorize
the errors by their linguistic type. About 25% of
the errors are non-CODA-compliant system out-
put, where the answer is a plausible non-CODA
form, i.e., a form that may be written or read eas-
ily by a native speaker who is not aware of CODA.
For example, the system generates the non-CODA
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System Exact-Matching A/Y-normalization
INV-Selection 37.1 40.6
FST-ONLY (pick top choice) 63.1 65.1
FST-CALIMA (pick top choice) 66.1 68.9
FST-CALIMA-Tokenized-LM-5 77.5 79.1
FST-CALIMA-Tokenized-LM-5-MLE 68.7 73.5
FST-CALIMA-Untokenized-LM-5 77.3 78.9
FST-Untokenized-LM-5 74.1 74.9

Table 2: Results on the Dev set in terms of accuracy (%).

System Exact-Matching A/Y-normalization
FST-CALIMA-Tokenized-LM-5 69.4 73.9
FST-Untokenized-LM-5 63.1 65.4

Table 3: Results on the blind Test set in terms of accuracy (%).

form ��ª 	® 	JJ
Ó mynfςš instead of the correct CODA
form ��ª 	® 	JK
 AÓ mA ynfςš ‘it doesn’t work’. Ignor-
ing the CODA-related errors increases the overall
accuracy by about 3.0% to become 80.5%. The ac-
curacy of the EGY-SET rises to 88.3% as opposed
to 84.6% when considering CODA compliance.

Ambiguous Arabizi input contributes to an ad-
ditional 27% of the errors, where the system as-
signs a plausible answer that is incorrect in con-
text. For example, the word matar in the input
Arabizi fel matar ‘at the airport’ has two plausi-
ble out-of-context solutions: PA¢Ó mTAr ‘airport’
(contextually correct) and Q¢Ó mTr ‘rain’ (contex-
tually incorrect).

In about 2% of the errors, the Arabizi input con-
tains a typo making it impossible to produce the
gold reference. For example, the input Arabizi
ba7bet contains a typo where the final t should turn
into k, so that it means ½J.kAK. bAHbk ‘I love you
[2fs]’.

In the rest of the errors (about 46%), the sys-
tem fails to come up with the correct answer. In-
stead, it assigns a completely different word or
even an impossible word. For example, the cor-
rect answer for the input Arabizi sora ‘picture’ is�èPñ� Swrh̄, while the system produces the word
Pñ� swr ‘wall’. Another example is the input Ara-
bizi talabt ‘I asked for’, where the output from the
system is �éJ. Ë A£ TAlbh̄ ‘student’, while the correct
answer is �IJ. Ê£ tlbt ‘I asked for, ordered’ instead.

6 Conclusion and Future Work

We presented a method for converting dialectal
Arabic (specifically, EGY) written in Arabizi to
Arabic script following the CODA convention for
DA orthography. We achieve a 17% error reduc-
tion over our implementation of a previously pub-
lished work (Darwish, 2013) on a blind test set.

In the future, we plan to improve several aspects
of our models, particularly FST character map-
ping, the morphological analyzer coverage, and
language models. We also plan to work on the
problem of automatic identification of non-Arabic
words. We will extend the system to work on other
Arabic dialects. We also plan to make the 3AR-
RIB system publicly available.
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Abstract

In this paper, we study the impact of rela-
tional and syntactic representations for an
interesting and challenging task: the au-
tomatic resolution of crossword puzzles.
Automatic solvers are typically based on
two answer retrieval modules: (i) a web
search engine, e.g., Google, Bing, etc. and
(ii) a database (DB) system for access-
ing previously resolved crossword puz-
zles. We show that learning to rank models
based on relational syntactic structures de-
fined between the clues and the answer can
improve both modules above. In particu-
lar, our approach accesses the DB using
a search engine and reranks its output by
modeling paraphrasing. This improves on
the MRR of previous system up to 53% in
ranking answer candidates and greatly im-
pacts on the resolution accuracy of cross-
word puzzles up to 15%.

1 Introduction

Crossword puzzles (CPs) are probably the most
popular language games played around the world.
It is very challenging for human intelligence as it
requires high level of general knowledge, logical
thinking, intuition and the ability to deal with am-
biguities and puns. CPs normally have the form
of a square or rectangular grid of white and black
shaded squares. The white squares on the border
of the grid or adjacent to the black ones are associ-
ated with clues. The goal of the game is to fill the
sequences of white squares with words answering
the clues.

There have been many attempts to build auto-
matic CP solving systems, which have also par-
ticipated in competitions such as The American
Crossword Puzzle Tournament (ACPT). This is
the oldest and largest CP tournament for cross-
word experts held in the United States. The goal

of such systems is to outperform human players
in solving crosswords more accurately and in less
time.

Automatic CP solvers have been mainly tar-
geted by the artificial intelligence (AI) community,
who has mostly focused on AI techniques for fill-
ing the puzzle grid, given a set of answer candi-
dates for each clue. The basic idea is to optimize
the overall probability of correctly filling the entire
grid by exploiting the likelihood of each candidate
answer, fulfilling at the same time the grid con-
straints. After several failures in approaching the
human expert performance, it has become clear
that designing more accurate solvers would not
have provided a winning system. In contrast, the
Precision and Recall of the answer candidates are
obviously a key factor: a very high value for both
of them would enable the solver to quickly find the
correct solution.

This basically suggests that, similarly to the
Jeopardy! challenge case (Ferrucci et al., 2010b),
the solution relies on Question Answering (QA)
research. However, although some CP clues are
rather similar to standard questions, as for ex-
ample, in the clue/answer pair: �What keeps a
camera rolling?: dolly�, some specific differences
hold: (i) clues can be in interrogative form or not,
e.g., �Capital of USA: Washington�; (ii) they can
contain riddles or be deliberately ambiguous and
misleading (e.g., �It’s green at first: orange�);
(iii) the exact length of the answer keyword is
known in advance; and (vi) the confidence in the
answers is an extremely important input for the CP
solver.

In this paper, we study methods for improving
the quality of automatic extraction of answer can-
didate lists for automatic CP resolution. For this
purpose, we designed learning to rank models for
reordering the answers produced with two differ-
ent techniques typically used in CP systems: (i)
searching the Web with clue representations, e.g.,
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exploiting Bing search engine1; and (ii) querying
the DB of previously resolved CP clues, e.g., using
standard SQL techniques.

We rerank the text snippets returned by Bing by
means of SVM preference ranking (Herbrich et al.,
2000) for improving the first technique. One in-
teresting contribution is that our model exploits a
syntactic representation of clues to improve Web
search. More in detail, we use structural kernels
(e.g., see (Moschitti, 2006; Moschitti, 2008)) in
SVMs applied to our syntactic representation of
pairs, formed by clues with their candidate snip-
pets. Regarding the DB approach, we provide a
completely novel solution by substituting it and
the SQL function with a search engine for retriev-
ing clues similar to the target one. Then, we rerank
the retrieved clues by applying SVMs and struc-
tural kernels to the syntactic representation of clue
pairs. This way, SVMs learn to choose the best
candidate among similar clues that are available in
the DB. The syntactic representation captures clue
paraphrasing properties.

In order to carry out our study, we created two
different corpora, one for each task: (i) a snip-
pets reranking dataset and (ii) a clue similarity
dataset. The first includes 21,000 clues, each asso-
ciated with 150 candidate snippets whereas the lat-
ter comprises 794,190 clues. These datasets con-
stitute interesting resources that we made available
to the research community2.

We compare our methods with one of the best
systems for automatic CP resolution, WebCrow
(Ernandes et al., 2005). Such system does use
the two approaches mentioned before. Regarding
snippet reranking, our structural models improve
on the basic approach of WebCrow based on Bing
by more than 4 absolute percent points in MRR,
for a relative improvement of 23%. Concerning
the similar clues retrieval, our methods improve
on the one used by WebCrow, based on DBs, by
25% absolute, i.e., about 53% of error reduction
whereas the answer accuracy at first position im-
proves up to 70%.

Given such promising results, we used our clue
reranking method in WebCrow, and obtained an
average improvement of 15% in resolving com-
plete CPs. This demonstrates that advanced QA
methods such as those based on syntactic struc-
tures and learning to rank methods can help to win

1https://www.bing.com/
2http://projects.disi.unitn.it/

iKernels/projects/webcrow/

the CP resolution challenge.
In the reminder of this paper, Sec. 2 introduces

the automatic CP resolution task in the context
of the related work, Sec. 3 introduces WebCrow,
Sec. 4 illustrates our models for snippets rerank-
ing and similar clue retrieval using kernel meth-
ods, syntactic structures, and traditional feature
vectors, Sec. 5 describes our experiments, and fi-
nally, Sec. 6 derives the conclusions.

2 Related Work

Proverb (Littman et al., 2002) was the first sys-
tem for the automatic resolution of CPs. It in-
cludes several modules for generating lists of can-
didate answers. These lists are merged and used to
solve a Probabilistic-Constraint Satisfaction Prob-
lem. Proverb relies on a very large crossword
database as well as several expert modules, each of
them mainly based on domain-specific databases
(e.g., movies, writers and geography). In addition,
it employs generic-word list generators and clue-
specific modules to find solutions for particular
kinds of clues like �Tel (4): aviv �. Proverb’s
modules use many knowledge sources: databases
of clues, encyclopedias and Web documents. Dur-
ing the 1998 ACPT, Proverb placed 109th out of
251 contestants.

WebCrow (Ernandes et al., 2005) is based on
Proverb. It incorporates additional knowledge
sources, provides a solver for the Italian language
and improves the clues retrieval model from DB.
In particular, it enables partial matching to re-
trieve clues that do not perfectly overlap with the
query. WebCrow carries out basic linguistic anal-
ysis such as Part-Of-Speech tagging and lemma-
tization. It takes advantage of semantic relations
contained in WordNet, dictionaries and gazetteers.
Its Web module is constituted by a search en-
gine, which can retrieve text snippets or docu-
ments related to the clue. Answer candidates
and their confidence scores are generated from
this content. WebCrow uses a WA* algorithm
(Pohl, 1970) for Probabilistic-Constraint Satisfac-
tion Problems, adapted for CP resolution. The
solver fills the grid entries for which no solution
was found by the previous modules. It tries com-
binations of letters that satisfy the crossword con-
straints, where the letters are derived from words
found in dictionaries or in the generated candidate
lists. WebCrow participated in international com-
petitions with good results.
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Figure 1: Overview of WebCrow’s architecture.

Dr. Fill (Ginsberg, 2011) targets the crossword
filling task with a Weighted-Constraint Satisfac-
tion Problem. Constraint violations are weighted
and can be tolerated. It heavily relies on huge
databases of clues. It was placed 92nd out of more
than 600 opponents in the 2013 ACPT.

Specifically for QA using syntactic structures,
a referring work for our research is the IBM Wat-
son system (Ferrucci et al., 2010a). This is an ad-
vanced QA pipeline based on deep linguistic pro-
cessing and semantic resources. It demonstrated
that automatic methods can be more accurate than
human experts in answering complex questions.

More traditional studies on passage reranking,
exploiting structural information, were carried out
in (Katz and Lin, 2003), whereas other meth-
ods explored soft matching (i.e., lexical similarity)
based on answer and named entity types (Aktolga
et al., 2011). (Radlinski and Joachims, 2006; Jeon
et al., 2005) applied question and answer classi-
fiers for passage reranking. In this context, sev-
eral approaches focused on reranking the answers
to definition/description questions, e.g., (Shen and
Lapata, 2007; Moschitti et al., 2007; Surdeanu et
al., 2008; Severyn and Moschitti, 2012; Severyn
et al., 2013b).

3 WebCrow Architecture

Our research focuses on the generation of accurate
answer candidate lists, which, when used in a CP
resolution systems, can improve the overall solu-
tion accuracy. Therefore, the quality of our mod-
ules can be assessed by testing them within such

systems. For this purpose, we selected WebCrow
as it is rather modular, accurate and it was kindly
made available by the authors. Its architecture is
illustrated in Figure 1.

The solving process is divided in two phases:
in the first phase, the coordinator module forwards
the clues of an input CP to a set of modules for
the generation of several candidate answer lists.
Each module returns a list of possible solutions
for each clue. Such individual clue lists are then
merged by a specific Merger component, which
uses list confidence values and the probabilities of
correctness of each candidate in the lists. Eventu-
ally, a single list of candidate-probability pairs is
generated for each input clue. During the second
phase WebCrow fills the crossword grid by solving
a constraint-satisfaction problem. WebCrow se-
lects a single answer from each candidate merged
list, trying to satisfy the imposed constraints. The
goal of this phase is to find an admissible solution
maximizing the number of correct inserted words.
In this paper, we focus on two essential modules
of WebCrow: the Web and the DB modules, de-
scribed in the next sections.

3.1 WebSearch Module (WSM)
WSM carries out four different tasks: (i) the re-
trieval of useful text snippets (TS) and web docu-
ments, (ii) the extraction of the answer candidates
from such text, (iii) the scoring/filtering of the can-
didates, and (iv) the estimation of the list confi-
dence. The retrieval of TS is performed by the
Bing search engine by simply providing it the clue
through its APIs. Then, the latter again are used
to access the retrieved TS. The word list gener-
ator extracts possible candidate answers from TS
or Web documents by picking the terms (also mul-
tiwords) of the correct length. The generated lists
are merged and sorted using the candidate confi-
dence computed by two filters: the statistical filter
and the morphological filter. The score associated
with each candidate word w is given by the fol-
lowing heuristic formula:

p(w, C) = k(scoresf (w, C)× scoremf (w, C)),

where (i) C is the target clue, (ii) k is a
constant tuned on a validation set such that∑n

i=0 p(wn, C) = 1, (iii) scoresf (w, C) is com-
puted using statistical information extracted from
the text, e.g., the classical TF×IDF, and (iv)
scoremf (w, C) is computed using morphological
features of w.
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hamlet 's to be or not to be addressee

S
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the most obvious example be hamlet 's to be or not to be the monologue be address by a character either to himself to the audience

Figure 2: Shallow syntactic trees of clue (upper) and snippet (lower) and their relational links.

3.2 Database module (CWDB)
The knowledge about previous CPs is essential for
solving new ones. Indeed, clues often repeat in
different CPs, thus the availability of a large DB
of clue-answer pairs allows for easily finding the
answers to previously used clues. In order to ex-
ploit the database of clue-answer pairs, WebCrow
uses three different modules:

CWDB-EXACT, which simply checks for an
exact matching between the target clue and those
in the DB. The score of the match is computed
using the number of occurrences of the matched
clue.

CWDB-PARTIAL, which employs MySQL’s
partial matching function, query expansion and
positional term distances to compute clue-
similarity scores, along with the Full-Text search
functions.

CWDB-DICTIO, which simply returns the full
list of words of correct length, ranked by their
number of occurrences in the initial list.

We improve WSM and CWDB by applying
learning-to-rank algorithms based on SVMs and
tree kernels applied to structural representations.
We describe our models in detail in the next sec-
tion.

4 Learning to rank with kernels

The basic architecture of our reranking framework
is relatively simple: it uses a standard preference
kernel reranking approach (e.g., see (Shen and
Joshi, 2005; Moschitti et al., 2006)). The struc-
tural kernel reranking framework is a specializa-
tion of the one we proposed in (Severyn and Mos-
chitti, 2012; Severyn et al., 2013b; Severyn et al.,
2013a). However, to tackle the novelty of the task,
especially for clue DB retrieval, we modeled inno-

vative kernels. In the following, we first describe
the general framework and then we instantiate it
for the two reranking tasks studied in this paper.

4.1 Kernel framework

The framework takes a textual query and retrieves
a list of related text candidates using a search en-
gine (applied to the Web or a DB), according to
some similarity criteria. Then, the query and can-
didates are processed by an NLP pipeline. The
pipeline is based on the UIMA framework (Fer-
rucci and Lally, 2004) and contains many text
analysis components. The latter used for our spe-
cific tasks are: the tokenizer3, sentence detector1,
lemmatizer1, part-of-speech (POS) tagger1, chun-
ker4 and stopword marker5.

The annotations produced by such processors
are used by additional components to produce
structural models representing clues and TS. The
structure component converts the text fragments
into trees. We use both trees and feature vectors
to represent pairs of clues and TS, which are em-
ployed to train kernel-based rerankers for reorder-
ing the candidate lists provided by a search engine.
Since the syntactic parsing accuracy can impact
the quality of our structure and thus the accuracy
of our learning to rank algorithms, we preferred
to use shallow syntactic trees over full syntactic
representations. In the next section, we first de-
scribe the structures we used in our kernels, then
the tree kernels used as building blocks for our
models. Finally, we show the reranking models
for both tasks, TS and clue reranking.

3http://nlp.stanford.edu/software/
corenlp.shtml

4http://cogcomp.cs.illinois.edu/page/
software_view/13

5Based on a standard stoplist.
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Rank Clue Answer
1 Kind of support for a computer user tech
2 Kind of computer connection wifi
3 Computer connection port
4 Comb users bees
5 Traveling bag grip

Table 1: Clue ranking for the query: Kind of con-
nection for traveling computer users (wifi)

4.2 Relational shallow tree representation

The structures we adopt are similar to those de-
fined in (Severyn et al., 2013b). They are essen-
tially shallow syntactic trees built from POS tags
grouped into chunks. Each clue and its answer
candidate (either a TS or clue) are encoded into
a tree having word lemmas at the leaves and POS
tags as pre-terminals. The higher tree level orga-
nizes POS tags into chunks. For example, the up-
per tree of Figure 2, shows a shallow tree for the
clue: Hamlet’s ”To be, or not to be” addressee,
whereas the lower tree represents a retrieved TS
containing the answer, himself : The most obvious
example is Hamlet’s ”To be or not to be ... the
monologue is addressed by a character either to
himself or to the audience.

Additionally, we use a special REL tag to link
the clue/snippet trees above such that structural re-
lations will be captured by tree fragments. The
links are established as follows: words from a
clue and a snippet sharing a lemma get their par-
ents (POS tags) and grandparents, i.e., chunk la-
bels, marked by a prepending REL tag. We build
such structural representations for both snippet
and similar clue reranking tasks.

4.3 Tree kernels

We briefly report the different types of kernels
(see, e.g., (Moschitti, 2006) for more details).
Syntactic Tree Kernel (STK), also known as a
subset tree kernel (Collins and Duffy, 2002), maps
objects in the space of all possible tree fragments
constrained by the rule that the sibling nodes from
their parents cannot be separated. In other words,
substructures are composed by atomic building
blocks corresponding to nodes along with all of
their direct children. These, in case of a syntac-
tic parse tree, are complete production rules of the
associated parser grammar.
STKb extends STK by allowing leaf nodes to be
part of the feature space. Leaf in syntactic trees are
words, from this the subscript b (bag-of-words).
Subtree Kernel (SbtK) is one of the simplest tree

kernels as it only generates complete subtrees, i.e.,
tree fragments that, given any arbitrary starting
node, necessarily include all its descendants.
Partial Tree Kernel (PTK) (Moschitti, 2006) can
be effectively applied to both constituency and de-
pendency parse trees. It generates all possible
connected tree fragments, e.g., sibling nodes can
also be separated and be part of different tree frag-
ments. In other words, a fragment is any possible
tree path, from whose nodes other tree paths can
depart. Thus, it can generate a very rich feature
space resulting in higher generalization ability.

4.4 Snippet reranking

The task of snippet reranking consists in reorder-
ing the list of snippets retrieved from the search
engine such that those containing the correct an-
swer can be pushed at the top of the list. For this
purpose, we transform the target clue in a search
query and retrieve candidate text snippets. In our
training set, these candidate text snippets are con-
sidered as positive examples if they contain the an-
swer to the target clue.

We rerank snippets using preference reranking
approach (see, e.g., (Shen and Joshi, 2005)). This
means that two snippets are compared to derive
which one is the best, i.e., which snippet contains
the answer with higher probability. Since we aim
at using kernel methods, we apply the following
preference kernel:

PK(〈s1, s2〉, 〈s′1, s′2〉) = K(s1, s
′
1)+

+K(s2, s
′
2)−K(s1, s

′
2)−K(s2, s

′
1),

where sr and s′r refer to two sets of candidates
associated with two rankings and K is a kernel
applied to pairs of candidates. We represent the
latter as pairs of clue and snippet trees. More for-
mally, given two candidates, si = 〈si(c), si(s)〉
and s′i = 〈s′i(c), s′i(s)〉, whose members are the
clue and snippet trees, we define

K(si, s
′
i) = TK(si(c), s′i(c))+TK(si(s), s′i(s)),

where TK can be any tree kernel function, e.g.,
STK or PTK. Finally, it should be noted that, to
add traditional feature vectors to the reranker, it is
enough to add the product (~xs1−~xs2) ·(~xs′1−~xs′2)
to the structural kernel PK , where ~xs is the feature
vector associated with the snippet s.

43



S

REL-NP PP REL-NP PP REL-NP

REL-NNP IN REL-NN IN VBG REL-NN NNS

kind of connection for travel computer user

S

REL-NP PP REL-NP

REL-NNP IN REL-NN REL-NN

kind of computer connection

Figure 3: Two similar clues leading to the same answer.

4.5 Similar clue reranking

WebCrow creates answer lists by retrieving clues
from the DB of previously solved crosswords. It
simply uses the classical SQL operator and full-
text search. We instead verified the hypothesis
that a search engine could achieve a better re-
sult. Thus we opted for indexing the DB clues
and their answers with the open source search en-
gine Lucene (McCandless et al., 2010), using the
state-of-the-art BM25 retrieval model. This alone
significantly improved the quality of the retrieved
clue list, which could be further refined by apply-
ing reranking. The latter consists in (i) retrieving
a list of similar clues using a search engine and
(ii) moving those more similar, which more prob-
ably contain the same answer to the clue query,
at the top. For example, Table 1 shows the first
five clues, retrieved for a query built from the clue:
Kind of connection for traveling computer users.
The search engine retrieves the wrong clue, Kind
of connection for traveling computer users, at the
top since it overlaps more with the query.

To solve these kinds of problems by also en-
hancing the generalization power of our reranking
algorithm, we use a structural representation
similar to the one for TS that we illustrated in
the previous section. The main difference with
the previous models is that the reranking pair is
only constituted by clues. For example, Fig. 3
shows the representation of the pairs constituted
by the query clue and the correct clue ranked
in the second position (see Table 1). The rela-
tional arrows suggest a syntactic transformation
from connection for * computer to
computer connection, which can be used
by the reranker to prefer the correct clue to
the wrong one. Note that such transformation
corresponds to the pair of tree fragments: [S

[REL-NP[REL-NN]][PP][NP[VBG][REL-NN]]]

→ [S [REL-NP[REL-NN][REL-NN]]], where the
node pairs, 〈REL-NN,REL-NN〉 define the arguments
of the syntactic transformation. Such fragments
can be generated by PTK, which can thus be used

for learning clue paraphrasing.
To build the reranking training set, we used

the training clues for querying the search engine,
which draws candidates from the indexed clues.
We stress the fact that this set of clues is disjoint
from the clues in the training and test sets. Thus,
identical clues are not present across sets. At clas-
sification time, the new clue is used as a search
query. Similar candidate clues are retrieved and
used to form pairs.

4.6 Feature Vectors

In addition to structural representations, we also
used features for capturing the degrees of similar-
ity between clues within a pair.

DKPro Similarity. We used similarity features
from a top performing system in the Semantic
Textual Similarity (STS) task, namely DKPro
from the UKP Lab (Bär et al., 2013). These
features were effective in predicting the degree
of similarity between two sentences. DKPro in-
cludes the following syntactic similarity metrics,
operating on string sequences, and more advanced
semantic similarities:
– Longest common substring measure (Gusfield,
1997). It determines the length of the longest
substring shared by two text segments.
– Longest common subsequence measure (Allison
and Dix, 1986). It extends the notion of substrings
to word subsequences by applying word insertions
or deletions to the original input text pairs.
– Running-Karp-Rabin Greedy String Tiling
(Wise, 1996). It provides a similarity between two
sentences by counting the number of shuffles in
their subparts.
– Resnik similarity (Resnik, 1995). The WordNet
hypernymy hierarchy is used to compute a mea-
sure of semantic relatedness between concepts
expressed in the text. The aggregation algorithm
by Mihalcea et al. (Mihalcea et al., 2006) is
applied to extend the measure from words to
sentences.
– Explicit Semantic Analysis (ESA) similarity
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(Gabrilovich and Markovitch, 2007). It represents
documents as weighted vectors of concepts
learned from Wikipedia, WordNet and Wik-
tionary.
– Lexical Substitution (Biemann, 2013). A super-
vised word sense disambiguation system is used
to substitute a wide selection of high-frequency
English nouns with generalizations. Resnik
and ESA features are then computed on the
transformed text.

New features. Hereafter, we describe new fea-
tures that we designed for CP reranking tasks.
– Feasible Candidate. It is a binary feature sig-
naling the presence or absence of words with the
same length of the clue answer (only used for snip-
pet reranking).
– Term overlap features. They compute the co-
sine similarity of text pairs encoded into sets of n-
grams extracted from different text features: sur-
face forms of words, lemmas and POS-tags. They
are computed keeping and removing stop-words.
They complement DKPro features.
– Kernel similarities. These are computed using
(i) string kernels applied to sentences, or PTK ap-
plied to structural representations with and with-
out embedded relational information (REL). This
similarity is computed between the members of a
〈clue, snippet〉 or a 〈clue, clue〉 pair.

5 Experiments

Our experiments aim at demonstrating the effec-
tiveness of our models on two different tasks: (i)
Snippet Reranking and (ii) Similar Clue Retrieval
(SCR). Additionally, we measured the impact of
our best model for SCR in the WebCrow system
by comparing with it. Our referring database of
clues is composed by 1,158,202 clues, which be-
long to eight different crossword editors (down-
loaded from the Web6). We use the latter to create
one dataset for snippet reranking and one dataset
for clues retrieval.

5.1 Experimental Setup
To train our models, we adopted SVM-light-TK7,
which enables the use of structural kernels (Mos-
chitti, 2006) in SVM-light (Joachims, 2002), with
default parameters. We applied a polynomial ker-
nel of degree 3 to the explicit feature vectors,

6http://www.crosswordgiant.com
7http://disi.unitn.it/moschitti/

Tree-Kernel.htm

Model MAP MRR AvgRec REC@1 REC@5

Bing 16.00 18.09 69.00 12.50 24.80
V 18.00 19.88 76.00 14.20 26.10
SbtK 17.00 19.6 75.00 13.80 26.40
STK 18.00 20.44 76.00 15.10 27.00
STKb 18.00 20.68 76.00 15.30 27.40
PTK 19.00 21.65 77.00 16.10 28.70
V+SbtK 20.00 22.39 80.00 17.20 29.10
V+STK 19.00 20.82 78.00 14.90 27.90
STKb 19.00 21.20 79.00 15.60 28.40
V+PTK 19.00 21.68 79.00 16.00 29.40
V+DK 18.00 20.48 77.00 14.60 26.80
V+DK+SbtK 20.00 22.29 80.00 16.90 28.70
V+DK+STK 19.00 21.47 79.00 15.50 28.30
V+DK+STKb 19.00 21.58 79.00 15.4 28.60
V+DK+PTK 20.00 22.24 80.00 16.80 29.30

Table 2: Snippet reranking

Model MAP MRR AvgRec REC@1 REC@5

MB25 69.00 73.78 80.00 62.11 81.23
WebCrow - 53.22 58.00 39.60 62.85
SbtK 52.00 54.72 69.00 36.50 64.05
STK 63.00 68.21 77.00 54.57 76.11
STKb 63.00 67.68 77.00 53.85 75.63
PTK 65.00 70.12 78.00 57.39 77.65
V+SbtK 68.00 73.26 80.00 60.95 81.28
V+STK 71.00 76.01 82.00 64.58 83.95
V+STKb 70.00 75.68 82.00 63.95 83.77
V+PTK 71.00 76.67 82.00 65.67 84.07
V+DK 71.00 76.76 81.00 65.55 84.29
V+DK+SbtK 72.00 76.91 82.00 65.87 84.51
V+DK+STK 73.00 78.37 84.00 67.83 85.87
V+DK+STKb 73.00 78.29 84.00 67.71 85.77
V+DK+PTK 73.00 78.13 83.00 67.39 85.75

Table 3: Reranking of similar clues.

as we believe feature combinations can be valu-
able. To measure the impact of the rerankers as
well as the baselines, we used well known met-
rics for assessing the accuracy of QA and re-
trieval systems, i.e.: Recall at rank 1 (R@1 and
5), Mean Reciprocal Rank (MRR), Mean Average
Precision (MAP), the average Recall (AvgRec).
R@k is the percentage of questions with a cor-
rect answer ranked at the first position. MRR is
computed as follows: MRR = 1

|Q|
∑|Q|

q=1
1

rank(q) ,
where rank(q) is the position of the first correct an-
swer in the candidate list. For a set of queries Q,
MAP is the mean over the average precision scores
for each query: 1

Q

∑Q
q=1 AveP (q). AvgRec and

all the measures are evaluated on the first 10 re-
trieved snippets/clues. For training and testing the
reranker, only the first 10 snippets/clues retrieved
by the search engine are used.

5.2 Snippet Reranking
The retrieval from the Web is affected by a sig-
nificant query processing delay, which prevents us
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to use entire documents. Thus, we only consid-
ered the text from Bing snippets. Moreover, since
our reranking approach does not include the treat-
ment of special clues such as anagrams or linguis-
tic games, e.g., fill-in-the blank clues, we have ex-
cluded them by our dataset. We crawled the lat-
ter from the Web. We converted each clue into a
query and downloaded the first 10 snippets as re-
sult of a Bing query. In order to reduce noise from
the data, we created a black list containing URLs
that must not be considered in the download phase,
e.g., crossword websites. The training set is com-
posed by 20,000 clues while the test set comprises
1,000 clues.

We implemented and compared many models
for reranking the correct snippets higher, i.e., con-
taining the answer to the clue. The compared sys-
tems are listed on the first column of Table 2,
where: V is the approach using the vector only
constituted by the new feature set (see Sec. 4.6);
DK is the model using the features made available
by DKPro; the systems ending in TK are described
in Sec. 4.3; and the plus operator indicates models
obtained by summing the related kernels.

Depending on the target measure they suggest
slightly different findings. Hereafter, we comment
on MRR as it is the most interesting from a rank-
ing viewpoint. We note that: (i) Bing is improved
by the reranker based on the new feature vector by
2 absolute points; (ii) DK+V improves on V by
just half point; (iii) PTK provides the highest re-
sult among individual systems; (iv) combinations
improve on the individual systems; and (v) over-
all, our reranking improves on the ranking of para-
graphs of Bing by 4 points in MRR and 5 points
in accuracy on the first candidate (REC@1), cor-
responding to about 20% and 50% of relative im-
provement and error reduction, respectively.

5.3 Similar clue retrieval

We compiled a crossword database of 794,190
unique pairs of clue-answer. Using the clues con-
tained in this set, we created three different sets:
training and test sets and the database of clues.
The database of clues can be indexed for retriev-
ing similar clues. It contains 700,000 unique clue-
answer pairs. The training set contains 39,504
clues whose answer may be found in database. Us-
ing the same approach, we created a test set con-
taining 5,060 clues that (i) are not in the training
set and (ii) have at least an answer in the database.

Model MRR REC@1 REC@5 REC@10
WebCrow 41.00 33.00 51.00 58.00
Our Model 46.00 39.00 56.00 59.00

Table 4: Performance on the word list candidates
averaged over the clues of 10 entire CPs

Model %Correct words %Correct letters
WebCrow 34.45 49.72
Our Model 39.69 54.30

Table 5: Performance given in terms of correct
words and letters averaged on the 10 CPs

We experimented with all models, as in the
previous section, trained for the similar clue re-
trieval task. However, since WebCrow includes a
database module, in Tab. 3, we have an extra row
indicating its accuracy. We note that: (i) BM25
shows a very accurate MRR, 73.78%. It largely
improves on WebCrow by about 20.5 absolute per-
cent points, demonstrating the superiority of an IR
approach over DB methods. (ii) All TK types do
not improve alone on BM25, this happens since
they do not exploit the initial rank provided by
BM25. (iii) All the feature vector and TK combi-
nations achieve high MRR, up to 4.5 absolute per-
cent points of improvement over BM25 and thus
25 points more than WebCrow, corresponding to
53% of error reduction. Finally, (iv) the relative
improvement on REC@1 is up to 71% (28.23%
absolute). This high result is promising in the light
of improving WebCrow for the end task of solving
complete CPs.

5.4 Impact on WebCrow

In these experiments, we used our reranking
model of similar clues (more specifically, the
V+DK+STK model) using 10 complete CPs (for
a total of 760 clues) from the New York Times
and Washington Post. This way, we could mea-
sure the impact of our model on the complete task
carried out by WebCrow. More specifically, we
give our reranked list of answers to WebCrow in
place of the list it would have extracted with the
CWDB module. It should be noted that to evalu-
ate the impact of our list, we disabled WebCrow
access to other lists, e.g., dictionaries. This means
that the absolute resolution accuracy of WebCrow
using our and its own lists can be higher (see (Er-
nandes et al., 2008) for more details).
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The first result that we derive is the accuracy
of the answer list produced from the new data,
i.e., constituted by the 10 entire CPs. The results
are reported in Tab. 4. We note that the improve-
ment of our model is lower than before as a non-
negligible percentage of clues are not solved us-
ing the clue DB. However, when we compute the
accuracy in solving the complete CPs, the impact
is still remarkable as reported by Tab. 5. Indeed,
the results show that when the lists reordered by
our reranker are used by WebCrow, the latter im-
proves by more than 5 absolute percent points in
both word and character accuracy.

6 Conclusions

In this paper, we improve automatic CP resolution
by modeling two innovative reranking tasks for:
(i) CP answer list derived from Web search and
(ii) CP clue retrieval from clue DBs.

Our rankers are based on SVMs and structural
kernels, where the latter are applied to robust shal-
low syntactic structures. Our model applied to
clue reranking is very interesting as it allows us
to learn clue paraphrasing by exploiting relational
syntactic structures representing pairs of clues.

For our study, we created two different corpora
for Snippet Reranking Dataset and Clue Similarity
Dataset on which we tested our methods. The lat-
ter improve on the lists generated by WebCrow by
25 absolute percent points in MRR (about 53% of
relative improvement). When such improved lists
are used in WebCrow, its resolution accuracy in-
creases by 15%, demonstrating that there is a large
room for improvement in automatic CP resolution.
In the future, we would like to add more seman-
tic information to our rerankers and include an an-
swer extraction component in the pipeline.
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Abstract

Induction of common sense knowledge
about prototypical sequence of events has
recently received much attention (e.g.,
Chambers and Jurafsky (2008); Regneri
et al. (2010)). Instead of inducing this
knowledge in the form of graphs, as in
much of the previous work, in our method,
distributed representations of event real-
izations are computed based on distributed
representations of predicates and their ar-
guments, and then these representations
are used to predict prototypical event or-
derings. The parameters of the composi-
tional process for computing the event rep-
resentations and the ranking component
of the model are jointly estimated. We
show that this approach results in a sub-
stantial boost in performance on the event
ordering task with respect to the previous
approaches, both on natural and crowd-
sourced texts.

1 Introduction

It is generally believed that natural language un-
derstanding systems would benefit from incorpo-
rating common-sense knowledge about prototyp-
ical sequences of events and their participants.
Early work focused on structured representations
of this knowledge (called scripts (Schank and
Abelson, 1977)) and manual construction of script
knowledge bases. However, these approaches do
not scale to complex domains (Mueller, 1998;
Gordon, 2001). More recently, automatic induc-
tion of script knowledge from text have started
to attract attention: these methods exploit ei-
ther natural texts (Chambers and Jurafsky, 2008,
2009) or crowdsourced data (Regneri et al., 2010),
and, consequently, do not require expensive ex-
pert annotation. Given a text corpus, they ex-
tract structured representations (i.e. graphs), for

example chains (Chambers and Jurafsky, 2008)
or more general directed acyclic graphs (Regneri
et al., 2010). These graphs are scenario-specific,
nodes in them correspond to events (and associ-
ated with sets of potential event mentions) and arcs
encode the temporal precedence relation. These
graphs can then be used to inform NLP applica-
tions (e.g., question answering) by providing in-
formation whether one event is likely to precede
or succeed another. Note that these graphs en-
code common-sense knowledge about prototypi-
cal ordering of events rather than temporal order
of events as described in a given text.

Though representing the script knowledge as
graphs is attractive from the human interpretability
perspective, it may not be optimal from the appli-
cation point of view. More specifically, these rep-
resentations (1) require a model designer to choose
an appropriate granularity of event mentions (e.g.,
whether nodes in the graph should be associated
with verbs, or also their arguments); (2) do not
provide a mechanism for deciding which scenario
applies in a given discourse context and (3) often
do not associate confidence levels with informa-
tion encoded in the graph (e.g., the precedence re-
lation in Regneri et al. (2010)).

Instead of constructing a graph and using it to
provide information (e.g., prototypical event or-
dering) to NLP applications, in this work we ad-
vocate for constructing a statistical model which is
capable to “answer” at least some of the questions
these graphs can be used to answer, but doing this
without explicitly representing the knowledge as a
graph. In our method, the distributed representa-
tions (i.e. vectors of real numbers) of event real-
izations are computed based on distributed repre-
sentations of predicates and their arguments, and
then the event representations are used in a ranker
to predict the prototypical ordering of events. Both
the parameters of the compositional process for
computing the event representation and the rank-
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ing component of the model are estimated from
texts (either relying on unambiguous discourse
clues or natural ordering in text). In this way we
build on recent research on compositional distri-
butional semantics (Baroni and Zamparelli, 2011;
Socher et al., 2012), though our approach specif-
ically focuses on embedding predicate-argument
structures rather than arbitrary phrases, and learn-
ing these representation to be especially informa-
tive for prototypical event ordering.

In order to get an intuition why the embedding
approach may be attractive, consider a situation
where a prototypical ordering of events the bus
disembarked passengers and the bus drove away
needs to be predicted. An approach based on fre-
quency of predicate pairs (Chambers and Jurafsky,
2008) (henceforth CJ08), is unlikely to make a
right prediction as driving usually precedes disem-
barking. Similarly, an approach which treats the
whole predicate-argument structure as an atomic
unit (Regneri et al., 2010) will probably fail as
well, as such a sparse model is unlikely to be ef-
fectively learnable even from large amounts of un-
labeled data. However, our embedding method
would be expected to capture relevant features of
the verb frames, namely, the transitive use for the
predicate disembark and the effect of the particle
away, and these features will then be used by the
ranking component to make the correct prediction.

In previous work on learning inference
rules (Berant et al., 2011), it has been shown
that enforcing transitivity constraints on the
inference rules results in significantly improved
performance. The same is likely to be true for
the event ordering task, as scripts have largely
linear structure, and observing that a ≺ b and
b ≺ c is likely to imply a ≺ c. Interestingly, in
our approach we learn the model which satisfies
transitivity constraints, without the need for any
explicit global optimization on a graph. This
results in a significant boost of performance when
using embeddings of just predicates (i.e. ignoring
arguments) with respect to using frequencies of
ordered verb pairs, as in CJ08 (76% vs. 61% on
the natural data).

Our model is solely focusing on the ordering
task, and admittedly does not represent all the in-
formation encoded by a script graph structure. For
example, it cannot be directly used to predict a
missing event given a set of events (the narrative
cloze task (Chambers and Jurafsky, 2009)). Nev-

disembarked passengersbus

predicate embedding 

event embedding

arg embedding

Ta1 Rp Ta2

f(e)

a1 = C(bus) a2 = C(passenger)p = C(disembark)
arg embedding

hidden layerh
Ah

Figure 1: Computation of an event representation
for a predicate with two arguments (the bus disem-
barked passengers), an arbitrary number of argu-
ments is supported by our approach.

ertheless, we believe that the framework (a proba-
bilistic model using event embeddings as its com-
ponent) can be extended to represent other aspects
of script knowledge by modifying the learning ob-
jective, but we leave this for future work. In this
paper, we show how our model can be used to pre-
dict if two event mentions are likely paraphrases
of the same event.

The approach is evaluated in two set-ups. First,
we consider the crowdsourced dataset of Regneri
et al. (2010) and demonstrate that using our model
results in the 13.5% absolute improvement in F1
on event ordering with respect to their graph in-
duction method (84.1% vs. 70.6%). Secondly,
we derive an event ordering dataset from the Gi-
gaword corpus, where we also show that the em-
bedding method beats the frequency-based base-
line (i.e. reimplementation of the scoring compo-
nent of CJ08) by 22.8% in accuracy (83.5% vs.
60.7%).

2 Model

In this section we describe the model we use for
computing event representations as well as the
ranking component of our model.

2.1 Event Representation

Learning and exploiting distributed word repre-
sentations (i.e. vectors of real values, also known
as embeddings) have been shown to be benefi-
cial in many NLP applications (Bengio et al.,
2001; Turian et al., 2010; Collobert et al., 2011).
These representations encode semantic and syn-
tactic properties of a word, and are normally
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learned in the language modeling setting (i.e.
learned to be predictive of local word context),
though they can also be specialized by learning
in the context of other NLP applications such as
PoS tagging or semantic role labeling (Collobert
et al., 2011). More recently, the area of dis-
tributional compositional semantics have started
to emerge (Baroni and Zamparelli, 2011; Socher
et al., 2012), they focus on inducing represen-
tations of phrases by learning a compositional
model. Such a model would compute a represen-
tation of a phrase by starting with embeddings of
individual words in the phrase, often this composi-
tion process is recursive and guided by some form
of syntactic structure.

In our work, we use a simple compositional
model for representing semantics of a verb frame
e (i.e. the predicate and its arguments). We will
refer to such verb frames as events. The model is
shown in Figure 1. Each word ci in the vocabu-
lary is mapped to a real vector based on the cor-
responding lemma (the embedding function C).
The hidden layer is computed by summing linearly
transformed predicate and argument1 embeddings
and passing it through the logistic sigmoid func-
tion. We use different transformation matrices for
arguments and predicates, T and R, respectively.
The event representation f(e) is then obtained by
applying another linear transform (matrix A) fol-
lowed by another application of the sigmoid func-
tion. Another point to note in here is that, as in
previous work on script induction, we use lemmas
for predicates and specifically filter out any tense
markers as our goal is to induce common-sense
knowledge about an event rather than properties
predictive of temporal order in a specific discourse
context.

We leave exploration of more complex and
linguistically-motivated models for future work.2

These event representations are learned in the con-
text of event ranking: the transformation parame-
ters as well as representations of words are forced
to be predictive of the temporal order of events.
In our experiments, we also consider initialization
of predicate and arguments with the SENNA word
embeddings (Collobert et al., 2011).

1Only syntactic heads of arguments are used in this work.
If an argument is a coffee maker, we will use only the word
maker.

2In this study, we apply our model in two very differ-
ent settings, learning from crowdsourced and natural texts.
Crowdsourced collections are relatively small and require not
over-expressive models.

2.2 Learning to Order

The task of learning stereotyped order of events
naturally corresponds to the standard ranking set-
ting. We assume that we are provided with se-
quences of events, and our goal is to capture this
order. We discuss how we obtain this learning ma-
terial in the next section. We learn a linear ranker
(characterized by a vector w) which takes an event
representation and returns a ranking score. Events
are then ordered according to the score to yield
the model prediction. Note that during the learn-
ing stage we estimate not only w but also the
event representation parameters, i.e. matrices T ,
R and A, and the word embedding C. Note that
by casting the event ordering task as a global rank-
ing problem we ensure that the model implicitly
exploits transitivity of the relation, the property
which is crucial for successful learning from finite
amount of data, as we argued in the introduction
and will confirm in our experiments.

At training time, we assume that each training
example k is a list of events e

(k)
1 , . . . , e

(k)

n(k) pro-

vided in the stereotypical order (i.e. e
(k)
i ≺ e

(k)
j if

i < j), n(k) is the length of the list k. We mini-
mize the L2-regularized ranking hinge loss:

�
k

�
i<j≤n(k)

max(0, 1−wTf(e(k)
i ; Θ)+wTf(e(k)

j ; Θ))

+ α(�w�2 + �Θ�2),

where f(e; Θ) is the embedding computed
for event e, Θ are all embedding parame-
ters corresponding to elements of the matrices
{R, C, T, A}. We use stochastic gradient descent,
gradients w.r.t. Θ are computed using back propa-
gation.

3 Experiments

We evaluate our approach in two different set-ups.
First, we induce the model from the crowdsourced
data specifically collected for script induction by
Regneri et al. (2010), secondly, we consider an
arguably more challenging set-up of learning the
model from news data (Gigaword (Parker et al.,
2011)), in the latter case we use a learning sce-
nario inspired by Chambers and Jurafsky (2008).3

3Details about downloading the data and models are at:
http://www.coli.uni-saarland.de/projects/smile/docs/nmReadme.txt

51



Precision (%) Recall (%) F1 (%)
BL EEverb MSA BS EE BL EEverb MSA BS EE BL EEverb MSA BS EE

Bus 70.1 81.9 80.0 76.0 85.1 71.3 75.8 80.0 76.0 91.9 70.7 78.8 80.0 76.0 88.4
Coffee 70.1 73.7 70.0 68.0 69.5 72.6 75.1 78.0 57.0 71.0 71.3 74.4 74.0 62.0 70.2

Fastfood 69.9 81.0 53.0 97.0 90.0 65.1 79.1 81.0 65.0 87.9 67.4 80.0 64.0 78.0 88.9
Return 74.0 94.1 48.0 87.0 92.4 68.6 91.4 75.0 72.0 89.7 71.0 92.8 58.0 79.0 91.0

Iron 73.4 80.1 78.0 87.0 86.9 67.3 69.8 72.0 69.0 80.2 70.2 69.8 75.0 77.0 83.4
Microw. 72.6 79.2 47.0 91.0 82.9 63.4 62.8 83.0 74.0 90.3 67.7 70.0 60.0 82.0 86.4

Eggs 72.7 71.4 67.0 77.0 80.7 68.0 67.7 64.0 59.0 76.9 70.3 69.5 66.0 67.0 78.7
Shower 62.2 76.2 48.0 85.0 80.0 62.5 80.0 82.0 84.0 84.3 62.3 78.1 61.0 85.0 82.1
Phone 67.6 87.8 83.0 92.0 87.5 62.8 87.9 86.0 87.0 89.0 65.1 87.8 84.0 89.0 88.2

Vending 66.4 87.3 84.0 90.0 84.2 60.6 87.6 85.0 74.0 81.9 63.3 84.9 84.0 81.0 88.2
Average 69.9 81.3 65.8 85.0 83.9 66.2 77.2 78.6 71.7 84.3 68.0 79.1 70.6 77.6 84.1

Table 1: Results on the crowdsourced data for the verb-frequency baseline (BL), the verb-only embed-
ding model (EEverb), Regneri et al. (2010) (MSA), Frermann et al. (2014)(BS) and the full model (EE).

3.1 Learning from Crowdsourced Data

3.1.1 Data and task
Regneri et al. (2010) collected descriptions (called
event sequence descriptions, ESDs) of various
types of human activities (e.g., going to a restau-
rant, ironing clothes) using crowdsourcing (Ama-
zon Mechanical Turk), this dataset was also com-
plemented by descriptions provided in the OMICS
corpus (Gupta and Kochenderfer, 2004). The
datasets are fairly small, containing 30 ESDs per
activity type in average (we will refer to different
activities as scenarios), but in principle the col-
lection can easily be extended given the low cost
of crowdsourcing. The ESDs list events forming
the scenario and are written in a bullet-point style.
The annotators were asked to follow the prototyp-
ical event order in writing. As an example, con-
sider a ESD for the scenario prepare coffee :

{go to coffee maker} → {fill water in coffee
maker} → {place the filter in holder} → {place
coffee in filter}→ {place holder in coffee maker}
→ {turn on coffee maker}

Regneri et al. also automatically extracted pred-
icates and heads of arguments for each event, as
needed for their MSA system and our composi-
tional model.

Though individual ESDs may seem simple, the
learning task is challenging because of the limited
amount of training data, variability in the used vo-
cabulary, optionality of events (e.g., going to the
coffee machine may not be mentioned in a ESD),
different granularity of events and variability in
the ordering (e.g., coffee may be put in the filter
before placing it in the coffee maker). Unlike our
work, Regneri et al. (2010) relies on WordNet to
provide extra signal when using the Multiple Se-

quence Alignment (MSA) algorithm. As in their
work, each description was preprocessed to extract
a predicate and heads of argument noun phrases to
be used in the model.

The methods are evaluated on human anno-
tated scenario-specific tests: the goal is to classify
event pairs as appearing in a stereotypical order or
not (Regneri et al., 2010).4

The model was estimated as explained in Sec-
tion 2.2 with the order of events in ESDs treated
as gold standard. We used 4 held-out scenarios
to choose model parameters, no scenario-specific
tuning was performed, and the 10 test scripts were
not used to perform model selection. The selected
model used the dimensionality of 10 for event and
word embeddings. The initial learning rate and the
regularization parameter were set to 0.005 and 1.0,
respectively and both parameters were reduced by
the factor of 1.2 every epoch the error function
went up. We used 2000 epochs of stochastic gradi-
ent descent. Dropout (Hinton et al., 2012) with the
rate of 20% was used for the hidden layers in all
our experiments. When testing, we predicted that
the event pair (e1,e2) is in the stereotypical order
(e1 ≺ e2) if the ranking score for e1 exceeded the
ranking score for e2.

3.1.2 Results and discussion
We evaluated our event embedding model (EE)
against baseline systems (BL , MSA and BS). MSA
is the system of Regneri et al. (2010). BS is a
hierarchical Bayesian model by Frermann et al.
(2014). BL chooses the order of events based on
the preferred order of the corresponding verbs in
the training set: (e1, e2) is predicted to be in the

4The event pairs are not coming from the same ESDs
making the task harder as the events may not be in any tem-
poral relation.
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stereotypical order if the number of times the cor-
responding verbs v1 and v2 appear in this order
in the training ESDs exceeds the number of times
they appear in the opposite order (not necessary at
adjacent positions); a coin is tossed to break ties
(or if v1 and v2 are the same verb). This frequency
counting method was previously used in CJ08.5

We also compare to the version of our model
which uses only verbs (EEverbs). Note that
EEverbs is conceptually very similar to BL, as it es-
sentially induces an ordering over verbs. However,
this ordering can benefit from the implicit transi-
tivity assumption used in EEverbs (and EE), as we
discussed in the introduction. The results are pre-
sented in Table 1.

The first observation is that the full model im-
proves substantially over the baseline and the pre-
vious method (MSA) in F1 (13.5% improvement
over MSA and 6.5% improvement over BS). Note
also that this improvement is consistent across sce-
narios: EE outperforms MSA and BS on 9 scenar-
ios out of 10 and 8 out of 10 scenarios in case of
BS. Unlike MSA and BS, no external knowledge
(i.e. WordNet) was exploited in our method.

We also observe a substantial improvement in
all metrics from using transitivity, as seen by com-
paring the results of BL and EEverb (11% improve-
ment in F1). This simple approach already sub-
stantially outperforms the pipelined MSA system.
These results seem to support our hypothesis in
the introduction that inducing graph representa-
tions from scripts may not be an optimal strategy
from the practical perspective.

We performed additional experiments using the
SENNA embeddings (Collobert et al., 2011). In-
stead of randomly initializing arguments and pred-
icate embeddings (vectors), we initialized them
with pre-trained SENNA embeddings. We have
not observed any significant boost in performance
from using the initialization (average F1 of 84.0%
for EE). We attribute the lack of significant im-
provement to the following three factors. First
of all, the SENNA embeddings tend to place
antonyms / opposites near each other (e.g., come
and go, or end and start). However, ‘opposite’
predicates appear in very different positions in
scripts. Additionally, the SENNA embeddings
have dimensionality of 50 which appears to be

5They scored permutations of several events by summing
the logarithmed differences of the frequencies of ordered verb
pairs. However, when applied to event pairs, their approach
would yield exactly the same prediction rule as BL.

too high for small crowd-sourced datasets, as it
forces us to use larger matrices T and R. More-
over, the SENNA embeddings are estimated from
Wikipedia, and the activities in our crowdsourced
domain are perhaps underrepresented there.

3.1.3 Paraphrasing
Regneri et al. (2010) additionally measure para-
phrasing performance of the MSA system by com-
paring it to human annotation they obtained: a sys-
tem needs to predict if a pair of event mentions are
paraphrases or not. The dataset contains 527 event
pairs for the 10 test scenarios. Each pair consists
of events from the same scenario. The dataset is
fairly balanced containing from 47 to 60 examples
per scenario.

This task does not directly map to any statisti-
cal inference problem with our model. Instead we
use an approach inspired by the interval algebra of
Allen (1983).

Our ranking model maps event mentions to po-
sitions on the time line (see Figure 2). However,
it would be more natural to assume that events are
intervals rather than points. In principle, these in-
tervals can be overlapping to encode a rich set of
temporal relations (see (Allen, 1983)). However,
we make a simplifying assumption that the inter-
vals do not overlap and every real number belongs
to an interval. In other words, our goal is to induce
a segmentation of the line: event mentions corre-
sponding to the same interval are then regarded as
paraphrases.

One natural constraint on this segmentation is
the following: if two event mentions are from the
same training ESD, they cannot be assigned to the
same interval (as events in ESD are not supposed
to be paraphrases). In Figure 2 arcs link event
mentions from the same ESD. We look for a seg-
mentation which produces the minimal number of
segments and satisfy the above constraint for event
mentions appearing in training data.

Though inducing intervals given a set of tem-
poral constraints is known to be NP-hard in gen-
eral (see, e.g., (Golumbic and Shamir, 1993)), for
our constraints a simple greedy algorithm finds an
optimal solution. We trace the line from the left
maintaining a set of event mentions in the current
unfinished interval and create a boundary when the
constraint is violated; we repeat the process un-
til we processed all mentions. In Figure 2, we
would create the first boundary between arrive
in a restaurant and order beverages: order bev-
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Figure 2: Events on the time line, dotted arcs link
events from the same ESD.

erages and enter a restaurant are from the same
ESD and continuing the interval would violate
the constraint. It is not hard to see that this re-
sults in an optimal segmentation. First, the seg-
mentation satisfies the constraint by construction.
Secondly, the number of segments is minimal as
the arcs which caused boundary creation are non-
overlapping, each of these arcs needs to be cut and
our algorithm cuts each arc exactly once.

This algorithm prefers to introduce a bound-
ary as late as possible. For example, it would
introduce a boundary between browse a menu
and review options in a menu even though the
corresponding points are very close on the line.
We modify the algorithm by moving the bound-
aries left as long as this move does not result
in new constraint violations and increases mar-
gin at boundaries. In our example, the boundary
would be moved to be between order beverages
and browse a menu, as desired.

The resulting performance is reported in Ta-
ble 2. We report results of our method, as well as
results for MSA, BS and a simple all-paraphrase
baseline which predict that all mention pairs in a
test set are paraphrases (APBL).6 We can see that
interval induction technique results in a lower F1
than that of MSA or BS. This might be partially
due to not using external knowledge (WordNet) in
our method.

We performed extra analyses on the develop-
ment scenario doorbell. The analyses revealed that
the interval induction approach is not very robust
to noise: removing a single noisy ESD results in a
dramatic change in the interval structure induced
and in a significant increase of F1. Consequently,
soft versions of the constraint would be beneficial.
Alternatively, event embeddings (i.e. continuous
vectors) can be clustered directly. We leave this

6The results for the random baseline are lower: F1 of
40.6% in average.

Scenario F1 (%)
APBL MSA BS EE

Take bus 53.7 74.0 47.0 63.5
Make coffee 42.1 65.0 52.0 63.5

Order fastfood 37.0 59.0 80.0 62.6
Return food back 64.8 71.0 67.0 81.1

Iron clothes 43.3 67.0 60.0 56.7
Microwave cooking 43.2 75.0 82.0 57.8

Scrambled eggs 57.6 69.0 76.0 53.0
Take shower 42.1 78.0 67.0 55.7

Answer telephone 71.0 89.0 81.0 79.4
Vending machine 56.1 69.0 77.0 69.3

Average 51.1 71.6 68.9 64.5

Table 2: Paraphrasing results on the crowdsourced
data for Regneri et al. (2010) (MSA), Frermann
et al. (2014)(BS) and the all-paraphrase baseline
(APBL) and using intervals induced from our
model (EE).

investigation for future work.

3.2 Learning from Natural Text
In the second set of experiments we consider a
more challenging problem, inducing knowledge
about the stereotyped ordering of events from nat-
ural texts. In this work, we are largely inspired
by the scenario of CJ08. The overall strategy is
the following: we process the Gigaword corpus
with a high precision rule-based temporal classi-
fier relying on explicit clues (e.g., “then”, “after”)
to get ordered pairs of events and then we train
our model on these pairs (note that clues used by
the classifier are removed from the examples, so
the model has to rely on verbs and their argu-
ments). Conceptually, the difference between our
approach and CJ08 is in using a different tempo-
ral classifier, not enforcing that event pairs have
the same protagonist, and learning an event em-
bedding model instead of scoring event sequences
based on verb-pair frequencies.

We also evaluate our system on examples ex-
tracted using the same temporal classifier (but val-
idated manually) which allows us to use much
larger tests set, and, consequently, provide more
detailed and reliable error analysis.

3.2.1 Data and task
The Gigaword corpus consists of news data from
different news agencies and newspapers. For test-
ing and development we took the AFP (Agence
France-Presse) section, as it appeared most differ-
ent from the rest when comparing sets of extracted
event pairs (other sections correspond mostly to
US agencies). The AFP section was not used for
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Accuracy (%)
BL 60.7
CJ08 60.1
EEverb 75.9
EE 83.5

Table 3: Results on the Gigaword data for the
verb-frequency baseline (BL), the verb-only em-
bedding model (EEverb), the full model (EE) and
CJ08 rules.

training. This selection strategy was chosen to cre-
ate a negative bias for our model which is more
expressive than the baseline methods and, conse-
quently, better at memorizing examples.

As a rule-based temporal classifier, we used
high precision “happens-before” rules from the
VerbOcean system (Chklovski and Pantel, 2004).
Consider “to �verb-x� and then �verb-y�” as one
example of such rule. We used predicted collapsed
Stanford dependencies (de Marneffe et al., 2006)
to extract arguments of the verbs, and used only
a subset of dependents of a verb.7 This prepro-
cessing ensured that (1) clues which form part of
a pattern are not observable by our model both at
train and test time; (2) there is no systematic dif-
ference between both events (e.g., for collapsed
dependencies, the noun subject is attached to both
verbs even if the verbs are conjoined); (3) no in-
formation about the order of events in text is avail-
able to the models. Applying these rules resulted
in 22,446 event pairs for training, and we split
additional 1,015 pairs from the AFP section into
812 for final testing and 203 for development. We
manually validated random 50 examples and all 50
of them followed the correct temporal order, so we
chose not to hand correct the test set.

We largely followed the same training and eval-
uation regime as for the crowdsourced data. We
set the regularization parameter and the learning
rate to 0.01 and 5.e − 4 respectively. The model
was trained for 600 epochs. The embedding sizes
were 30 and 50 dimensions for words and events,
respectively.

3.2.2 Results and discussion
In our experiments, as before, we use BL as a
baseline, and EEverb as a verb-only simplified
version of our approach. We used another baseline

7The list of dependencies not considered: aux, auxpass,
attr, appos, cc, conj, complm, cop, dep, det, punct, mwe.

consisting of the verb pair ordering counts pro-
vided by Chambers and Jurafsky (2008).8 We re-
fer this baseline as CJ08. Note also that BL can be
regarded as a reimplementation of CJ08 but with
a different temporal classifier. We report results in
Table 3.

The observations are largerly the same as be-
fore: (1) the full model substantially outperforms
all other approaches (p-level < 0.001 with the per-
mutation test); (2) enforcing transitivity is very
helpful (75.9 % for EEverb vs. 60.1% for BL).
Surprisingly CJ08 rules produce as good results
as BL, suggesting that maybe our learning set-ups
are not that different.

However, an interesting question is in which sit-
uations using a more expressive model, EE, is ben-
eficial. If these accuracy gains have to do with
memorizing the data, it may not generalize well
to other domains or datasets. In order to test this
hypothesis we divided the test examples in three
frequency bands according to the frequency of the
corresponding verb pairs in the training set (to-
tal, in both orders). There are 513, 249 and 50
event pairs in the bands corresponding to unseen
pairs of verbs, frequency ≤ 10 and frequency >
10, respectively. These counts emphasize that cor-
rect predictions on unseen pairs are crucial and
these are exactly where BL would be equivalent
to a random guess. Also, this suggest, even before
looking into the results, that memorization is irrel-
evant. The results for BL, CJ08, EEverb and EE
are shown in Figure 3.

One observation is that most gains for EE and
EEverb are due to an improvement on unseen pairs.
This is fairly natural, as both transitivity and in-
formation about arguments are the only sources
of information available. In this context it is im-
portant to note that some of the verbs are light,
in the sense that they have little semantic content
of their own (e.g., take, get) and the event seman-
tics can only be derived from analyzing their argu-
ments (e.g., take an exam vs. take a detour). On
the high frequency verb pairs all systems perform
equally well, except for CJ08 as it was estimated
from somewhat different data.

In order to understand how transitivity works,
we considered a few unseen predicate pairs where
the EEverb model was correctly predicting their
order. For many of these pairs there were no infer-

8These verb pair frequency counts are available at
www.usna.edu/Users/cs/nchamber/data/schemas/acl09/verb-
pair-orders.gz
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Figure 3: Results for different frequency bands:
unseen, medium frequency (between 1 and 10)
and high frequency (> 10) verb pairs.

ence chains of length 2 (e.g., chain of length 2 was
found for the pair accept ≺ carry: accept ≺ get
and get ≺ carry but not many other pairs). This
observation suggest that our model captures some
non-trivial transitivity rules.

4 Related Work

Additionally to the work on script induction
discussed above (Chambers and Jurafsky, 2008,
2009; Regneri et al., 2010), other methods for
unsupervised learning of event semantics have
been proposed. These methods include unsu-
pervised frame induction techniques (O’Connor,
2012; Modi et al., 2012). Frames encode situa-
tions (or objects) along with their participants and
properties (Fillmore, 1976). Events in these un-
supervised approaches are represented with cate-
gorical latent variables, and they are induced rely-
ing primarily on the selectional preferences’ sig-
nal. The very recent work of Cheung et al. (2013)
can be regarded as their extension but Cheung et
al. also model transitions between events with
Markov models. However, neither of these ap-
proaches considers (or directly optimizes) the dis-
criminative objective of learning to order events,
and neither of them uses distributed representa-
tions to encode semantic properties of events.

As we pointed out before, our embedding ap-
proach is similar (or, in fact, a simplification of)
the phrase embedding methods studied in the re-
cent work on distributional compositional seman-
tics (Baroni and Zamparelli, 2011; Socher et al.,
2012). However, they have not specifically looked
into representing script information. Approaches
which study embeddings of relations in knowledge
bases (e.g., Riedel et al. (2013)) bear some similar-

ity to the methods proposed in this work but they
are mostly limited to binary relations and deal with
predicting missing relations rather than with tem-
poral reasoning of any kind.

Identification of temporal relations within a text
is a challenging problem and an active area of re-
search (see, e.g., the TempEval task (UzZaman
et al., 2013)). Many rule-based and supervised ap-
proaches have been proposed in the past. How-
ever, integration of common sense knowledge in-
duced from large-scale unannotated resources still
remains a challenge. We believe that our approach
will provide a powerful signal complementary to
information exploited by most existing methods.

5 Conclusions

We have developed a statistical model for rep-
resenting common sense knowledge about proto-
typical event orderings. Our model induces dis-
tributed representations of events by composing
predicate and argument representations. These
representations capture properties relevant to pre-
dicting stereotyped orderings of events. We learn
these representations and the ordering component
from unannotated data. We evaluated our model
in two different settings: from crowdsourced data
and natural news texts. In both set-ups our method
outperformed baselines and previously proposed
systems by a large margin. This boost in perfor-
mance is primarily caused by exploiting transitiv-
ity of temporal relations and capturing information
encoded by predicate arguments.

The primary area of future work is to exploit
our method in applications such as question an-
swering. Another obvious applications is discov-
ery of temporal relations within documents (Uz-
Zaman et al., 2013) where common sense knowl-
edge implicit in script information, induced from
large unannotated corpora, should be highly ben-
eficial. Our current model uses a fairly naive se-
mantic composition component, we plan to extend
it with more powerful recursive embedding meth-
ods which should be especially beneficial when
considering very large text collections.
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Abstract

We present a model for generating path-
valued interpretations of natural language
text. Our model encodes a map from
natural language descriptions to paths,
mediated by segmentation variables which
break the language into a discrete set of
events, and alignment variables which
reorder those events. Within an event,
lexical weights capture the contribution of
each word to the aligned path segment.
We demonstrate the applicability of our
model on three diverse tasks: a new color
description task, a new financial news task
and an established direction-following
task. On all three, the model outperforms
strong baselines, and on a hard variant of
the direction-following task it achieves
results close to the state-of-the-art system
described in Vogel and Jurafsky (2010).

1 Introduction

This paper introduces a probabilistic model for
predicting grounded, real-valued trajectories from
natural language text. A long tradition of re-
search in compositional semantics has focused on
discrete representations of meaning. The origi-
nal focus of such work was on logical translation:
mapping statements of natural language to a for-
mal language like first-order logic (Zettlemoyer
and Collins, 2005) or database queries (Zelle and
Mooney, 1996). Subsequent work has integrated
this logical translation with interpretation against
a symbolic database (Liang et al., 2013).

There has been a recent increase in interest
in perceptual grounding, where lexical semantics
anchor in perceptual variables (points, distances,
etc.) derived from images or video. Bruni et al.
(2014) describe a procedure for constructing word
representations using text- and image-based dis-
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U.S. stocks rebound after bruising two-day swoon

Figure 1: Example stock data. The chart displays
index value over a two-day period (divided by the
dotted line), while the accompanying headline de-
scribes the observed behavior.

tributional information. Yu and Siskind (2013)
describe a model for identifying scenes given de-
scriptions, and Golland et al. (2010), Kollar et al.
(2010), and Krishnamurthy and Kollar (2013) de-
scribe models for identifying individual compo-
nents of scenes described by text. These all have
the form of matching problems between text and
observed groundings—what has been missing so
far is the ability to generate grounded interpreta-
tions from scratch, given only text.

Our work continues in the tradition of this per-
ceptual grounding work, but makes two contribu-
tions. First, our approach is able to predict simple
world states (and their evolution): for a general
class of continuous domains, we produce a repre-
sentation of p(world | text) that admits easy sam-
pling and maximization. This makes it possible to
produce grounded interpretations of text without
reference to a pre-existing scene. Simultaneously,
we extend the range of temporal phenomena that
can be modeled—unlike the aforementioned spa-
tial semantics work, we consider language that de-
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scribes time-evolving trajectories, and unlike Yu
and Siskind (2013), we allow these trajectories to
have event substructure, and model temporal or-
dering. Our class of models generalizes to a vari-
ety of different domains: a new color-picking task,
a new financial news task, and a more challenging
variant of the direction-following task established
by Vogel and Jurafsky (2010).

As an example of the kinds of phenomena we
want to model, consider Figure 1, which shows
the value of the Dow Jones Industrial Average
over June 3rd and 4th 2008, along with a finan-
cial news headline from June 4th. There are sev-
eral effects of interest here. One phenomenon we
want to capture is that the lexical semantics of in-
dividual words must be combined: swoon roughly
describes a drop while bruising indicates that the
drop was severe. We isolate this lexical combi-
nation in Section 4, where we consider a limited
model of color descriptions (Figure 2). A second
phenomenon is that the description is composed
of two separate events, a swoon and a rebound;
moreover, those events do not occur in their tex-
tual order, as revealed by after. In Section 5, we
extend the model to include segmentation and or-
dering variables and apply it to this stock data.

The situation where language describes a
path through some continuous space—literal or
metaphorical—is more general than stock head-
lines. Our claim is that a variety of problems
in language share these same characteristics. To
demonstrate generality of the model, we also ap-
ply it in Section 6 to a challenging variant of the
direction-following task described by Vogel and
Jurafsky (2010) (Figure 3), where we achieve re-
sults close to a state-of-the-art system that makes
stronger assumptions about the task.

2 Three tasks in grounded semantics

The problem of inferring a structured state repre-
sentation from sensory input is a hard one, but we
can begin to tackle grounded semantics by restrict-
ing ourselves to cases where we have sequences
of real-valued observations directly described by
text. In this paper we’ll consider the problems
of recognizing colors, describing time series, and
following navigational instructions. While these
tasks have been independently studied, we believe
that this is the first work which presents them in
a unified framework, and carries them out with a
single family of models.

.
dark pastel blue

(a) (b)

Figure 2: Example color data: (a) a named color;
(b) its coordinates in color space.

Colors Figure 2 shows a color called dark pas-
tel blue. English speakers, even if unfamiliar with
the specific color, can identify roughly what the
name signifies because of prior knowledge of the
meanings of the individual words.

Because the color domain exhibits lexical com-
positionality but not event structure, we present it
here to isolate the non-temporal compositional ef-
fects in our model. Any color visible to the human
eye can be identified with three coordinates, which
we’ll take to be hue, saturation and value (HSV).
As can be seen in Figure 2 the “hue” axis corre-
sponds to the differentiation made by basic color
names in most languages. Other modifiers act on
the saturation and value axes: either simple ones
like dark (which decreases value), or more compli-
cated ones like pastel (which increases value and
decreases saturation). Given a set of named colors
and their HSV coordinates, a learning algorithm
should be able to identify the effects of each word
in the vocabulary and predict the appearance of
new colors with previously-unseen combinations
of modifiers.

Compositional interpretations of color have re-
ceived attention in linguistics and philosophy of
language (Kennedy and McNally, 2010), but while
work in grounded computational semantics like
that of Krishnamurthy and Kollar (2013) has suc-
ceeded in learning simple color predicates, our
model is the first to capture the machine learning
of color in a fine-grained, compositional way.

Time series As a first step into temporal struc-
ture, we’ll consider language describing the be-
havior of stock market indices. Here, again, there
is a simple parameterization—in this case just a
single number describing the total value of the
index—but as shown by the headline example in
Figure 1, the language used to describe changes
in the stock market can be quite complex. Head-
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right round the white water [. . . ] but stay quite close ’cause
you don’t otherwise you’re going to be in that stone creek

Figure 3: Example map data: a portion of a map,
and a single line from a dialog which describes
navigation relative to the two visible landmarks.

lines may describe multiple events, or multi-part
events like rebound or extend; stocks do not sim-
ply rise or fall, but stagger, stumble, swoon, and
so on. There are compositional effects here as
well: distinction is made between falling and
falling sharply; gradual trends are distinguished
from those which occur suddenly, at the beginning
or end of the trading day. Along with temporal
structure, the problem requires a more sophisti-
cated treatment of syntax than the colors case—
now we have to identify which subspans of the
sentence are associated with each event observed,
and determine the correspondence between sur-
face order and actual order in time.

The learning of correspondences between text
and time series has attracted more interest in nat-
ural language generation than in semantics (Yu et
al., 2007). Research on natural language process-
ing and stock data, meanwhile, has largely focused
on prediction of future events (Kogan et al., 2009).

Direction following We’ll conclude by apply-
ing our model to the well-studied problem of
following navigational directions. A variety of
reinforcement-learning approaches for following
directions on a map were previously investigated
by Vogel and Jurafsky (2010) using a corpus as-
sembled by Anderson et al. (1991). An example
portion of a path and its accompanying instruction
is shown in Figure 3. While also representable as
a set of real valued coordinates, here 2-d, this data
set looks very different—a typical example con-
sists of more than a hundred sentences of the kind
shown in Figure 3, accompanying a long path. The
language, a transcript of a spoken dialog, is also

considerably less formal than the language found
in the Wall Street Journal examples, involving dis-
fluency, redundancy and occasionally errors. Nev-
ertheless the underlying structure of this problem
and the stock problem are fundamentally similar.

In addition to Vogel and Jurafsky, Tellex et al.
(2011) give a weakly-supervised model for map-
ping single sentences to commands, and Brana-
van et al. (2009) give an alternative reinforcement-
learning approach for following long command se-
quences. An intermediate between this approach
and ours is the work of Chen and Mooney (2011)
and Artzi and Zettlemoyer (2013), which boot-
strap a semantic parser to generate logical forms
specifying the output path, rather than predicting
the path directly.

Between them, these tasks span a wide range of
linguistic phenomena relevant to grounded seman-
tics, and provide a demonstration of the useful-
ness and general applicability of our model. While
development of the perceptual groundwork neces-
sary to generalize these results to more complex
state spaces remains a major problem, our three
examples provide a starting point for studying the
relationship between perception, time and the se-
mantics of natural language.

3 Preliminaries

In the experiments that follow, each training ex-
ample will consist of:

– Natural language text, consisting of a con-
stituency parse tree or trees. For a given ex-
ample, we will denote the associated trees
(T1, T2, . . .). These are also observed at test
time, and used to predict new groundings.

– A vector-valued, grounded observation, or
a sequence of observations (a path), which
we will denote V for a given example. We
will further assume that each of these paths
has been pre-segmented (discussed in detail
in Section 5) into a sequence (V1,V2, . . .).
These are only observed during training.

The probabilistic backbone of our model is a
collection of linear and log-linear predictors. Thus
it will be useful to work with vector-valued rep-
resentations of both the language and the path,
which we accomplish with a pair of feature func-
tions ϕt and ϕv. As the model is defined only
in terms of these linear representations, we can
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ϕt(T )
■ Label at root of T

■ Lemmatized leaves of T

ϕv(V )
■ Last element of V

■ Curvature of quadratic

approx. to V (stocks only)

ϕa(T,Ai, Ai−1)

Cartesian prod. of ϕt(T ) with:
■ I[Ai is aligned]
■ I[Ai−1 is aligned]
■ A1 −Ai−1 (if both aligned)

Table 1: Features used for linear parameterization
of the grounding model.

simplify notation by writing Ti = ϕt(Ti) and
Vi = ϕv(Vi). As the ultimate prediction task is to
produce paths, and not their featurized representa-
tions, we will assume that it is also straightforward
to compute ϕ−1

v , which projects path features back
into the original grounding domain.

All parse trees are predicted from input text us-
ing the Berkeley Parser (Petrov and Klein, 2007).
Feature representations for both trees and paths are
simple and largely domain-independent; they are
explicitly enumerated in Table 1.

The general framework presented here leaves
one significant problem unaddressed: given a large
state vector encoding properties of multiple ob-
jects, how do we resolve an utterance about a sin-
gle object to the correct subset of indices in the
vector? While none of the tasks considered in this
paper require an argument resolution step of this
kind, interpretation of noun phrases is one of the
better-studied problems in compositional seman-
tics (Zelle and Mooney (1996), inter alia), and
we expect generalization of this approach to be
straightforward using these tools.

We will consider the color, stock, and naviga-
tion tasks in turn. It is possible to view the models
we give for all three as instantiations of the same
graphical model, but for ease of presentation we
will introduce this model incrementally.

4 Predicting vectors

Prediction of a color variable from text has the
form of a regression problem: given a vector of
lexical features extracted from the name, we wish
to predict the entries of a vector in color space. It
seems linguistically plausible that this regression
is sparse and linear: that most words, if they pro-
vide any constraints at all, tend to express prefer-

ences about a subset of the available dimensions;
and that composition within the domain of a sin-
gle event largely consists of words additively pre-
dicting that event’s parameters, without complex
nonlinear interactions. This is motivated by the
observation that pragmatic concerns force linguis-
tic descriptors to orient themselves along a small
set of perceptual bases: once we have words for
north and east, we tend to describe intermediates
as northeast rather than inventing an additional
word which means “a little of both”.

As discussed above, we can represent a color as
a point in a three-dimensional HSV space. Let T
denote features on the parse tree of the color name,
and V its representation in color space (consistent
with the definition of ϕv given in Table 1). Linear-
ity suggests the following model:

p(T, V ) ∝ e−∥θ⊤t T−V ∥2

2 (1)

The learning problem is then:

argmin
θt

∑
T,V

∥∥∥θ⊤t T − V
∥∥∥2

2
(2)

which, with a sparse prior on θt, is the proba-
bilistic formulation of Lasso regression (Tibshi-
rani, 1996), for which standard tools are available
in the optimization literature.

To predict color space values from a new (fea-
turized) name T , we output:

argmax
V

p(T, V ) = θ⊤t T

4.1 Evaluation
We collect a set of color names and their
corresponding HSV triples from the English
Wikipedia’s List of Colors, retaining only those
color names in which every word appears at least
three times in the training corpus. This leaves a
set of 419 colors, which we randomly divide into
a 377-item training set and 42-item test set. The
model’s goal will be to learn to identify new col-
ors given only their names.

We consider two evaluations: one which mea-
sures the model’s ability to distinguish the named
color from a random alternative—analogous to the
evaluation in Yu and Siskind (2013)—and one
which measures the absolute difference between
predicted and true color values. In particular, in
the first evaluation the model is presented with
the name of a color and a pair of candidates, one
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Method Sel. ↑ H ↓ S ↓ V ↓
Random 0.50 0.30 0.38 0.39

Last word 0.78 0.05 0.26 0.17
Full model 0.81 0.07 0.21 0.13

Human 0.86 - - -

Table 2: Results for the color selection task.
Sel(ection accuracy) is frequency with which the
system was able to correctly identify the color de-
scribed when paired with a random alternative.
Other columns are the magnitude of the average
prediction error along the axes of the color space.
Full model selection accuracy is a statistically sig-
nificant (p < 0.05) improvement over the baseline
using a paired sign test.

the color corresponding to the name and another
drawn randomly from the test set, and report the
fraction of times the true color is assigned a higher
probability than the random alternative. In the sec-
ond, we report the absolute value of the difference
between true and predicted hue, saturation, and lu-
minosity.

We compare against two baselines: one which
looks only at the last word in the color name (al-
most always a hue category), and so captures no
compositional effects, and another which outputs
random values for all three coordinates. Results
are shown in Table 2. The model with all lexical
features outperforms both baselines on selection
and all but one absolute error metric.

4.2 Error analysis

An informal experiment in which the color selec-
tion task was repeated on one of the authors’ col-
leagues (the “Human” row in Table 2) yielded an
accuracy of 86%, only 5% better than the system.
While not intended as a rigorous upper bound on
performance, this suggests that the model capac-
ity and training data are sufficient to capture most
interesting color behavior. The errors that do oc-
cur appear to mostly be of two kinds. In one case,
a base color is seen only with a small (or related)
set of modifiers, from which the system is unable
to infer the meaning of the base color (e.g. from
Japanese indigo, lavender indigo, and electric in-
digo, the learning algorithm infers that indigo is
bright purple). In the other, no part of the color
word is seen in training, and the system outputs an
unrelated “default” color (teal is predicted to be
bright red).

5 Predicting paths

The idea that a sentence’s meaning is fundamen-
tally described by a set of events, each associated
with a set of predicates, is well-developed in neo-
Davidsonian formal semantics (Parsons, 1990).
We adopt the skeleton of this formal approach by
tying our model to (latent) partitions of the in-
put sentence into disjoint events. Rather than at-
tempting to pass through a symbolic meaning rep-
resentation, however, this event structure will be
used to map text directly into the grounding do-
main. We assume that this domain has pre-existing
structure—in particular, that in our input paths V ,
the boundaries of events have already been iden-
tified, and that the problem of aligning text to
portions of the segment only requires aligning to
segment indices rather than fine-grained time in-
dices. This is a strong assumption, and one that
future work may wish to revisit, but there exist
both computational tools from the changepoint de-
tection literature (Basseville and Nikiforov, 1995)
and pieces of evidence from cognitive science (Za-
cks and Swallow, 2007) which suggest that assum-
ing a pre-linguistic structuring of events is a rea-
sonable starting point.

In the text domain, we make the corresponding
assumption that each of these events is syntacti-
cally local—that a given span of the input sentence
provides information about at most one of these
segmented events.

The main structural difference between the
color example in Figure 2 and the stock market ex-
ample in Figure 1 is the introduction of a time di-
mension orthogonal to the dimensions of the state
space. To accommodate this change, we extend
the model described in the previous subsection in
the following way: Instead of a single vector, each
tree representation T is paired with a sequence of
path features V = (V1, V2, . . . , VM ). For the time
being we continue to assume that there is only
one input tree per training example. As before,
we wish to model the probability p(T,V), but the
problem becomes harder: a single sentence might
describe multiple events, but we don’t know what
the correspondence is between regions of the sen-
tence and segments V.

Though the ultimate goal is still prediction of V
vectors from novel T instances, we cannot do this
without also inferring a set of latent alignments be-
tween portions of the path and input sentence dur-
ing training. To allow a sentence to explain mul-
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· · ·

A1 A2C1 C2

V1 V2

T 1 T 2

[Stocks rose] [Stocks rose, then fell]

 acv

 a⇤

 ta  tc

Figure 4: Factor graph for stocks grounding
model. Only a subset of the alignment candidates
are shown. ψtc maps text to constraints, ψacv maps
constraints to grounded segments, and ψta deter-
mines which constraints act on which segments.

tiple events, we’ll break each T apart into a set of
alignment candidates T i. We’ll allow as an align-
ment candidate any subtree of T , and additionally
any subtree from which a single constituent has
been deleted.

We then introduce two groups of latent vari-
ables: alignment variables A = (A1, A2, . . .),
which together describe a mapping from pieces
of the input sentence to segments of the ob-
served path, and what we’ll call “constraint” vari-
ables C = (C1, C2, . . .), which express each
aligned tree segment’s prediction about what its
corresponding path should look like (so that the
possibly-numerous parts of the tree aligned to a
single segment can independently express prefer-
ences about the segment’s path features).

In addition to ensuring that the alignment is
consistent with the bracketing of the tree, it might
be desirable to impose additional global con-
straints on the alignment. There are various ways
to do this in a graphical modeling framework; the
most straightforward is to add a combinatorial fac-
tor touching all alignment variables which checks
for satisfaction of the global constraint. In gen-
eral this makes alignment intractable. If the total
number of alignments licensed by this combina-
torial factor is small (i.e. if acceptable alignments
are sparse within the exponentially-large set of all
possible assignments to A), it is possible to di-
rectly sum them out during inference. Otherwise

approximate techniques (as discussed in the fol-
lowing section) will be necessary.

As discussed in Section 2, our financial time-
lines cover two-day periods, and it seems natural
to treat each day as a separate event. Then
the simple regression model described in the
preceding section, extended to include alignment
and constraint variables, has the form of the factor
graph shown in Figure 4. In particular, the joint
distribution p(T,V) is the product of four groups
of factors:

Alignment factors ψta, which use a log-linear
model to score neighboring pairs of factors with
a feature function ϕa:

ψta(T i, Ai, Ai−1) =

eθ
⊤
a ϕa(Ti,Ai,Ai−1)∑

A′
i,A

′
i−1

eθ
⊤
a ϕa(T i,A′

i,A
′
i−1)

(3)

Constraint factors ψtc, which map text features
onto constraint values:

ψtc(T i, Ci) = e−||θ
⊤
t Ti−Ci||22 (4)

Prediction factors ψacv which encourage pre-
dicted constraints and path features to agree:

ψacv(Ai, Ci, Vj) =

{
1 if Ai ̸= j

e−||Ci−Vj ||22 o.w.
(5)

A global factor ψa∗(A1, A2, · · · ) which places
an arbitrary combinatorial constraint on the
alignment.

Note the essential similarity between Equations 1
and 4—in general, it can be shown that this factor
model reduces to the regression model we gave for
colors when there is only one of each T i and Vj .

5.1 Learning
In order to make learning in the stocks domain
tractable, we introduce the following global
constraints on alignment: every terminal must be
aligned, and two constituents cannot be aligned
to the same segment. Together, these simplify
learning by ensuring that the number of terms
in the sum over A and C is polynomial (in fact
O(n2)) in the length of the input sentence. We
wish to find the maximum a posteriori estimate
p(θt, θa|T,V) for θt and θa, which we can do
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using the Expectation–Maximization algorithm.
To find regression scoring weights θt, we have:

E step:

M = E

[∑
i

T i(T i)⊤
]

; N = E

[∑
i

T iV ⊤
Ai

]
(6)

M step:

θt = M−1N (7)

To find alignment scoring weights θa, we must
maximize:

∑
i

E

log

 eθ
⊤
a ϕa(Ai,Ai−1,T i)∑

A′
i,A

′
i−1

eθ
⊤
a ϕa(A′

i,A
′
i−1,T i)

 (8)

which can be done using a variety of convex op-
timization tools; we used L-BFGS (Liu and No-
cedal, 1989).

The predictive distribution p(V|T ) can also be
straightforwardly computed using the standard in-
ference procedures for graphical models.

5.2 Evaluation
Our stocks dataset consists of a set of headlines
from the “Market Snapshot” column of the Wall
Street Journal’s MarketWatch website,1 paired
with hourly stock charts for each day described
in a headline. Data is collected over a roughly
decade-long period between 2001 and 2012; af-
ter removing weekends and days with incomplete
stock data, we have a total of 2218 headline/time
series pairs. As headlines most often discuss a
single day or a short multi-day period, each train-
ing example consists of two days’ worth of stock
data concatenated together. We use a 90%/10%
train/test split, with all test examples following all
training examples chronologically.

We compare against two baselines: one which
uses no text (and so learns only the overall mar-
ket trend during the training period), and another
which uses a fixed alignment instead of summing,
aligning the entire tree to the second day’s time se-
ries. Prediction error is the sum of squared errors
between the predicted and gold time series.

We report both the magnitude of the prediction
error, and the model’s ability to distinguish be-
tween the described path and a randomly-selected
alternative. The system scores poorly on squared

1http://www.marketwatch.com/Search?m=
Column&mp=Market%20Snapshot
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[U.S. stocks end lower]2 [as economic worries persist]1

Figure 5: Example output from the stocks task.
The model prediction is given in blue (solid), and
the reference time series in green (dashed). Brack-
ets indicate the predicted boundaries of event-
introducing spans, and subscripts their order in the
sentence. The model correctly identifies that end
lower refers to the current day, and persist pro-
vides information about the previous day.

Method Sel. acc. ↑ Pred. err. ↓
No text 0.51 0.0012

Fixed alignment 0.59 0.0011
Full model 0.61 0.0018

Human 0.72 –

Table 3: Results for the stocks task. Sel(ection
accuracy) measures the frequency with which the
system correctly identifies the stock described in
the headline when paired with a random alterna-
tive. Pred(iction error) is the mean sum of squared
errors between the real and predicted paths. Full
model selection accuracy is a statistically signif-
icant improvement (p < 0.05) over the baseline
using a paired sign test.

error (which disproportionately penalizes large de-
viations from the correct answer, preferring con-
servative models), but outperforms both base-
lines on the task of choosing the described stock
history—when it is wrong, its errors are often
large in magnitude, but its predictions more fre-
quently resemble the correct time series than the
other systems.

Figure 5 shows example system output for an
example sentence. The model correctly identifies
the two events, orders them in time and gets their
approximate trend correct. Table 4 shows some
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[U.S. stocks extend losing stretch]1

Figure 6: Example error from the stocks task. The
system’s prediction, in blue (solid), fails to seg-
ment the input into two events, and thus incor-
rectly extends the losing trend to the entire output
time span.

features learned by the model—as desired, it cor-
rectly interprets a variety of different expressions
used to describe stock behavior.

5.3 Error analysis

As suggested by Table 4, learned weights for the
trajectory-grounded features θt are largely correct.
Thus, most incorrect outputs from the system in-
volve alignment to time. Many multipart events
(like rebound) can be reasonably explained using
the curvature feature without splitting the text into
two segments; as a result, the system tends to be
fairly conservative about segmentation and often
under-segments. This results in examples like Fig-
ure 6, in which the downward trend suggested by
losing is incorrectly extended to the entire out-
put curve. Here, another informal experiment us-
ing humans as the predictors indicates that pre-
dictions are farther from human-level performance

Word Sign Magnitude ·103

rise 0.27 −0.78
swoon −0.57 0
sharply −0.22 0.28

slammed −0.36 0
lifted 0.66 0

Table 4: Learned parameter settings for overall
daily change, which the path featurization decom-
poses into a sign and a magnitude.

than they are on the colors task.

6 Generalizing the model

Last we consider the problem of following navi-
gational directions. The difference between this
and the previous task is largely one of scale: rather
than attempting to predict the values of only two
segments, we have a long string of them. The text,
rather than a single tree, consists of a sequence of
tens or hundreds of pre-segmented utterances.

There is one additional complication—rather
than being defined in an absolute space, as they are
in the case of stocks, constraints in the maps do-
main are provided relative to a set of known land-
marks (like the white water and stone creek in Fig-
ure 3). We resolve landmarks automatically based
on string matching, in a manner similar to Vogel
and Jurafsky (2010), and assign each sentence in
the discourse with a single referred-to landmark li.
If no landmark is explicitly named, it inherits from
the previous utterance. We continue to score con-
straints as before, but update the prediction factor:

ψacv(Ai, Ci, Vj) =

{
1 if Ai ̸= j

e−||li+Ci−Vj ||22 o.w.
(9)

The factor graph is shown in Figure 7; ob-
serve that this is simply an unrolled version of
Figure 4—the basic structure of the model is un-
changed. While pre-segmentation of the discourse
means we can avoid aligning internal constituents
of trees, we still need to treat every utterance as an
alignment candidate, without a sparse combinato-
rial constraint. As a result, the sum over A and
C is no longer tractable to compute explicitly, and
approximate inference will be necessary.

For the experiments described in this paper, we
do this with a sequence of Monte Carlo approxi-
mations. We run a Gibbs sampler, iteratively re-
sampling each Ai and Ci as well as the parameter
vectors θt and θa to obtain estimates of Eθt and
Eθa. The resampling steps for θt and θa are them-
selves difficult to perform exactly, so we perform
an internal Metropolis-Hastings run (with a Gaus-
sian proposal distribution) to obtain samples from
the marginal distributions over θt and θa.

We approximate the mode of the posterior dis-
tribution by its mean. To follow a new set of direc-
tions in the prediction phase, we fix the parameter
vectors and instead sample over A, C and V, and
output EV. To complete the prediction process
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Figure 7: Factor graph for the general grounding model. Note that Figure 4 is a subgraph.

we must invert ϕv, which we do by producing the
shortest path licensed by the features.

6.1 Evaluation

The Map Task Corpus consists of 128 dia-
logues describing paths on 16 maps, accompa-
nied by transcriptions of spoken instructions, pre-
segmented using prosodic cues. See Vogel and Ju-
rafsky (2010) for a more detailed description of the
corpus in a language learning setting. For com-
parability, we’ll use the same evaluation as Vogel
and Jurafsky, which rewards the system for mov-
ing between pairs of landmarks that also appear in
the reference path, and penalizes it for additional
superfluous movement. Note that we are solv-
ing a significantly harder problem: the version ad-
dressed by Vogel and Jurafsky is a discrete search
problem, and the system has hard-coded knowl-
edge that all paths pass along one of the four sides
of each landmark. Our system, by contrast, can
navigate to any point in R2, and must learn that
most paths stay close to a named landmark.

At test time, the system is given a new sequence
of text instructions, and must output the corre-
sponding path. It is scored on the fraction of
correct transitions in its output path (precision),
and the fraction of transitions in the gold path
recovered (recall). Vogel and Jurafsky compare
their system to a policy-gradient algorithm for us-
ing language to follow natural language instruc-
tions described by Branavan et al. (2009), and we
present both systems for comparison.

Results are shown in Table 5. Our system sub-
stantially outperforms the policy gradient baseline
of Branavan et al., and performs close (particularly
with respect to transition recall) to the system of
Vogel and Jurafsky, with fewer assumptions.

System Prec. Recall F1

Branavan et al. (09) 0.31 0.44 0.36
Vogel & Jurafsky (10) 0.46 0.51 0.48

This work 0.43 0.51 0.45

Table 5: Results for the navigation task. Higher is
better for all of precision, recall and F1.

6.2 Error analysis

As in the case of stocks, most of the prediction
errors on this task are a result of misalignment.
In particular, many of the dialogues make passing
reference to already-visited landmarks, or define
destinations in empty regions of the map in terms
of multiple landmarks simultaneously. In each of
these cases, the system is prone to directly visit-
ing the named landmark or landmarks instead of
ignoring or interpolating as necessary.

7 Conclusion

We have presented a probabilistic model for
grounding natural language text in vector-valued
state sequences. The model is capable of seg-
menting text into a series of events, ordering these
events in time, and compositionally determining
their internal structure. We have evaluated on a va-
riety of new and established applications involving
colors, time series and navigation, demonstrating
improvements over strong baselines in all cases.
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Abstract
The task of detecting and generating hy-
ponyms is at the core of semantic under-
standing of language, and has numerous
practical applications. We investigate how
neural network embeddings perform on
this task, compared to dependency-based
vector space models, and evaluate a range
of similarity measures on hyponym gener-
ation. A new asymmetric similarity mea-
sure and a combination approach are de-
scribed, both of which significantly im-
prove precision. We release three new
datasets of lexical vector representations
trained on the BNC and our evaluation
dataset for hyponym generation.

1 Introduction

Hyponymy is a relation between two word senses,
indicating that the meaning of one word is also
contained in the other. It can be thought of as a
type-of relation; for example car, ship and train

are all hyponyms of vehicle. We denote a hy-
ponymy relation between words a and b as (a→ b),
showing that a is a hyponym of b, and b is a hyper-
nym of a. Hyponymy relations are closely related
to the concept of entailment, and this notation is
consistent with indicating the direction of infer-
ence – if a is true, b must be true as well.

Automatic detection and generation of hy-
ponyms has many practical applications in nearly
all natural language processing tasks. Information
retrieval, information extraction and question an-
swering can be improved by performing appropri-
ate query expansions. For example, a user search-
ing for arthritis treatment is most likely also inter-
ested in results containing the hyponyms of treat-
ment, such as arthritis therapy, arthritis medica-
tion, and arthritis rehabilitation. Summarisation
systems can increase coherence and reduce repe-
tition by correctly handling hyponymous words in

the input text. Entailment and inference systems
can improve sentence-level entailment resolution
by detecting the presence and direction of word-
level hyponymy relations. Distributionally simi-
lar words have been used for smoothing language
models and word co-occurrence probabilities (Da-
gan et al., 1999; Weeds and Weir, 2005), and hy-
ponyms can be more suitable for this application.

We distinguish between three different tasks
related to hyponyms. Given a directional word
pair, the goal of hyponym detection is to deter-
mine whether one word is a hyponym of the other
(Zhitomirsky-Geffet and Dagan, 2009; Kotlerman
et al., 2010; Baroni and Lenci, 2011). In con-
trast, hyponym acquisition is the task of extract-
ing all possible hyponym relations from a given
text (Hearst, 1992; Caraballo, 1999; Pantel and
Ravichandran, 2004; Snow et al., 2005). Such sys-
tems often make use of heuristic rules and patterns
for extracting relations from surface text, and pop-
ulate a database with hyponymous word pairs. Fi-
nally, the task of hyponym generation is to re-
turn a list of all possible hyponyms, given only
a single word as input. This is most relevant to
practical applications, as many systems require a
set of appropriate substitutes for a specific term.
Automated ontology creation (Biemann, 2005) is
a related field that also makes use of distributional
similarity measures. However, it is mostly focused
on building prototype-based ontologies through
clustering (Ushioda, 1996; Bisson et al., 2000;
Wagner, 2000; Paaß et al., 2004; Cimiano and
Staab, 2005), and is not directly applicable to hy-
ponym generation.

While most work has been done on hyponym
detection (and the related task of lexical substitu-
tion), barely any evaluation has been done for hy-
ponym generation. We have found that systems for
hyponym detection often perform poorly on hy-
ponym generation, as the latter requires returning
results from a much less restricted candidate set,
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and therefore a task-specific evaluation is required.
In this paper we focus on hyponym generation

and approach it by scoring a very large candidate
set of potential hyponyms. Distributional similar-
ity methods are especially interesting for this task,
as they can be easily applied to different domains,
genres and languages without requiring annotated
training data or manual pattern construction. We
perform a systematic comparison of different vec-
tor space models and similarity measures, in order
to better understand the properties of a successful
method for hyponym generation.

The main contributions of this paper are:

1. Systematic evaluation of different vector
space models and similarity measures on the
task of hyponym generation.

2. Proposal of new properties for modelling the
directional hyponymy relation.

3. Release of three lexical vector datasets,
trained using neural network, window-based,
and dependency-based features.

2 Vector space models

In order to use similarity measures for hyponym
detection, every word needs to be mapped to a
point in vector space. The method of choosing
appropriate features for these vectors is crucial to
achieving the optimal performance. We compare
five different approaches:

Window: As a simple baseline, we created vec-
tors by counting word co-occurrences in a fixed
context window. Every word that occurs within a
window of three words before or after is counted
as a feature for the target word. Pointwise mutual
information is then used for weighting.

CW: Collobert and Weston (2008) constructed
a neural network language model that is trained to
predict the next word in the sequence, and simul-
taneously learns vector representations for each
word. The vectors for context words are concate-
nated and used as input for the neural network,
which uses a sample of possible outputs for gra-
dient calculation to speed up the training process.
Turian et al. (2010) recreated their experiments
and made the vectors available online.1

HLBL: Mnih and Hinton (2007) created word
representations using the hierarchical log-bilinear

1http://metaoptimize.com/projects/wordreprs/

model – a neural network that takes the concate-
nated vectors of context words as input, and is
trained to predict the vector representation of the
next word, which is then transformed into a prob-
ability distribution over possible words. To speed
up training and testing, they use a hierarchical data
structure for filtering down the list of candidates.
Both CW and HLBL vectors were trained using
37M words from RCV1.

Word2vec: We created word representations
using the word2vec2 toolkit. The tool is based
on a feedforward neural network language model,
with modifications to make representation learn-
ing more efficient (Mikolov et al., 2013a). We
make use of the skip-gram model, which takes
each word in a sequence as an input to a log-linear
classifier with a continuous projection layer, and
predicts words within a certain range before and
after the input word. The window size was set to
5 and vectors were trained with both 100 and 500
dimensions.

Dependencies: Finally, we created vector rep-
resentations for words by using dependency rela-
tions from a parser as features. Every incoming
and outgoing dependency relation is counted as a
feature, together with the connected term. For ex-
ample, given the dependency relation (play, dobj,
guitar), the tuple (>dobj, guitar) is extracted as a
feature for play, and (<dobj, play) as a feature for
guitar. We use only features that occur more than
once in the dataset, and weight them using point-
wise mutual information to construct feature vec-
tors for every term. Features with negative weights
were retained, as they proved to be beneficial for
some similarity measures.

The window-based, dependency-based and
word2vec vector sets were all trained on 112M
words from the British National Corpus, with pre-
processing steps for lowercasing and lemmatis-
ing. Any numbers were grouped and substituted
by more generic tokens. For constructing the
dependency-based vector representations, we used
the parsed version of the BNC created by Ander-
sen et al. (2008) with the RASP toolkit (Briscoe
et al., 2006). When saved as plain text, the 500-
dimensional word2vec vectors and dependency-
based vectors are comparable in size (602MB and
549MB), whereas the window-based vectors are
twice as large (1,004MB). We make these vector

2https://code.google.com/p/word2vec/
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sets publically available for download.3

Recently, Mikolov et al. (2013b) published in-
teresting results about linguistic regularities in
vector space models. They proposed that the rela-
tionship between two words can be characterised
by their vector offset, for example, we could find
the vector for word “queen” by performing the op-
eration “king - man + woman” on corresponding
vectors. They also applied this approach to hy-
ponym relations such as (shirt → clothing) and
(bowl → dish). We evaluate how well this method
applies to hyponym generation with each of the
vector space models mentioned above. Using the
training data, we learn a vector for the hyponymy
relation by averaging over all the offset vectors
for hyponym-hypernym pairs. This vector is then
added to the hypernym during query time, and
the result is compared to hyponym candidates us-
ing cosine similarity. For sparse high-dimensional
vector space models it was not feasible to use the
full offset vector during experiments, therefore we
retain only the top 1,000 highest-weighted fea-
tures.

3 Similarity measures

We compare the performance of a range of simi-
larity measures, both directional and symmetrical,
on the task of hyponym generation.

Cosine similarity is defined as the angle be-
tween two feature vectors and has become a stan-
dard measure of similarity between weighted vec-
tors in information retrieval (IR).

Lin similarity, created by Lin (1998), uses the
ratio of shared feature weights compared to all fea-
ture weights. It measures the weighted proportion
of features that are shared by both words.

DiceGen2 is one possible method for generalis-
ing the Dice measure to real-valued weights (Cur-
ran, 2003; Grefenstette, 1994). The dot product of
the weight vectors is normalised by the total sum
of all weights. The same formula can also be con-
sidered as a possible generalisation for the Jaccard
measure.

WeedsPrec and WeedsRec were proposed by
Weeds et al. (2004) who suggested using precision
and recall as directional measures of word simi-
larity. In this framework, the features are treated
similarly to retrieved documents in information re-
trieval – the vector of the broader term b is used as
the gold standard, and the vector of the narrower

3http://www.marekrei.com/projects/vectorsets/

term a is in the role of retrieval results. Precision
is then calculated by comparing the intersection
(items correctly returned) to the values of the nar-
rower term only (all items returned). In contrast,
WeedsRec quantifies how well the features of the
breader term are covered by the narrower term.

Balprec is a measure created by Szpektor and
Dagan (2008). They proposed combining Weed-
sPrec together with the Lin measure by taking
their geometric average. This aims to balance the
WeedsPrec score, as the Lin measure will penalise
cases where one vector contains very few features.

ClarkeDE, proposed by Clarke (2009), is an
asymmetric degree of entailment measure, based
on the concept of distributional generality (Weeds
et al., 2004). It quantifies the weighted coverage of
the features of the narrower term a by the features
of the broader term b.

BalAPInc, a measure described by Kotlerman
et al. (2010), combines the APInc score with Lin
similarity by taking their geometric average. The
APInc measure finds the proportion of shared fea-
tures relative to the features for the narrower term,
but this can lead to unreliable results when the
number of features is very small. The motivation
behind combining these measures is that the sym-
metric Lin measure will decrease the final score
for such word pairs, thereby balancing the results.

4 Properties of a directional measure

Finding similar words in a vector space, given
a symmetric similarity measure, is a relatively
straightforward task. However finding hyponyms
is arguably more difficult, as the relation is asym-
metric, and looking at the distance or angle be-
tween the two words may not be enough.

Kotlerman et al. (2010) investigate the related
problem of detecting directional lexical entail-
ment, and they propose three desirable properties
that a directional distributional similarity measure
should capture:

1. The relevance of the shared features to the
narrower term.

2. The relevance of the shared features to the
broader term.

3. That relevance is less reliable if the num-
ber of features of either the narrower or the
broader term is small.
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Given a term pair (a → b) we refer to a as the
narrower term and b as the broader term. The fea-
tures of a that are also found in b (have non-zero
weights for both a and b) are referred to as shared
features.

They show that existing measures which cor-
respond to these criteria perform better and con-
struct the BalAPInc measure based on the princi-
ples. However, it is interesting to note that these
properties do not explicitly specify any directional
aspects of the measure, and symmetric similarity
scores can also fulfil the requirements.

Based on investigating hyponym distributions
in our training data, we suggest two additions to
this list of desired properties, one of which specif-
ically targets the asymmetric properties of the de-
sired similarity measures:

4. The shared features are more important to
the directional score calculation, compared to
non-shared features.

5. Highly weighted features of the broader term
are more important to the score calculation,
compared to features of the narrower term.

Most existing directional similarity scores mea-
sure how many features of the narrower term are
present for the broader term. If a entails b, then
it is assumed that the possible contexts of a are a
subset of contexts for b, but b occurs in a wider
range of contexts compared to a. This intuition is
used by directional measures such as ClarkeDE,
WeedsPrec and BalAPInc. In contrast, we found
that many features of the narrower term are often
highly specific to that term and do not generalise
even to hypernyms. Since these features have a
very high weight for the narrower term, their ab-
sence with the broader term will have a big nega-
tive impact on the similarity score.

We hypothesise that many terms have certain
individual features that are common to them but
not to other related words. Since most weighting
schemes reward high relative co-occurrence, these
features are also likely to receive high weights.
Therefore, we suggest that features which are not
found for both terms should have a decreased im-
pact on the score calculation, as many of them are
not expected to be shared between hyponyms and
hypernyms. However, removing them completely
is also not advisable, as they allow the measure
to estimate the overall relative importance of the
shared features to the specific term.

We also propose that among the shared features,
those ranked higher for the broader term are more
important to the directional measure. In the hy-
ponymy relation (a → b), the term b is more gen-
eral and covers a wider range of semantic con-
cepts. This also means it is more likely to be
used in contexts that apply to different hyponyms
of b. For example, some of the high-ranking fea-
tures for food are blandly-flavoured, high-calorie
and uneaten. These are properties that co-occur
often with the term food, but can also be applied
to most hyponyms of food. Therefore, we hypoth-
esise that the presence of these features for the nar-
rower term is a good indication of a hyponymy re-
lation. This is somewhat in contrast to most previ-
ous work, where the weights of the narrower term
have been used as the main guideline for similarity
calculation.

5 Weighted cosine

We now aim to construct a similarity measure that
follows all five of the properties mentioned above.
Cosine similarity is one of the symmetric similar-
ity measures which corresponds to the first three
desired properties, and our experiments showed
that it performs remarkably well at the task of hy-
ponym generation. Therefore, we decided to mod-
ify cosine similarity to also reflect the final two
properties and produce a more appropriate asym-
metric score.

The standard feature vectors for each word con-
tain weights indicating how important this feature
is to the word. We specify additional weights that
measure how important the feature is to that spe-
cific directional relation between the two terms.
Weighted cosine similarity, shown in Table 1, can
then be used to calculate a modified similarity
score. Fa denotes the set of weighted features for
word a, wa(f) is the weight of feature f for word
a, and z(f) is the additional weight for feature f ,
given the directional word pair (a, b).

Based on the new desired properties we want
to downweight the importance of features that are
not present for both terms. For this, we choose
the simple solution of scaling them with a small
constant C ∈ [0, 1]. Next, we also want to assign
higher z(f) values to the shared features that have
high weights for the broader term b. We use the
relative rank of feature f in Fb, rb(f), as the indi-
cator of its importance and scale this value to the
range from C to 1. This results in the importance
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WeightedCosine(Fa, Fb) =
∑

f∈Fa∩Fb
(z(f)×wa(f))×(z(f)×wb(f))√∑

f∈Fa (z(f)×wa(f))2×
√∑

f∈Fb
(z(f)×wb(f))2

z(f) =

{
(1− rb(f)

|Fb|+1 )× (1− C) + C if f ∈ Fa ∩ Fb

C otherwise

Table 1: Weighted cosine similarity measure

function decreasing linearly as the rank number
increases, but the weights for the shared features
always remain higher compared to the non-shared
features. Tied feature values are handled by as-
signing them the average rank value. Adding 1
to the denominator of the relative rank calculation
avoids exceptions with empty vectors, and also en-
sures that the value will always be strictly greater
than C. While the basic function is still the sym-
metric cosine, the z(f) values will be different de-
pending on the order of the arguments.

The parameter C controls the relative impor-
tance of the ‘unimportant’ features to the direc-
tional relation. Setting it to 0 will ignore these
features completely, while setting it to 1 will result
in the traditional cosine measure. Experiments on
the development data showed that the exact value
of this parameter is not very important, as long as
it is not too close to the extreme values of 0 or 1.
We use the value C = 0.5 for reporting our results,
meaning that the non-shared features are half as
important, compared to the shared features.

6 Dataset

As WordNet (Miller, 1995) contains numerous
manually annotated hyponymy relations, we can
use it to construct suitable datasets for evaluat-
ing hyponym generation. While WordNet terms
are annotated with only the closest hyponyms, we
are considering all indirect/inherited hyponyms
to be relevant – for example, given relations
(genomics → genetics) and (genetics → biology),
then genomics is also regarded as a hyponym of
biology. WordNet relations are defined between
synsets, but we refrain from the task of word sense
disambiguation and count word a as a valid hy-
ponym for word b if it is valid for any sense of b.

Synonymy can be thought of as a symmetric is-
a relation, and most real-world applications would
require synonyms to also be returned, together
with hyponyms. Therefore, in our dataset we con-
sider synonyms as hyponyms in both directions.
We also performed experiments without synonyms

and found that this had limited effect on the re-
sults – while the accuracy of all similarity mea-
sures slightly decreased (due to fewer numbers of
correct answers), the relative ranking remained the
same. As shown in the next section, the number of
synonyms is typically small compared to the num-
ber of all inherited hyponyms.

To construct the dataset, we first found all
single-word nouns in WordNet that are contained
at least 10 times in the British National Corpus
(BNC). Next, we retained only words that have
at least 10 hyponyms, such that they occur 10 or
more times in the BNC. This selection process
aims to discard WordNet hypernyms that are very
rare in practical use, and would not have enough
examples for learning informative vector represen-
tations. The final dataset contains the remaining
terms, together with all of their hyponyms, includ-
ing the rare/unseen hyponyms. As expected, some
general terms, such as group or location, have a
large number of inherited hyponyms. On average,
each hypernym in the dataset has 233 hyponyms,
but the distribution is roughly exponential, and the
median is only 36.

In order to better facilitate future experiments
with supervised methods, such as described by Ba-
roni et al. (2012), we randomly separated the data
into training (1230 hypernyms), validation (922),
and test (922) sets, and we make these datasets
publically available online.4

7 Experiments

We evaluate how well different vector space mod-
els and similarity measures perform on the task of
hyponym generation. Given a single word as in-
put, the system needs to return a ranked list of
words with correct hyponyms at the top. As the
list of candidates for scoring we use all words in
the BNC that occur at least 10 times (a total of
86,496 words). All the experiments are performed
using tokenised and lemmatised words.

As the main evaluation measure, we report
4http://www.marekrei.com/projects/hypgen/
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Cosine Cosine+offset
MAP P@1 P@5 MAP P@1 P@5

Window 2.18 19.76 12.20 2.19 19.76 12.25
CW-100 0.66 3.80 3.21 0.59 3.91 2.89
HLBL-100 1.01 10.31 6.04 1.01 10.31 6.06
Word2vec-100 1.78 15.96 10.12 1.50 12.38 8.71
Word2vec-500 2.06 19.76 11.92 1.77 17.05 10.71
Dependencies 2.73 25.41 14.90 2.73 25.52 14.92

Table 2: Experiments using different vector space models for hyponym generation on the test set. We
report results using regular cosine similarity and the vector offset method described in Section 2.

Mean Average Precision (MAP), which averages
precision values at various recall points in the re-
turned list. It combines both precision and recall,
as well as the quality of the ranking, into a sin-
gle measure, and is therefore well-suited for com-
paring different methods. The reported MAP val-
ues are very low – this is due to many rare Word-
Net hyponyms not occurring in the candidate set,
for which all systems are automatically penalised.
However, this allows us to evaluate recall, making
the results comparable between different systems
and background datasets. We also report precision
at top-1 and top-5 returned hyponyms.

As a baseline we report the results of a tra-
ditional hyponym acquisition system. For this,
we implemented the pattern-based matching pro-
cess described by Hearst (1992), and also used by
Snow et al. (2005). These patterns look for ex-
plicit examples of hyponym relations mentioned
in the text, for example:

X such as {Y1, Y2, ... , (and|or)} Yn

where X will be extracted as the hypernym, and Y1

to Yn as hyponyms. We ran the patterns over the
BNC and extracted 21,704 hyponym pairs, which
were then ranked according to the number of times
they were found.

7.1 Evaluation of vector spaces

Table 2 contains experiments with different vector
space models. We report here results using cosine,
as it is an established measure and a competitive
baseline. For our task, the HLBL vectors perform
better than CW vectors, even though they were
trained on the same data. Both of them are out-
performed by word2vec-100 vectors, which have
the same dimensionality but are trained on much
more text. Increasing the dimensionality with

word2vec-500 gives a further improvement. In-
terestingly, the simple window-based vectors per-
form just as well as the ones trained with neural
networks. However, the advantage of word2vec-
500 is that the representations are more compact
and require only about half the space. Finally,
the dependency-based vectors outperform all other
vector types, giving 2.73% MAP and 25.41% pre-
cision at the top-ranked result. While the other
models are built by using neighbouring words as
context, this model looks at dependency relations,
thereby taking both semantic and syntactic roles
into account. The results indicate that word2vec
and window-based models are more suitable when
the general topic of words needs to be captured,
whereas dependency-based vectors are preferred
when the task requires both topical and functional
similarity between words. Our experiments also
included the evaluation of other similarity mea-
sures on different vector space models, and we we
found these results to be representative.

Contrary to previous work, the vector offset
method, described in Section 2, did not pro-
vide substantial improvements on the hyponym
generation task. For the neural network-based
vectors this approach generally decreased perfor-
mance, compared to using direct cosine similar-
ity. There are some marginal improvements for
window and dependency-based models. Unfortu-
nately, the original work did not include baseline
performance using cosine similarity, without ap-
plying vector modifications. It is possible that this
method does not generalise to all word relations
equally well. As part of future work, it is worth
exploring if a hypernym-specific strategy of se-
lecting training examples could improve the per-
formance.
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Validation Test
MAP P@1 P@5 MAP P@1 P@5

Pattern-based 0.53 7.06 4.58 0.51 8.14 4.45
Cosine 2.48 21.06 12.96 2.73 25.41 14.90
Lin 1.87 16.50 10.75 2.01 21.17 12.23
DiceGen2 2.27 18.57 12.62 2.44 21.82 14.55
WeedsPrec 0.13 0.00 0.09 0.12 0.11 0.04
WeedsRec 0.72 0.33 2.45 0.69 0.54 2.41
BalPrec 1.78 15.31 10.55 1.88 17.48 11.34
ClarkeDE 0.23 0.00 0.02 0.24 0.00 0.09
BalAPInc 1.64 14.22 9.12 1.68 15.85 9.66
WeightedCosine 2.59 21.39 13.59 2.85 25.84 15.46
Combined 3.27 23.02 16.09 3.51 27.69 18.02

Table 3: Evaluation of different vector similarity measures on the validation and test set of hyponym
generation. We report Mean Average Precision (MAP), precision at rank 1 (P@1), and precision at rank
5 (P@5).

7.2 Evaluation of similarity measures

Table 3 contains experiments with different sim-
ilarity measures, using the dependency-based
model, and Table 4 contains sample output from
the best system. The results show that the pattern-
based baseline does rather poorly on this task.
MAP is low due to the system having very lim-
ited recall, but higher precision at top ranks would
have been expected. Analysis showed that this
system was unable to find any hyponyms for more
than half (513/922) of the hypernyms in the vali-
dation set, leading to such poor recall that it also
affects Precision@1. While the pattern-based sys-
tem did extract a relatively large number of hy-
ponyms from the corpus (21,704 pairs), these are
largely concentrated on a small number of hyper-
nyms (e.g., area, company, material, country) that
are more likely to be mentioned in matching con-
texts.

Cosine, DiceGen2 and Lin – all symmetric
similarity measures – perform relatively well on
this task, whereas established directional measures
perform unexpectedly poorly. This can perhaps be
explained by considering the distribution of hy-
ponyms. Given a word, the most likely candi-
dates for a high cosine similarity are synonyms,
antonyms, hypernyms and hyponyms of that word
– these are words that are likely to be used in simi-
lar topics, contexts, and syntactic roles. By def-
inition, there are an equal number of hyponym
and hypernym relations in WordNet, but this ra-
tio changes rapidly as we remove lower-frequency
words. Figure 1 shows the number of relations ex-

tracted from WordNet, as we restrict the minimum
frequency of the main word. It can be seen that the
number of hyponyms increases much faster com-
pared to the other three relations. This also applies
to real-world data – when averaging over word in-
stances found in the BNC, hyponyms cover 85% of
these relations. Therefore, the high performance
of cosine can be explained by distributionally sim-
ilar words having a relatively high likelihood of
being hyponyms.
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Figure 1: Average number of different relations
per word in WordNet, as we restrict the minimum
word frequency.

One possible reason for the poor performance
of directional measures is that most of them quan-
tify how well the features of the narrower term are
included in the broader term. In contrast, we found
that for hyponym generation it is more important
to measure how well the features of the broader
term are included in the narrower term. This
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scientist researcher, biologist, psychologist, economist, observer, physicist, sociologist
sport football, golf, club, tennis, athletics, rugby, cricket, game, recreation, entertainment
treatment therapy, medication, patient, procedure, surgery, remedy, regimen, medicine

Table 4: Examples of top results using the combined system. WordNet hyponyms are marked in bold.

is supported by WeedsRec outperforming Weed-
sPrec, although the opposite was intended by their
design.

Another explanation for the low performance
is that these directional measures are often devel-
oped in an artificial context. For example, Kotler-
man et al. (2010) evaluated lexical entailment de-
tection on a dataset where the symmetric Lin sim-
ilarity measure was used to select word pairs for
manual annotation. This creates a different task,
as correct terms that do not have a high symmetric
similarity will be excluded from evaluation. The
BalAPInc measure performed best in that setting,
but does not do as well for hyponym generation,
where candidates are filtered only based on mini-
mum frequency.

The weighted cosine measure, proposed in Sec-
tion 5, outperformed all other similarity measures
on both hyponym generation datasets. The im-
provement over cosine is relatively small; how-
ever, it is consistent and the improvement in MAP
is statistically significant on both datasets (p <

0.05), using the Approximate Randomisation Test
(Noreen, 1989; Cohen, 1995) with 106 iterations.
This further supports the properties of a directional
similarity measure described in Section 4.

Finally, we created a new system by combining
together two separate approaches: the weighted
cosine measure using the dependency-based vec-
tor space, and the normal cosine similarity using
word2vec-500 vectors. We found that the former
is good at modelling the grammatical roles and di-
rectional containment, whereas the latter can pro-
vide useful information about the topic and seman-
tics of the word. Turney (2012) also demonstrated
the importance of both topical (domain) and func-
tional vector space models when working with se-
mantic relations. We combined these approaches
by calculating both scores for each word pair and
taking their geometric average, or 0 if it could not
be calculated. This final system gives considerable
improvements across all evaluation metrics, and is
significantly (p < 0.05) better compared to cosine
or weighted cosine methods individually. Table 4
contains some example output from this system.

8 Conclusion

Hyponym generation has a wide range of pos-
sible applications in NLP, such as query expan-
sion, entailment detection, and language model
smoothing. Pattern-based hyponym acquisition
can be used to find relevant hyponyms, but these
approaches rely on both words being mentioned
together in a specific context, leading to very low
recall. Vector similarity methods are interesting
for this task, as they can be easily applied to differ-
ent domains and languages without any supervised
learning or manual pattern construction. We cre-
ated a dataset for evaluating hyponym generation
systems and experimented with a range of vector
space models and similarity measures.

Our results show that choosing an appropriate
vector space model is equally important to using a
suitable similarity measure. We achieved the high-
est performance using dependency-based vector
representations, which outperformed neural net-
work and window-based models. Symmetric sim-
ilarity measures, especially cosine similarity, per-
formed surprisingly well on this task. This can
be attributed to an unbalanced distribution of hy-
ponyms, compared to other high-similarity words.
The choice of vector space can be highly depen-
dent on the specific task, and we have made avail-
able our vector datasets created from the same
source using three different methods.

We proposed two new properties for detecting
hyponyms, and used them to construct a new di-
rectional similarity measure. This weighted co-
sine measure significantly outperformed all others,
showing that a theoretically-motivated directional
measure is still the most accurate method for mod-
elling hyponymy relations. Finally, we combined
together two different methods, achieving further
substantial improvements on all evaluation met-
rics.
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Abstract
Most state-of-the-art approaches for
named-entity recognition (NER) use semi
supervised information in the form of
word clusters and lexicons. Recently
neural network-based language models
have been explored, as they as a byprod-
uct generate highly informative vector
representations for words, known as word
embeddings. In this paper we present
two contributions: a new form of learn-
ing word embeddings that can leverage
information from relevant lexicons to
improve the representations, and the first
system to use neural word embeddings
to achieve state-of-the-art results on
named-entity recognition in both CoNLL
and Ontonotes NER. Our system achieves
an F1 score of 90.90 on the test set for
CoNLL 2003—significantly better than
any previous system trained on public
data, and matching a system employing
massive private industrial query-log data.

1 Introduction

In many natural language processing tasks, such
as named-entity recognition or coreference reso-
lution, syntax alone is not enough to build a high
performance system; some external source of in-
formation is required. In most state-of-the-art
systems for named-entity recognition (NER) this
knowledge comes in two forms: domain-specific
lexicons (lists of word types related to the de-
sired named entity types) and word representa-
tions (either clusterings or vectorial representa-
tions of word types which capture some of their
syntactic and semantic behavior and allow gener-
alizing to unseen word types).

Current state-of-the-art named entity recogni-
tion systems use Brown clusters as the form of
word representation (Ratinov and Roth, 2009;
Turian et al., 2010; Miller et al., 2004; Brown et
al., 1992), or other cluster-based representations
computed from private data (Lin and Wu, 2009).
While very attractive due to their simplicity, gen-
erality, and hierarchical structure, Brown clusters
are limited because the computational complex-
ity of fitting a model scales quadratically with the
number of words in the corpus, or the number of
“base clusters” in some efficient implementations,
making it infeasible to train it on large corpora or
with millions of word types.

Although some attempts have been made to
train named-entity recognition systems with other
forms of word representations, most notably those
obtained from training neural language models
(Turian et al., 2010; Collobert and Weston, 2008),
these systems have historically underperformed
simple applications of Brown clusters. A disad-
vantage of neural language models is that, while
they are inherently more scalable than Brown clus-
ters, training large neural networks is still often
expensive; for example, Turian et al (2010) re-
port that some models took multiple days or weeks
to produce acceptable representations. Moreover,
language embeddings learned from neural net-
works tend to behave in a “nonlinear” fashion, as
they are trained to encourage a many-layered neu-
ral network to assign high probability to the data.
These neural networks can detect nonlinear rela-
tionships between the embeddings, which is not
possible in a log-linear model such as a condi-
tional random field, and therefore limiting how
much information from the embeddings can be ac-
tually leveraged.

Recently Mikolov et al (Mikolov et al., 2013a;
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Mikolov et al., 2013b) proposed two simple log-
linear language models, the CBOW model and the
Skip-Gram model, that are simplifications of neu-
ral language models, and which can be very effi-
ciently trained on large amounts of data. For ex-
ample it is possible to train a Skip-gram model
over more than a billion tokens with a single ma-
chine in less than half a day. These embeddings
can also be trained on phrases instead of individual
word types, allowing for fine granularity of mean-
ing.

In this paper we make the following contribu-
tions. (1) We show how to extend the Skip-Gram
language model by injecting supervisory train-
ing signal from a collection of curated lexicons—
effectively encouraging training to learn similar
embeddings for phrases which occur in the same
lexicons. (2) We demonstrate that this method
outperforms a simple application of the Skip-
Gram model on the semantic similarity task on
which it was originally tested. (3) We show that
a linear-chain CRF is able to successfully use
these log-linearly-trained embeddings better than
the other neural-network-trained embeddings. (4)
We show that lexicon-infused embeddings let us
easily build a new highest-performing named en-
tity recognition system on CoNLL 2003 data
(Tjong Kim Sang and De Meulder, 2003) which
is trained using only publicly available data. (5)
We also present results on the relatively under-
studied Ontonotes NER task (Weischedel et al.,
2011), where we show that our embeddings out-
perform Brown clusters.

2 Background and Related Work

2.1 Language models and word embeddings

A statistical language model is a way to assign
probabilities to all possible documents in a given
language. Most such models can be classified
in one of two categories: they can directly as-
sign probabilities to sequences of word types, such
as is done in n-gram models, or they can oper-
ate in a lower-dimensional latent space, to which
word types are mapped. While most state-of-
the-art language models are n-gram models, the
representations used in models of the latter cate-
gory, henceforth referred to as “embeddings,” have
been found to be useful in many NLP applications
which don’t actually need a language model. The
underlying intuition is that when language models
compress the information about the word types in

a latent space they capture much of the common-
alities and differences between word types. Hence
features extracted from these models then can gen-
eralize better than features derived from the word
types themselves.

One simple language model that discovers use-
ful embeddings is known as Brown clustering
(Brown et al., 1992). A Brown clustering is a
class-based bigram model in which (1) the prob-
ability of a document is the product of the proba-
bilities of its bigrams, (2) the probability of each
bigram is the product of the probability of a bi-
gram model over latent classes and the probability
of each class generating the actual word types in
the bigram, and (3) each word type has non-zero
probability only on a single class. Given a one-to-
one assignment of word types to classes, then, and
a corpus of text, it is easy to estimate these proba-
bilities with maximum likelihood by counting the
frequencies of the different class bigrams and the
frequencies of word tokens of each type in the cor-
pus. The Brown clustering algorithm works by
starting with an initial assignment of word types
to classes (which is usually either one unique class
per type or a small number of seed classes corre-
sponding to the most frequent types in the corpus),
and then iteratively selecting the pair of classes to
merge that would lead to the highest post-merge
log-likelihood, doing so until all classes have been
merged. This process produces a hierarchical clus-
tering of the word types in the corpus, and these
clusterings have been found useful in many appli-
cations (Ratinov and Roth, 2009; Koo et al., 2008;
Miller et al., 2004). There are other similar models
of distributional clustering of English words which
can be similarly effective (Pereira et al., 1993).

One limitation of Brown clusters is their com-
putational complexity, as training takes O(kV 2 +
N)x time to train, where k is the number of base
clusters, V size of vocabulary, and N number of
tokens. This is infeasible for large corpora with
millions of word types.

Another family of language models that pro-
duces embeddings is the neural language mod-
els. Neural language models generally work by
mapping each word type to a vector in a low-
dimensional vector space and assigning probabil-
ities to n-grams by processing their embeddings
in a neural network. Many different neural lan-
guage models have been proposed (Bengio et al.,
2003; Morin and Bengio, 2005; Bengio, 2008;
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Mnih and Hinton, 2008; Collobert and Weston,
2008; Mikolov et al., 2010). While they can cap-
ture the semantics of word types, and often gen-
eralize better than n-gram models in terms of per-
plexity, applying them to NLP tasks has generally
been less successful than Brown clusters (Turian
et al., 2010).

Finally, there are algorithms for computing
word embeddings which do not use language mod-
els at all. A popular example is the CCA family of
word embeddings (Dhillon et al., 2012; Dhillon et
al., 2011), which work by choosing embeddings
for a word type that capture the correlations be-
tween the embeddings of word types which occur
before and after this type.

2.2 The Skip-gram Model

A main limitation of neural language models is
that they often have many parameters and slow
training times. To mitigate this, Mikolov et
al. (2013a; 2013b) recently proposed a family
of log-linear language models inspired by neu-
ral language models but designed for efficiency.
These models operate on the assumption that, even
though they are trained as language models, users
will only look at their embeddings, and hence all
they need is to produce good embeddings, and not
high-accuracy language models.

The most successful of these models is
the skip-gram model, which computes the
probability of each n-gram as the product of
the conditional probabilities of each context
word in the n-gram conditioned on its central
word. For example, the probability for the n-
gram “the cat ate my homework” is represented as
P (the|ate)P (cat|ate)P (my|ate)P (homework|ate).

To compute these conditional probabilities the
model assigns an embedding to each word type
and defines a binary tree of logistic regression
classifiers with each word type as a leaf. Each
classifier takes a word embedding as input and
produces a probability for a binary decision cor-
responding to a branch in the tree. Each leaf in the
tree has a unique path from the root, which can be
interpreted as a set of (classifier,label) pairs. The
skip-gram model then computes a probability of a
context word given a target word as the product of
the probabilities, given the target word’s embed-
dings, of all decisions on a path from the root to
the leaf corresponding to the context word. Figure
1 shows such a tree structured model.

...

...A An San Diego New York City

...

...

Figure 1: A binary Huffman tree. Circles repre-
sent binary classifiers. Rectangles represent to-
kens, which can be multi-word.

The likelihood of the data, then, given a set N
of n-grams, with mn being n-gram n’s middle-
word, cn each context word, wcn

i the parameters
of the i-th classifier in the path from the root to
cn in the tree, lcn

i its label (either 1 or −1), ef the
embedding of word type f , and σ is the logistic
sigmoid function, is∏

n∈N

∏
cn∈n

∏
i

σ(lcn
i w

cn
i

T emn). (1)

Given a tree, then, choosing embeddings emn

and classifier parameters wcn
i to maximize equa-

tion (1) is a non-convex optimization problem
which can be solved with stochastic gradient de-
scent.

The binary tree used in the model is com-
monly estimated by computing a Huffman coding
tree (Huffman, 1952) of the word types and their
frequencies. We experimented with other tree esti-
mation schemes but found no perceptible improve-
ment in the quality of the embeddings.

It is possible to extend these embeddings to
model phrases as well as tokens. To do so,
Mikolov et al (2013b) use a phrase-building cri-
terion based on the pointwise mutual information
of bigrams. They perform multiple passes over
a corpus to estimate trigrams and higher-order
phrases. We instead consider candidate trigrams
for all pairs of bigrams which have a high PMI
and share a token.

2.3 Named Entity Recognition

Named Entity Recognition (NER) is the task of
finding all instances of explicitly named entities
and their types in a given document. While
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detecting named entities is superficially simple,
since most sequences of capitalized words are
named entities (excluding headlines, sentence be-
ginnings, and a few other exceptions), finding all
entities is non trivial, and determining the correct
named entity type can sometimes be surprisingly
hard. Performing the task well often requires ex-
ternal knowledge of some form.

In this paper we evaluate our system on two
labeled datasets for NER: CoNLL 2003 (Tjong
Kim Sang and De Meulder, 2003) and Ontonotes
(Weischedel et al., 2011). The CoNLL dataset
has approximately 320k tokens, divided into 220k
tokens for training, 55k tokens for development,
and 50k tokens for testing. While the training and
development sets are quite similar, the test set is
substantially different, and performance on it de-
pends strongly on how much external knowledge
the systems have. The CoNLL dataset has four
entity types: PERSON, LOCATION, ORGANIZA-
TION, AND MISCELLANEOUS. The Ontonotes
dataset is substantially larger: it has 1.6M tokens
total, with 1.4M for training, 100K for develop-
ment, and 130k for testing. It also has eighteen
entity types, a much larger set than the CoNLL
dataset, including works of art, dates, cardinal
numbers, languages, and events.

The performance of NER systems is commonly
measured in terms of precision, recall, and F1 on
the sets of entities in the ground truth and returned
by the system.

2.3.1 Baseline System
In this section we describe in detail the baseline
NER system we use. It is inspired by the system
described in Ratinov and Roth (2009).

Because NER annotations are commonly not
nested (for example, in the text “the US Army”,
“US Army” is treated as a single entity, instead
of the location “US” and the organization “US
Army”) it is possible to treat NER as a sequence
labeling problem, where each token in the sen-
tence receives a label which depends on which en-
tity type it belongs to and its position in the en-
tity. Following Ratinov and Roth (2009) we use
the BILOU encoding, where each token can either
BEGIN an entity, be INSIDE an entity, be the LAST

token in an entity, be OUTSIDE an entity, or be the
single UNIQUE token in an entity.

Our baseline architecture is a stacked linear-
chain CRF (Lafferty et al., 2001) system: we train
two CRFs, where the second CRF can condition

on the predictions made by the first CRF as well as
features of the data. Both CRFs, following Zhang
and Johnson (2003), have roughly similar features.

While local features capture a lot of the clues
used in text to highlight named entities, they can-
not necessarily disambiguate entity types or detect
named entities in special positions, such as the first
tokens in a sentence. To solve these problems most
NER systems incorporate some form of external
knowledge. In our baseline system we use lexi-
cons of months, days, person names, companies,
job titles, places, events, organizations, books,
films, and some minor others. These lexicons were
gathered from US Census data, Wikipedia cate-
gory pages, and Wikipedia redirects (and will be
made publicly available upon publication).

Following Ratinov and Roth (2009), we also
compare the performance of our system with a
system using features based on the Brown clusters
of the word types in a document. Since, as seen
in section 2.1, Brown clusters are hierarchical, we
use features corresponding to prefixes of the path
from the root to the leaf for each word type.

More specifically, the feature templates of the
baseline system are as follows. First for each token
we compute:
• its word type;
• word type, after excluding digits and lower-

casing it;
• its capitalization pattern;
• whether it is punctuation;
• 4-character prefixes and suffixes;
• character n-grams from length 2 to 5;
• whether it is in a wikipedia-extracted lexicon

of person names (first, last, and honorifics),
dates (months, years), place names (country,
US state, city, place suffixes, general location
words), organizations, and man-made things;
• whether it is a demonym.

For each token’s label we have feature templates
considering all token’s features, all neighboring
token’s features (up to distance 2), and bags of
words of features of tokens in a window of size
8 around each token. We also add a feature mark-
ing whether a token is the first occurrence of its
word type in a document.

When using Brown clusters we add as token
features all prefixes of lengths 4, 6, 10, and 20,
of its brown cluster.

For the second-layer model we use all these fea-
tures, as well as the label predicted for each token
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Figure 2: Chain CRF model for a NER system
with three tokens. Filled rectangles represent fac-
tors. Circles at top represent labels, circles at bot-
tom represent binary token based features. Filled
circles indicate the phrase embeddings for each to-
ken.

by the first-layer model.

As seen in the Experiments Section, our base-
line system is competitive with state-of-the-art
systems which use similar forms of information.

We train this system with stochastic gradient as-
cent, using the AdaGrad RDA algorithm (Duchi et
al., 2011), with both `1 and `2 regularization, au-
tomatically tuned for each experimental setting by
measuring performance on the development set.

2.4 NER with Phrase Embeddings

In this section we describe how to extend our base-
line NER system to use word embeddings as fea-
tures.

First we group the tokens into phrases, assign-
ing to each token a single phrase greedily. We
prefer shorter phrases over longer ones, sinceour
embeddings are often more reliable for the shorter
phrases, and since the longer phrases in our dic-
tionary are mostly extracted from Wikipedia page
titles, which are not always semantically meaning-
ful when seen in free text. We then add factors
connecting each token’s label with the embedding
for its phrase.

Figure 2 shows how phrase embeddings are
plugged into a chain-CRF based NER system.
Following Turian (2010), we scale the embed-
ding vector by a real number, which is a hyper-
parameter tuned on the development data. Con-
necting tokens to phrase embeddings of their
neighboring tokens did not improve performance
for phrase embeddings, but it was mildly benefi-
cial for token embeddings.

3 Lexicon-infused Skip-gram Models

The Skip-gram model as defined in Section 2.2 is
fundamentally trained in unsupervised fashion us-
ing simply words and their n-gram contexts. In-
jecting some NER-specific supervision into the
embeddings can make them more relevant to the
NER task.

Lexicons are a simple yet powerful way to pro-
vide task-specific supervisory information to the
model without the burden of labeling additional
data. However, while lexicons have proven use-
ful in various NLP tasks, a small amount of noise
in a lexicon can severely impair the its usefulness
as a feature in log-linear models. For example,
even legitimate data, such as the Chinese last name
“He” occurring in a lexicon of person last names,
can cause the lexicon feature to fire spuriously
for many training tokens that are labeled PERSON,
and then this lexicon feature may be given low or
even negative weight.

We propose to address both these problems by
employing lexicons as part of the word embedding
training. The skip-gram model can be trained to
predict not only neighboring words but also lexi-
con membership of the central word (or phrase).
The resulting embedding training will thus be
somewhat supervised by tending to bring together
the vectors of words sharing a lexicon member-
ship. Furthermore, this type of training can effec-
tively “clean” the influence of noisy lexicons be-
cause even if “He” appears in the PERSON lexicon,
it will have a sufficiently different context distribu-
tion than labeled named person entities (e.g. a lack
of preceding honorifics, etc) that the presence of
this noise in the lexicon will not be as problematic
as it was previously.

Furthermore, while Skip-gram models can be
trained on billions of tokens to learn word em-
beddings for over a million word types in a sin-
gle day, this might not be enough data to cap-
ture reliable embeddings of all relevant named en-
tity phrases. Certain sets of word types, such as
names of famous scientists, can occur infrequently
enough that the Skip-gram model will not have
enough contextual examples to learn embeddings
that highlight their relevant similarities.

In this section we describe how to extend the
Skip-gram model to incorporate auxiliary infor-
mation from lexicons, or lists of related words, en-
couraging the model to assign similar embeddings
to word types in similar lexicons.
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New YorkThe ofstate is often referred

...

...

...

...

stateThe ... New York

US-STATE

WIKI-LOCATION

BUSINESS

Figure 3: A Semi supervised Skip-gram Model.
“New York” predicts the word “state”. With
lexicon-infusion, “New York” also predicts its lex-
icon classes: US-State, Wiki-location

.

In the basic Skip-gram model, as seen in Sec-
tion 2.2, the likelihood is, for each n-gram, a prod-
uct of the probability of the embedding associated
with the middle word conditioned on each context
word. We can inject supervision in this model by
also predicting, given the embedding of the mid-
dle word, whether it is a member of each lexicon.
Figure 3 shows an example, where the word “New
York” predicts “state”, and also its lexicon classes:
Business, US-State and Wiki-Location.

Hence, with subscript s iterating over each lex-
icon (or set of related words), and lmn

s being a la-
bel for whether each word is in the set, and ws

indicating the parameters of its classifier, the full
likelihood of the model is

(2)

∏
n ∈N

(∏
cn∈n

∏
i

σ(lcn
i w

cn
i

T emn)

)
(∏

s

σ(lmn
s wT

s emn)

)
.

This is a simple modification to equation (1) that
also predicts the lexicon memberships. Note that
the parameters ws of the auxiliary per-lexicon
classifiers are also learned. The lexicons are not
inserted in the binary tree with the words; instead,
each lexicon gets its own binary classifier.

Algorithm 1 Generating the training examples for
lexicon-infused embeddings

1: for all n-gram n with middle word mn do
2: for all Context-word cn do
3: for all Classifier, label pair (wcn

i ,lcn
i )

in the tree do
4: Add training example
emn , w

cn
i , lcn

5: end for
6: end for
7: for all Lexicon s, with label lmn

s do
8: Add training example emn , ws, l

mn
s

9: end for
10: end for

In practice, a very small fraction of words are
present in a lexicon-class and this creates skewed
training data, with overwhelmingly many negative
examples. We address this issue by aggressively
sub-sampling negative training data for each lex-
icon class. We do so by randomly selecting only
1% of the possible negative lexicons for each to-
ken.

A Skip-gram model has V binary classifiers. A
lexicon-infused Skip-gram model predicts an ad-
ditional K classes, and thus has V + K binary
classifiers. If number of classes K is large, we can
induce a tree over the classes, similarly to what is
done over words in the vocabulary. In our trained
models, however, we have one million words in
the vocabulary and twenty-two lexicons, so this is
not necessary.

4 Experiments

Our phrase embeddings are learned on the combi-
nation of English Wikipedia and the RCV1 Cor-
pus (Lewis et al., 2004). Wikipedia contains 8M
articles, and RCV1 contains 946K. To get candi-
date phrases we first select bigrams which have
a pointwise mutual information score larger than
1000. We discard bigrams with stopwords from a
manually selected list. If two bigrams share a to-
ken we add its corresponding trigram to our phrase
list. We further add page titles from the English
Wikipedia to the list of candidate phrases, as well
as all word types. We get a total of about 10M
phrases. We restrict the vocabulary to the most fre-
quent 1M phrases. All our reported experiments
are on 50-dimensional embeddings. Longer em-
beddings, while performing better on the semantic
similarity task, as seen in Mikolov et al (2013a;
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Model Accuracy
Skip-Gram 29.89
Lex-0.05 30.37
Lex-0.01 30.72

Table 1: Accuracy for Semantic-Syntactic task,
when restricted to Top 30K words. Lex-0.01 refers
to a model trained with lexicons, where 0.01% of
negative examples were used for training.

2013b), did not perform as well on NER.
To train phrase embeddings, we use a con-

text of length 21. We use lexicons derived from
Wikipedia categories and data from the US Cen-
sus, totaling K = 22 lexicon classes. We use a
randomly selected 0.01% of negative training ex-
amples for lexicons.

We perform two sets of experiments. First, we
validate our lexicon-infused phrase embeddings
on a semantic similarity task, similar to Mikolov et
al (Mikolov et al., 2013a). Then we evaluate their
utility on two named-entity recognition tasks.

For the NER Experiments, we use the base-
line system as described in Section 2.3.1. NER
systems marked as “Skip-gram” consider phrase
embeddings; “LexEmb” consider lexicon-infused
embeddings; “Brown” use Brown clusters, and
“Gaz” use our lexicons as features.

4.1 Syntactic and Semantic Similarity

Mikolov et al. (2013a) introduce a test set to mea-
sure syntactic and semantic regularities for words.
This set contains 8869 semantic and 10675 syn-
tactic questions. Each question consists of four
words, such as big, biggest, small, smallest. It
asks questions of the form “What is the word that
is similar to small in the same sense as biggest is
similar to big”. To test this, we compute the vec-
tor X = vector(“biggest”) − vector(“big”) +
vector(“small”). Next, we search for the word
closest to X in terms of cosine distance (exclud-
ing “biggest”, “small”, and “big”). This question
is considered correctly answered only if the clos-
est word found is “smallest”. As in Mikolov et
al (Mikolov et al., 2013a), we only search over
words which are among the 30K most frequent
words in the vocabulary.

Table 1 depicts the accuracy on Semantic Syn-
tactic Task for models trained with 50 dimensions.
We find that lexicon-infused embeddings perform
better than Skip-gram. Further, lex-0.01 performs

System Dev Test
Baseline 92.22 87.93
Baseline + Brown 93.39 90.05
Baseline + Skip-gram 93.68 89.68
Baseline + LexEmb 93.81 89.56
Baseline + Gaz 93.69 89.27
Baseline + Gaz + Brown 93.88 90.67
Baseline + Gaz + Skip-gram 94.23 90.33
Baseline + Gaz + LexEmb 94.46 90.90
Ando and Zhang (2005) 93.15 89.31
Suzuki and Isozaki (2008) 94.48 89.92
Ratinov and Roth (2009) 93.50 90.57
Lin and Wu (2009) - 90.90

Table 2: Final NER F1 scores for the CoNLL 2003
shared task. On the top are the systems presented
in this paper, and on the bottom we have base-
line systems. The best results within each area are
highlighted in bold. Lin and Wu 2009 use massive
private industrial query-log data in training.

the best, and we use this model for further NER
experiments. There was no perceptible difference
in computation cost from learning lexicon-infused
embeddings versus learning standard Skip-gram
embeddings.

4.2 CoNLL 2003 NER

We applied our models on CoNLL 2003 NER data
set. All hyperparameters were tuned by training
on training set, and evaluating on the development
set. Then the best hyperparameter values were
trained on the combination of training and devel-
opment data and applied on the test set, to obtain
the final results.

Table 2 shows the phrase F1 scores of all sys-
tems we implemented, as well as state-of-the-
art results from the literature. Note that us-
ing traditional unsupervised Skip-gram embed-
dings is worse than Brown clusters. In contrast,
our lexicon-infused phrase embeddings Lex-0.01
achieves 90.90—a state-of-the-art F1 score for the
test set. This result matches the highest F1 previ-
ously reported, in Lin and Wu (2009), but is the
first system to do so without using massive private
data. Our result is signficantly better than the pre-
vious best using public data.

4.3 Ontonotes 5.0 NER

Similarly to the CoNLL NER setup, we tuned the
hyperparameters on the development set. We use
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System Dev Test
Baseline 79.04 79.85
Baseline + Brown 79.95 81.38
Baseline + Skip-gram 80.59 81.91
Baseline + LexEmbd 80.65 81.82
Baseline + Gaz 79.85 81.31
Baseline + Gaz + Brown 80.53 82.05
Baseline + Gaz + Skip-gram 80.70 82.30
Baseline + Gaz + LexEmb 80.81 82.24

Table 3: Final NER F1 scores for Ontonotes 5.0
dataset. The results in bold face are the best on
each evaluation set.

the same list of lexicons as for CoNLL NER.
Table 3 summarize our results. We found that

both Skip-gram and Lexicon infused embeddings
give better results than using Brown Clusters as
features. However, in this case Skip-gram embed-
dings give marginally better results. (So as not to
jeopardize our ability to fairly do further research
on this task, we did not analyze the test set errors
that may explain this.) These are, to the best of our
knowledge, the first published performance num-
bers on the Ontonotes NER task.

5 Conclusions

We have shown how to inject external supervision
to a Skip-gram model to learn better phrase em-
beddings. We demonstrate the quality of phrase
embeddings on three tasks: Syntactic-semantic
similarity, CoNLL 2003 NER, and Ontonotes 5.0
NER. In the process, we provide a new public
state-of-the-art NER system for the widely con-
tested CoNLL 2003 shared task.

We demonstrate how we can plug phrase em-
beddings into an existing log-linear CRF System.

This work demonstrates that it is possible to
learn high-quality phrase embeddings and fine-
tune them with external supervision from billions
of tokens within one day computation time. We
further demonstrate that learning embeddings is
important and key to improve NLP Tasks such as
NER.

In future, we want to explore employing embed-
dings to other NLP tasks such as dependency pars-
ing and coreference resolution. We also want to
explore improving embeddings using error gradi-
ents from NER.
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Abstract

Open IE methods extract structured propo-
sitions from text. However, these propo-
sitions are neither consolidated nor gen-
eralized, and querying them may lead
to insufficient or redundant information.
This work suggests an approach to or-
ganize open IE propositions using entail-
ment graphs. The entailment relation uni-
fies equivalent propositions and induces a
specific-to-general structure. We create a
large dataset of gold-standard proposition
entailment graphs, and provide a novel
algorithm for automatically constructing
them. Our analysis shows that predicate
entailment is extremely context-sensitive,
and that current lexical-semantic resources
do not capture many of the lexical infer-
ences induced by proposition entailment.

1 Introduction

Open information extraction (open IE) extracts
natural language propositions from text without
pre-defined schemas as in supervised relation ex-
traction (Etzioni et al., 2008). These proposi-
tions represent predicate-argument structures as
tuples of natural language strings. Open IE en-
ables knowledge search by aggregating billions of
propositions from the web1. It may also be per-
ceived as capturing an unsupervised knowledge
representation schema, complementing supervised
knowledge bases such as Freebase (Bollacker et
al., 2008), as suggested by Riedel et al (2013).

However, language variability obstructs open IE
from becoming a viable knowledge representation
framework. As it does not consolidate natural lan-
guage expressions, querying a database of open IE
propositions may lead to either insufficient or re-
dundant information. As an illustrative example,

1See demo: openie.cs.washington.edu

querying the demo (footnote 1) for the generally
equivalent relieves headache or treats headache
returns two different lists of entities; out of the top
few results, the only answers these queries seem
to agree on are caffeine and sex. This is a major
drawback relative to supervised knowledge rep-
resentations, which map natural language expres-
sions to structured formal representations, such as
treatments in Freebase.

In this work, we investigate an approach for or-
ganizing and consolidating open IE propositions
using the novel notion of proposition entailment
graphs (see Figure 1) – graphs in which each
node represents a proposition and each directed
edge reflects an entailment relation, in the spirit
of textual entailment (Dagan et al., 2013). En-
tailment provides an effective structure for ag-
gregating natural-language based information; it
merges semantically equivalent propositions into
cliques, and induces specification-generalization
edges between them. For example, (aspirin, elim-
inate, headache) entails, and is more specific than,
(headache, respond to, painkiller).

We thus propose the task of constructing an
entailment graph over a set of open IE proposi-
tions (Section 3), which is closely related to Be-
rant et al’s work (2012) who introduced predicate
entailment graphs. In contrast, our work explores
propositions, which are essentially predicates in-
stantiated with arguments, and thus semantically
richer. We provide a dataset of 30 such graphs,
which represent 1.5 million pairwise entailment
decisions between propositions (Section 4).

To approach this task, we extend the state-of-
the-art method for building entailment graphs (Be-
rant et al., 2012) from predicates to complete
propositions. Both Snow et al (2006) and Berant et
al used WordNet as distant supervision when train-
ing a local pairwise model of lexical entailment.
However, analyzing our data revealed that the lex-
ical inferences captured in WordNet are quite dif-
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Figure 1: An excerpt from a proposition entailment graph focused on the topic headache. The dashed boundaries in the figure
denote cliques, meaning that all propositions within them are equivalent.

ferent from the real lexical inferences induced by
proposition entailment, making WordNet a mis-
leading form of supervision. We therefore employ
direct proposition-level supervision, and design a
probabilistic model that captures the underlying
lexical-component inferences (Section 5). We ex-
plore a variety of natural extensions to prior art as
baselines (Section 6) and show that our model out-
performs them (Section 7).

While our model increases performance on this
task, there is still much room for improvement. A
deeper analysis (Section 8) shows that common
lexical-semantic resources, on which we rely as
well, are either too noisy or provide inadequate re-
call regarding lexical entailment. In particular, we
find that predicate inference within propositions
often goes beyond inference between the predi-
cates’ linguistic meanings. While pneumonia re-
quires antibiotics and pneumonia is treated by an-
tibiotics mean the same, the inherent meanings of
require and treat are different. These inferences
pertain to specific world knowledge, and warrant
future research.

Our work also contributes to textual entailment
research. First, we extend entailment graphs to
complete propositions. Secondly, we investigate
an intermediate problem of recognizing entail-
ment between language-based predicate-argument
tuples. Though this problem is simpler than
sentence-level entailment, it does capture entail-
ment of complete statements, which proves to be
quite challenging indeed.

2 Background

Our work builds upon two major research threads:
open IE, and entailment graphs.

2.1 Open Information Extraction

Research in open IE (Etzioni et al., 2008) has fo-
cused on transforming text to predicate-argument
tuples (propositions). The general approach is to
learn proposition extraction patterns, and use them
to create tuples while denoting extraction confi-
dence. Various methods differ in the type of pat-
terns they acquire. For instance, (Banko et al.,
2007) and (Fader et al., 2011) used surface pat-
terns, while (Mausam et al., 2012) and (Xu et al.,
2013) used syntactic dependencies.

Yates and Etzioni (2009) tried to mitigate the
issue of language variability (as exemplified in
the introduction) by clustering synonymous predi-
cates and arguments. While these clusters do con-
tain semantically related items, they do not neces-
sarily reflect equivalence or implication. For ex-
ample, coffee, tea, and caffeine may all appear
in one cluster, but coffee does not imply tea; on
the other hand, separating any element from this
cluster removes a valid implication. Entailment,
however, can capture the fact that both beverages
imply caffeine, but not one another. Also related,
Riedel et al (2013) try to generalize over open IE
extractions by combining knowledge from Free-
base and globally predicting which unobserved
propositions are true. In contrast, our work identi-
fies inference relations between concrete pairs of
observed propositions.

2.2 Entailment Graphs of Words and Phrases

Previous work focused on entailment graphs or
similar structures at the sub-propositional level.
In these graphs, each node represents a natu-
ral language word or phrase, and each directed
edge an entailment (or generalization) relation.
Snow et al (2006) created a taxonomy of sense-
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disambiguated nouns and their hyponymy rela-
tions. Berant et al (2012) constructed entailment
graphs of predicate templates. Recently, Mehdad
et al (2013) built an entailment graph of noun
phrases and partial sentences for topic labeling.
The notion of proposition entailment graphs, how-
ever, is novel. This distinction is critical, be-
cause apparently, entailment in the context of spe-
cific propositions does not behave like context-
oblivious lexical entailment (see Section 8).

Berant et al’s work was implemented in Adler
et al’s (2012) text exploration demo, which instan-
tiated manually-annotated predicate entailment
graphs with arguments, and used an additional
lexical resource to determine argument entail-
ment. The combined graphs of predicate and argu-
ment entailments induced a proposition entailment
graph, which could then be explored in a faceted-
search scheme. Our work goes beyond, and at-
tempts to build entailment graphs of propositions
automatically.

2.2.1 Berant et al’s Algorithm for Predicate
Entailment Graph Construction

We present Berant et al’s algorithm in detail, as we
rely on it later on. Given a set of predicates {i}1..n
as input (constituting the graph nodes), it returns
a set of entailment decisions (i, j), which become
the directed edges of the entailment graph. The
method works in two phases: (1) local estimation,
and (2) global optimization.

The local estimation model considers every po-
tential edge (i, j) and estimates the probability pij
that this edge indeed exists, i.e. that i entails j.
Each predicate pair is represented with distribu-
tional similarity features, providing some indica-
tion of whether i entails j. The estimator then uses
logistic regression (or a linear SVM) over those
features to predict the probability of entailment. It
is trained with distant supervision from WordNet,
employing synonyms, hypernyms, and (WordNet)
entailments as positive examples, and antonyms,
hyponyms, and cohyponyms as negative.

The global optimization phase then searches
for the most probable transitive entailment graph,
given the local probability estimations. It does so
with an integer linear program (ILP), where each
pair of predicates is represented by a binary vari-
able xij , denoting whether there is an entailment
edge from i to j. The objective function corre-
sponds to the log likelihood of the assignment:

∑
i 6=j xij

(
log
(

pij

1−pij

)
+ log

(
π

1−π
))

. The prior
term π is the probability of a random pair of pred-
icates to be in an entailment relation, and can be
estimated in advance. The ILP solver searches
for the optimal assignment that maximizes the ob-
jective function under transitivity constraints, ex-
pressed as linear constraints ∀i,j,k xij + xjk −
xik ≤ 1.

3 Task Definition

A proposition entailment graph is a directed graph
where each node is a proposition si (s for sen-
tence) and each edge (si, sj) represents an en-
tailment relation from si to sj . A proposi-
tion si is a predicate-argument structure si =(
pi, a

1
i , a

2
i , ..., a

mi
i

)
with one predicate pi and its

arguments. A proposition-level entailment (si, sj)
holds if the verbalization of si implies sj , accord-
ing to the definition of textual entailment (Dagan
et al., 2013); i.e. if humans reading si would typi-
cally infer that sj is most likely true. Given a set of
propositions (graph nodes), the task of construct-
ing a proposition entailment graph is to recognize
all the entailments among the propositions, i.e.
deciding which directional edges connect which
pairs of nodes.

In this paper, we consider the narrower task
of constructing focused proposition entailment
graphs, following Berant et al’s methodology
in creating focused predicate entailment graphs.
First, all predicates are binary (have two argu-
ments) and are denoted si =

(
a1
i , pi, a

2
i

)
. Sec-

ondly, we assume that the propositions were re-
trieved by querying for a particular concept; out
of the two arguments, one argument t (topic) is
common to all the propositions in a single graph.
We denote the non-topic argument as ai. Figure 1
presents an example of an informative entailment
graph focused on the topic headache.

Though confined, this setting still challenges
the state-of-the-art in textual entailment (see Sec-
tion 7). Moreover, these restrictions facilitate
piece-wise investigation of the entailment problem
(see Section 8).

4 Dataset

To construct our dataset of open IE extractions, we
found Google’s syntactic ngrams (Goldberg and
Orwant, 2013) as a useful source of high-quality
propositions. Based on a corpus of 3.5 million En-
glish books, it aggregates every syntactic ngram
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– subtree of a dependency parse – with at most
4 dependency arcs. The resource contains only
tree fragments that appeared at least 10 times in
the corpus, filtering out many low-quality syntac-
tic ngrams.

We extracted the syntactic ngrams that reflect
propositions, i.e. subject-verb-object fragments
where object modifies the verb with either dobj
or pobj. Prepositions in pobj were concatenated
to the verb (e.g. use with). In addition, both sub-
ject and object must each be a noun phrase con-
taining two tokens at most, which are either nouns
or adjectives. Each token in the extracted frag-
ments was then lemmatized using WordNet. After
lemmatization, we grouped all identical proposi-
tions and aggregated their counts. Approximately
68 million propositions were collected.

We chose 30 topics from the healthcare domain
(such as influenza, hiv, and penicillin). For each
topic, we collected the set of propositions con-
taining it, and manually filtered noisy extractions.
This yielded 30 high-quality sets of 5,714 propo-
sitions in total, where each set becomes the set of
nodes in a separate focused entailment graph. The
graphs range from 55 propositions (scurvy) to 562
(headache), with an average of over 190 proposi-
tions per graph. Summing the number of propo-
sition pairs within each graph amounts to a total
of 1.5 million potential entailment edges, which
makes it by far the largest annotated textual entail-
ment dataset to date.

We used a semi-automatic annotation process,
which dramatically narrows down the number of
manual decisions, and hence, the required anno-
tation time. In short, the annotators are given a
series of small clustering tasks before annotating
entailment between those clusters.2

The annotation process was carried out by two
native English speakers, with the aid of encyclope-
dic knowledge for unfamiliar medical terms. The
agreement on a subset of five randomly sampled
graphs was κ = 0.77. Annotating a single graph
took about an hour and a half on average.

Positive entailment judgements constituted only
8.4% of potential edges, and were found to be
100% transitive. We observe that in nearly all of
those cases, a natural alignment between entail-
ing components occurs: predicates align with each
other, the topic is shared, and the remaining non-

2The annotated dataset is publicly available on the first
author’s website.

topic argument aligns with its counterpart. Con-
sider the topic arthritis and the entailing proposi-
tion pair (arthritis, cause, pain)→(symptom, as-
sociate with, arthritis); cause→associate with,
while pain→symptom. Rarely, some mis-
alignments do occur; for instance (vaccine,
protects, body)→(vaccine, provides, protection).
However, it is almost always the case that proposi-
tions entail if and only if their aligned lexical com-
ponents entail as well.

5 Algorithm

In this section, we extend Berant et al’s algorithm
(2012) to construct entailment graphs of proposi-
tions. As described in Section 2.2.1, their method
first performs local estimation of predicate entail-
ment and then global optimization. We modify the
local estimation phase to estimate proposition en-
tailment instead, and then apply the same global
optimization in the second phase.

In Section 4, we observed the alignment-based
relationship between proposition and lexical en-
tailment. We leverage this observation to predict
proposition entailment with lexical entailment fea-
tures (as Berant et al), using the Component En-
tailment Conjunction (CEC) model in Section 5.1.

Following Snow et al (2006) and Berant et
al, we could train CEC using distant supervision
from WordNet. In fact, we did try this approach
(presented as baseline methods, Section 6) and
found that it performed poorly. Furthermore, our
analysis (Section 8) suggests that WordNet rela-
tions do not adequately capture the lexical infer-
ences induced by proposition-level entailment. In-
stead, we use a more realistic signal to train CEC –
direct supervision from the annotated dataset. Sec-
tion 5.2 describes how we propagate proposition-
level entailment annotations to the latent lexical
components.

5.1 Component Entailment Conjunction

CEC assumes that proposition-level entailment
is the result of entailment within each pair of
aligned components, i.e. a pair of propositions
entail if and only if both their predicate and ar-
gument pairs entail. This assumption stems from
our observation of alignment in Section 4. Fur-
thermore, CEC leverages this interdependence to
learn separate predicate-entailment and argument-
entailment features through proposition-level su-
pervision.
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Formally, for every ordered pair of propositions
(i, j) we denote proposition entailment as a binary
random variable xsij and predicate and argument
entailments as xpij and xaij , respectively. In our
setting, proposition entailment (xsij) is observed,
but component entailments (xpij , x

a
ij) are hidden.

We use logistic regression, with features φpij and
parameter wp, as a probabilistic model of predi-
cate entailment (and so for arguments with φaij and
wa):

pij = P
(
xpij = 1

∣∣∣φpij ;wp) = σ
(
φpij · wp

)

aij = P
(
xaij = 1

∣∣∣φaij ;wa) = σ
(
φaij · wa

)
(1)

where σ is the sigmoid σ (z) = 1
1+e−z . We then

define proposition entailment as the conjunction of
its binary components: xsij = xpij∧xaij . Therefore,
the probability of proposition entailment given the
component features is:

sij = P
(
xsij = 1

∣∣∣φpij , φaij ;wp, wa)

= P
(
xpij = 1, xaij = 1

∣∣∣φpij , φaij ;wp, wa)
= P

(
xpij = 1

∣∣∣φpij ;wp) · P (xaij = 1
∣∣∣φaij ;wa)

= pij · aij

The proposition entailment probability is thus the
product of component entailment probabilities.

Given the proposition-level information
{
xsij

}
,

the log-likelihood is:

` (wp, wa)=
∑

i 6=j logP
(
xsij

∣∣∣φpij , φaij ;wp, wa)=

∑
i 6=j
(
xsij log (pijaij) +

(
1− xsij

)
log (1− pijaij)

)
5.2 Learning Component Models

We wish to learn the model’s parameters (wp, wa).
Our approach uses direct proposition-level super-
vision from our annotated dataset to train the com-
ponent logistic regression models. Since compo-
nent entailment (xpij , x

a
ij) is not observed in the

data, we apply the iterative EM algorithm (Demp-
ster et al., 1977). In the E-step we estimate their
probabilities from proposition-level labels (xsij),
and in the M-step we use those estimates as “soft”
labels to learn the component-level model param-
eters (wp, wa).

E-Step During the E-step in iteration t + 1,
we compute the probability of component entail-
ments given the proposition entailment informa-
tion, based on the parameters at iteration t (wpt ,
wat ). The predicate probabilities are given by:

cpij = P
(
xpij = 1

∣∣∣xsij , φpij , φaij ;wpt , wat ) (2)

and are computed with Bayes’ law:

cpij =

 1 if xsij = 1
pt

ij(1−at
ij)

1−pt
ija

t
ij

if xsij = 0
(3)

where ptij is computed as in Equations 1, with the
parameters at iteration t (wpt ). Argument entail-
ment probabilities (caij) are computed analogously.

M-Step In the M-step, we compute new values
for the parameters (wpt+1, wat+1). In our case, there
is no closed-form formula for updating the param-
eters. Instead, at each iteration, we solve a sepa-
rate logistic regression for each component. While
we have each component model’s features (φpij ,
assuming predicates for notation), we do not ob-
serve the component-level entailment labels (xpij);
instead, we obtain their probabilities (cpij) from the
expectation step.

To learn the parameters (wpt+1, wat+1) from the
component entailment probabilities (cpij), we em-
ploy a weighted variant of logistic regression, that
can utilize “soft” class labels (i.e. a probability
distribution over {0, 1}). To solve such a logistic
regression (e.g. for wpt+1), we maximize the log-
likelihood:

`
(
wpt+1

)
=

∑
ij

(
cpij log

(
P
(
xpij = 1

∣∣∣φpij ;wpt+1

))
+
(

1− cpij
)

log
(
P
(
xpij = 0

∣∣∣φpij ;wpt+1

)))
For optimization, we calculate the derivative, and
use gradient ascent to update wpt+1:

∆wpt+1 =
∂`(wp

t+1)
∂wp

t+1
=

∑
ij

(
cpij − P

(
xpij = 1

∣∣∣φpij ;wpt+1

))
φpij

This optimization is concave, and therefore the
unique global maximum can be efficiently ob-
tained.

5.3 Features
Similar to Berant et al, we used three types of fea-
tures to describe both predicate pairs (φpij) and ar-
gument pairs (φaij): distributional similarities, lex-
ical resources, and string distances.

91



We used the entire database of 68 million ex-
tracted propositions (see Section 4) to create a
word-context matrix; context was defined as other
words that appeared in the same proposition, and
each word was represented as (string, role), role
being the location within the proposition, either
a1, p, or a2. The matrix was then normalized with
pointwise mutual information (Church and Hanks,
1990). We used various metrics to measure dif-
ferent types of similarities between each compo-
nent pair, including: cosine similarity, Lin’s sim-
ilarity (1998), inclusion (Weeds and Weir, 2003),
average precision, and balanced average precision
(Kotlerman et al., 2010). Weed’s and Kotlerman’s
metrics are directional (asymmetric) and indicate
the direction of a potential entailment relation.
These features were used for both predicates and
arguments. In addition, we used Melamud et al’s
(2013) method to learn a context-sensitive model
of predicate entailment, which estimates predicate
similarity in the context of the given arguments.

We leveraged the Unified Medical Language
System (UMLS) to check argument entailment,
using the parent and synonym relations. A single
feature indicated whether such a connection ex-
ists. We also used WordNet relations as features,
specifically: synonyms, hypernyms, entailments,
hyponyms, cohyponyms, antonyms. Each Word-
Net relation constituted a different feature for both
predicates and arguments.

Finally, we added a string equality feature and a
Levenshtein distance feature (Levenshtein, 1966)
for different spellings of the same word to both
predicate and argument feature vectors.

6 Baseline Methods

We consider four algorithms that naturally ex-
tend the state-of-the-art to propositions, while us-
ing distant supervision (from WordNet). Since
CEC uses direct supervision, we also examined
another (simpler) directly-supervised algorithm.
As a naive unsupervised baseline, we use Argu-
ment Equality, which returns “entailing” if the ar-
gument pair is identical. Predicate Equality is de-
fined similarly for predicates.

Component-Level Distant Supervision The
following methods use distant supervision from
WordNet (as in Berant et al’s work, Section 2.2.1)
to explicitly train component-level entailment esti-
mators. Specifically, we train a logistic regression
model for each component as specified in Equa-

tions 1 in Section 5.1. We present four methods,
which differ in the way they obtain global graph-
level entailment decisions for propositions, based
on the local component entailment estimates (pij ,
aij in Section 5.1).

The first method, Opt(Arg ∧ Pred), uses the
product of both component models to estimate lo-
cal proposition-level entailment: sij = pij · aij .
The global set of proposition entailments is then
determined using Berant et al’s global optimiza-
tion, according to the proposition-level scores sij .
Note that this method is identical to CEC dur-
ing inference, but differs in the way the local es-
timators are learned (with component-level super-
vision from WordNet).

An alternative is Opt(Arg) ∧ Opt(Pred). It
first obtains local probabilities (pij , aij) for each
component as in Opt(Arg ∧ Pred), but then em-
ploys component-level global optimization (tran-
sitivity enforcement), yielding two sets of entail-
ment decisions, xpij and xaij . Proposition entail-
ment is then determined by the conjunction xsij =
xpij ∧ xaij , as in (Adler et al., 2012).

Finally, Opt(Arg) ignores the predicate com-
ponent. Instead, it uses only the argument en-
tailment graph (as produced by Opt(Arg) ∧
Opt(Pred)) to decide on proposition entailment;
i.e. a pair of propositions entail if and only if their
arguments entail. Opt(Pred) is defined analo-
gously.

Proposition-Level Direct Supervision A sim-
pler alternative to CEC that also employs
proposition-level supervision is Joint Features,
which concatenates the component level features
into a unified feature vector: φsij = φpij ⊕ φaij . We
then couple them with the gold-standard annota-
tions xsij to create a training set for a single logistic
regression. We use the trained logistic regression
to estimate the local probability of proposition en-
tailment, and then perform global optimization to
construct the entailment graph.

7 Empirical Evaluation

We evaluate the models in Sections 5 & 6 on the
30 annotated entailment graphs presented in Sec-
tion 4. During testing, each graph was evaluated
separately. The results presented in this section
are all micro-averages, though macro-averages
were also computed and found to reflect the same
trends. Models trained with distant supervision
were evaluated on all graphs. For directly super-
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vised methods, we used 2 × 6-fold cross valida-
tion (25 training graphs per fold). In this scenario,
each graph induced a set of labeled examples –
its edges being positive examples, and the miss-
ing potential edges being negative ones – and the
union of these sets was used as the training set of
that cross-validation fold.

7.1 Results

Table 1 compares the performance of CEC with
that of the baseline methods.

While Joint Features and CEC share exactly the
same features, CEC exploits the inherent conjunc-
tion between predicate and argument entailments
(as observed in Section 4 and modeled in Sec-
tion 5.1), and forces both components to decide on
entailment separately. This differs from the sim-
pler log-linear model (Joint Features) where, for
example, a very strong predicate entailment fea-
ture might override the overall proposition-level
decision, even if there was no strong indication
of argument entailment. As a result, CEC dom-
inates Joint Features in both precision and recall.
The F1 difference between these methods is sta-
tistically significant with McNemar’s test (1947)
with p � 0.01. Specifically, CEC corrected Joint
Features 7621 times, while the opposite occurred
only 4048 times.

CEC also yields relatively high precision
and recall. While it has 2% less recall than
Opt(Arg) (the highest-recall baseline), it sur-
passes Opt(Arg)’s precision by 14%. Along with
a similar comparison to Argument Equality (the
highest precision baseline), CEC notably outper-
forms all baselines.

It is also evident that both directly super-
vised methods outperform the distantly super-
vised methods. Our analysis (Section 8.1) shows
that WordNet lacks significant coverage, and may
therefore be a problematic source of supervision.

Perhaps the most surprising result is the com-
plete failure of WordNet-supervised methods that
consider predicate information. A deeper analy-
sis (Section 8.2) shows that predicate inference is
highly context-sensitive, and deviates beyond the
lexical inferences provided by WordNet.

7.2 Learning Curve

We measure the supervision needed to train the di-
rectly supervised models by their learning curves
(Figure 2). Each point is the average F1 score

Supervision Method Prec. Rec. F1

None

Argument
81.6% 42.2% 55.6%

Equality
Predicate

9.3% 1.5% 2.6%
Equality

Component
(WordNet)

Opt(Arg
73.8% 3.8% 7.2%∧ Pred)

Opt(Arg) ∧
72.3% 3.2% 6.0%

Opt(Pred)

Opt(Arg) 64.6% 55.4% 59.7%

Opt(Pred) 11.0% 6.2% 8.0%

Proposition
(Annotated)

Joint
76.3% 51.7% 61.6%

Features

CEC 78.7% 53.5% 63.7%

Table 1: Performance on gold-standard (micro averaged).

Figure 2: Learning curve of directly supervised methods.

across 12 cross-validation folds; e.g. for 10 train-
ing graphs, we used 4 × 3-fold cross validation.
Even 5 training graphs (a day’s worth of annota-
tion) are enough for CEC to perform on-par with
the best distantly supervised method, and with 15
training graphs it outperforms every baseline, in-
cluding Joint Features trained with 25 graphs.

7.3 Effects of Global Optimization

We evaluate the effects of enforcing transitivity by
considering CEC with and without the global op-
timization phase. Table 2 shows how many entail-
ment edges were added (and removed) by enforc-
ing transitivity, and measures how many of those
modifications were correct. Apparently, transi-
tivity’s greatest effect is the removal of incorrect
entailment edges. The same phenomenon was
also observed in the work on predicate entailment
graphs (Berant et al., 2012). Overall, transitivity
made 4,848 correct modifications out of 6,734 in
total. A χ2 test reveals that the positive contribu-
tion of enforcing transitivity is indeed statistically
significant (p� 0.01).
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Gold Global Opt Global Opt
Standard Added Edge Removed Edge

Edge Exists 1150 482
No Edge 1404 3698

Table 2: The modifications made by enforcing transitivity
w.r.t. the gold standard. 55% of the edges added by enforcing
transitivity are incorrect, but it removed even more incorrect
edges, improving the overall performance.

8 Analysis of Lexical Inference

Although CEC had a statistically-significant im-
provement upon the baselines, its absolute perfor-
mance leaves much room for improvement. We
hypothesize that the lexical entailment features we
used, following state-of-the-art lexical entailment
modeling, do not capture many of the actual lexi-
cal inferences induced by proposition entailment.
We demonstrate that this is indeed the case.

8.1 Argument Entailment

To isolate the effect of different features on pre-
dicting argument entailment, we collected all
proposition pairs that shared exactly the same
predicate and topic, and thus differed in only their
“free” argument. This yielded 20,336 aligned ar-
gument pairs, whose entailment annotations are
equal to the corresponding proposition-entailment
annotation in the dataset.

Using WordNet synonyms and hypernyms to
predict entailment yielded a precision of about
88%, at 40% recall. Though relatively precise,
WordNet’s coverage is limited, and misses many
inferences. We describe three typical types of in-
ferences that were absent from WordNet.

The first type constitutes of widely-
used paraphrases such as people↔persons,
woman↔female, and pain↔ache. These may be
seen as weaker types of synonyms, which may
have nuances, but are typically interchangeable.

Another type is metonymy, in which a concept
is not referred to by its own name, but by that of
an associated concept. This is very common in
our healthcare dataset, where a disease is often re-
ferred to by its underlying pathogen and vice-versa
(e.g. pneumonia↔pneumococcus).

The third type of missing inferences is causal-
ity. Many instances of metonymy (such as the
disease-pathogen example) may be seen as causal-
ity as well. Other examples can be drug and ef-
fect (laxative→diarrhea) or condition and symp-
tom (influenza→fever).

WordNet’s lack of such common-sense infer-

ences, which are abundant in our proposition en-
tailment dataset, might make WordNet a problem-
atic source of distant supervision. The fact that
60% of the entailing examples in our dataset are
labeled by WordNet as non-entailing, means that
for each truly positive training example, there is a
higher chance that it will have a negative label.

Distributional similarity is commonly used to
capture such missing inferences and complement
WordNet-like resources. On this dataset, how-
ever, it failed to do so. One of the more in-
dicative similarity measures, inclusion (Weeds and
Weir, 2003), yielded only 27% precision at 40%
recall when tuning a threshold to optimize F1. In-
creasing precision caused a dramatic drop in re-
call: 50% precision limited recall to 3.2%. Other
similarity measures performed similarly or worse.
It seems that current methods of distributional
word similarity also capture relations quite differ-
ent from inference, such as cohyponyms and do-
main relatedness, and might be less suitable for
modeling lexical entailment on their own.

8.2 Context-Sensitive Predicate Entailment

The proposition-level entailment annotation in-
duces an entailment relation between the predi-
cates, which holds in the particular context of the
proposition pair. We wish to understand the na-
ture of this predicate-level entailment, and how it
compares to classic lexical inference as portrayed
in the lexical semantics literature. To that end, we
collected all the entailing proposition pairs with
equal arguments, and extracted the corresponding
predicate pairs (which, assuming alignment, are
necessarily entailing in that context). This list con-
tains 52,560 predicate pairs.

In our first analysis, we explored which Word-
Net relations correlate with predicate entailment,
by checking how well each relation covers the set
of entailed predicate pairs. Synonyms and hyper-
nyms, which are considered positive entailment
indicators, covered only about 8% each. Sur-
prisingly, the hyponym and cohyponym relations
(which are considered negative entailment indica-
tors) covered over 9% and 14%, respectively. Ta-
ble 3 shows the exact details.

It seems that WordNet relations are hardly cor-
related with the context-sensitive predicate-level
entailments in our dataset, and that the classic in-
terpretation of WordNet relations with respect to
entailment does not hold in practice, where en-
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Interpretation WordNet Relation Coverage

Positive

Synonyms 7.85%
Direct Hypernyms 5.62%

Indirect Hypernyms 3.14%
Entailment 0.33%

Negative

Antonyms 0.31%
Direct Hyponyms 5.74%

Indirect Hyponyms 3.51%
Cohyponyms 14.30%

Table 3: The portion of positive predicate entailments cov-
ered by each WordNet relation. WordNet relations are di-
vided according to their common interpretations with respect
to lexical entailment.

tailments are judged in the context of concrete
propositions. In fact, negative indicators in Word-
Net seem to cover more predicate entailments
than positive ones. This explains the failure of
WordNet-supervised methods with predicate en-
tailment features (Section 7.1).

Since we do not expect WordNet to cover all
shades of entailment, we conducted a manual anal-
ysis as well. 100 entailing predicate pairs were
randomly sampled, and manually annotated for
lexical-level entailment, without seeing their argu-
ments. To compensate for the lack of context, we
guided the annotators to assume a general health-
care scenario, and use a more lenient interpretation
of textual entailment (biased towards positive en-
tailment decisions). Nevertheless, only 56% of the
predicate pairs were labeled as entailing, indicat-
ing that the context-sensitive predicate inferences
captured in our dataset can be quite different from
generic predicate inferences.

We suggest that this phenomenon goes one step
beyond what the current literature considers as
context-sensitive entailment, and that it is more
specific than determining an appropriate lexical
sense. To demonstrate, we present four such
predicate-entailment phenomena.

First, there are cases in which an appropriate
lexical sense could exist in principle, but it is too
specific to be practically covered by a manual re-
source. For example, cures cancer→kills cancer,
but the appropriate sense for kill (cause to cease
existing) does not exist, and in turn, neither does
the hypernymy relation from cure to kill. It is hard
to expect these kinds of obscure senses or relation-
ships to comprehensively appear in a manually-
constructed resource.

In many cases, such a specific sense does not
exist. For example, (pneumonia, require, antibi-
otic)→(pneumonia, treated by, antibiotics), but re-

quire does not have a general sense which means
treat by. The inference in this example does not
stem from the linguistic meaning of each predi-
cate, but rather from the real-world situation their
encapsulating propositions describe.

Another aspect of predicate entailment that
may change when considering propositional con-
text is the direction of inference. For instance,
cause9trigger. While it may be the case that trig-
ger entails cause, the converse is not necessarily
true since cause is far more general. However,
when considering (caffeine, cause, headache) and
(caffeine, trigger, headache), both propositions de-
scribe the same real-world situation, and thus both
propositions are mutually entailing. In this con-
text, cause does indeed entail trigger as well.

Finally, figures of speech (such as metaphors)
are abundant and diverse. Though it may not be
so common to read about a drug that “banishes”
headaches, most readers would understand the un-
derlying meaning. These phenomena exceed the
current scope of lexical-semantic resources such
as WordNet, and require world knowledge.

9 Conclusion

This paper proposes a novel approach, based on
entailment graphs, for consolidating information
extracted from large corpora. We define the prob-
lem of building proposition entailment graphs, and
provide a large annotated dataset. We also present
the CEC model, which models the connection be-
tween proposition entailment and lexical entail-
ment. Although it outperforms the state-of-the-
art, its performance is not ideal because it relies on
inadequate lexical-semantic resources that do not
capture the common-sense and context-sensitive
inferences which are inherent in proposition en-
tailment. In future work, we intend to further in-
vestigate lexical entailment as induced by proposi-
tion entailment, and hope to develop richer meth-
ods of lexical inference that address the phenom-
ena exhibited in this setting.
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Abstract

Bootstrapped pattern learning for entity
extraction usually starts with seed entities
and iteratively learns patterns and entities
from unlabeled text. Patterns are scored
by their ability to extract more positive en-
tities and less negative entities. A prob-
lem is that due to the lack of labeled data,
unlabeled entities are either assumed to be
negative or are ignored by the existing pat-
tern scoring measures. In this paper, we
improve pattern scoring by predicting the
labels of unlabeled entities. We use var-
ious unsupervised features based on con-
trasting domain-specific and general text,
and exploiting distributional similarity and
edit distances to learned entities. Our
system outperforms existing pattern scor-
ing algorithms for extracting drug-and-
treatment entities from four medical fo-
rums.

1 Introduction

This paper considers the problem of building ef-
fective entity extractors for custom entity types
from specialized domain corpora. We approach
the problem by learning rules bootstrapped us-
ing seed sets of entities. Though entity extrac-
tion using machine learning is common in aca-
demic research, rule-based systems dominate in
commercial use (Chiticariu et al., 2013), mainly
because rules are effective, interpretable, and are
easy to customize by non-experts to cope with er-
rors. They also have been shown to perform bet-
ter than state-of-the-art machine learning methods
on some specialized domains (Nallapati and Man-
ning, 2008; Gupta and Manning, 2014a). In ad-
dition, building supervised machine learning sys-
tems for a reasonably large domain-specific cor-
pus would require hand-labeling sufficient data to

Seed dictionary for class ‘animals’: {dog}

Text: 

I own a cat named Fluffy. I run with my pet   

dog. I also nap with my pet cat. I own a car. 

Pattern 1: my pet X

Extractions = positive : {dog}, unlabeled : {cat}

Pattern 2: own a X

Extractions = positive : {dog}, unlabeled : {car}

Figure 1: An example pattern learning system for
the class ‘animals’ from the text. Pattern 1 and 2
are candidate patterns. Text matched with the pat-
terns is shown in italics and the extracted entities
are shown in bold.

train a model, which can be costly and time con-
suming. Bootstrapped machine-learned rules can
make extraction easier and more efficient on such
a corpus.

In a bootstrapped rule-based entity learning
system, seed dictionaries and/or patterns provide
weak supervision to label data. The system itera-
tively learns new entities belonging to a specific
class from unlabeled text (Riloff, 1996; Collins
and Singer, 1999). Rules are typically defined
by creating patterns around the entities, such
as lexico-syntactic surface word patterns (Hearst,
1992) and dependency tree patterns (Yangarber
et al., 2000). Patterns are scored by their abil-
ity to extract more positive entities and less neg-
ative entities. Top ranked patterns are used to
extract candidate entities from text. High scor-
ing candidate entities are added to the dictionaries
and are used to generate more candidate patterns
around them. In a supervised setting, the efficacy
of patterns can be judged by their performance
on a fully labeled dataset (Califf and Mooney,
1999; Ciravegna, 2001). In a bootstrapped sys-
tem, where the data is not fully labeled, existing
systems score patterns by either ignoring the un-
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labeled entities or assuming them to be negative.
However, these scoring schemes cannot differenti-
ate between patterns that extract good versus bad
unlabeled entities. The problem is similar to the
closed world assumption in distantly supervised
information extraction systems, when all proposi-
tions missing from a knowledge base are consid-
ered false (Ritter et al., 2013; Xu et al., 2013).

Predicting labels of unlabeled entities can im-
prove scoring patterns. Consider the example
shown in Figure 1. Current pattern learning sys-
tems would score both patterns equally. However,
features like distributional similarity can predict
‘cat’ to be closer to {dog} than ‘car’, and a pat-
tern learning system can use that information to
rank ‘Pattern 1’ higher than ‘Pattern 2’.

In this paper, we work on bootstrapping en-
tity extraction using seed sets of entities and an
unlabeled text corpus. We improve the scoring
of patterns for an entity class by defining a pat-
tern’s score by the number of positive entities it
extracts and the ratio of number of positive entities
to expected number of negative entities it extracts.
Our main contribution is introducing the expected
number of negative entities in pattern scoring – we
predict probabilities of unlabeled entities belong-
ing to the negative class. We estimate an unla-
beled entity’s negative class probability by averag-
ing probabilities from various unsupervised class
predictors, such as distributional similarity, string
edit distances from learned entities, and TF-IDF
scores. Our system performs significantly better
than existing pattern scoring measures for extract-
ing drug-and-treatment entities from four medi-
cal forums on MedHelp1, a user health discussion
website.

We release the code for the systems described in
this paper at http://nlp.stanford.edu/
software/patternslearning.shtml.
We also release a visualization tool, described
in Gupta and Manning (2014b), that visualizes
and compares output of multiple pattern-based
entity extraction systems. It can be downloaded at
http://nlp.stanford.edu/software/
patternviz.shtml.

2 Related Work

Rule based learning has been a topic of interest
for many years. Patwardhan (2010) gives a good
overview of the research in the field. Rule learn-

1www.medhelp.org

ing systems differ in how they create rules, score
them, and score the entities they extract. Here, we
mainly discuss the rule scoring part of the previous
entity extraction research.

The pioneering work by Hearst (1992) used
hand written rules to automatically generate
more rules that were manually evaluated to
extract hypernym-hyponym pairs from text.
Other supervised systems like SRV (Freitag,
1998), SLIPPER (Cohen and Singer, 1999),
(LP )2 (Ciravegna, 2001), and RAPIER (Califf
and Mooney, 1999) used a fully labeled corpus to
either create or score rules.

Riloff (1996) used a set of seed entities to
bootstrap learning of rules for entity extraction
from unlabeled text. She scored a rule by a
weighted conditional probability measure esti-
mated by counting the number of positive entities
among all the entities extracted by the rule. Thelen
and Riloff (2002) extended the above bootstrap-
ping algorithm for multi-class learning. Yangar-
ber et al. (2002) and Lin et al. (2003) used a com-
bination of accuracy and confidence of a pattern
for multiclass entity learning, where the accuracy
measure ignored unlabeled entities and the con-
fidence measure treated them as negative. Gupta
and Manning (2014a) used the ratio of scaled fre-
quencies of positive entities among all extracted
entities. None of the above measures predict labels
of unlabeled entities to score patterns. Our sys-
tem outperforms them in our experiments. Steven-
son and Greenwood (2005) used Wordnet to assess
patterns, which is not feasible for domains that
have low coverage in Wordnet, such as medical
data.

More recently, open information extraction
systems have garnered attention. They focus
on extracting entities and relations from the
web. KnowItAll’s entity extraction from the
web (Downey et al., 2004; Etzioni et al., 2005)
used components such as list extractors, generic
and domain specific pattern learning, and subclass
learning. They learned domain-specific patterns
using a seed set and scored them by ignoring un-
labeled entities. One of our baselines is similar
to their domain-specific pattern learning compo-
nent. Carlson et al. (2010) learned multiple se-
mantic types using coupled semi-supervised train-
ing from web-scale data, which is not feasible for
all datasets and entity learning tasks. They as-
sessed patterns by their precision, assuming unla-
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beled entities to be negative; one of our baselines
is similar to their pattern assessment method.

Other open information extraction systems like
ReVerb (Fader et al., 2011) and OLLIE (Mausam
et al., 2012) are mainly geared towards generic,
domain-independent relation extractors for web
data. We tested learning an entity extractor for a
given class using ReVerb. We labeled the binary
and unary ReVerb extractions using the class seed
entities and retrained its confidence function, with
poor results. Poon and Domingos (2010) found
a similar result for inducing a probabilistic ontol-
ogy: an open information extraction system ex-
tracted low accuracy relational triples on a small
corpus.

In this paper, we use features such as distribu-
tional similarity and edit distances from learned
entities to score patterns. Similar measures have
been used before but for learning entities, label-
ing semantic classes, or for reducing noise in seed
sets (Pantel and Ravichandran, 2004; McIntosh
and Curran, 2009). Measures for improving en-
tity learning can be used alongside ours since we
focus on scoring candidate patterns.

3 Approach

We use lexico-syntactic surface word patterns to
extract entities from unlabeled text starting with
seed dictionaries of entities for multiple classes.
For ease of exposition, we present the approach
below for learning entities for one class C. It can
easily be generalized to multiple classes. We re-
fer to entities belonging to C as positive and en-
tities belonging to all other classes as negative.
The bootstrapping process involves the following
steps, iteratively performed until no more patterns
or entities can be learned.

1. Labeling data and creating patterns: The text
is labeled using the class dictionaries, start-
ing with the seed dictionaries in the first iter-
ation. A phrase matching a dictionary phrase
is labeled with the dictionary’s class. Patterns
are then created using the context around the
positively labeled entities to create candidate
patterns for C.

2. Scoring Patterns: Candidate patterns are
scored using a pattern scoring measure and
the top ones are added to the list of learned
patterns for C.

3. Learning entities: Learned patterns for the
class are applied to the text to extract candi-
date entities. An entity scorer ranks the can-
didate entities and adds the top entities to C’s
dictionary.

The success of bootstrapped pattern learning
methods crucially depends on the effectiveness of
the pattern scorer and the entity scorer. Here we
focus on improving the pattern scoring measure
(Step 2 above).

3.1 Creating Patterns

Candidate patterns are created using contexts of
words or their lemmas in a window of two to four
words before and after a positively labeled token.
Context words that are labeled with one of the
classes are generalized with that class. The tar-
get term has a part-of-speech (POS) restriction,
which is the POS tag of the labeled token. We
create flexible patterns by ignoring the words {‘a’,
‘an’, ‘the’} and quotation marks when matching
patterns to the text. Some examples of the patterns
are shown in Table 4.

3.2 Scoring Patterns

Judging the efficacy of patterns without using a
fully labeled dataset can be challenging because of
two types of failures: 1. penalizing good patterns
that extract good (that is, positive) unlabeled enti-
ties, and 2. giving high scores to bad patterns that
extract bad (that is, negative) unlabeled entities.
Existing systems that assume unlabeled entities as
negative are too conservative in scoring patterns
and suffer from the first problem. Systems that
ignore unlabeled entities can suffer from both the
problems. In this paper, we propose to estimate
the labels of unlabeled entities to more accurately
score the patterns.

For a pattern r, sets Pr, Nr, and Ur denote the
positive, negative, and unlabeled entities extracted
by r, respectively. The pattern score, ps(r) is cal-
culated as

ps(r) =
|Pr|

|Nr|+
∑

e∈Ur
(1− score(e)) log(|Pr|)

where |.| denotes size of a set. The function
score(e) gives the probability of an entity e be-
longing to C. If e is a common word, score(e) is
0. Otherwise, score(e) is calculated as the aver-
age of five feature scores (explained below), each
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of which give a score between 0 and 1. The fea-
ture scores are calculated using the seed dictio-
naries, learned entities for all labels, Google N-
grams2, and clustering of domain words using dis-
tributional similarity. The log |Pr| term, inspired
from (Riloff, 1996), gives higher scores to patterns
that extract more positive entities. Candidate pat-
terns are ranked by ps(r) and the top patterns are
added to the list of learned patterns.

To calculate score(e), we use features that as-
sess unlabeled entities to be either closer to pos-
itive or negative entities in an unsupervised way.
We motivate our choice of the five features below
with the following insights. If the dataset consists
of informally written text, many unlabeled enti-
ties are spelling mistakes and morphological vari-
ations of labeled entities. We use two edit distance
based features to predict labels for these unlabeled
entities. Second, some unlabeled entities are sub-
strings of multi-word dictionary phrases but do not
necessarily belong to the dictionary’s class. For
example, for learning drug names, the positive dic-
tionary might contain ‘asthma meds’, but ‘asthma’
is negative and might occur in a negative dictio-
nary as ‘asthma disease’. To predict the labels of
entities that are a substring of dictionary phrases,
we use SemOdd, which was used in Gupta and
Manning (2014a) to learn entities. Third, for a
specialized domain, unlabeled entities that com-
monly occur in generic text are more likely to be
negative. We use Google Ngrams (called GN) to
get a fast, non-sparse estimate of the frequency of
entities over a broad range of domains. The above
features do not consider the context in which the
entities occur in text. We use the fifth feature, Dist-
Sim, to exploit contextual information of the la-
beled entities using distributional similarity. The
features are defined as:
Edit distance from positive entities (EDP): This

feature gives a score of 1 if e has low edit
distance to the positive entities. It is com-
puted as maxp∈Pr1( editDist(p,e)

|p| < 0.2),
where 1(c) returns 1 if the condition c is true
and 0 otherwise, |p| is the length of p, and
editDist(p, e) is the Damerau-Levenshtein
string edit distance between p and e.

Edit distance from negative entities (EDN): It is
similar to EDP and gives a score of 1 if e has

2http://storage.googleapis.com/books/
ngrams/books/datasetsv2.html. Accessed Jan-
uary 2008.

high edit distance to the negative entities. It is
computed as 1 −maxn∈Nr 1( editDist(n,e)

|n| <

0.2).
Semantic odds ratio (SemOdd): First, we cal-

culate the ratio of frequency of the entity
term in the positive entities to its frequency in
the negative entities with Laplace smoothing.
The ratio is then normalized using a softmax
function. The feature values for the unlabeled
entities extracted by all the candidate patterns
are then normalized using the min-max func-
tion to scale the values between 0 and 1.3

Google Ngram (GN): We calculate the ratio of
scaled frequency of e in the dataset to the fre-
quency in Google Ngrams. The scaling factor
is to balance the two frequencies and is com-
puted as the ratio of total number of phrases
in the dataset to the total of phrases in Google
Ngrams. The feature values are normalized
in the same way as SemOdd.

Distributional similarity score (DistSim): Words
that occur in similar contexts, such as
‘asthma’ and ‘depression’, are clustered us-
ing distributional similarity. Unlabeled en-
tities that get clustered with positive entities
are given higher score than the ones clustered
with negative entities. To score the clusters,
we learn a logistic regression classifier using
cluster ID as features, and use their weights
as scores for all the entities in those clusters.
The dataset for logistic regression is created
by considering all positively labeled words as
positive and sampling negative and unlabeled
words as negative. The scores for entities are
normalized in the same way as SemOdd and
GN.

Out of feature vocabulary entities for SemOdd,
GN, and DistSim are given a score of 0. We
use a simple way of combining the feature val-
ues: we give equal weights to all features and
average their scores. Features can be combined
using a weighted average by manually tuning the
weights on a development set; we leave it to the
future work. Another way of weighting the fea-
tures is to learn the weights using machine learn-
ing. We experimented with learning weights for

3We do min-max normalization on top of the softmax
normalization because the maximum and minimum value by
softmax might not be close to 1 and 0, respectively. And,
treating the out-of-feature-vocabulary entities same as the
worst scored entities by the feature, that is giving them a score
of 0, performed best on the development dataset.
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the features by training a logistic regression clas-
sifier. We considered all positive words as positive
and randomly sampled negative and unlabeled en-
tities as negative to predict score(e), but it per-
formed worse compared to averaging the scores
on the development dataset. Preliminary investi-
gation suggests that since the classifier was trained
on a dataset heuristically labeled using the seed
dictionaries, it was too noisy for the classifier to
learn accurate weights. Presumably, the classifier
also suffered from the closed world assumption of
treating unlabeled examples as negative.

3.3 Learning Entities

We apply the learned patterns to the text and
extract candidate entities. We discard common
words, negative entities, and those containing non-
alphanumeric characters from the set. The rest are
scored by averaging the scores of DistSim, Sem-
Odd, EDO, and EDN features from Section 3.2
and the following features.

Pattern TF-IDF scoring (PTF): For an entity e, it
is calculated as 1

log freqe

∑
r∈R ps(r), where

R is the set of learned patterns that extract e
and freqe is the frequency of e in the cor-
pus. Entities that are extracted by many high
weighted patterns get higher weight. To mit-
igate the effect of many commonly occurring
entities also getting extracted by several pat-
terns, we normalize the feature value with the
log of the entity’s frequency. The values are
normalized in the same way as DistSim and
SemOdd.

Domain N-gram TF-IDF (DN): This feature
gives higher scores to entities that are more
prevalent in the corpus compared to the gen-
eral domain. For example, to learn enti-
ties about a specific disease from a disease-
related corpus, the feature favors entities re-
lated to the disease over generic medical en-
tities. It is calculated in the same way as GN
except the frequency is computed in the n-
grams of the generic domain text.

Including GN in the phrase scoring features or
including DN in the pattern scoring features did
not perform well on the development set in our pi-
lot experiments.

4 Experiments

4.1 Dataset

We evaluate our system on extracting drug-and-
treatment (DT) entities in sentences from four fo-
rums on the MedHelp user health discussion web-
site: 1. Acne, 2. Adult Type II Diabetes (called
Diabetes), 3. Ear Nose & Throat (called ENT),
and 4. Asthma. The forums have discussion
threads by users concerning health related prob-
lems and treatments. The number of sentences
in each forum are: 215,623 in ENT, 39,637 in
Asthma, 63,355 in Diabetes, and 65,595 in Acne.
We used Asthma as the development forum for
feature engineering and parameter tuning. Simi-
lar to Gupta and Manning (2014a), a DT entity is
defined as a pharmaceutical drug, or any treatment
or intervention mentioned that may help a symp-
tom or a condition. It includes surgeries, lifestyle
changes, alternative treatments, home remedies,
and components of daily care and management of
a disease, but does not include diagnostic tests and
devices. More information is in the supplemen-
tal material. A few example sentences from the
dataset are below.

I plan to start cinnamon and holy basil - known
to lower glucose in many people.

She gave me albuteral and symbicort (plus
some hayfever meds and asked me to use the
peak flow meter.

My sinus infections were treated electrically,
with high voltage million volt electricity, which
solved the problem, but the treatment is not
FDA approved and generally unavailable, except
under experimental treatment protocols.

In these sentences, ‘cinanmon’, ‘holy basil’, ‘al-
buteral’, ‘symbicort’, ‘meds’, ‘high voltage mil-
lion volt electricity’, and ‘treatment’ are DT enti-
ties.

We used entities from the following classes as
negative: symptoms and conditions (SC), medi-
cal specialists, body parts, and common tempo-
ral nouns to remove dates and dosage informa-
tion. We used the DT and SC seed dictionaries
from Gupta and Manning (2014a).4 The lists of

4The DT seed dictionary (36,091 phrases) and SC seed
dictionary (97,211 phrases) were automatically constructed
from various sources on the Internet and expanded using
the OAC Consumer Health Vocabulary (http://www.
consumerhealthvocab.org), which maps medical jar-
gon to everyday phrases and their variants. Both dictionaries
are large because they contain many variants of entities. For
each system, the SC dictionary was further expanded by run-
ning the system with the SC class as positive (considering DT
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body parts and temporal nouns were obtained from
Wordnet (Fellbaum, 1998). The common words
list was created using most common words on the
web and Twitter.5

For evaluation, the first author hand labeled the
learned entities pooled from all systems. A word
was evaluated by querying the word and the fo-
rum name on Google and manually inspecting the
results. More details on the labeling guidelines
are in the Supplement section. Inter annotator
agreement between the annotator and another re-
searcher was computed on 200 randomly sampled
learned entities from each of the Asthma and ENT
forum. The agreement for the entities from the
Asthma forum was 96% and from the ENT forum
was 92.46%. The Cohen’s kappa scores were 0.91
and 0.83, respectively. Most disagreements were
on food items like ‘yogurt’, which are hard to la-
bel. Note that we use the hand labeled entities only
as a test set for evaluation.

4.2 Baselines
As in Section 3, the sets Pr,Nr, andUr are defined
as the positive, negative, and unlabeled entities ex-
tracted by a pattern r, respectively. The set Ar is
defined as union of all the three sets. We com-
pare our system with the following pattern scoring
algorithms. Candidate entities are scored in the
same way as described in Section 3.3. It is impor-
tant to note that previous works also differ in how
they create patterns, apply patterns, and score en-
tities. Since we focus on only the pattern scoring
aspect, we run experiments that differ in only that
component.
PNOdd: Defined as |Pr|/|Nr|, this measure ig-

nores unlabeled entities and is similar to the
domain specific pattern learning component
of Etzioni et al. (2005) since all patterns with
|Pr| < 2 were discarded (more details in the
next section).

PUNOdd: Defined as |Pr|/(|Ur| + |Nr|), this
measure treats unlabeled entities as negative
entities.

RlogF: Measure used by Riloff (1996) and
Thelen and Riloff (2002), and calculated
as Rr log |Pr|, where Rr was defined as
|Pr|/|Ar| (labeled RlogF-PUN). It assumed

and other classes as negative) and adding the top 50 words ex-
tracted by the top 300 patterns to the SC class dictionary. This
helps in adding corpus specific SC words to the dictionary.

5We used top 10,000 words from Google N-grams and top
5,000 words from Twitter (www.twitter.com), accessed
from May 19 to 25, 2012.

unlabeled entities as negative entities. We
also compare with a variant that ignores the
unlabeled entities, that is by defining Rr as
|Pr|/(|Pr + |Nr|) (labeled RlogF-PN).

Yangarber02: This measure from Yangarber et
al. (2002) calculated two scores, accr =
|Pr|/|Nr| and confr = (|Pr|/|Ar|) log |Pr|.
Patterns with accr less than a threshold were
discarded and the rest were ranked using
confr. We empirically determined that a
threshold of 0.8 performed best on the devel-
opment forum.

Lin03: A measure proposed in Lin et al. (2003),
it was similar to Yangarber02, except confr

was defined as log |Pr|(|Pr| − |Nr|)/|Ar|.
In essence, it discards a pattern if it extracts
more negative entities than positive entities.

SqrtRatioAll: This pattern scoring method was
used in Gupta and Manning (2014a) and
defined as

∑
k∈Pr

√
freqk/

∑
j∈Ar

√
freqj ,

where freqi is the number of times entity
i is extracted by r. Sublinear scaling of
the term-frequency prevents high frequency
words from overshadowing the contribution
of low frequency words.

4.3 Experimental Setup
We used the same experimental setup for our sys-
tem and the baselines. When matching phrases
from a seed dictionary to text, a phrase is la-
beled with the dictionary’s class if the sequence of
phrase words or their lemmas match with the se-
quence of words of a dictionary phrase. Since our
corpora are from online discussion forums, they
have many spelling mistakes and morphological
variations of entities. To deal with the variations,
we do fuzzy matching of words – if two words are
one edit distance away and are more than 6 char-
acters long, then they are considered a match.

We used Stanford TokensRegex (Chang and
Manning, 2014) to create and apply surface word
patterns to text, and used the Stanford Part-of-
Speech (POS) tagger (Toutanova et al., 2003) to
find POS tags of tokens and lemmatize them.
When creating patterns, we discarded patterns
whose left or right context was 1 or 2 stop words to
avoid generating low precision patterns.6 In each
iteration, we learned a maximum 20 patterns with
ps(r) ≥ θr and maximum 10 words with score ≥

6Three or more stop words resulted in some good patterns
like ‘I am on X’. Our stop words list consists of punctuation
marks and around 200 very common English words.
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Figure 2: Precision vs. Recall curves of our system and the baselines for the four forums. Rlog-PN and
PNOdd are not shown to improve clarity.

0.2. The initial value of θr was 1.0, which was re-
duced to 0.8× θr whenever the system did not ex-
tract any more patterns and words. We discarded
patterns that extracted less than 2 positive entities.
We selected these parameters by their performance
on the development forum.

For calculating the DistSim feature used for
scoring patterns and entities, we clustered all of
MedHelp’s forum data into 1000 clusters using the
Brown clustering algorithm (Brown et al., 1992;
Liang, 2005).7 For calculating the Domain Ngram
feature for scoring entities, we used n-grams from
all user forums in MedHelp as the domain n-
grams.

We evaluate systems by their precision and re-
call in each iteration. Precision is defined as the
fraction of correct entities among the entities ex-
tracted. We stopped learning entities for a sys-
tem if the precision dropped below 75% to extract
entities with reasonably high precision. Recall is
defined as the fraction of correct entities among
the total unique correct entities pooled from all
systems while maintaining the precision ≥ 75%.
Note that true recall is very hard to compute since
our dataset is unlabeled. To compare the systems

7The data consisted of around 4 million tokens. Words
that occurred less than 50 times were discarded, which re-
sulted in 50353 unique words.

overall, we calculate the area under the precision-
recall curves (AUC-PR).

System Asthma ENT Diabetes Acne
OurSystem 68.36 60.71 67.62 68.01
PNOdd 51.62 50.31 05.91 58.45
PUNOdd 42.42 30.44 36.11 58.38
RlogF-PUN 56.13 54.11 48.70 57.04
RlogF-PN 53.46 52.84 16.59 62.35
SqrtRatioAll 41.49 40.44 35.47 46.46
Yangarber02 53.76 48.46 41.45 59.85
Lin03 54.58 47.98 56.15 60.79

Table 1: Area under Precision-Recall curves of the
systems.

4.4 Results

Figure 2 plots the precision and recall of systems.8

Table 1 shows AUC-PR scores for all systems.
RlogF-PN and PNOdd have low value for Dia-
betes because they learned generic patterns in ini-
tial iteration, which led them to learn incorrect en-
tities. Overall our system performed significantly
better than existing systems. All systems extract
more entities for Acne and ENT because different
drugs and treatments are more prevalent in these
forums. Diabetes and Asthma have more inter-
ventions and lifestyle changes that are harder to

8We do not show plots of PNOdd and RlogF-PN to im-
prove clarity. They performed similarly to other baselines.
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Feature Asthma ENT Diabetes Acne
All Features 68.36 60.71 67.62 68.01
EDP 68.66 59.07 60.03 65.15
EDN 59.39 59.21 16.75 65.96
SemOdd 67.07 58.41 60.51 65.04
GN 57.52 59.53 48.76 68.61
DistSim 64.87 59.05 71.11 69.48

Table 2: Individual feature effectiveness: Area un-
der Precision-Recall curves when our system uses
individual features during pattern scoring. Other
features are still used for entity scoring.

Feature Asthma ENT Diabetes Acne
All Features 68.36 60.71 67.62 68.01
minusEDP 66.29 60.45 69.84 69.46
minusEDN 67.19 60.39 69.89 67.57
minusGN 65.53 60.33 66.07 67.28
minusSemOdd 66.66 60.76 70.79 68.25
minusDistSim 66.10 60.58 66.59 67.85

Table 3: Feature ablation study: Area under
Precision-Recall curves when individual features
are removed from our system during pattern scor-
ing. The feature is still used for entity scoring.

extract.
To compare the effectiveness of each feature in

our system, Table 2 shows the AUC-PR values
when each feature was individually used for pat-
tern scoring (other features were still used to learn
entities). EDP and DistSim were strong predictors
of labels of unlabeled entities because many good
unlabeled entities were spelling mistakes of DT
entities and occurred in similar context as them.
Table 3 shows the AUC-PR values when each fea-
ture was removed from the set of features used to
score patterns (the feature was still used for learn-
ing entities). Removing GN and DistSim reduced
the AUC-PR scores for all forums.

Table 4 shows some examples of patterns and
the entities they extracted along with their labels
when the pattern was learned. We learned the first
pattern because ‘pinacillin’ has low edit distance
from the positive entity ‘penicillin’. Similarly, we
scored the second pattern higher than the base-
line because ‘desoidne’ is a typo of the positive
entity ‘desonide’. Note that the seed dictionaries
are noisy – the entity ‘metro’, part of the positive
entity ‘metrogel’, was falsely considered a neg-
ative entity because it was in the common web
words list. Our system learned the third pattern
for two reasons: ‘inhaler’, ‘inhalers’, and ‘hfa’ oc-
curred frequently as sub-phrases in the DT dictio-
nary, and they were clustered with positive enti-

Our System RlogF-PUN
low dose of X* mg of X
mg of X treat with X
X 10 mg take DT and X
she prescribe X be take X
X 500 mg she prescribe X
be take DT and X* put on X
ent put I on X* stop take X
DT ( like X:NN i be prescribe X
like DT and X have be take X
then prescribe X* tell I to take X

Table 5: Top 10 (simplified) patterns learned by
our system and RlogF-PUN from the ENT forum.
An asterisk denotes that the pattern was never
learned by the other system. X is the target word.

ties by distributional similarity. Since RlogF-PUN
does not distinguish between unlabeled and nega-
tive entities, it is does not learn the pattern. Table 5
shows top 10 patterns learned for the ENT forum
by our system and RlogF-PUN, the best perform-
ing baseline for the forum. Our system preferred
to learn patterns with longer contexts, which are
usually higher precision, first.

5 Discussion and Conclusion

Our system extracted entities with higher preci-
sion and recall than other existing systems. How-
ever, learning entities from an informal text corpus
that is partially labeled from seed entities presents
some challenges. Our system made mistakes pri-
marily due to three reasons. One, it sometimes
extracted typos of negative entities that were not
easily predictable by the edit distance measures,
such as ‘knowwhere’. Second, patterns that ex-
tracted many good but some bad unlabeled en-
tities got high scores because of the good unla-
beled entities. However, the bad unlabeled enti-
ties extracted by the highly weighted patterns were
scored high by the PTF feature during the entity
scoring phase, leading to extraction of the bad en-
tities. Better features to predict negative entities
and robust text normalization would help mitigate
both the problems. Third, we used automatically
constructed seed dictionaries that were not dataset
specific, which led to incorrectly labeling of some
entities (for example, ‘metro’ as negative in Ta-
ble 4). Reducing noise in the dictionaries would
increase precision and recall.

In this paper, the features are weighted equally
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Forum Pattern Positive entities Negative Unlabeled Our
System

Baseline

ENT he give I more X antibiotics, steroid, antibiotic pinacillin 68 NA
(RlogF-PUN)

Acne topical DT ( X prednisone, clindamycin, differin,
benzoyl peroxide, tretinoin, metro-
gel

metro desoidne 149 231
(RlogF-PN)

Asthma i be put on X cortisone, prednisone, asmanex, ad-
vair, augmentin, bypass, nebulizer,
xolair, steroids, prilosec

inhaler,
inhalers,
hfa

8 NA
(RlogF-PUN)

Table 4: Example patterns and the entities extracted by them, along with the rank at which the pattern
was added to the list of learned patterns. NA means that the system never learned the pattern. Baseline
refers to the best performing baseline system on the forum. The patterns have been simplified to show
just the sequence of lemmas. X refers to the target entity; all of them in these examples had noun POS
restriction. Terms that have already been identified as the positive class were generalized to their class
DT.

by taking the average of the feature scores. One
area of future work is to learn weights using
more sophisticated techniques; in pilot experi-
ments, learning a logistic regression classifier on
heuristically labeled data did not work well for ei-
ther pattern scoring or entity scoring.

One limitation of our system and evaluation is
that we learned single word entities, since calcu-
lating some features for multi-word phrases is not
straightforward. For example, word clusters using
distributional similarity were constructed for sin-
gle words. Our future work includes expanding
the features to evaluate multi-word phrases. An-
other avenue for future work is to use our pat-
tern scoring method for learning other kinds of
rules, such as dependency patterns, and in differ-
ent kinds of systems, such as hybrid entity learn-
ing systems (Etzioni et al., 2005; Carlson et al.,
2010). In addition, we did not explicitly address
the problem of semantic drift (Curran et al., 2007)
in this paper. In theory, learning better patterns
would help lessen the problem; we plan to investi-
gate this further.

In conclusion, we show that predicting the la-
bels of unlabeled entities in the pattern scorer of a
bootstrapped entity extraction system significantly
improves precision and recall of learned entities.
Our experiments demonstrate the importance of
having models that contrast domain-specific and
general domain text, and the usefulness of features
that allow spelling variations when dealing with
informal texts. Our pattern scorer outperforms ex-
isting pattern scoring methods for learning drug-
and-treatment entities from four medical web fo-
rums.
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Abstract

Most previous work in information
extraction from text has focused on
named-entity recognition, entity linking,
and relation extraction. Less attention
has been paid given to extracting the
temporal scope for relations between
named entities; for example, the relation
president-Of(John F. Kennedy, USA)
is true only in the time-frame (January
20, 1961 - November 22, 1963). In this
paper we present a system for temporal
scoping of relational facts, which is
trained on distant supervision based on the
largest semi-structured resource available:
Wikipedia. The system employs language
models consisting of patterns automat-
ically bootstrapped from Wikipedia
sentences that contain the main entity of
a page and slot-fillers extracted from the
corresponding infoboxes. This proposed
system achieves state-of-the-art results
on 6 out of 7 relations on the benchmark
Text Analysis Conference 2013 dataset
for temporal slot filling (TSF), and out-
performs the next best system in the TAC
2013 evaluation by more than 10 points.

1 Introduction

Previous work on relation extraction (Agichtein
and Gravano, 2000; Etzioni et al., 2004) by sys-
tems such as NELL (Carlson et al., 2010), Know-
ItAll (Etzioni et al., 2004) and YAGO (Suchanek
et al., 2007) have targeted the extraction of en-
tity tuples, such as president-Of(George W.
Bush, USA), in order to build large knowl-
edge bases of facts. These systems assume
that relational facts are time-invariant. However,
this assumption is not always true, for example

∗ This research was carried out during an internship at
Microsoft Research.

president-Of(George W. Bush, USA) holds
within the time-frame (2001-2009) only. In this
paper, we focus on the relatively less explored
problem of attaching temporal scope to relation
between entities. The Text Analysis Conference
(TAC) introduced temporal slot filling (TSF) as
one of the knowledge base population (KBP) tasks
in 2013 (Dang and Surdeanu, 2013). The in-
put to a TAC-TSF system is a binary relation e.g.
per:spouse(Brad Pitt, Jennifer Aniston) and a
document assumed to contain supporting evidence
for the relation. The required output is a 4-tuple
timestamp [T1, T2, T3, T4], where T1 and T2
are normalized dates that provide a range for the
start date of the relation, and T3 and T4 provide
the range for the end of the relationship. Sys-
tems must also output the offsets of the text men-
tions that support the temporal information ex-
tracted. For example, from a text such as “Pitt
married Jennifer Aniston on July 29, 2000 [...] the
couple divorced five years later in 2005.”, a sys-
tem must extract the normalized timestamp [2000-
07-29, 2000-07-29, 2005-01-01, 2005-12-31], to-
gether with the entity and date offsets that support
the timestamp.

In this paper, we describe TSRF, a system for
temporal scoping of relational facts. For ev-
ery relation type, TSRF uses distant supervision
from Wikipedia infobox tuples to learn a language
model consisting of patterns of entity types, cate-
gories, and word n-grams. Then it uses this trained
relation-specific language model to extract the top
k sentences that support the given relation between
the query entity and the slot filler. In a second
stage, TSRF performs timestamp classification by
employing models which learn “Start”, “End” and
“In” predictors of entities in a relationship; it com-
putes the best 4-tuple timestamp [T1, T2, T3, T4]
based on the confidence values associated to the
top sentences extracted. Following the TAC-TSF
task for 2013, TSRF is trained and evaluated for
seven relation types, as shown in Table 1.
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per:spouse
per:title
per:employee or member of
org:top employees/members
per:cities of residence
per:statesorprovinces of residence
per:countries of residence

Table 1: Types of relations in the TAC-TSF.

The remainder of the paper is organized as fol-
lows: The next section describes related work.
Section 3 introduces the TAC-TSF input and out-
put formats. Section 4 discusses the main chal-
lenges, and Section 5 details our method for tem-
poral scoping of relations. Section 6 describes our
experiments and results, and it is followed by con-
cluding remarks.

2 Related Work

To our knowledge, there are only a small num-
ber of systems that have tackled the temporal
scoping of relations task. YAGO (Wang et al.,
2010) extracts temporal facts using regular expres-
sions from Wikipedia infoboxes, while PRAVDA
(Wang et al., 2011) uses a combination of textual
patterns and graph-based re-ranking techniques to
extract facts and their temporal scopes simultane-
ously. Both systems augment an existing KB with
temporal facts similarly to the CoTS system by
Talukdar et al. (2012a; 2012b). However, their
underlying techniques are not applicable to arbi-
trary text. In contrast, TSRF automatically boot-
straps patterns to learn relation-specific language
models, which can be used then for processing
any text. CoTS, a recent system that is part of
CMU’s NELL (Carlson et al., 2010) project, per-
forms temporal scoping of relational facts by using
manually edited temporal order constraints. While
manual ordering is appealing and can lead to high
accuracy, it is impractical from a scalability per-
spective. Moreover, the main goal of CoTS is to
predict temporal ordering of relations rather than
to scope temporally individual facts. Conversely,
our system automatically extracts text patterns,
and then uses them to perform temporal classi-
fication based on gradient boosted decision trees
(Friedman, 2001).

The TempEval task (Pustejovsky and Verhagen,
2009) focused mainly on temporal event order-
ing. Systems such as (Chambers et al., 2007) and
(Bethard and Martin, 2007) have been successful

Col.1: TEMP72211 Col.7: 1492
Col.2: per:spouse Col.8: 1311
Col.3: Brad Pitt Col.9: 1.0
Col.4: AFP ENG 20081208.0592 Col.10: E0566375
Col.5: Jennifer Aniston Col.11: E0082980
Col.6: 1098

Table 2: Input to a TSF System.

in extracting temporally related events. Sil et al.
(2011a) automatically extract STRIPS represen-
tations (Fikes and Nilsson, 1971) from web text,
which are defined as states of the world before and
after an event takes place. However, all these ef-
forts focus on temporal ordering of either events or
states of the world and do not extract timestamps
for events. By contrast, the proposed system ex-
tracts temporal expressions and also produces an
ordering of the timestamps of relational facts be-
tween entities.

The current state-of-the-art systems for TSF
have been the RPI-Blender system by Artiles et
al. (2011) and the UNED system by Garrido et
al. (2011; 2012). These systems obtained the
top scores in the 2011 TAC TSF evaluation by
outperforming the other participants such as the
Stanford Distant Supervision system (Surdeanu
et al., 2011). Similar to our work, these sys-
tems use distant supervision to assign temporal la-
bels to relations extracted from text. While we
employ Wikipedia infoboxes in conjunction with
Wikipedia text, the RPI-Blender and UNED sys-
tems use tuples from structured repositories like
Freebase. There are major differences in terms of
learning strategies of these systems: the UNED
system uses a rich graph-based document-level
representation to generate novel features whereas
RPI-Blender uses an ensemble of classifiers com-
bining flat features based on surface text and de-
pendency paths with tree kernels. Our system em-
ploys language models based on Wikipedia that
are annotated automatically with entity tags in a
boosted-trees learning framework. A less impor-
tant difference between TSRF and RPI-Blender is
that the latter makes use of an additional tempo-
ral label (Start-And-End) for facts within a time
range; TSRF employs Start, End, and In labels.

3 The Temporal Slot Filling Task

3.1 Input

The input format for a TSF system as instantiated
for the relation per:spouse(Brad Pitt, Jennifer
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Aniston) is shown in Table 2. The field Column 1
contains a unique query ID for the relation. Col-
umn 2 is the name of the relationship, which also
encodes the type of the target entity. Column 3
contains the name of the query entity, i.e., the sub-
ject of the relation. Column 4 contains a valid doc-
ument ID and Column 5 indicates the slot-filler en-
tity. Columns 6 through 8 are offsets of the slot-
filler, query entity and the relationship justification
in the given text. Column 9 contains a confidence
score set to 1 to indicate that the relation is cor-
rect. Columns 10 and 11 contain the IDs in the
KBP knowledge base of the entity and filler, re-
spectively. All of the above are provided by TAC.
For the query in this example, a TSF system has to
scope temporally the per:spouse relation be-
tween Brad Pitt and Jennifer Aniston.

3.2 Output
Similar to the regular slot filling task in TAC, the
TSF output includes the offsets for at least one
entity mention and up to two temporal mentions
used for the extraction and normalization of
hypothesized answer. For instance, assume that a
system extracts the relative timestamp “Monday”
and normalizes it to “2010-10-04” for the relation
org:top employee(Twitter, Williams) using
the document date from the following document:
<DOCID> AFP ENG 20101004.0053.LDC2010T13 </DOCID>
<DATETIME> 2010-10-04 </DATETIME>
<HEADLINE>
Twitter co-founder steps down as CEO
</HEADLINE>
<TEXT>
<P>
Twitter co-founder Evan Williams announced on Monday
that he was stepping down as chief executive [...]

The system must report the offsets for both
“Monday” in the text body and “2010-10-04” in
the DATETIME block for the justification.

The TAC-TSF task uses the following represen-
tation for the temporal information extracted: For
each relation provided in the input, TSF systems
must produce a 4-tuple of dates: [T1, T2, T3, T4],
which indicates that the relation is true for a pe-
riod beginning at some point in time between T1
and T2 and ending at some time between T3 and
T4. By convention, a hyphen in one of the po-
sitions implies a lack of a constraint. Thus, [-,
20120101, 20120101, -] implies that the relation
was true starting on or before January 1, 2012 and
ending on or after January 1, 2012. As discussed
in the TAC 2011 pilot study by Ji et al. (2011),
there are situations that cannot be covered by this
representation, such as recurring events, for ex-

ample repeated marriages between two persons.
However, the most common situations for the re-
lations covered in this task are captured correctly
by this 4-tuple representation.

4 Challenges

We discuss here some of the main challenges en-
countered in building a temporal scoping system.

4.1 Lack of Annotated Data

Annotation of data for this task is expensive, as
the human annotators must have extensive back-
ground knowledge and need to analyze the evi-
dence in text and reliable knowledge resources. As
per (Ji et al., 2013), a large team of human an-
notators were able to generate only 1,172 training
instances for 8 slots for KBP 2011. The authors
of the study concluded that such amount of data
is not enough for training a supervised temporal
scoping system. They also noted that only 32% of
employee Of queries were found to have poten-
tial temporal arguments, and only one third of the
queries could have reliable start or end dates.

4.2 Date Normalization

Sometimes temporal knowledge is not stated ex-
plicitly in terms of dates or timestamps. For exam-
ple, from the text “they got married on Valentine’s
Day” a system can extract Valentine’s Day as the
surface form of the start of the per:spouse re-
lation. However, for a temporal scoping system it
needs to normalize the temporal string to the date
of February 14 and the year to which the document
refers to explicitly in text or implicitly, such as the
year in which the document was published.

4.3 Lexico-Syntactic Variety

A relation can be specified in text by employing
numerous syntactic and lexical constructions; e.g.
for the per:spouse relation the patterns “got
married on [DATE]” and “vowed to spend eternity
on [DATE]” have the same meaning. Addition-
ally, entities can appear mentioned in text in vari-
ous forms, different from the canonical form given
as input. For instance, Figure 1 shows an example
in which the input entity Bernardo Hees, which is
not in Wikipedia, is mentioned three times, with
two of the mentions using a shorter form (the last
name of the person).
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org:top_members_employees    America Latina Logistica / NIL    Bernardo Hees / NIL 

 

<HEADLINE> Burger King buyer names future CEO </HEADLINE> 

<DATELINE> NEW YORK 2010-09-09 13:00:29 UTC </DATELINE> 

<TEXT> 

<P> The investment firm buying Burger King has named Bernardo Hees, a Latin 

American railroad executive, to be CEO of the company after it completes its 

$3.26 billion buyout of the fast-food chain. </P> 

<P> 3G Capital is naming Hees to replace John Chidsey, who will become co-

chairman after the deal closes. </P> 

<P> Hees was most recently CEO of America Latina Logistica, Latin America's 

largest railroad company. Alexandre Behring, managing partner at 3G Capital, was 

also a prior CEO of the railroad. </P> 

<P> 3G Capital is expected to begin its effort to acquire the outstanding shares 

of Burger King for $24 per share by Sept. 17. </P> 

</TEXT> 

Figure 1: Example data point from the TAC TSF 2013 training set, with the annotations hypothesized
by our system. The entity mentions identified by the entity linking (EL) component are shown in bold
blue; those that were linked to Wikipedia are also underlined. The highlighting (blue and green) is used
to show the mentions in the coreference chains identified for the two input entities, “America Latina
Logistica” and “Bernardo Hees”.

4.4 Inferred Meaning

A temporal scoping system also needs to learn the
inter-dependence of relations, and how one event
affects another. For instance, in our automatically
generated training data, we learn that a death
event specified by n-grams like “was assassinated”
affects the per:title relation, and it indicates
that the relationship ended at that point. In Fig-
ure 1, while the CEO relationships for Bernardo
Hees with America Latina Logistica and Burger
King are indicated by clear patterns (“was most re-
cently CEO of” and “to be CEO of”), the temporal
stamping is difficult to achieve in both cases, as
there is no standard normalization for “recently”
in the former, and it is relative to the completion
of the buyout event in the latter.

4.5 Pattern Trustworthiness

A temporal scoping system should also be able
to model the trustworthiness of text patterns, and
even the evolution of patterns that indicate a rela-
tionship over time. For example, in current news,
the birth of a child does not imply that a couple
is married, although it does carry a strong signal
about the marriage relationship.

5 Learning to Attach Temporal Scope

5.1 Automatically Generating Training Data

As outlined in Section 4, one of the biggest chal-
lenges of a temporal scoping system is the lack
of annotated data to create a strong information

extraction system. Previous work on relation ex-
traction such as (Mintz et al., 2009) has shown
that distant supervision can be highly effective in
building a classifier for this purpose. Similar to
supervised classification techniques, some advan-
tages of using distant supervision are:

• It allows building classifiers with a large number
of features;

• The supervision is provided intrinsically by the
detailed user-contributed knowledge;

• There is no need to expand patterns iteratively.

Mintz et al. also point out that similar to unsuper-
vised systems, distant supervision also allows:

• Using large amounts of unlabeled data such as
the Web and social media;

• Employing techniques that are not sensitive to
the genre of training data.

We follow the same premise as (Cucerzan, 2007;
Weld et al., 2009) that the richness of the
Wikipedia collection, whether semantic, lexical,
syntactic, or structural, is a key enabler in re-
defining the state-of-the-art for many NLP and
IR task. Our target is to use distant supervision
from Wikipedia data to build an automatic tempo-
ral scoping system. However, for most relations,
we find that Wikipedia does not indicate specific
start or end dates in a structured form. In addition
to this, we need our system to be able to predict
whether two entities are currently in a relation-
ship or not based on the document date as well.
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Hence, in our first step, we build an automatic sys-
tem which takes as input a binary relation between
two entities e.g. per:spouse(Brad Pitt, Jennifer
Aniston) and a number of documents. The system
needs to extract highly ranked/relevant sentences,
which indicate that the two entities are in the tar-
geted relationship. The next component takes as
input the top k sentences generated in the previous
step and extracts temporal labels for the input rela-
tion. Note that our target is to develop algorithms
that are not relation-specific but rather can work
well for a multitude of relations. We elaborate on
these two system components further.

5.1.1 Using Wikipedia as a Resource for
Distant Supervision

Wikipedia is the largest freely available encyclo-
pedic collection, which is built and organized as
a user-contributed knowledge base (KB) of enti-
ties. The current version of the English Wikipedia
contains information about 4.2 million entities.
In addition to the plain text about these entities,
Wikipedia also contains structured components.
One of these is the infobox. Infoboxes contain in-
formation about a large number of relations for the
target entity of the Wikipedia page, e.g. names of
spouses, birth and death dates, residence etc.. Sim-
ilar to structured databases, the infoboxes contain
the most important/useful relations in which enti-
ties take part, while the text of Wikipedia pages
contains mentions and descriptions of these rela-
tions. Because of this, Wikipedia can be seen as a
knowledge repository that contains parallel struc-
tured and unstructured information about entities,
and therefore, can be employed more easily than
Freebase or other structured databases for building
a relation extraction system. Figure 2 shows how
sentences from Wikipedia can be used to train a
system for the temporal slot filling task.

5.1.2 Extracting Relevant Sentences
For every relation, we extract slot-filler names
from infoboxes of each Wikipedia article. We
also leverage Wikipedia’s rich interlinking model
to automatically retrieve labeled entity mentions
in text. Because the format of the text values pro-
vided by different users for the infobox attributes
can vary greatly, we rely on regular expressions to
extract slot-filler names from the infoboxes. For
every relation targeted, we build a large set of reg-
ular expressions to extract entity names and filter
out noise e.g. html tags, redundant text etc..

To extract all occurrences of named-entities in
the Wikipedia text, we relabel each Wikipedia ar-
ticle with Wikipedia interlinks by employing the
entity linking (EL) system by Cucerzan (2012),
which obtained the top scores for the EL task in
successive TAC evaluations. This implementa-
tion takes into account and preserves the inter-
links created by the Wikipedia contributors, and
extracts all other entity mentions and links them to
Wikipedia pages if possible or hypothesizes coref-
erence chains for the mentions of entities that are
not in Wikipedia. The latter are extremely impor-
tant when the slot-filler for a relation is an entity
that does not have a Wikipedia page, as often is
the case with spouses or other family members of
famous people (as shown in Figure 1 for the slot-
filler Bernardo Hees).

As stated in Section 4, temporal information
in text is specified in various forms. To resolve
temporal mentions, we use the Stanford SUTime
(Chang and Manning, 2012) temporal tagger.
The system exhibits strong performance outper-
forming state-of-the-art systems like HeidelTime
(Strötgen and Gertz, 2010) on the TempEval-2
Task A (Verhagen et al., 2010) in English. SU-
Time is a rule-based temporal tagger that employs
regular expression. Its input is English text in to-
kenized format; its output contains annotations in
the form of TIMEX3 tags. TIMEX3 is a part of
the TimeML annotation language as introduced by
(Pustejovsky et al., 2003) and is used to markup
date and time, events, and their temporal rela-
tions in text. When processing Web text, we of-
ten encounter date expressions that contain a rel-
ative time e.g. “last Thursday”. To resolve them
to actual dates/time is a non-trivial task. However,
the heuristic of employing the document’s publi-
cation date as the reference works very well in
practice e.g. for a document published on 2011-
07-05, SUTime resolves “last Thursday” to 2011-
06-30. It provides temporal tags in the following
labels: Time, Duration, Set and Interval. For our
experiments we used Time and Duration.

After running the Stanford SUTime, which au-
tomatically converts date expressions to their nor-
malized form, we collect sets of contiguous sen-
tences from the page that contain one mention of
the targeted entity and one mention of the slot-
filler, as extracted by the entity linking system. We
then build a large language model by bootstrap-
ping textual patterns supporting the relations, sim-
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ilar to (Agichtein and Gravano, 2000). The general
intuition is that a set of sentences that mention the
two entities are likely to state something about re-
lationships in which they are.

For assigning sentences a relevance score with
respect to a targeted relation, we represent the sen-
tences in an input document (i.e., Wikipedia page)
as d dimensional feature vectors, which incorpo-
rate statistics about how relevant sentences are
to the relation between a query entity q and the
slot filler z. For example, for the per:spouse
relation, one binary feature is “does the input
sentence contain the n-gram “QUERY ENTITY
got married””. Note that the various surface
forms/mentions of q and z are resolved to their
canonical target at this stage.

We were able to extract 61,872 tuples of query
entity and slot filler relations from Wikipedia
for the per:spouse relation. Figure 2 shows
how we extract relevant sentences using slot-filler
names from Wikipedia. Consider the following
text (already processed by our EL system and
Stanford SUTime) taken from the Wikipedia page
of Tom Cruise:

On [November 18, 2006|2006−11−18],
[Holmes|Katie Holmes] and [Cruise|Tom Cruise]
were married in [Bracciano|Bracciano] . . .
On [June 29, 2012|2012−06−29],
[Holmes|Katie Holmes] filed for divorce
from [Cruise|Tom Cruise] after five and a half
years of marriage.

Considering Tom Cruise as the query entity and
his wife Katie Holmes as the slot filler for the
per:spouse relation, we normalize the above
text to the following form to extract features:

On DATE, SLOT FILLER and
QUERY ENTITY were married in
LOCATION . . .

On DATE, SLOT FILLER filed for divorce
from QUERY ENTITY after five and a half
years of marriage.

Our language model consists of n-grams (n ≤ 5)
like “SLOT FILLER and QUERY ENTITY were
married”, “SLOT FILLER filed for divorce from”
which provides clues for the marriage relation.
These n-grams are then used as features with
an implementation of a gradient boosted decision
trees classifier similar to that described by (Fried-
man, 2001; Burges, 2010). We also use features
provided by the EL system which are based on en-
tity types and categories. We call this “relation-
ship” classifier RELCL. The output of this step is

In April 2005, Cruise began dating actress Katie
Holmes. On April 27 that year, Cruise and Holmes –
dubbed "TomKat" by the media – made their first
public appearance together in Rome. On October 6,
2005, Cruise and Holmes announced they were
expecting a child, and their daughter, Suri, was born in
April 2006. On November 18, 2006, Holmes and Cruise
were married in Bracciano, Italy, in a Scientology
ceremony attended by many Hollywood stars. There
has been widespread speculation that the marriage
was arranged by the Church of Scientology. On June 29,
2012, it was announced that Holmes had filed for
divorce from Cruise after five and a half years of
marriage. On July 9, 2012, it was announced that the
couple had signed a divorce settlement worked out by
their lawyers.

START
Of

marriage

END
Of

marriage

Spouse: Katie Holmes

Figure 2: Example of relevant sentences extracted
by using query entity and slot-filler names from
Wikipedia for the per:spouse relation.

a ranked list of sentences which indicate whether
there exists a relationship between the query entity
and the slot filler.

5.1.3 Learning Algorithm

Our objective is to rank the sentences in a docu-
ment based on the premise that entities q and z
are in the targeted relation r. We tackle this rank-
ing task by using gradient boosted decision trees
(GBDT) to learn temporal scope for entity rela-
tions. Previous work such as Sil et al. (2011a;
2011b) used SVMs for ranking event precondi-
tions and (Cucerzan, 2012) and (Zhou et al., 2010)
employed GBDT for ranking entities. GBDT can
achieve high accuracy as they can easily combine
features of different scale and missing values. In
our experiments, GBDT outperforms both SVMs
and MaxEnt models.

We employ the stochastic version of GBDT
similar to (Friedman, 2001; Burges, 2010). Ba-
sically, the model performs a numerical optimiza-
tion in the function space by computing a function
approximation in a sequence of steps. By build-
ing a smaller decision tree at each step, the model
computes residuals obtained in the previous step.
Note that in the stochastic variant of GBDT, for
computing the loss function, the model absorbs
several samples instead of using the whole train-
ing data. The parameters for our GBDT model
were tuned on a development set sampled from
our Wikipedia dump independent from the train-
ing set. These parameters include the number of
regression trees and the shrinkage factor.
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Figure 3: Architecture of the proposed sys-
tem. Every input document is processed by the
(Cucerzan, 2012) entity linking system and the
Stanford SUTime system. Temporal information
is then extracted automatically using RELCL and
DATECL.

5.1.4 Gathering Relevant Sentences
On the unseen test data, we apply our trained
model and obtain a score for each new sentence s
that contains mentions of entities q and z that are
in a targeted relationship by turning s into a feature
vector as shown previously. Among all sentences
that contain mentions of q and z, we choose the
top k with the highest score. The value of k was
tuned based on the performance of TSRF on our
development set.

5.1.5 Extracting Timestamps
To predict timestamps for each relation, we build
another classifier, DATECL similar to that de-
scribed in the previous section, by using language
models for “Start”, “End” and “In” predictors of
relationship. The “Start” model predicts T1, T2;
“End” predicts T3, T4 and “In” predicts T2, T3.

Raw Trigger Features: Similar to previous
work by (Sil et al., 2010) on using discriminative
words as features, each of these models compose
of “Trigger Words” that indicate when a relation-
ship begins or ends. In the current implemen-
tation, these triggers are chosen manually from
the language model automatically bootstrapped
from Wikipedia. Future directions include how
to automatically learn these triggers. For ex-
ample, for the per:spouse relation, the trig-
gers for “Start” contain n-grams such as “mar-
ried since DATE” and “married SLOT FILLER
on”; the “End” model contains n-grams such as
“estranged husband QUERY ENTITY”, “split in
DATE”; the “In” model contains “happily mar-

ried”, “QUERY ENTITY with his wife” etc.. For
an input sentence with query entity q and slot-
filler z, a first class of raw trigger features con-
sists of cosine-similarity(Text(q, z), Triggers(r))
where r ∈ Start, End, In. Here, Text(q, z) in-
dicates the full sentence as context. We also
employ another feature that computes cosine-
similarity(Context(q, z), Triggers(r)), which con-
structs a mini-sentence Context(q, z) from the
original by choosing windows of three words be-
fore and after q and z, and ignoring duplicates.

External Event Triggers: Our system also
considers the presence of other events as triggers
e.g. a “death” event signaled by “SLOT FILLER
died” might imply that a relationship ended on that
timestamp. Similarly, a “birth” event can imply
that an entity started living in a particular location
e.g. the per:born-In(Obama, Honolulu)
relation from the sentence “President Obama was
born in Honolulu in 1961” indicates that T1 =
1961-01-01 and T2 = 1961-12-31 for the rela-
tion per:cities of residence(Obama,
Honolulu).

At each step, TSRF extracts the top timestamps
for predicting “Start”, “End” and “In” based on
the confidence values of DATECL. Similar to pre-
vious work by (Artiles et al., 2011), we aggregate
and update the extracted timestamps using the fol-
lowing heuristics:

Step 1: Initialize T= [-∞, +∞, -∞,+ ∞]
Step 2: Iterate through the classified timestamps
Step 3: For a new T ′ aggregate :
T&&T ′ = [max(t1, t′1),min(t2, t′2),

max(t3, t′3),min(t4, t′4)]
Update only if: t1 ≤ t2; t3 ≤ t4; t1 ≤ t4

This novel two-step classification strategy re-
moves noise introduced by distant supervision
training and decides if the extracted (entity, filler,
timestamp) tuples belong to the relation under
consideration or not. For example, for the
per:spouse relation between the entities Brad
Pitt and Jennifer Aniston, TSRF extracts sentences
like “..On November 22, 2001, Pitt made a guest
appearance in the television series Friends, play-
ing a man with a grudge against Rachel Green,
played by Jennifer Aniston..” and “Pitt met Jen-
nifer Aniston in 1998 and married her in a private
wedding ceremony in Malibu on July 29, 2000..”.
Note that both sentences contain the query entity
and the slot filler. The system automatically re-
jects the extraction of temporal information from
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S1 S2 S3 S4 S5 S6 S7 ALL StDev
Baseline 24.70 17.40 15.18 17.83 14.75 21.08 23.20 19.10 3.60

TSRF 31.94 36.06 32.85 40.12 33.04 31.85 27.35 33.15 3.66
RPI-Blender 31.19 13.07 14.93 26.71 29.04 17.24 34.68 23.42 7.98

UNED 26.20 6.88 8.16 15.24 14.47 14.41 19.34 14.79 6.07
CMU-NELL 19.95 7.46 8.47 16.52 13.43 5.65 11.95 11.53 4.77

Abby-Compreno 0.0 2.42 8.56 0.0 13.50 7.91 0.0 5.14 4.99
LDC 69.87 60.22 58.26 72.27 81.10 54.07 91.18 68.84 12.32

Table 3: Results for the TAC-TSF 2013 test set, overall and for individual slots. The slots notation is: S1:
org:top members employees, S2: per:city of residence, S3: per:country of residence, S4: per:employee
or member of, S5: per:spouse, S6: per:statesorprovince of residence, S7: per:title. The score for the
output created by the LDC experts is also shown.

the former even though the sentence contains men-
tions of both entities. This is because the language
model for the marriage relation does not match
well this candidate sentence, which is actually fo-
cussing on the two entities being in the different
relation of co-acting/appearing in the same mo-
tion picture. The latter sentence is determined as
matching the language model for the marriage re-
lation, and TSRF extracts the temporal scope July
29, 2000 and attaches the START label to it. Most
previous systems do not perform this noise re-
moval step, which is a critical component in our
distant supervision approach.

6 Experiments

For evaluation, we train our system on the infobox
tuples and sentences extracted from the Wikipedia
dump of May 2013. We set aside a portion of the
dump as our development data. We chose to use
the top-relevant n-grams based on the performance
on the development data as features. We employ
then the TAC evaluation data, which is publicly
available through LDC.

We utilize the evaluation metric developed for
TAC (Dang and Surdeanu, 2013). In order for a
temporal constraint (T1-T4) to be valid, the doc-
ument must justify both the query relation (which
is similar to the regular English slot filling task)
and the temporal constraint. Since the time in-
formation provided in text may be approximate,
the TAC metric measures the similarity of each
constraint in the key and system response. For-
mally, if the date in the gold standard is ki, while
the date hypothesized by the system is ri, and
di = |ki − ri| is their difference measured in
years, then the score for the set of temporal con-
straints on a slot is computed as:

Score(slot) =
1
4

4∑
i=1

c

c + di

TAC sets the constant c to one year, so that pre-
dictions that differ from the gold standard by one
year get 50% credit. The absence of a constraint
in T1 or T3 is treated as a value of−∞ and the ab-
sence of a constraint in T2 or T4 is treated as +∞,
which lead to zero-value terms in the scoring sum.
Therefore, the overall achievable score has a range
between 0 and 1.

We compare TSRF against four other TSF sys-
tems: (i) RPI-Blender (Artiles et al., 2011), (ii)
CMU-NELL (Talukdar et al. (2012a; 2012b)),
(iii) UNED (Garrido et al. (2011; 2012)) and (iv)
Abby-Compreno (Kozlova et al., 2012). Most of
these systems employ distant supervision strate-
gies too. RPI-Blender and UNED obtained the top
scores in the 2011 TAC TSF pilot evaluation, and
thus, could be considered as the state-of-the-art at
the time.

We also compare our system with a reasonable
baseline similar to (Ji et al., 2011). This baseline
makes the simple assumption that the correspond-
ing relation is valid at the document date. That
means that it creates a “within” tuple as follows:
< −∞, doc date, doc date, +∞ >. Hence, this
baseline system for a particular relation always
predicts T2 = T3 = the date of the document.

Table 3 lists the results obtained by our system
on the TAC test set of 201 queries, overall and for
each individual slot, in conjunction with the re-
sults of the other systems evaluated and the output
generated by the LDC human experts. Only two
out of the five systems evaluated, TSRF and RPI-
Blender, are able to beat the “within” baseline.

TSRF achieves approximately 48% of human
performance (LDC) and outperforms all other sys-
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TSF Accuracy SF F1 SF Prec SF Recall
LDC 68.8 83.1 97.3 72.5
TSRF 33.1 77.3 96.8 64.4

RPI-Blender 23.4 51.8 69.2 41.4
UNED 14.8 46.6 69.9 35.0

CMU-NELL 11.5 32.2 38.5 27.6
Abby-Compreno 5.1 18.5 53.6 11.2

Table 4: Extraction accuracy for slot-filler men-
tions. TSRF clearly outperforms all systems and
comes close to human performance (LDC).

tems in overall score, as well as for all individ-
ual relations with the exception of per:title,
for which RPI-Blender obtains a better score. In
fact, TSRF outperforms the next best systems
by 10 and 19 points. These two systems ob-
tained the top score in TAC 2011, and outper-
formed other systems such as Stanford (Surdeanu
et al., 2011). TSRF also outperforms CMU-
NELL which employs a very large KB of re-
lational facts already extracted from the Web
and makes use of the Google N-gram corpus
(http://books.google.com/ngrams).

We believe that this large performance differ-
ence is due in part to the fact that TSRF uses a
language model to clean up the noise introduced
by distant supervision before the actual temporal
classification step. Also, the learning algorithm
employed, GBDT, is highly effective in using the
extracted n-grams as features to decide whether
the extracted (entity, filler, time) tuples belong to
the relation under consideration or not. Finally,
Table 4 shows another reason that gives TSRF an
edge in obtaining the best score. The employed EL
component (Cucerzan, 2012) is a state-of-the-art
system for extracting and linking entities, and re-
solving coreference chains. By using this system,
we have been able to extract slot-filler mentions
with a precision of 96.8% at 66.4% recall, which
is substantially higher than the extraction results
of all other systems. Encouragingly, the perfor-
mance of this component also comes close to that
of the LDC annotators, which obtained a precision
of 97.3% at 72.5% recall.

It is also important to note that our system ex-
hibits a balanced performance on the relations
on which it was tested. As shown in column
StDev in Table 3, this system achieves the low-
est standard deviation in the performance across
the relations tested. It is interesting to note also
that TSRF achieves the best performance on the
employee of (S4) and city of residence
(S2) relations even though the system develop-

ment was done on the spouse relation (S1) as an
encouraging sign that our distant supervision al-
gorithm can be transferred successfully across re-
lations for domain-specific temporal scoping.

7 Conclusion and Future Work

The paper described an automatic temporal scop-
ing system that requires no manual labeling ef-
fort. The system uses distant supervision from
Wikipedia to obtain a large training set of tuples
for training. It uses a novel two-step classifica-
tion to remove the noise introduced by the dis-
tant supervision training. The same algorithm
was employed for multiple relations and exhibited
similarly high accuracy. Experimentally, the sys-
tem outperforms by a large margin several other
systems that address this relatively less explored
problem. Future directions of development in-
clude extracting joint slot filler names and tem-
poral information, and leveraging the changes ob-
served over time in Wikipedia for a query entity
and a slot filler in a target relation.

References
E. Agichtein and L. Gravano. 2000. Snowball: Ex-

tracting relations from large plain-text collections.
In Procs. of the Fifth ACM International Conference
on Digital Libraries.

Javier Artiles, Qi Li, Taylor Cassidy, Suzanne
Tamang, and Heng Ji. 2011. CUNY BLENDER
TACKBP2011 Temporal Slot Filling System De-
scription. In TAC.

Steven Bethard and James H Martin. 2007. Cu-tmp:
Temporal relation classification using syntactic and
semantic features. In Proceedings of the 4th Inter-
national Workshop on Semantic Evaluations, pages
129–132.

Chris Burges. 2010. From ranknet to lambdarank to
lambdamart: An overview. Learning, 11:23–581.

Andrew Carlson, Justin Betteridge, Bryan Kisiel,
Burr Settles, Estevam R Hruschka Jr, and Tom M
Mitchell. 2010. Toward an architecture for never-
ending language learning. In AAAI.

Nathanael Chambers, Shan Wang, and Dan Juraf-
sky. 2007. Classifying temporal relations between
events. In Proceedings of the 45th Annual Meeting
of the ACL on Interactive Poster and Demonstration
Sessions, pages 173–176.

Angel X Chang and Christopher Manning. 2012. Su-
time: A library for recognizing and normalizing time
expressions. In LREC, pages 3735–3740.

117



Silviu Cucerzan. 2007. Large-scale named entity dis-
ambiguation based on wikipedia data. In EMNLP-
CoNLL, pages 708–716.

Silviu Cucerzan. 2012. The MSR System for Entity
Linking at TAC 2012. In TAC.

Hoa Trang Dang and Mihai Surdeanu. 2013. Task
description for knowledge-base population at TAC
2013. In TAC.

O. Etzioni, M. Cafarella, D. Downey, S. Kok,
A. Popescu, T. Shaked, S. Soderland, D. Weld, and
A. Yates. 2004. Web-Scale Information Extraction
in KnowItAll. In WWW, New York City, New York.

R. Fikes and N. Nilsson. 1971. STRIPS: A new
approach to the application of theorem proving to
problem solving. Artificial Intelligence, 2(3/4):189–
208.

Jerome H Friedman. 2001. Greedy function approx-
imation: a gradient boosting machine. Annals of
Statistics, pages 1189–1232.

Guillermo Garrido, Bernardo Cabaleiro, Anselmo Pe-
nas, Alvaro Rodrigo, and Damiano Spina. 2011. A
distant supervised learning system for the tac-kbp
slot filling and temporal slot filling tasks. In TAC.

Guillermo Garrido, Anselmo Penas, Bernardo Ca-
baleiro, and Alvaro Rodrigo. 2012. Temporally an-
chored relation extraction. In ACL.

Heng Ji, Ralph Grishman, and Hoa Trang Dang. 2011.
Overview of the tac2011 knowledge base population
track. In TAC.

Heng Ji, Taylor Cassidy, Qi Li, and Suzanne Tamang.
2013. Tackling representation, annotation and clas-
sification challenges for temporal knowledge base
population. Knowledge and Information Systems,
pages 1–36.

Ekaterina Kozlova, Manicheva Maria, Petrova Elena,
and Tatiana Popova. 2012. The compreno semantic
model as an integral framework for a multilingual
lexical database. In 3rd Workshop on Cognitive As-
pects of the Lexicon (CogALex-III).

Mike Mintz, Steven Bills, Rion Snow, and Daniel Ju-
rafsky. 2009. Distant supervision for relation ex-
traction without labeled data. In ACL, pages 1003–
1011.

James Pustejovsky and Marc Verhagen. 2009.
Semeval-2010 task 13: evaluating events, time ex-
pressions, and temporal relations (tempeval-2). In
Proceedings of the Workshop on Semantic Evalua-
tions: Recent Achievements and Future Directions,
pages 112–116.
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Abstract

This paper proposes to learn language-
independent word representations to ad-
dress cross-lingual dependency parsing,
which aims to predict the dependency
parsing trees for sentences in the target
language by training a dependency parser
with labeled sentences from a source lan-
guage. We first combine all sentences
from both languages to induce real-valued
distributed representation of words under
a deep neural network architecture, which
is expected to capture semantic similari-
ties of words not only within the same lan-
guage but also across different languages.
We then use the induced interlingual word
representation as augmenting features to
train a delexicalized dependency parser on
labeled sentences in the source language
and apply it to the target sentences. To in-
vestigate the effectiveness of the proposed
technique, extensive experiments are con-
ducted on cross-lingual dependency pars-
ing tasks with nine different languages.
The experimental results demonstrate the
superior cross-lingual generalizability of
the word representation induced by the
proposed approach, comparing to alterna-
tive comparison methods.

1 Introduction

With the rapid development of linguistic resources
and tools in multiple languages, it is very im-
portant to develop cross-lingual natural language
processing (NLP) systems. Cross-lingual depen-
dency parsing is the task of inferring dependency
trees for observed sentences in a target language
where there are few or no labeled training sen-
tences by using a dependency parser trained on
a large amount of sentences with annotated de-
pendency trees in a source language (Durrett et

al., 2012; McDonald et al., 2011; Zhao et al.,
2009). Cross-lingual dependency parsing is pop-
ularly studied in natural language processing area
as it can greatly reduce the expensive manual an-
notation effort in the target language by exploit-
ing the dependency annotations from a source lan-
guage (Durrett et al., 2012; McDonald et al., 2011;
Täckstr̈om et al., 2012).

One fundamental challenge of cross-lingual de-
pendency parsing stems from the word-level rep-
resentation divergence across languages. Since
sentences in different languages are expressed
using different vocabularies, if we train a de-
pendency parser on the word-level features of
sentences from a source language, it will fail
to parse the sentences in a different target lan-
guage. A variety of work in the literature has at-
tempted to bridge the word-level representation di-
vergence across languages. One intuitive method
delexicalizes the dependency parser by replac-
ing the language-specific word-level features with
language-independent features such as universal
part-of-speech tags (Petrov et al., 2012). With the
universal POS tag features, this method provides
a possible way to transfer dependency parsing in-
formation from the source language to the target
language and has demonstrated some good empir-
ical results (McDonald et al., 2011). However, the
number of universal POS tags is small, which lim-
its their discriminative capacity as input features
for dependency parsing. A few other works hence
propose to improve the delexicalized system by
learning more effective cross-lingual features such
as bilingual word clusters (T̈ackstr̈om et al., 2012)
and other interlingual representations (Durrett et
al., 2012).

In this paper, we propose to address cross-
lingual dependency parsing by learning distributed
interlingual word representations using a deep
neural network architecture. We first combine
all the sentences from two language domains and
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build cross language word connections based on
Wikitionary, which works as a free bilingual dic-
tionary. Then by exploiting a deep learning archi-
tecture, we learn real-valued dense feature vectors
for the words in the given sentences as the high-
level interlingual representations, which capture
semantic similarities across languages. Finally, we
use the induced distributed word representation as
augmenting features to train a delexicalized de-
pendency parser on the annotated sentences in the
source language and applied it on the sentences in
the target language. In order to evaluate the pro-
posed cross-lingual learning technique, we con-
duct extensive experiments on eight cross-lingual
dependency parsing tasks with nine different lan-
guages. The experimental results demonstrate the
efficacy of the proposed approach in transferring
dependency parsers across languages, comparing
to other methods.

The remainder of the paper is organized as fol-
lows. Section 2 reviews related work. Section
3 describes the main approach of cross-lingual
word representation learning with deep neural net-
works and cross-lingual dependency parsing with
induced interlingual features. Section 4 presents
the empirical study on eight cross language depen-
dency parsing tasks. We then conclude the paper
in Section 5.

2 Related Work

Previous works developed in the literature have
tackled cross-lingual dependency parsing by us-
ing cross-lingual annotation projection methods,
multilingual model learning methods, and cross-
lingual representation learning methods.

Cross-lingual annotation projection methods
use parallel sentences to project the annotations
from the source language side to the target lan-
guage side and then train dependency parsers on
the target data with projected annotations (Hwa
et al., 2005; Liu et al., 2013; Smith and Eis-
ner, 2009; Zhao et al., 2009). For cross-lingual
annotation projection methods, both the word
alignment training step and the annotation pro-
jection step can introduce errors or noise. Thus
much work developed in the literature has fo-
cused on designing robust projection algorithms
such as graph-based projection with label prop-
agations (Das and Petrov, 2011), improving pro-
jection performance by using auxiliary resources
such as Wikipedia metadata (Kim and Lee, 2012)

or WordNet (Khapra et al., 2010), or boosting pro-
jection performance by heuristically modifying or
correcting the projected annotations (Hwa et al.,
2005; Kim et al., 2010). Some work has also
proposed to project the discrete dependency arc
instances instead of treebank as the training set
(Liu et al., 2013). Moreover, besides cross-lingual
dependency parsing, cross-lingual annotation pro-
jection methods have also demonstrated success
in various other sequence labeling tasks includ-
ing POS tagging (Das and Petrov, 2011; Yarowsky
and Ngai, 2001), relation extraction (Kim et al.,
2012), named entity recognition (Kim et al., 2010;
Kim and Lee, 2012), constituent syntax parsing
(Jiang et al., 2011), and word sense disambigua-
tion (Khapra et al., 2010).

Multilingual model learning methods train
cross-lingual dependency parsers with parameter
constraints obtained from parallel data (Liu et al.,
2013; Ganchev et al., 2009) or linguistic knowl-
edges (Naseem et al., 2010; Naseem et al., 2012).
Among these methods, some proposed to train
a joint dependency parsing system with parame-
ters shared across the dependency parsing models
in individual languages (Liu et al., 2013). Other
works used posterior regularization techniques to
encode the linguistic constraints in learning de-
pendency parsing models (Ganchev et al., 2009;
Naseem et al., 2010; Naseem et al., 2012). The
linguistic constraints may either come from man-
ually constructed universal dependency parsing
rules (Naseem et al., 2010) or manually specified
typological features (Naseem et al., 2012), or be
learned from parallel sentences (Ganchev et al.,
2009). Besides cross-lingual dependency parsing,
multilingual model learning methods have also
achieved good empirical results for other multilin-
gual NLP tasks, including named entity recogni-
tion (Burkett et al., 2010; Che et al., 2013; Wang
and Manning, 2014), syntactic parsing (Burkett
et al., 2010), semantic role labeling (Zhuang and
Zong, 2010; Kozhevnikov and Titov, 2012), and
word sense disambiguation (Guo and Diab, 2010).

Cross-lingual representation learning methods
induce language-independent features to bridge
the cross-lingual difference in the original word-
level representation space and build connections
across different languages. They train a depen-
dency parser in the induced representation space
by exploiting labeled data from the source lan-
guage and apply it in the target language (Dur-
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rett et al., 2012; T̈ackstr̈om et al., 2012; Zhang
et al., 2012). A variety of auxiliary resources
have been used to induce interlingual features, in-
cluding bilingual lexicon (Durrett et al., 2012),
and unlabeled parallel sentences (Täckstr̈om et al.,
2013). Based on different learning mechanisms
(whether or not using labeled data) for induc-
ing language-independent features, cross-lingual
representation learning methods can be cate-
gorized into unsupervised representation learn-
ing (Täckstr̈om et al., 2013) and supervised
representation learning (Durrett et al., 2012).
The language-independent features include bilin-
gual word clusters (T̈ackstr̈om et al., 2012),
language-independent projection features (Durrett
et al., 2012), and automatically induced language-
independent POS tags (Zhang et al., 2012). Be-
sides cross-lingual dependency parsing, in the lit-
erature cross-lingual representation learning meth-
ods have also demonstrated efficacy in different
NLP applications such as cross language named
entity recognition (T̈ackstr̈om et al., 2012) and
cross language semantic role labeling (Titov and
Klementiev, 2012). Our work shares similarity
with these cross-lingual representation learning
methods on inducing new language-independent
features, but differs from them in that we learn
cross-lingual word embeddings. Though multilin-
gual word embeddings have been employed in the
literature, they are developed for other NLP tasks
such as cross-lingual sentiment analysis (Klemen-
tiev et al., 2012), and machine translation (Zou
et al., 2013). Moreover, the method in (Klemen-
tiev et al., 2012) requires parallel sentences with
observed word-level alignments, and the method
in (Zou et al., 2013) first learns language-specific
word embeddings in each language separately
and then transforms representations from one lan-
guage to another language with machine trans-
lation alignments, while we jointly learn cross-
lingual word embeddings in the two languages by
only exploiting a small set of bilingual word pairs.

From the perspective of applying deep networks
in natural language processing systems, there are
a number of works in the literature (Collobert and
Weston, 2008; Collobert et al., 2011; Henderson,
2004; Socher et al., 2011; Titov and Henderson,
2010; Turian et al., 2010). Socher et al. (2011) ap-
plied recursive autoencoders to address sentence-
level sentiment classification problems. Collobert
and Weston (2008) and Collobert et al. (2011)

employed a deep learning framework for jointly
multi-task learning and empirically evaluated it
with four NLP tasks, including part-of-speech tag-
ging, chunking, named entity recognition, and se-
mantic role labeling. Henderson (2004) proposed
discriminative training methods for learning a neu-
ral network statistical parser. Titov and Hender-
son (2010) extended the incremental sigmoid Be-
lief networks (Titov and Henderson, 2007) to a
generative latent variable model for dependency
parsing. Turian et al. (2010) employed neural net-
works to induce word representations for sequence
labeling tasks such as named entity recognition.

3 Cross-Lingual Dependency Parsing
with Word Representation Learning

In this work, we aim to tackle cross-lingual depen-
dency parsing by learning language-independent
distributed word representations with deep neural
networks. We first build connections across lan-
guages using free bilingual dictionaries. Then we
introduce the deep neural network framework for
cross-lingual word representation learning and de-
scribe how to employ the induced dense word em-
beddings for cross-lingual dependency parsing.

3.1 Building Cross Language Connections

To induce cross-lingual word representations, we
first need to build connections between the source
and target languages. In this work, we produce
such connections by finding cross-lingual word
pairs using the Wikitionary1, which works as free
bilingual dictionaries between language pairs.

Specifically, we first constructed a source lan-
guage dictionary with all words that appeared in
the sentences from the source language domain
and translate these words to the target language
using the Wikitionary. Then we filtered the pro-
duced word-to-word translations by dropping the
ones where either the same source language word
has multiple different word translations in the tar-
get language or the same target language word
corresponds to multiple different source language
words. We further dropped the word pairs where
the translated word in the target language does not
appear in the given sentences in the target lan-
guage domain. After the processing, we have a set
of one-to-one bilingual word pairs to build con-
nections between the two language domains. Fi-
nally, we built a unified bilingual vocabularyV

1http://en.wikitionary.org
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Figure 1: The architecture of the deep neural net-
work for learning cross-lingual word representa-
tions. Each wordwi from the training samplex
is mapped to an interlingual representation vector
R(wi) through the embedding matrixR.

with words from all sentences of the two language
domains. For each one-to-one bilingual word pair
we constructed, we assume the two words have
equivalent semantic meaning and map them to the
same entry inV . Next we will learn a distributed
vector representation for each entry of the bilin-
gual vocabularyV using deep neural networks.
By sharing the same representation vectors, the
constructed bilingual word pairs will serve as the
bridge across languages.

3.2 Interlingual Word Representation
Learning with Deep Neural Networks

Given the constructed bilingual vocabularyV with
v entries, we will learn a latent word embedding
matrix R ∈ Rk×v over the sentences in the two
language domains by using a deep neural network
model. This embedding matrix will map each
wordw in the vocabularyV into a real valued rep-
resentation vectorR(w) with lengthk. For each
bilingual pair of words that are mapped into the
same entry ofV , they will be mapped into the
same vector inR as well. Following the strat-
egy of (Collobert et al., 2011), we construct a
simple two-class classification problem over the
given sentences. We use the sub-sentences with

fixed window sizec constructed from the given
sentences in the two language domains as posi-
tive samples and construct the negative samples by
replacing the middle word of each positive sub-
sentence with a random word fromV . We then
train a deep neural network for this two-class clas-
sification problem, while simultaneously learning
the latent embedding matrixR.

The deep neural network architecture is given
in Figure 1. The bottom layer of the deep archi-
tecture is the input layer, which takes a sequence
of word tokens,x = w1, w2, . . . , wc, with a fixed
window sizec as the input instance. Then we map
each wordwi in this sequence to an embedding
vectorR(wi) by treating the bilingual embedding
matrix R as a look-up table. The embedding vec-
tors of the sequence of wordsx will be concate-
nated into a long vectorR(x) ∈ Rck such that

R(x) = [R(w1); R(w2); . . . ; R(wc)]. (1)

R(x) will then be used as input for the hidden
layer above it. The deep neural network has mul-
tiple hidden layers. The first hidden layer applies
a nonlinear hyperbolic tangent activation function
over the linear transformation of its input vector
R(x), such that

H1(x) = tanh (W1 ×R(x) + b1) (2)

where W1 ∈ Rh1×ck is the weight parameter
matrix, b1 ∈ Rh1 is the bias parameter vector,
H1(x) ∈ Rh1 is the output vector, andh1 is the
number of hidden units in the first hidden layer.
Similarly, each of the other hidden layers takes the
previous layer’s output as its input and performs
a nonlinear transformation to produce an output
vector. For example, for thei-th hidden layer, we
usedHi−1(x) as its input andHi(x) as its output
such that

Hi(x) = tanh (Wi ×Hi−1(x) + bi) (3)

whereWi ∈ Rhi×hi−1 is the weight parameter ma-
trix andbi is the bias parameter vector for thei-
th hidden layer;hi denotes the number of hidden
units of thei-th hidden layer.

Givent hidden layers, the output representation
of the last layer will then be used to generate a
final score value for the prediction task, such that

s(x) = θ ×Ht(x) + u (4)
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whereθ ∈ Rht is the weight parameter vector and
u is the bias parameter for the output layer.

In summary, the model parameters of the deep
neural network architecture include the look-up ta-
ble R, the parameters{Wi,bi}t

i=1 for the hidden
layers, and the output layer parameters(θ, u).

3.3 The Training Procedure

The model parameters of the deep network archi-
tecture are learned by training a two-class classifi-
cation model over the the constructed positive and
negative samples. LetD = {xi, x̂i}N

i=1 denote
the constructed training set, wherexi is a positive
sample and̂xi is a negative sample constructed by
replacing the middle word ofxi with a random
word fromV . It is desirable for the model to pro-
duce an output scores(xi) that is much larger than
the scores(x̂i) for each pair of training instances.
Thus we perform training to maximize the separa-
tion margins between the pairs of scores over pos-
itive and negative samples under a hinge loss; that
is we minimize the following training loss

J(D) =
1
N

N∑
i=1

max(0, 1− s(xi) + s(x̂i)) (5)

We perform a random initialization over the
look-up table and weight model parameters, and
set all the bias model parameters to zeros. Then we
use a stochastic gradient descent (Bottou, 1991)
algorithm to perform optimization.

3.4 Cross-Lingual Dependency Parsing

The training of deep network model above will
produce a word embedding matrixR for all words
in the two language domains. Moreover, by hav-
ing each translated bilingual pair of words shar-
ing the same representation vector inR in the
training process, the embedding matrixR is ex-
pected to capture consistent and comparable se-
mantic meanings across languages, and provide a
language-independent and distributed representa-
tion for each word in the bilingual dictionaryV .

GivenR, for each sentencex = w1, w2, . . . , wn

from the two language domains, we retrieved the
representation vectorR(wi) for each wordwi.
Moreover, we further delexicalized the sentence
by replacing the sequence of language-specific
words with a sequence of universal POS tags
(Petrov et al., 2012). Finally we train a delexical-
ized dependency parser on the labeled sentences
in the source language based on the universal POS

tag features and the learned distributed features.
and apply it to perform dependency parsing on the
sentences in the target language domain.

4 Experiments

We empirically evaluated the proposed cross-
lingual word representation learning for cross-
lingual dependency parsing. In this section, we
present the experimental setup and the results.

4.1 Dataset

We used the dataset from the CoNLL shared task
(Buchholz and Marsi, 2006; Nivre et al., 2007) for
cross-lingual dependency parsing. We conducted
experiments with the following nine languages:
English (EN), Danish (DA), German (DE), Greek
(EL), Spanish (ES), Italian (IT), Dutch (NL), Por-
tuguese (PT) and Swedish (SV). For each lan-
guage, there is a separate training set and a test set.
We used English, which usually has more labeled
resources, as the source language, while treat-
ing the others as target languages. We thus con-
structed eight cross-lingual dependency parsing
tasks (EN2DA, EN2DE, EN2EL, EN2ES, EN2IT,
EN2NL, EN2PT, EN2SV), one for each of the
eight target languages. For example, the task
EN2DA means that we used Danish (DA) as the
target language while usingEnglish (EN)as the
source language. For each cross language de-
pendency parsing task, we first performed repre-
sentation learning and then conducted dependency
parsing training and test.

In this dataset, each sentence is labeled with
gold standard part-of-speech tags. To produce
delexicalized cross-lingual dependency parsers,
we mapped these language-specific part-of-speech
tags into twelve universal POS tags (Petrov et al.,
2012): ADJ (adjectives), ADP (prepositions or
postpositions), ADV (adverbs), CONJ (conjunc-
tions), DET (determiners), NOUN (nouns), NUM
(numerals), PRON (pronouns), PRT (particles),
PUNC (punctuation marks), VERB (verbs) and X
(for others).

4.2 Representation Learning

For each language pair, we produced a set of one-
to-one bilingual word pairs using Wikitionary to
build cross language connections. The numbers
of bilingual word pairs produced for all the eight
language pairs and the numbers of words in each
language are given in Table 1.
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Table 1: The number of words in each language and the number of selectedbilingual word pairs for each
of the eight language pairs.

Language Pairs # Source Words # Target Words # Bilingual Word Pairs

English vs Danish 26599 17934 1140
English vs Dutch 26599 27829 2976
English vs German 26599 69336 1905
English vs Greek 26599 13318 869
English vs Italian 26599 13523 2347
English vs Portuguese 26599 27782 2408
English vs Spanish 26599 16465 2910
English vs Swedish 26599 19072 1779

Table 2: The feature templates used for the cross-lingual dependency parsing.dir denotes the direction
of the dependency relationship, which has two values{left, right}. dist denotes the distance between
the head word and the dependent word, which has five values{1, 2, 3-5, 6-10, 11+}.

Feature Template Feature Description

UPOS(wh) the head word’s universal POS tag
UPOS(wd) the dependent word’s universal POS tag
UPOS(wh, wd) the universal POS tag pair of the head and dependent word
R(wh) the head word’s distributed representation
R(wd) the dependent word’s distributed representation

dir&UPOS conjunction features related to the dependency direction
dist&UPOS conjunction features related to the dependency distance
dir&dist&UPOS conjunction features related to the dependency direction and distance

To perform distributed cross-lingual representa-
tion learning using the proposed deep network ar-
chitecture, we first constructed the two-class train-
ing dataset from all the sentences (training and
test sentences) of the two language domains. This
requires the creation of sub-sentences with fixed
window sizec from the given sentences. We used
window sizec = 5 in the experiments. For ex-
ample, for a given sentence “I visited New York
.” , we can produce a number of sub-sentences,
including “<PAD> <S> I visited New”, “<S> I
visited New York”, “I visited New York .”, “vis-
ited New York . </S>”, and “New York . </S>
<PAD>”, where<PAD> is special token to fill
the length requirement. Negative samples are con-
structed by simply replace the middle word of each
sub-sentence with a random word.

With the constructed training data, we then per-
formed training over the deep neural network. We
used 3 hidden layers with 100 hidden units in
each layer, considering the model capacity and the

training effort. The dimensionk of the embedding
word vectors inR is set as200.

4.3 Cross-lingual Dependency Parsing

We used the MSTParser (McDonald et al., 2005a;
McDonald et al., 2005b) as the basic dependency
parsing model. MSTParser uses spanning tree
algorithms to seek for the candidate dependency
trees and employs an online large margin train-
ing optimization algorithm. MSTParser is widely
used in the literature for dependency parsing tasks
and has demonstrated good empirical results in the
CoNLL shared tasks on multilingual dependency
parsing (Buchholz and Marsi, 2006; Nivre et al.,
2007). For this dependency parsing model, there
are a few parameters to be set: the number of max-
imum iterations for the perceptron training, and
the number of best-k dependency tree candidates.
We set the number of iterations to be 10 and only
considered the best-1 dependency tree candidate.

For the proposed cross-lingual dependency
parsing approach, we used both the delexi-
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Table 3: Test performance in terms of UAS (unlabeled attachment score) on the eight cross-lingual
dependency parsing tasks.∆ denotes the improvements of each method over theBaselinemethod.

Tasks Baseline Proj ∆ Proposed ∆ X-lingual

EN2DA 36.53 41.25 4.72 42.56 6.03 38.70
EN2DE 46.24 49.15 2.91 49.54 3.30 50.70
EN2EL 61.53 62.36 0.83 62.96 1.43 63.00
EN2ES 52.05 54.54 2.49 55.72 3.67 62.90
EN2IT 56.37 57.71 1.34 59.05 2.68 68.80
EN2NL 61.96 64.41 2.45 65.13 3.17 54.30
EN2PT 68.68 71.47 2.79 72.38 3.70 71.00
EN2SV 57.79 60.99 3.20 61.88 4.09 56.90

Average 55.14 57.74 2.60 58.90 3.51 58.29

calized universal POS tag based features and
the language-independent word features produced
from the deep learning as input features for the
MSTParser. The set of universal POS tag based
feature templates is given in Table 2. For each
dependency relationship between a head wordwh

and a dependent wordwd, a set of features can
be produced from the feature templates in Ta-
ble 2, which can be further augmented byR(wh)
andR(wd). We compared our proposed approach
(Proposed) with three other methods,Baseline,
Proj andX-lingual. The Baselinemethod uses a
delexicalized MSTParser based only on the uni-
versal POS tag features. TheProj method is devel-
oped in (Durrett et al., 2012), which uses a bilin-
gual dictionary to learn cross-lingual features and
then uses them as augmenting features to train a
delexicalized MSTParser. TheX-lingual method
uses unlabeled parallel sentences to learn cross-
lingual word clusters and used them as augment-
ing features to train a delexicalized MSTParser
(Täckstr̈om et al., 2012). All parsers exceptX-
lingual are trained on the labeled sentences in the
source language domain and tested on the test
sentences in the target language domain in the
given dataset. The performance is measured using
the standard unlabeled attachment score (UAS).
The X-lingual method uses different auxiliary re-
sources (parallel sentences), and we hence directly
cited the results reported in (Täckstr̈om et al.,
2012) on the same dataset.

4.4 Results and Discussions

We reported the empirical comparison results in
terms of unlabeled attachment score (UAS) in Ta-
ble 3. We can see that theBaselinemethod per-

Table 4: Statistic differences. For each task, we
report the percentage of sentences in the test data
from the target language which share the same se-
quence of universal POS tags with some sentences
in the source language but with different depen-
dency trees.

Target Language Sentence Difference

Danish 0.31%
Dutch 1.81%

German 1.40%
Greek 1.20%
Italian 2.40%

Portuguese 1.04%
Spanish 0.97%
Swedish 2.31%

forms poorly across all the tasks. The average un-
labeled attachment score for this approach across
all the eight tasks is very low (about 55.14), which
suggests that the twelve universal POS tags are far
from enough to produce a good cross-lingual de-
pendency parser. Considering the small number
of universal POS tags, its limited discriminative
capacity as input features for dependency pars-
ing is understandable. To further verify this, we
calculated the percentage of sentences in the test
data which share the same sequence of universal
POS tags with a training sentence in the source
language but have different dependency parsing
structures. The values for the eight tasks are pre-
sented in Table 4. The non-trivial values reported
verified the universal POS tags’ drawback on lack-
ing discriminative capacity.

By relexicalizingthe delexicalized MSTParser

125



via augmenting the POS tag sequences with
learned interlingual features, both theProj method
and the proposed method overcome the draw-
back of using solely universal POS tags and pro-
duce significant improvements over theBaseline
method across all the tasks. Moreover, the pro-
posed method consistently outperforms bothBase-
line andProj for all the eight tasks. By exploit-
ing only free bilingual dictionaries, the proposed
method achieves similar average performance to
the X-lingual method which requires additional
parallel sentences. All these results demonstrated
the efficacy of our word representation learning
method for cross-lingual dependency parsing.

4.5 Impact of Labeled Training Data in
Target Language

In the experiments above, all the labeled sen-
tences for dependency parsing training are from
the source language. We wonder how much bene-
fit we can get if there are a small number of labeled
sentences in the target language as well. To answer
this question, we conducted experiments by using
a small number (ℓt) of labeled sentences in the
target language domain together with the labeled
sentences in the source language domain to train
cross-lingual dependency parsers. Again the per-
formance of the parsers are evaluated on the test
sentences in the target language. We tested a few
different ℓt values withℓt ∈ {500, 1000, 1500}.
We reported the unlabeled attachment score for all
the eight cross-lingual dependency parsing tasks
in Figure 2. We can see that theBaselinemethod
still performs poorly across the range of different
setting for all the eight tasks. TheProj method
and the proposed method again consistently out-
perform the baseline method across all the tasks,
while the proposed method achieves the best re-
sults across all the eight tasks.

4.6 Impact of the Number of Bilingual Word
Pairs

For the eight language pairs, we have reported
the numbers of words in each language domain
and the numbers of selected bilingual word pairs
in Table 1. Next we investigated how the num-
ber of word pairs affects the performance of the
proposed cross-lingual dependency parsing. With
the selected full set of bilingual word pairs in
Table 1, we random selectedm% of them with
m ∈ {50, 75, 100} to conduct experiments. Note
whenm = 50, we only used435 word pairs for

the EN2EL (English vs. Greek) task, which is
1.6% of the number of source words and3.3% of
the number of target words. The results are re-
ported in Figure 3. We can see that by reducing the
number of bilingual word pairs, the performance
of the proposed cross-lingual dependency parsing
method degrades on all tasks. This is reasonable
since the word pairs serve as the pivots for learn-
ing cross-lingual word embeddings. Nevertheless,
by preserving 75% of the selected word pairs, the
proposed approach can still outperform theProj
method across all the tasks. Even with only50%
of the word pairs, our method still outperforms
theProj method on most tasks. These results sug-
gest that the proposed cross-lingual word embed-
ding method only requires a reasonable amount of
bilingual word pairs to effectively transfer a de-
pendency parser from the source language to the
target language.

EN2DA EN2DE EN2EL EN2ES EN2IT EN2NL EN2PT EN2SV
40

45

50

55

60

65

70

75

UAS vs # of Bilingual Word Pairs

Task

U
A

S

 

 

Proj Proposed−50% Proposed−75% Proposed−100%

Figure 3: Test performance in terms of UAS (unla-
beled attachment score) in the target language with
different numbers of bilingual word pairs.

5 Conclusion

In this paper, we proposed to automatically learn
language-independent features within a deep neu-
ral network architecture to address cross-lingual
dependency parsing problems. We first con-
structed a set of bilingual word pairs with Wiki-
tionary, which serve as the pivots in the bilingual
vocabulary for building connections across lan-
guages. We then conducted distributed word rep-
resentation learning by training a constructed aux-
iliary classifier using deep neural networks, which
induced a real-valued embedding vector for each
word of the bilingual vocabulary to capture con-
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Figure 2: Unlabeled attachment score (UAS) on the test sentences in the target language by using differ-
ent number of additional labeled training sentences in the target language.

sistent semantic similarities for words in the two
language domains. The distributed word embed-
ding vectors were then used to augment the uni-
versal POS tags to train cross-lingual dependency
parsers. We empirically evaluated the proposed
method on eight cross-lingual dependency parsing
tasks between eight language pairs. The experi-
mental results demonstrated the effectiveness of
the proposed method, comparing to other cross-
lingual dependency parsing methods.
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Abstract

Cross-lingual learning has become a popu-
lar approach to facilitate the development
of resources and tools for low-density lan-
guages. Its underlying idea is to make
use of existing tools and annotations in
resource-rich languages to create similar
tools and resources for resource-poor lan-
guages. Typically, this is achieved by either
projecting annotations across parallel cor-
pora, or by transferring models from one or
more source languages to a target language.
In this paper, we explore a third strategy
by using machine translation to create syn-
thetic training data from the original source-
side annotations. Specifically, we apply
this technique to dependency parsing, us-
ing a cross-lingually unified treebank for
adequate evaluation. Our approach draws
on annotation projection but avoids the use
of noisy source-side annotation of an unre-
lated parallel corpus and instead relies on
manual treebank annotation in combination
with statistical machine translation, which
makes it possible to train fully lexicalized
parsers. We show that this approach signif-
icantly outperforms delexicalized transfer
parsing.

1 Introduction

The lack of resources and tools is a serious problem
for the majority of the world’s languages (Bender,
2013). Many applications require robust tools and
the development of language-specific resources is
expensive and time consuming. Furthermore, many
tasks such as data-driven syntactic parsing require
strong supervision to achieve reasonable results
for real-world applications, since the performance
of fully unsupervised methods lags behind by a
large margin in comparison with the state of the

art. Cross-lingual learning has been proposed as
one possible solution to quickly create initial tools
for languages that lack the appropriate resources
(Ganchev and Das, 2013). By and large, there
are two main strategies that have been proposed
in the literature: annotation projection and model
transfer.

1.1 Previous Cross-Lingual Approaches

Annotation projection relies on the mapping of lin-
guistic annotation across languages using paral-
lel corpora and automatic alignment as basic re-
sources (Yarowsky et al., 2001; Hwa et al., 2005;
Täckström et al., 2013a). Tools that exist for the
source language are used to annotate the source
side of the corpus and projection heuristics are then
applied to map the annotation through word align-
ment onto the corresponding target language text.
Target language tools can then be trained on the
projected annotation assuming that the mapping is
sufficiently correct. Less frequent, but also possi-
ble, is the scenario where the source side of the cor-
pus contains manual annotation (Agić et al., 2012).
This addresses the problem created by projecting
noisy annotations, but it presupposes parallel cor-
pora with manual annotation, which are rarely avail-
able, and expensive and time-consuming to pro-
duce.

Model transfer instead relies on universal fea-
tures and model parameters that can be transferred
from one language to another. Abstracting away
from all language-specific parameters makes it pos-
sible to train, e.g., delexicalized parsers that ignore
lexical information. This approach has been used
with success for a variety of languages, drawing
from a harmonized POS tagset (Petrov et al., 2012)
that is used as the main source of information. One
advantage compared to annotation projection is
that no parallel data is required. In addition, train-
ing can be performed on gold standard annotation.
However, model transfer assumes a common fea-
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ture representation across languages (McDonald et
al., 2013), which can be a strong bottleneck. Sev-
eral extensions have been proposed to make the
approach more robust. First of all, multiple source
languages can be involved to increase the statistical
basis for learning (McDonald et al., 2011; Naseem
et al., 2012), a strategy that can also be used in
the case of annotation projection. Cross-lingual
word clusters can be created to obtain additional
universal features (Täckström et al., 2012). Tech-
niques for target language adaptation can be used
to improve model transfer with multiple sources
(Täckström et al., 2013b).

1.2 The Translation Approach

In this paper, we propose a third strategy, based
on automatically translating training data to a new
language in order to create annotated resources di-
rectly from the original source. Recent advances
in statistical machine translation (SMT) combined
with the ever-growing availability of parallel cor-
pora are now making this a realistic alternative. The
relation to annotation projection is obvious as both
involve parallel data with one side being annotated.
However, the use of direct translation brings two
important advantages. First of all, using SMT, we
do not accumulate errors from two sources: the tool
– e.g., tagger or parser – used to annotate the source
language of a bilingual corpus and the noise com-
ing from alignment and projection. Instead, we use
the gold standard annotation of the source language
which can safely be assumed to be of much higher
quality than any automatic annotation obtained by
using a tool trained on that data. Moreover, using
SMT may help in bypassing domain shift problems,
which are common when applying tools trained
(and evaluated) on one resource to text from an-
other domain. Secondly, we can assume that SMT
will produce output that is much closer to the input
than manual translations in parallel texts usually
are. Even if this may seem like a short-coming
in general, in the case of annotation projection it
should rather be an advantage, because it makes it
more straightforward and less error-prone to trans-
fer annotation from source to target. Furthermore,
the alignment between words and phrases is inher-
ently provided as an output of all common SMT
models. Hence, no additional procedures have to be
performed on top of the translated corpus. Recent
research (Zhao et al., 2009; Durrett et al., 2012)
has attempted to address synthetic data creation

for syntactic parsing via bilingual lexica. We seek
to build on this work by utilizing more advanced
translation techniques.

Further in the paper, we first describe the tools
and resources used in our experiments (§2). We
elaborate on our approach to translating treebanks
(§3) and projecting syntactic annotations (§4) for a
new language. Finally, we provide empirical evalu-
ation of the suggested approach (§5) and observe
a substantial increase in parsing accuracy over the
delexicalized parsing baselines.

2 Resources and Tools

In our experiments, we rely on standard resources
and tools for both dependency parsing and ma-
chine translation without any special enhancements.
Since we are primarily trying to provide a proof
of concept for the use of SMT-derived synthetic
training data in dependency parsing, we believe it
is more important to facilitate reproducibility than
to tweak system components to obtain maximum
accuracy.

We use the Universal Dependency Treebank v1
(McDonald et al., 2013) for annotation projection,
parser training and evaluation. It is a collection
of data sets with consistent syntactic annotation
for six languages: English, French, German, Ko-
rean, Spanish, and Swedish.1 The annotation is
based on Stanford Typed Dependencies for English
(De Marneffe et al., 2006) but has been adapted
and harmonized to allow adequate annotation of
typologically different languages. This is the first
collection of data sets that allows reliable evalua-
tion of labeled dependency parsing accuracy across
multiple languages (McDonald et al., 2013). We
use the dedicated training and test sets from the
treebank distribution in all our experiments. As ar-
gued in (McDonald et al., 2013), most cross-lingual
dependency parsing experiments up to theirs relied
on heterogeneous treebanks such as the CoNLL
datasets for syntactic dependency parsing (Buch-
holz and Marsi, 2006; Nivre et al., 2007a), mak-
ing it difficult to address challenges like consistent
cross-lingual analysis for downstream applications
and reliable cross-lingual evaluation of syntactic
parsers. More specifically, none of the previous
research could report full labeled parsing accura-
cies, but rather just unlabeled structural accuracies
across different attachment schemes. Following
the line of McDonald et al. (2013) regarding the

1https://code.google.com/p/uni-dep-tb/
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emphasized importance of homogenous data and
the assignment of labels, we only report labeled
attachment scores (LAS) in all our experiments.
As it is likely the first reliable cross-lingual pars-
ing evaluation, we also choose their results as the
baseline reference point for comparison with our
experiments.

For dependency parsing, we use MaltParser
(Nivre et al., 2006a)2 due to its efficiency in both
training and parsing, and we facilitate MaltOpti-
mizer (Ballesteros and Nivre, 2012)3 to bypass the
tedious task of manual feature selection. Malt-
Parser is a transition-based dependency parser
that has been evaluated on a number of different
languages with competitive results (Nivre et al.,
2006b; Nivre et al., 2007b; Hall et al., 2007) and it
is widely used for benchmarking and application
development. Although more accurate dependency
parsers exist for the task of monolingual supervised
parsing, it is not clear that these differences carry
over to the cross-lingual scenario, where baselines
are lower and more complex models are more likely
to overfit. The use of a transition-based parser also
facilitates comparison with delexicalized transfer
parsing, where transition-based parsers are domi-
nant so far (McDonald et al., 2011; McDonald et
al., 2013). We leave the exploration of additional
parsing approaches for future research.

For machine translation, we select the popular
Moses toolbox (Koehn et al., 2007) and the phrase-
based translation paradigm as our basic frame-
work. Phrase-based SMT has the advantage of
being straightforward and efficient in training and
decoding, while maintaining robustness and relia-
bility for many language pairs. More details about
the setup and the translation procedures are given
in Section 3 below. The most essential ingredient
for translation performance is the parallel corpus
used for training the translation models. For our
experiments we use the freely available and widely
used Europarl corpus v7 (Koehn, 2005).4 It is com-
monly used for training SMT models and includes
parallel data for all languages represented in the
Universal Treebank except Korean, which we will,
therefore, leave out in our experiments. For tuning
we apply the newstest 2012 data provided by the an-
nual workshop on statistical machine translation.5

For language modeling, we use a combination of
2http://www.maltparser.org/
3http://nil.fdi.ucm.es/maltoptimizer/
4http://www.statmt.org/europarl/
5http://www.statmt.org/wmt14

DE EN ES FR SV

DE 94 M 94 M 96 M 81 M
EN 2.0 M 103 M 105 M 89 M
ES 1.9 M 2.0 M 104 M 89 M
FR 1.9 M 2.0 M 2.0 M 91 M
SV 1.8 M 1.9 M 1.8 M 1.9 M

mono 22.9 M 17.1 M 6.3 M 6.3 M 2.3 M

Table 1: Parallel data and monolingual data used
for training the SMT models. Lower-left triangle
= number of sentence pairs; upper-right triangle
= number of tokens (source and target language
together); bottom row = number of sentences in
monolingual corpora.

Europarl and News data provided from the same
source. The statistics of the corpora are given in
Table 1.

3 Translating Treebanks

The main contribution of this paper is the empirical
study of automatic treebank translation for parser
transfer. We compare three different translation
approaches in order to investigate the influence of
several parameters. All of them are based on auto-
matic word alignment and subsequent extraction of
translation equivalents as common in phrase-based
SMT. In particular, word alignment is performed us-
ing GIZA++ (Och and Ney, 2003) and IBM model
4 as the final model for creating the Viterbi word
alignments for all parallel corpora used in our ex-
periments. For the extraction of translation tables,
we use the Moses toolkit with its standard settings
to extract phrase tables with a maximum of seven
tokens per phrase from a symmetrized word align-
ment. Symmetrization is done using the grow-diag-
final-and heuristics (Koehn et al., 2003). We tune
phrase-based SMT models using minimum error
rate training (Och, 2003) and the development data
for each language pair. The language model is a
standard 5-gram model estimated from the mono-
lingual data using modified Kneser-Ney smoothing
without pruning (applying KenLM tools (Heafield
et al., 2013)).

Our first translation approach is based on a very
simple word-by-word translation model. For this,
we select the most reliable translations of single
words from the phrase translation tables extracted
from the parallel corpora as described above. We
restrict the model to tokens with alphabetic char-
acters only using pre-defined Unicode character
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sets. The selection of translation alternatives is
based on the Dice coefficient, which combines the
two essential conditional translation probabilities
given in the phrase table. The Dice coefficient is in
fact the harmonic mean of these two probabilities
and has successfully been used for the extraction of
translation equivalents before (Smadja et al., 1996):

Dice(s, t) =
2 p(s, t)

p(s) + p(t)
= 2

(
1

p(s|t) +
1

p(t|s)

)−1

Other association measures would be possible as
well but Smadja et al. (1996) argue that the Dice
coefficient is more robust with respect to low fre-
quency events than other common metrics such as
pointwise mutual information, which can be a seri-
ous issue with the unsmoothed probability estima-
tions in standard phrase tables. Our first translation
model then applies the final one-to-one correspon-
dences to monotonically translate treebanks word
by word. We refer to it as the LOOKUP approach.
Note that any bilingual dictionary could have been
used to perform the same procedure.

The second translation approach (WORD-BASED

MT) is slightly more elaborate but still restricts
the translation model to one-to-one word mappings.
For this, we extract all single word translation pairs
from the phrase tables and apply the standard beam-
search decoder implemented in Moses to translate
the original treebanks to all target languages. The
motivation for this model is to investigate the im-
pact of reordering and language models while still
keeping the projection of annotated data as simple
as possible. Note that the language model may
influence not only the word order but also the lex-
ical choice as we now allow multiple translation
options in our phrase table.

The final model implements translation based
on the entire phrase table using the standard ap-
proach to PHRASE-BASED SMT. We basically run
the Moses decoder with default settings and the pa-
rameters and models trained on our parallel corpora.
Note that it is important for the annotation trans-
fer to keep track of the alignment between phrases
and words of the input and output sentences. The
Moses decoder provides both, phrase segmentation
and word alignment (if the latter is coded into the
phrase tables). This will be important as we will
see in the annotation projection discussed below.

ORIGINAL
DE EN ES FR SV

14.0 0.00 7.90 13.3 4.20

WORD-BASED MT
DE EN ES FR SV

DE – 49.1 62.6 52.8 60.4
EN 43.3 – 27.6 34.8 0.00
ES 54.9 25.1 – 12.3 18.3
FR 68.2 39.6 32.8 – 57.8
SV 34.1 5.20 21.6 33.7 –

PHRASE-BASED MT
DE EN ES FR SV

DE – 51.5 57.3 58.8 46.8
EN 49.3 – 50.3 61.7 14.6
ES 65.9 66.7 – 62.8 49.0
FR 58.0 53.7 44.7 – 38.2
SV 43.9 43.6 49.6 57.1 –

Table 2: Non-projectivity in synthetic treebanks.

4 Transferring Annotation

The next step in preparing synthetic training data is
to project the annotation from the original treebank
to the target language. Given the properties of a
dependency tree, where every word has exactly one
syntactic head and dependency label, the annota-
tion transfer is trivial for the two initial translation
models. All annotation can simply be copied us-
ing the dictionary LOOKUP in which we enforce
a monotonic one-to-one word mapping between
source and target language.

In the second approach, we only have to keep
track of reordering, which is reported by the de-
coder when translating with our model. Note that
the mapping is strictly one-to-one (bijective) as
phrase-based SMT does not allow deletions or in-
sertions at any point. This also ensures that we
will always maintain a tree structure even though
reordering may have a strong impact on projectiv-
ity (see Table 2). An illustration of this type of
annotation transfer is shown in the left image of
Figure 1.

The third model, full PHRASE-BASED SMT, re-
quires the most attention when transferring anno-
tation across languages. Here we have to rely on
the alignment information and projection heuris-
tics similar to the ones presented in related work
(Hwa et al., 2005). In their work, Hwa et al. (2005)
define a direct projection algorithm that transfers
automatic annotation to a target language via word
alignment. The algorithm defines a number of
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CONJ NOUN PRON VERB ADP NOUN .
Que Dieu lui vienne en aide !

That God help him come in !
CONJ NOUN NOUN PRON VERB ADP .

expl

nsubj

iobj

root

adpmod adpobj

p

expl

nsubj adpobj

iobj

root

adpmod
p

CONJ NOUN PRON VERB ADP NOUN .
Que Dieu lui vienne en aide !

God DUMMY help DUMMY DUMMY him !
NOUN CONJ VERB ADP NOUN PRON .

expl

nsubj

iobj

root

adpmod adpobj

p

nsubj

expl

root

adpmod
adpobj

iobj
p

CONJ NOUN PRON VERB ADP NOUN .
Que Dieu lui vienne en aide !

God help him !
NOUN VERB PRON .

expl

nsubj

iobj

root

adpmod adpobj

p

nsubj

root

iobj

p

Figure 1: Transferring annotation from French to an English translation with a WORD-BASED translation
model (left) and with a PHRASE-BASED translation model (middle and right). Annotation projection using
the Direct Projection Algorithm by Hwa et al. (2005) (middle) and our approach (right).

heuristics to handle unaligned, one-to-many, many-
to-one and many-to-many alignments. As a side ef-
fect, this approach produces several dummy-nodes
in the target language to ensure a complete pro-
jection of the source language tree (see Hwa et al.
(2005) for more details).

In our approach, we try to make use of the addi-
tional information provided by the SMT decoder to
avoid dummy-nodes and relations that may nega-
tively influence the induced target language parser.
Compared to the annotation projection approach
of Hwa et al. (2005), the situation in our PHRASE-
BASED SMT setting is slightly different. Here, we
have two types of alignments that can be considered
when relating source and target language items: (i)
the alignment between phrases (pairs of consec-
utive n-grams) and (ii) the phrase-internal word
alignment on which phrase extraction is based. The
primary information used for annotation transfer
is still the latter which has the same properties as
described by Hwa et al. (2005) (except that we have
truly many-to-many alignments in our data which
were not available in their experiments).

Note that words may be unaligned in phrase-
based SMT as the phrase extraction algorithm used
in Moses includes unaligned adjacent tokens. How-
ever, for these unaligned words, we know to which
phrase they belong and can also identify the corre-
sponding phrase in the other language using phrase
alignment information. This makes it possible to
avoid the creation of dummy-nodes altogether and
instead to link unaligned words to existing nodes
based on the given phrase segmentation.

Similarly, we define heuristics for handling one-
to-many, many-to-one and many-to-many align-

ments that avoid the creation of dummy-nodes. The
main procedure is illustrated in Figure 2.

The key feature of this projection algorithm is
that ambiguous alignments are handled by attach-
ing words to the nodes that are highest up in the
dependency tree (the procedure find highest() re-
turns the node with minimum distance to the root
of the tree). This ensures that we avoid cycles
and isolated cliques in the graph. Furthermore,
unaligned words are attached to the head of the
target phrase they belong to, which seems to be the
most appropriate place without further knowledge.
The procedures in trg phrase() and in src phrase()
make use of the phrase segmentation used in the
translation process.

One complication is the search for the corre-
sponding target head word in cases where the
source language head is not aligned or aligned to
multiple target language words. Figure 3 shows
the head alignment procedure that we define in our
projection algorithm. Procedure find aligned() re-
turns the rightmost word of all words aligned to the
given source language word s. Other heuristics or
linguistically motivated rules based on POS tags
and general language properties would be possible
here as well. If s is not aligned, we move up in
the dependency tree until we hit ROOT or find an
aligned word. If we are at the root position we
return ROOT as this does not require further map-
pings. The effect of this algorithm is illustrated by
the right-hand side image in Figure 1.

5 Parsing Across Languages

In this section, we present the results of two ex-
perimental batches. First, we establish the base-
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Input: source tree S, target sentence T ,
word alignment A, phrase segmentation P
Output: syntactic heads head[],
word attributes attr[]

1 treeSize = max distance to root(S) ;
2 attr = [] ;
3 head = [] ;
4 for t ∈ T do
5 if is unaligned trg(t,A) then
6 for t’ ∈ in trg phrase(t,P) do
7 [sx,..,sy] = aligned to(t’) ;
8 ŝ = find highest([sx,..,sy],S) ;
9 t̂ = find aligned(ŝ,S,T,A) ;

10 attr[t] = DUMMY ;
11 head[t] = t̂ ;
12 end
13 else
14 [sx,..,sy] = aligned to(t) ;
15 s = find highest([sx,..,sy],S) ;
16 attr[t] = attr(s) ;
17 ŝ = head of(s,S) ;
18 t̂ = find aligned(ŝ,S,T,A) ;
19 if t̂ == t then
20 [sx,..,sy] = in src phrase(s,P) ;
21 s* = find highest([sx,..,sy],S) ;
22 ŝ = head of(s*,S) ;
23 t̂ = find aligned(ŝ,S,T,A) ;
24 head[t] = t̂ ;
25 end
26 end
27 end

Figure 2: Annotation projection algorithm.

lines by comparing monolingual supervised pars-
ing to delexicalized transfer parsing following the
approach of McDonald et al. (2013). Second, we
present the results obtained with parsers trained
on target language treebanks produced using ma-
chine translation and annotation projection. Here,
we also look at delexicalized models trained on
translated treebanks to show the effect of machine
translation without additional lexical features.

5.1 Baseline Results

First we present the baseline parsing scores. The
baselines we explore are: (i) the monolingual base-
line, i.e., training and testing using the same lan-
guage data from the Universal Dependency Tree-
bank and (ii) the delexicalized baseline, i.e., apply-
ing delexicalized parsers across languages.

For the monolingual baseline, MaltParser mod-
els are trained on the original treebanks with uni-
versal POS labels and lexical features but leaving
out other language-specific features if they exist in
the original treebanks. The delexicalized parsers
are trained on universal POS labels only for each
language and are then applied to all other languages

Input: node s, source tree S with root ROOT,
target sentence T , word alignment A
Output: node t*

1 if s == ROOT then
2 return ROOT ;
3 end
4 while is unaligned src(s,A) do
5 s = head of(s,S) ;
6 if s == ROOT then
7 return ROOT ;
8 end
9 end

10 p = 0 ;
11 t* = undef ;
12 for t’ ∈ aligned(s,A) do
13 if position(t’,T) > p then
14 t* = t’ ;
15 p = position(t’,T) ;
16 end
17 end
18 return t* ;

Figure 3: Procedure find aligned().

without modification. For all models, features and
options are optimized using MaltOptimizer. The
accuracy is given in Table 3 as a set of labeled at-
tachment scores (LAS). We include punctuation
in our evaluation. Ignoring punctuation generally
leads to slightly higher scores as we have noted in
our experiments but we do not report those num-
bers here. Note also that the columns represent the
target languages (used for testing), while the rows
denote the source languages (used in training), as
in McDonald et al. (2013).

From the table, we can see that the baseline
scores are compatible with the ones in the orig-
inal experiments presented by (McDonald et al.,
2013), included in Table 3 for reference. The dif-
ferences are due to parser selection, as they use a
transition-based parser with beam search and per-
ceptron learning along the lines of Zhang and Nivre
(2011) whereas we rely on greedy transition-based
parsing with linear support vector machines. In the
following, we will compare results to our baseline
as we have a comparable setup in those experi-
ments. However, most improvements shown below
also apply in comparison with (McDonald et al.,
2013).

5.2 Translated Treebanks

Now we turn to the experiments on translated tree-
banks. We consider two setups. First, we look at
the effect of translation when training delexical-
ized parsers. In this way, we can perform a direct
comparison to the baseline performance presented
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MONOLINGUAL
DE EN ES FR SV

72.13 87.50 78.54 77.51 81.28

DELEXICALIZED
DE EN ES FR SV

DE 62.71 43.20 46.09 46.09 50.64
EN 46.62 77.66 55.65 56.46 57.68
ES 44.03 46.73 68.21 57.91 53.82
FR 43.91 46.75 59.65 67.51 52.01
SV 50.69 49.13 53.62 51.97 70.22

MCDONALD ET AL. (2013)
DE EN ES FR SV

DE 64.84 47.09 48.14 49.59 53.57
EN 48.11 78.54 56.86 58.20 57.04
ES 45.52 47.87 70.29 63.65 53.09
FR 45.96 47.41 62.56 73.37 52.25
SV 52.19 49.71 54.72 54.96 70.90

Table 3: Baselines – labeled attachment score
(LAS) for monolingual and delexicalized transfer
parsing. Delexicalized transfer parsing results of
McDonald et al. (2013) included for reference.

above. The second setup then considers fully lexi-
calized models trained on translated treebanks. The
main advantage of the translation approach is the
availability of lexical information and this final
setup represents the real power of this approach.
In it, we compare lexicalized parsers trained on
translated treebanks with their delexicalized coun-
terparts and avoid a direct comparison with the
delexicalized baselines as they involve different
types of features.

5.3 Delexicalized Parsers

Table 4 presents the scores obtained by training
delexicalized parsing models on synthetic data cre-
ated by our translation approaches presented earlier.
Feature models and training options are the same
as for the delexicalized source language models
when training and testing on the target language
data. Note that we exclude the simple dictionary
LOOKUP approach here, because this approach
leads to identical models as the basic delexicalized
models. This is because words are translated one-
to-one without any reordering which leads to ex-
actly the same annotation sequences as the source
language treebank after projecting POS labels and
dependency relations.

From the table, we can see that all but one model
improve the scores obtained by delexicalized base-
line models. The improvements are quite substan-
tial up to +6.38 LAS. The boost in performance

WORD-BASED MT
DE EN ES FR SV

DE – 48.12 (4.92) 50.84 (4.75) 52.92 (6.83) 55.52 (4.88)

EN 49.53 (2.91) – 57.41 (1.76) 58.53 (2.07) 57.82 (0.14)

ES 45.48 (1.45) 48.46 (1.73) – 58.29 (0.38) 55.25 (1.43)

FR 46.59 (2.68) 47.88 (1.13) 59.72 (0.07) – 52.31 (0.30)

SV 52.16 (1.47) 49.14 (0.01) 56.50 (2.88) 56.71 (4.74) –

PHRASE-BASED MT
DE EN ES FR SV

DE – 45.43 (2.23) 47.26 (1.17) 49.14 (3.05) 53.37 (2.73)

EN 49.16 (2.54) – 57.12 (1.47) 58.23 (1.77) 58.23 (0.55)

ES 46.75 (2.72) 46.82 (0.09) – 58.22 (0.31) 54.14 (0.32)

FR 48.02 (4.11) 49.06 (2.31) 60.23 (0.58) – 55.24 (3.23)

SV 50.96 (0.27) 46.12−3.01 55.95 (2.33) 54.71 (2.74) –

Table 4: Translated treebanks: labeled attachment
score (LAS) for delexicalized parsers trained on
synthetic data created by translation. Numbers in
superscript show the absolute improvement over
our delexicalized baselines.

is especially striking for the simpleWORD-BASED

translation model considering that the only differ-
ence to the baseline model is word order. The
impact of the more complex PHRASE-BASED trans-
lation model is, however, difficult to judge. In
14 out of 20 models it actually leads to a drop in
LAS when applying phrase-based translation in-
stead of single-word translation. This is somewhat
surprising but is probably related to the additional
ambiguity in annotation projection introduced by
many-to-many alignments. The largest drop can be
seen for Swedish translated to English, which even
falls behind the baseline performance when using
the PHRASE-BASED translation model.

5.4 Lexicalized Parsers
The final experiment is concerned with lexical
parsers trained on translated treebanks. The main
objective here is to test the robustness of fully lexi-
calized models trained on noisy synthetic data cre-
ated by simple automatic translation engines. Ta-
ble 5 lists the scores obtained by our models when
trained on treebanks translated with our three ap-
proaches (dictionary LOOKUP, WORD-BASED MT
and full PHRASE-BASED translation). Again, we
use the same feature model and training options as
for the source language model when training mod-
els for the target languages. This time, of course,
this refers to the features used by the lexicalized
baseline models.

The capacity of the parsing models increases due
to the lexical information which is now included.
In order to see the effect of lexicalization, we com-
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DET DET NOUN VERB ADP NOUN CONJ ADP DET NOUN ADJ .
Tous ses produits sont de qualité et d’ une fraicheur exemplaires .

All his products are high- quality and a cold mullet copies .
DET DET NOUN VERB NOUN ADP CONJ DET NOUN NOUN ADJ .

det
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root
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Figure 4: Problematic annotation projection with ambiguous word alignment.

pare the performance now with the corresponding
delexicalized models. Note that the LOOKUP ap-
proach relates to the delexicalized baseline models
without any translation.

As we can see, all models outperform their cor-
responding delexicalized version (with one excep-
tion), which demonstrates the ability of the training
procedure to pick up valuable lexical information
from the noisy translations. Again, we can see
substantial absolute improvements of up to +7.31
LAS showing the effectiveness of the translation
approach. Note that this also means that we outper-
form the delexicalized baselines in all cases by a
large margin, even if we should not directly com-
pare these models as they draw on different fea-
ture sets. Once again, we can also see that the
very simple methods are quite successful. Even the
very basic LOOKUP approach leads to significant
improvements with one minor exception. Surpris-
ingly, no gain can be seen with the PHRASE-BASED

translation approach. The translation quality is cer-
tainly better when manually inspecting the data.
However, the increased complexity of annotation
projection seems to pull down the parsers induced
on that kind of data. A question for future work
is whether the performance of those models can
be improved by better projection algorithms and
heuristics that lead to cleaner annotations of other-
wise better translations of the original treebanks.

One possible reason for this disappointing re-
sult could be the unreliable mapping of POS labels
across many-to-many alignments. Figure 4 illus-
trates a typical case of link ambiguity that leads to
erroneous projections. For example, the mapping
of the label ADP onto the English word quality is
due to the left-to-right procedure applied in our pro-
jection algorithm and the mapping of the NOUN
label to the English adjective cold is due to the
link to fraicheur. How much these errors effect our
parsing models trained on the projected treebanks
is difficult to estimate and further investigations are
required to pinpoint these issues and to find ways
of addressing problems that may occur in various
contexts.

Nevertheless, the overall results are very positive.
The experiments clearly show the potentials of the
translation approach. Note that this paper presents
the first attempt to study the effect of translation on
cross-lingual parser induction. Further optimiza-
tion of the translation process and the connected
annotation projection procedures should lead to
further improvements over our basic models.

6 Conclusions and Future Work

In this paper, we have addressed the problem of
cross-lingual parser induction by using statistical
machine translation to create synthetic training data.
Our SMT approach avoids the noisy source-side
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LOOKUP
DE EN ES FR SV

DE – 48.63 (5.43) 52.66 (6.57) 52.06 (5.97) 58.78 (8.14)

EN 48.59 (1.97) – 57.79 (2.14) 57.80 (1.34) 62.21 (4.53)

ES 47.36 (3.33) 49.13 (2.40) – 62.24 (4.33) 57.50 (3.68)

FR 47.57 (3.66) 54.06 (7.31) 66.31 (6.66) – 57.73 (5.72)

SV 51.88 (1.19) 48.84 (0.29) 54.74 (1.12) 52.95 (0.98) –

WORD-BASED MT
DE EN ES FR SV

DE – 51.86 (3.74) 55.90 (5.06) 57.77 (4.85) 61.65 (6.13)

EN 53.80 (4.27) – 60.76 (3.35) 63.32 (4.79) 62.93 (5.11)

ES 49.94 (4.46) 49.93 (1.47) – 65.60 (7.31) 59.22 (3.97)

FR 52.07 (5.48) 54.44 (6.56) 65.63 (5.91) – 57.67 (5.36)

SV 53.18 (1.02) 50.91 (1.77) 60.82 (4.32) 59.14 (2.43) –

PHRASE-BASED MT
DE EN ES FR SV

DE – 50.89 (5.46) 52.54 (5.28) 54.99 (5.85) 59.46 (6.09)

EN 53.71 (4.55) – 60.70 (3.58) 62.89 (4.66) 64.01 (5.78)

ES 49.59 (2.84) 48.35 (1.53) – 64.88 (6.66) 58.99 (4.85)

FR 51.83 (3.81) 53.81 (4.75) 65.55 (5.32) – 59.01 (3.77)

SV 53.22 (2.26) 49.06 (2.94) 58.41 (2.46) 58.04 (3.33) –

Table 5: Translated treebanks: labeled attachment score (LAS) for lexicalized parsers trained on synthetic
data. Numbers in superscript show the absolute improvements over the delexicalized models based on the
same translation strategy.

annotations of traditional annotation projection and
makes it possible to train fully lexicalized target lan-
guage models that significantly outperform delexi-
calized transfer parsers. We have also demonstrated
that translation leads to better delexicalized models
that can directly be compared with each other as
they are based on the same feature space.

We have compared three SMT methods for syn-
thesizing training data: LOOKUP-based translation,
WORD-BASED translation and full PHRASE-BASED

translation. Our experiments show that even noisy
data sets and simple translation strategies can be
used to achieve positive results. For all three ap-
proaches, we have recorded substantial improve-
ments over the state of the art in labeled cross-
lingual parsing (McDonald et al., 2013). According
to our results, simple word-by-word translations
are often sufficient to create reasonable translations
to train lexicalized parsers on. More elaborated
phrase-based models together with advanced anno-
tation projection strategies do not necessarily lead
to any improvements.

As future work, we want to improve our model
by (i) studying the impact of other SMT properties
and improve the quality of treebank translation,
(ii) implementing more sophisticated methods for

annotation projection and (iii) using n-best lists
provided by SMT models to introduce additional
synthetic data using a single resource. We also aim
at (iv) applying our approach to transfer parsing
for closely related languages (see Agić et al. (2012)
and Zeman and Resnik (2008) for related work),
(v) testing it in a multi-source transfer scenario
(McDonald et al., 2011) and, finally, (vi) comparing
different dependency parsing paradigms within our
experimental framework.

Multi-source approaches are especially appeal-
ing using the translation approach. However, initial
experiments (which we omit in this presentation)
revealed that simple concatenation is not sufficient
to obtain results that improve upon the single-best
translated treebanks. A careful selection of appro-
priate training examples and their weights given
to the training procedure seems to be essential to
benefit from different sources.
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Bertomeu Castelló, and Jungmee Lee. 2013.
Universal Dependency Annotation for Multilingual
Parsing. In Proceedings of ACL 2013, pages 92–97.

Tahira Naseem, Regina Barzilay, and Amir Globerson.
2012. Selective Sharing for Multilingual Depen-
dency Parsing. In Proceedings of ACL 2012, pages
629–637.

Joakim Nivre, Johan Hall, and Jens Nilsson. 2006a.
MaltParser: A Data-Driven Parser-Generator for De-
pendency Parsing. In Proceedings of LREC 2006,
pages 2216–2219.

Joakim Nivre, Johan Hall, Jens Nilsson, Gülsen Eryiğit,
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Abstract

We present a Bayesian formulation for
weakly-supervised learning of a Combina-
tory Categorial Grammar (CCG) supertag-
ger with an HMM. We assume supervi-
sion in the form of a tag dictionary, and
our prior encourages the use of cross-
linguistically common category structures
as well as transitions between tags that
can combine locally according to CCG’s
combinators. Our prior is theoretically ap-
pealing since it is motivated by language-
independent, universal properties of the
CCG formalism. Empirically, we show
that it yields substantial improvements
over previous work that used similar bi-
ases to initialize an EM-based learner. Ad-
ditional gains are obtained by further shap-
ing the prior with corpus-specific informa-
tion that is extracted automatically from
raw text and a tag dictionary.

1 Introduction

Unsupervised part-of-speech (POS) induction is a
classic problem in NLP. Many proposed solutions
are based on Hidden Markov models (HMMs), with
various improvements obtainable through: induc-
tive bias in the form of tag dictionaries (Kupiec,
1992; Merialdo, 1994), sparsity constraints (Lee
et al., 2010), careful initialization of parameters
(Goldberg et al., 2008), feature based represen-
tations (Berg-Kirkpatrick et al., 2010; Smith and
Eisner, 2005), and priors on model parameters
(Johnson, 2007; Goldwater and Griffiths, 2007;
Blunsom and Cohn, 2011, inter alia).

When tag dictionaries are available, a situa-
tion we will call type-supervision, POS induc-
tion from unlabeled corpora can be relatively suc-
cessful; however, as the number of possible tags
increases, performance drops (Ravi and Knight,

2009). In such cases, there are a large number
of possible labels for each token, so picking the
right one simply by chance is unlikely; the pa-
rameter space tends to be large; and devising good
initial parameters is difficult. Therefore, it is un-
surprising that the unsupervised (or even weakly-
supervised) learning of a Combinatory Categorial
Grammar (CCG) supertagger, which labels each
word with one of a large (possibly unbounded)
number of structured categories called supertags,
is a considerable challenge.

Despite the apparent complexity of the task, su-
pertag sequences have regularities due to univer-
sal properties of the CCG formalism (§2) that can
be used to reduce the complexity of the problem;
previous work showed promising results by using
these regularities to initialize an HMM that is then
refined with EM (Baldridge, 2008). Here, we ex-
ploit CCG’s category structure to motivate a novel
prior over HMM parameters for use in Bayesian
learning (§3). This prior encourages (i) cross-
linguistically common tag types, (ii) tag bigrams
that can combine using CCG’s combinators, and
(iii) sparse transition distributions. We also go be-
yond the use of these universals to show how ad-
ditional, corpus-specific information can be auto-
matically extracted from a combination of the tag
dictionary and raw data, and how that information
can be combined with the universal knowledge for
integration into the model to improve the prior.

We use a blocked sampling algorithm to sam-
ple supertag sequences for the sentences in the
training data, proportional to their posterior prob-
ability (§4). We experimentally verify that
our Bayesian formulation is effective and sub-
stantially outperforms the state-of-the-art base-
line initialization/EM strategy in several languages
(§5). We also evaluate using tag dictionaries that
are unpruned and have only partial word coverage,
finding even greater improvements in these more
realistic scenarios.
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2 CCG and Supertagging

CCG (Steedman, 2000; Steedman and Baldridge,
2011) is a grammar formalism in which each lex-
ical token is associated with a structured category,
often referred to as a supertag. CCG categories are
defined by the following recursive definition:

C → {S, N, NP, PP, ...}
C → {C/C,C\C}

A CCG category can either be an atomic cate-
gory indicating a particular type of basic gram-
matical phrase (S for a sentence, N for a noun,
NP for a noun phrase, etc), or a complex category
formed from the combination of two categories
by one of two slash operators. In CCG, complex
categories indicate a grammatical relationship be-
tween the two operands. For example, the cate-
gory (S\NP)/NP might describe a transitive verb,
looking first to its right (indicated by /) for an ob-
ject, then to its left (\) for a subject, to produce a
sentence. Further, atomic categories may be aug-
mented with features, such as Sdcl, to restrict the
set of atoms with which they may unify. The task
of assigning a category to each word in a text is
called supertagging (Bangalore and Joshi, 1999).

Because they are recursively defined, there is
an infinite number of potential CCG categories
(though in practice it is limited by the number
of actual grammatical contexts). As a result, the
number of supertags appearing in a corpus far ex-
ceeds the number of POS tags (see Table 1). Since
supertags specify the grammatical context of a to-
ken, and high frequency words appear in many
contexts, CCG grammars tend to have very high
lexical ambiguity, with frequent word types asso-
ciating with a large number of categories. This
ambiguity has made type-supervised supertagger
learning very difficult because the typical ap-
proaches to initializing parameters for EM become
much less effective.

Grammar-informed supertagger learning.
Baldridge (2008) was successful in extending the
standard type-supervised tagger learning to the
task of CCG supertagging by setting the initial
parameters for EM training of an HMM using
two intrinsic properties of the CCG formalism:
the tendency for adjacent tags to combine, and
the tendency to use less complex tags. These
properties are explained in detail in the original
work, but we restate the ideas briefly throughout
this paper for completeness.

X/Y Y ⇒ X (>)
Y X\Y ⇒ X (<)
X/Y Y/Z ⇒ X/Z (>B)
Y \Z X\Y ⇒ X\Z (<B)
Y/Z X\Y ⇒ X/Z (<B×)

Figure 1: Combination rules used by CCGBank.

S

NP

NP/N N

S\NP

(S\NP)/NP

NP

NP/N N
The man walks a dog

Figure 2: CCG parse for “The man walks a dog.”

Tag combinability. A CCG parse of a sentence is
derived by recursively combining the categories of
sub-phrases. Category combination is performed
using only a small set of generic rules (see Fig-
ure 1). In the tree in Figure 2, we can see that
a and dog can combine via Forward Application
(>), with NP/N and N combining to produce NP.

The associativity engendered by CCG’s compo-
sition rules means that most adjacent lexical cate-
gories may be combined. In the Figure 2 tree, we
can see that instead of combining (walks·(a·dog)),
we could have combined ((walks·a)·dog) since
(S\NP)/NP and NP/N can combine using >B.

3 Model

In this section we define the generative process
we use to model a corpus of sentences. We begin
by generating the model parameters: for each
supertag type t in the tag set T , the transition
probabilities to the next state (πt) and the emis-
sion probabilities (φt) are generated by draws
from Dirichlet distributions parameterized with
per-tag mean distributions (π0

t and φ0
t , respec-

tively) and concentration parameters (απ and
αφ). By setting απ close to zero, we can encode
our prior expectation that transition distributions
should be relatively peaked (i.e., that each tag
type should be followed by relatively few tag
types). The prior means, discussed below, encode
both linguistic intuitions about expected tag-tag
transition behavior and automatically-extracted
corpus information. Given these parameters, we
next generate the sentences of the corpus. This
process is summarized as follows:
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Parameters:

φt ∼ Dirichlet(αφ, φ0
t) ∀t ∈ T

πt ∼ Dirichlet(απ, π0
t ) ∀t ∈ T

Sentence:

y1 ∼ Categorical(π〈S〉)

for i ∈ {1, 2, . . .}, until yi = 〈E〉
xi | yi ∼ Categorical(φyi)
yi+1 | yi ∼ Categorical(πyi)

This model can be understood as a Bayesian
HMM (Goldwater and Griffiths, 2007). We next
discuss how the prior distributions are constructed
to build in additional inductive bias.

3.1 Transition Prior Means (π0
t )

We use the prior mean for each tag’s transition dis-
tribution to build in two kinds of bias. First, we
want to favor linguistically probable tags. Second,
we want to favor transitions that result in a tag
pair that combines according to CCG’s combina-
tors. For simplicity, we will define π0

t as a mixture
of two components, the first, Pπ(u) is an (uncon-
ditional) distribution over category types u that fa-
vors cross-linguistically probable categories. The
second component, Pπ(u | t), conditions on the
previous tag type, t, and assigns higher probabil-
ity to pairs of tags that can be combined. That is,
the probability of transitioning from t to u in the
Dirichlet mean distribution is given by1

π0
t (u) = λ · Pπ(u) + (1− λ) · Pπ(u | t).

We discuss the two mixture components in turn.

3.1.1 Unigram Category Generator (Pπ(u))
In this section, we define a CCG category gener-
ator that generates cross-linguistically likely cat-
egory types. Baldridge’s approach estimated the
likelihood of a category using the inverse number
of sub-categories: PCPLX(u) ∝ 1/complexity(u).
We propose an improvement, PG, expressed as a
probabilistic grammar:2

C → a pterm ·patom(a)
C → A/A pterm ·pfw ·pmod ·PG(A)
C → A/B, A 6=B pterm ·pfw ·pmod ·PG(A) ·PG(B)
C → A\A pterm ·pfw ·pmod ·PG(A)

C → A\B, A 6=B pterm ·pfw ·pmod ·PG(A) ·PG(B)
1Following Baldridge (2008), we fix λ = 0.5 for our ex-

periments.
2For readability, we use the notation p = (1− p).

where A,B,C are categories and a is an atomic
category (and terminal): a ∈ {S, N, NP, ...}.3

We have designed this grammar to capture sev-
eral important CCG characteristics. In particular
we encode four main ideas, each captured through
a different parameter of the grammar and dis-
cussed in greater detail below:

1. Simpler categories are more likely: e.g. N/N is
a priori more likely than (N/N)/(N/N).

2. Some atoms are more likely than others: e.g.
NP is more likely than S, much more than NPnb.

3. Modifiers are more likely: e.g. (S\NP)/(S\NP)
is more likely than (S\NP)/(NP\NP).

4. Operators occur with different frequencies.

The first idea subsumes the complexity measure
used by Baldridge, but accomplishes the goal nat-
urally by letting the probabilities decrease as the
category grows. The rate of decay is governed
by the pterm parameter: the marginal probability
of generating a terminal (atomic) category in each
expansion. A higher pterm means a stronger em-
phasis on simplicity. The probability distribution
over categories is guaranteed to be proper so long
as pterm >

1
2 since the probability of the depth of a

tree will decrease geometrically (Chi, 1999).
The second idea is a natural extension of the

complexity concept and is particularly relevant
when features are used. The original complex-
ity measure treated all atoms uniformly, but e.g.
we would expect NPexpl/N to be less likely than
NP/N since it contains the more specialized, and
thus rarer, atom NPexpl. We define the distribution
patom(a) as the prior over atomic categories.

Due to our weak, type-only supervision, we
have to estimate patom from just the tag dictionary
and raw corpus, without frequency data. Our goal
is to estimate the number of each atom in the su-
pertags that should appear on the raw corpus to-
kens. Since we don’t know what the correct su-
pertags are, we first estimate counts of supertags,
from which we can extract estimated atom counts.
Our strategy is to uniformly distribute each raw
corpus token’s counts over all of its possible su-
pertags, as specified in the tag dictionary. Word
types not appearing in the tag dictionary are ig-

3While very similar to standard probabilistic context-free
grammars seen in NLP work, this grammar is not context-free
because modifier categories must have matching operands.
However, this is not a problem for our approach since the
grammar is unambiguous, defines a proper probability distri-
bution, and is only used for modeling the relative likelihoods
of categories (not parsing categories).
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nored for the purposes of these estimates. Assum-
ing that C(w) is the number of times that word
type w is seen in the raw corpus, atoms(a, t) is the
number of times atom a appears in t, TD(w) is the
set of tags associated with w, and TD(t) is the set
of word types associated with t:

Csupertag(t) =
∑

w∈TD(t)(C(w)+δ)/|TD(w)|
Catom(a) =

∑
t∈T atoms(a, t) · Csupertag(t)

patom(a) ∝ Catom(a) + δ

Adding δ smooths the estimates.
Using the raw corpus and tag dictionary data to

set patom allows us to move beyond Baldridge’s
work in another direction: it provides us with a
natural way to combine CCG’s universal assump-
tions with corpus-specific data.

The third and fourth ideas pertain only to com-
plex categories. If the category is complex, then
we consider two additional parameters. The pa-
rameter pfw is the marginal probability that the
complex category’s operator specifies a forward
argument. The parameter pmod gives the amount
of marginal probability mass that is allocated for
modifier categories. Note that it is not necessary
for pmod to be greater than 1

2 to achieve the de-
sired result of making modifier categories more
likely than non-modifier categories: the number
of potential modifiers make up only a tiny fraction
of the space of possible categories, so allocating
more than that mass as pmod will result in a cate-
gory grammar that gives disproportionate weight
to modifiers, increasing the likelihood of any par-
ticular modifier from what it would otherwise be.

3.1.2 Bigram Category Generator (Pπ(u | t))
While the above processes encode important prop-
erties of the distribution over categories, the in-
ternal structure of categories is not the full story:
cross-linguistically, the categories of adjacent to-
kens are much more likely to be combinable via
some CCG rule. This is the second component of
our mixture model.

Baldridge derives this bias by allocating the ma-
jority of the transition probability mass from each
tag t to tags that can follow t according to some
combination rule. Let κ(t,u) be an indicator of
whether t connects to u; for σ ∈ [0, 1]:4

Pκ(u | t) =
{
σ · uniform(u) if κ(t,u)
(1− σ) · uniform(u) otherwise

4Again, following Baldridge (2008), we fix σ = 0.95 for
our experiments.

There are a few additional considerations that
must be made in defining κ, however. In assum-
ing the special tags 〈S〉 and 〈E〉 for the start and
end of the sentence, respectively, we can define
κ(〈S〉,u) = 1 when u seeks no left-side argu-
ments (since there are no tags to the left with
which to combine) and κ(t, 〈E〉) = 1 when t seeks
no right-side arguments. So κ(〈S〉, NP/N) = 1, but
κ(〈S〉, S\NP) = 0. If atoms have features asso-
ciated, then the atoms are allowed to unify if the
features match, or if at least one of them does
not have a feature. So κ(NPnb, S\NP) = 1, but
κ(NPnb, S\NPconj) = 0. In defining κ, it is also im-
portant to ignore possible arguments on the wrong
side of the combination since they can be con-
sumed without affecting the connection between
the two. To achieve this for κ(t,u), it is assumed
that it is possible to consume all preceding argu-
ments of t and all following arguments of u. So
κ(NP, (S\NP)/NP) = 1. This helps to ensure the
associativity discussed earlier. Finally, the atom
NP is allowed to unify with N if N is the argument.
So κ(N, S\NP) = 1, but κ(NP/N, NP) = 0. This is
due to the fact that CCGBank assumes that N can
be rewritten as NP.

Type-supervised initialization. As above, we
want to improve upon Baldridge’s ideas by en-
coding not just universal CCG knowledge, but
also automatically-induced corpus-specific infor-
mation where possible. To that end, we can de-
fine a conditional distribution Ptr(u | t) based on
statistics from the raw corpus and tag dictionary.
We use the same approach as we did above for set-
ting patom (and the definition of φ0

t below): we esti-
mate by evenly distributing raw corpus counts over
the tag dictionary entries. Assume that C(w1, w2)
is the (δ-smoothed) count of times word type w1

was directly followed byw2 in the raw corpus, and
ignoring any words not found in the tag dictionary:

C(t,u) = δ+
∑

w1∈TD(t), w2∈TD(u)

C(w1, w2)
|TD(w1)| · |TD(w2)|

Ptr(u | t) = C(t,u)/
∑

u′ C(t,u′)

Then the alternative definition of the compatibility
distribution is as follows:

P tr
κ (u | t) =

{
σ · Ptr(u | t) if κ(t,u)
(1–σ) · Ptr(u | t) otherwise
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Our experiments compare performance when
π0
t is set using Pπ(u)=PCPLX (experiment 3) ver-

sus our category grammar PG (4–6), and using
Pπ(u | t) = Pκ as the compatibility distribution
(3–4) versus P tr

κ (5–6).

3.2 Emission Prior Means (φ0
t)

For each supertag type t, φ0
t is the mean distri-

bution over words it emits. While Baldridge’s
approach used a uniform emission initialization,
treating all words as equally likely, we can,
again, induce token-level corpus-specific informa-
tion:5 To set φ0

t , we use a variant and simplifica-
tion of the procedure introduced by Garrette and
Baldridge (2012) that takes advantage of our prior
over categories PG.

Assuming that C(w) is the count of word type
w in the raw corpus, TD(w) is the set of supertags
associated with word type w in the tag dictionary,
and TD(t) is the set of known word types associ-
ated with supertag t, the count of word/tag pairs
for known words (words appearing in the tag dic-
tionary) is estimated by uniformly distributing a
word’s (δ-smoothed) raw counts over its tag dic-
tionary entries:

Cknown(t, w) =

{
C(w)+δ
|TD(w)| if t ∈ TD(w)

0 otherwise

For unknown words, we first use the idea of tag
“openness” to estimate the likelihood of a partic-
ular tag t applying to an unknown word: if a tag
applies to many word types, it is likely to apply to
some new word type.

P (unk | t) ∝ |known words w s.t. t ∈ TD(w)|
Then, we apply Bayes’ rule to get P (t | unk), and
use that to estimate word/tag counts for unknown
words:

P (t | unk) ∝ P (unk | t) · PG(t)

Cunk(t, w) = C(w) · P (t | unk)

Thus, with the estimated counts for all words:

Pem(w | t) =
Cknown(t, w) + Cunk(t, w)∑
w′ Cknown(t, w′) + Cunk(t, w′)

We perform experiments comparing perfor-
mance when φ0

t is uniform (3–5) and when
φ0
t(w) = Pem(w | t) (6).

5Again, without gold tag frequencies.

4 Posterior Inference

We wish to find the most likely supertag of each
word, given the model we just described and a cor-
pus of training data. Since there is exact inference
with these models is intractable, we resort to Gibbs
sampling to find an approximate solution. At a
high level, we alternate between resampling model
parameters (φt, πt) given the current tag sequence
and resampling tag sequences given the current
model parameters and observed word sequences.
It is possible to sample a new tagging from the
posterior distribution over tag sequences for a sen-
tence, given the sentence and the HMM parameters
using the forward-filter backward-sample (FFBS)
algorithm (Carter and Kohn, 1996). To effi-
ciently sample new HMM parameters, we exploit
Dirichlet-multinomial conjugacy. By repeating
these alternating steps and accumulating the num-
ber of times each supertag is used in each position,
we obtain an approximation of the required poste-
rior quantities.

Our inference procedure takes as input the tran-
sition prior means π0

t , the emission prior means
φ0
t , and concentration parameters απ and αφ,

along with the raw corpus and tag dictionary. The
set of supertags associated with a word w will be
known as TD(w). We will refer to the set of word
types included in the tag dictionary as “known”
words and others as “unknown” words. For sim-
plicity, we will assume that TD(w), for any un-
known word w, is the full set of CCG categories.
During sampling, we always restrict the possible
tag choices for a word w to the categories found in
TD(w). We refer to the sequence of word tokens
as x and tags as y.

We initialize the sampler by setting πt = π0
t

and φt = φ0
t and then sampling tagging sequences

using FFBS.
To sample a tagging for a sentence x, the strat-

egy is to inductively compute, for each token xi
starting with i = 0 and going “forward”, the prob-
ability of generating x0, x1, . . . , xi via any tag se-
quence that ends with yi = u:

p(yi = u | x0:i) =

φu(xi) ·
∑
t∈T

πt(u) · p(yi−1 = t | x0:i−1)

We then pass through the sequence again, this time
“backward” starting at i = |x| − 1 and sampling

yi | yi+1 ∼ p(yi = t | x0:i) · πt(yi+1).
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num. raw TD TD ambiguity dev test
Corpus tags tokens tokens entries type token tokens tokens

English
CCGBank POS 50

158k 735k
45k 3.75 13.11 — —

CCGBank 1,171 65k 56.98 296.18 128k 127k
Chinese CTB-CCG 829 99k 439k 60k 96.58 323.37 59k 85k
Italian CCG-TUT 955 6k 27k 9k 178.88 426.13 5k 5k

Table 1: Statistics for the various corpora used. CCGBank is English, CCG-CTB is Chinese, and TUT
is Italian. The number of tags includes only those tags found in the tag dictionary (TD). Ambiguity rates
are the average number of entries in the unpruned tag dictionary for each word in the raw corpus. English
POS statistics are shown only for comparison; only CCG experiments were run.

The block-sampling approach of choosing new
tags for a sentence all at once is particularly ben-
eficial given the sequential nature of the model of
the HMM. In an HMM, a token’s adjacent tags tend
to hold onto its current tag due to the relation-
ships between the three. Resampling all tags at
once allows for more drastic changes at each it-
eration, providing better opportunities for mixing
during inference. The FFBS approach has the ad-
ditional advantage that, by resampling the distri-
butions only once per iteration, we are able to re-
sample all sentences in parallel. This is not strictly
true of all HMM problems with FFBS, but because
our data is divided by sentence, and each sentence
has a known start and end tag, the tags chosen dur-
ing the sampling of one sentence cannot affect the
sampling of another sentence in the same iteration.

Once we have sampled tags for the entire cor-
pus, we resample π and φ. The newly-sampled
tags y are used to compute C(w, t), the count of
tokens with word type w and tag t, and C(t,u),
the number of times tag t is directly followed by
tag u. We then sample, for each t ∈ T where T is
the full set of valid CCG categories:

πt ∼ Dir
(〈απ · π0

t (u) + C(t,u)〉u∈T
)

φt ∼ Dir
(〈αφ · φ0

t(w) + C(w, t)〉w∈V
)

It is important to note that this method of re-
sampling allows the draws to incorporate both the
data, in the form of counts, and the prior mean,
which includes all of our carefully-constructed bi-
ases derived from both the intrinsic, universal CCG

properties as well as the information we induced
from the raw corpus and tag dictionary.

With the distributions resampled, we can con-
tinue the procedure by resampling tags as above,
and then resampling distributions again, until a
maximum number of iterations is reached.

5 Experiments6

To evaluate our approach, we used CCGBank
(Hockenmaier and Steedman, 2007), which is
a transformation of the English Penn Treebank
(Marcus et al., 1993); the CTB-CCG (Tse and
Curran, 2010) transformation of the Penn Chinese
Treebank (Xue et al., 2005); and the CCG-TUT
corpus (Bos et al., 2009), built from the TUT cor-
pus of Italian text (Bosco et al., 2000). Statistics
on the size and ambiguity of these datasets are
shown in Table 1.

For CCGBank, sections 00–15 were used for
extracting the tag dictionary, 16–18 for the raw
corpus, 19–21 for development data, and 22–24
for test data. For TUT, the first 150 sentences of
each of the CIVIL LAW and NEWSPAPER sections
were used for raw data, the next sentences 150–
249 of each was used for development, and the
sentences 250–349 were used for test; the remain-
ing data, 457 sentences from CIVIL LAW and 548
from NEWSPAPER, plus the much smaller 132-
sentence JRC ACQUIS data, was used for the tag
dictionary. For CTB-CCG, sections 00–11 were
used for the tag dictionary, 20–24 for raw, 25–27
for dev, and 28–31 for test.

Because we are interested in showing the rel-
ative gains that our ideas provide over Baldridge
(2008), we reimplemented the initialization pro-
cedure from that paper, allowing us to evaluate
all approaches consistently. For each dataset, we
ran a series of experiments in which we made fur-
ther changes from the original work. We first ran
a baseline experiment with uniform transition and
emission initialization of EM (indicated as “1.” in
Table 2) followed by our reimplementation of the
initialization procedure by Baldridge (2). We then

6All code and experimental scripts are available
at http://www.github.com/dhgarrette/
2014-ccg-supertagging
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Corpus English Chinese Italian
TD cutoff 0.1 0.01 0.001 no 0.1 0.01 0.001 no 0.1 0.01 0.001 no

1. uniform EM 77 62 47 38 64 39 30 26 51 32 30 30
2. init (Baldridge) EM 78 67 55 41 66 43 33 28 54 36 33 32
3. init Bayes 74 68 56 42 65 56 47 37 52 46 40 40
4. PG Bayes 74 70 59 42 64 57 47 36 52 40 39 40
5. PG, P tr

κ Bayes 75 72 61 50 66 58 49 44 52 44 41 43
6. PG, P tr

κ , Pem Bayes 80 80 73 51 69 62 56 49 53 47 45 46

Table 2: Experimental results: test-set per-token supertag accuracies. “TD cutoff” indicates the level of
tag dictionary pruning; see text. (1) is uniform EM initialization. (2) is a reimplementation of (Baldridge,
2008). (3) is Bayesian formulation using only the ideas from Baldridge: PCPLX, Pκ, and uniform emis-
sions. (4–6) are our enhancements to the prior: using our category grammar in PG instead of PCPLX, using
P tr
κ instead of Pκ, and using Pem instead of uniform.

experimented with the Bayesian formulation, first
using the same information used by Baldridge, and
then adding our enhancements: using our category
grammar in PG, using P tr

κ as the transition com-
patability distribution, and using Pem as φ0

t(w).

For each dataset, we ran experiments using four
different levels of tag dictionary pruning. Prun-
ing is the process of artificially removing noise
from the tag dictionary by using token-level anno-
tation counts to discard low-probability tags; for
each word, for cutoff x, any tag with probability
less than x is excluded. Tag dictionary pruning
is a standard procedure in type-supervised train-
ing, but because it requires information that does
not truly conform to the type-supervised scenario,
we felt that it was critical to demonstrate the per-
formance of our approach under situations of less
pruning, including no artificial pruning at all.

We emphasize that unlike in most previous
work, we use incomplete tag dictionaries. Most
previous work makes the unrealistic assumption
that the tag dictionary contains an entry for ev-
ery word that appears in either the training or test-
ing data. This is a poor approximation of a real
tagging system, which will never have complete
lexical knowledge about the test data. Even work
that only assumes complete knowledge of the tag-
ging possibilities for the lexical items in the train-
ing corpus is problematic (Baldridge, 2008; Ravi
et al., 2010). This still makes learning unrealisti-
cally easy since it dramatically reduces the ambi-
guity of words that would have been unseen, and,
in the case of CCG, introduces additional tags that
would not have otherwise been known. To ensure
that our experiments are more realistic, we draw
our tag dictionary entries from data that is totally

disjoint from both the raw and test corpora. Dur-
ing learning, any unknown words (words not ap-
pearing in the tag dictionary) are unconstrained so
that they may take any tag, and are, thus, maxi-
mally ambiguous.

We only performed minimal parameter tuning,
choosing instead to stay consistent with Baldridge
(2008) and simply pick reasonable-seeming val-
ues for any additional parameters. Any tuning that
was performed was done with simple hill-climbing
on the development data of English CCGBank.
All parameters were held consistent across exper-
iments, including across languages. For EM, we
used 50 iterations; for FFBS we used 100 burn-
in iterations and 200 sampling iterations.7 For
all experiments, we used σ = 0.95 for P (tr)

κ and
λ = 0.5 for π0

t to be consistent with previous
work, απ = 3000, αφ = 7000, pterm = 0.6,
pfw = 0.5, pmod = 0.8, and δ = 1000 for patom.
Test data was run only once, for the final figures.

The final results reported were achieved by us-
ing the following training sequence: initialize pa-
rameters according to the scenario, train an HMM

using EM or FFBS starting with that set of parame-
ters, tag the raw corpus with the trained HMM, add-
0.1 smooth counts from the now-tagged raw cor-
pus, and train a maximum entropy Markov model
(MEMM) from this “auto-supervised” data.8

Results are shown in Table 2. Most notably, the
contributions described in this paper improve re-
sults in nearly every experimental scenario. We
can see immediate, often sizable, gains in most

7Final counts are averaged across the sampling iterations.
8Auto-supervised training of an MEMM increases accu-

racy by 1–3% on average (Garrette and Baldridge, 2013). We
use the OpenNLP MEMM implementation with its standard
set of features: http://opennlp.apache.org
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cases simply by using the Bayesian formulation.
Further gains are seen from adding each of the
other various contributions of this paper. Perhaps
most interestingly, the gains are only minimal with
maximum pruning, but the gains increase as the
pruning becomes less aggressive — as the scenar-
ios become more realistic. This indicates that our
improvements make the overall procedure more
robust.

Error Analysis Like POS-taggers, the learned
supertagger frequently confuses nouns (N) and
their modifiers (N/N), but the most frequent er-
ror made by the English (6) experiment was
(((S\NP)\(S\NP))/N) instead of (NPnb/N). How-
ever, these are both determiner types, indicating an
interesting problem for the supertagger: it often
predicts an object type-raised determiner instead
of the vanilla NP/N, but in many contexts, both cat-
egories are equally valid. (In fact, for parsers that
use type-raising as a rule, this distinction in lexical
categories does not exist.)

6 Related Work

Ravi et al. (2010) also improved upon the work by
Baldridge (2008) by using integer linear program-
ming to find a minimal model of supertag transi-
tions, thereby generating a better starting point for
EM than the grammatical constraints alone could
provide. This approach is complementary to the
work presented here, and because we have shown
that our work yields gains under tag dictionaries
of various levels of cleanliness, it is probable that
employing minimization to set the base distribu-
tion for sampling could lead to still higher gains.

On the Bayesian side, Van Gael et al. (2009)
used a non-parametric, infinite HMM for truly un-
supervised POS-tagger learning (Van Gael et al.,
2008; Beal et al., 2001). While their model is not
restricted to the standard set of POS tags, and may
learn a more fine-grained set of labels, the induced
labels are arbitrary and not grounded in any gram-
matical formalism.

Bisk and Hockenmaier (2013) developed an ap-
proach to CCG grammar induction that does not
use a tag dictionary. Like ours, their procedure
learns from general properties of the CCG formal-
ism. However, while our work is intended to pro-
duce categories that match those used in a partic-
ular training corpus, however complex they might
be, their work produces categories in a simplified
form of CCG in which N and S are the only atoms

and no atoms have features. Additionally, they as-
sume that their training corpus is annotated with
POS tags, whereas we assume truly raw text.

Finally, we find the task of weakly-supervised
supertagger learning to be particularly relevant
given the recent surge in popularity of CCG.
An array of NLP applications have begun using
CCG, including semantic parsing (Zettlemoyer and
Collins, 2005) and machine translation (Weese et
al., 2012). As CCG finds more applications, and
as these applications move to lower-resource do-
mains and languages, there will be increased need
for the ability to learn without full supervision.

7 Conclusion and Future Work

Standard strategies for type-supervised HMM es-
timation are less effective as the number of cat-
egories increases. In contrast to POS tag sets,
CCG supertags, while quite numerous, have struc-
tural clues that can simplify the learning prob-
lem. Baldridge (2008) used this formalism-
specific structure to inform an initialization pro-
cedure for EM. In this work, we have shown that
CCG structure can instead be used to motivate an
effective prior distribution over the parameters of
an HMM supertagging model, allowing our work
to outperform Baldridge’s previously state-of-the-
art approach, and to do so in a principled manner
that lends itself better to future extensions such as
incorporation in more complex models.

This work also improves on Baldridge’s simple
“complexity” measure, developing instead a prob-
abilistic category grammar over supertags that al-
lows our prior to capture a wider variety of inter-
esting and useful properties of the CCG formalism.

Finally, we were able to achieve further gains
by augmenting the universal CCG knowledge with
corpus-specific information that could be automat-
ically extracted from the weak supervision that is
available: the raw corpus and the tag dictionary.
This allows us to combine the cross-linguistic
properties of the CCG formalism with corpus- or
language-specific information in the data into a
single, unified Bayesian prior.

Our model uses a relatively large number of pa-
rameters, e.g., pterm, pfw, pmod, patom, in the prior.
Here, we fixed each to a single value (i.e., a “fully
Bayesian” approach). Future work might explore
sensitivity to these choices, or empirical Bayesian
or maximum a posteriori inference for their values
(Johnson and Goldwater, 2009).
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In this work, as in most type-supervised work,
the tag dictionary was automatically extracted
from an existing tagged corpus. However, a tag
dictionary could instead be automatically induced
via multi-lingual transfer (Das and Petrov, 2011)
or generalized from human-provided information
(Garrette and Baldridge, 2013; Garrette et al.,
2013). Again, since the approach presented here
has been shown to be somewhat robust to tag dic-
tionary noise, it is likely that the model would
perform well even when using an automatically-
induced tag dictionary.
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Abstract

Phrase-based translation models usually
memorize local translation literally and
make independent assumption between
phrases which makes it neither generalize
well on unseen data nor model sentence-
level effects between phrases. In this pa-
per we present a new method to model
correlations between phrases as a Markov
model and meanwhile employ a robust
smoothing strategy to provide better gen-
eralization. This method defines a re-
cursive estimation process and backs off
in parallel paths to infer richer structures.
Our evaluation shows an 1.1–3.2% BLEU
improvement over competitive baselines
for Chinese-English and Arabic-English
translation.

1 Introduction

Phrase-based methods to machine translation
(Koehn et al., 2003; Koehn et al., 2007) have dras-
tically improved beyond word-based approaches,
primarily by using phrase-pairs as translation
units, which can memorize local lexical con-
text and reordering patterns. However, this lit-
eral memorization mechanism makes it general-
ize poorly to unseen data. Moreover, phrase-based
models make an independent assumption, stating
that the application of phrases in a derivation is in-
dependent to each other which conflicts with the
underlying truth that the translation decisions of
phrases should be dependent on context.

There are some work aiming to solve the two
problems. Feng and Cohn (2013) propose a
word-based Markov model to integrate translation
and reordering into one model and use the so-
phisticated hierarchical Pitman-Yor process which
backs off from larger to smaller context to pro-
vide dynamic adaptive smoothing. This model
shows good generalization to unseen data while

it uses words as the translation unit which can-
not handle multiple-to-multiple links in real word
alignments. Durrani et al. (2011) and Durrani et
al. (2013) propose an operation sequence model
(OSM) which models correlations between mini-
mal translation units (MTUs) and evaluates proba-
bilities with modified Kneser-Ney smoothing. On
one hand the use of MTUs can help retain the
multiple-to-multiple alignments, on the other hand
its definition of operations where source words
and target words are bundled into one operation
makes it subjected to sparsity. The common fea-
ture of the above two methods is they both back off
in one fixed path by dropping least recent events
first which precludes some useful structures. For
the segment pairs <bǎ tā kǎolv̀ jı̀nqù, take it into
account> in Figure 1, the more common structure
is <bǎ ... kǎolv̀ jı̀nqù, take ... into account>. If
we always drop the least recent events first, then
we can only learn the pattern <... tā kǎolv̀ jı̀nqù,
... it into account>.

On these grounds, we propose a method with
new definition of correlations and more robust
probability modeling. This method defines a
Markov model over correlations between minimal
phrases where each is decomposed into three fac-
tors (source, target and jump). In the meantime
it employs a fancier smoothing strategy for the
Markov model which backs off by dropping mul-
tiple conditioning factors in parallel in order to
learn richer structures. Both the uses of factors
and parallel backoff give rise to robust modeling
against sparsity. In addition, modeling bilingual
information and reorderings into one model in-
stead of adding them to the linear model as sep-
arate features allows for using more sophisticated
estimation methods rather than get a loose weight
for each feature from tuning algorithms.

We compare the performance of our model with
that of the phrase-based model and the hierarchi-
cal phrase-based model on the Chinese-English
and Arabic-English NIST test sets, and get an im-
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Figure 1: Example Chinese-English sentence pair
with word alignments shown as filled grid squares.

provement up to 3.2 BLEU points absolute.1

2 Modelling

Our model is phrase-based and works like a
phrase-based decoder by generating target trans-
lation left to right using phrase-pairs while jump-
ing around the source sentence. For each deriva-
tion, we can easily get its minimal phrase (MPs)
sequence where MPs are ordered according to the
order of their target side. Then this sequence of
events is modeled as a Markov model and the log
probability under this Markov model is included
as an additional feature into the linear SMT model
(Och, 2003).

A MP denotes a phrase which cannot contain
other phrases. For example, in the sentence pair
in Figure 1, <bǎ tā , take it> is a phrase but not
a minimal phrase, as it contains smaller phrases
of <bǎ , take> and <tā , it>. MPs are a com-
plex event representation for sequence modelling,
and using these naively would be a poor choice
because few bigrams and trigrams will be seen
often enough for reliable estimation. In order
to reason more effectively from sparse data, we
consider more generalized representations by de-
composing MPs into their component events: the
source phrase (source f̄ ), the target phrase (tar-
get ē) and the jump distance from the preceding
MP (jump j), where the jump distance is counted
in MPs, not in words. For sparsity reasons, we
do not use the jump distance directly but instead
group it into 12 buckets:

{insert,≤ −5,−4,−3,−2,−1, 0, 1, 2, 3, 4,≥ 5},
where the jump factor is denoted as insert when
the source side is NULL. For the sentence pair in

1We will contribute the code to Moses.

Figure 1, the MP sequence is shown in Figure 2.
To evaluate the Markov model, we condition

each MP on the previous k − 1 MPs and model
each of the three factors separately based on a
chain rule decomposition. Given a source sentence
f and a target translation e, the joint probability is
defined as

p(ēI1, j
I
1 , f̄

I
1 ) =

I∏
i=1

p(ēi|f̄ ii−k+1, j
i
i−k+1, ē

i−1
i−k+1)

×
I∏
i=1

p(f̄i|f̄ i−1
i−k+1, j

i
i−k+1, ē

i−1
i−k+1)

×
I∏
i=1

p(ji|f̄ i−1
i−k+1, j

i−1
i−k+1, ē

i−1
i−k+1)

(1)

where f̄i, ēi and ji are the factors of MPi, f̄ I1 =
(f̄1, f̄2, . . . , f̄I) is the sequence of source MPs,
ēI1 = (ē1, ē2, . . . , ēI) is the sequence of tar-
get MPs, and jI1 = (j1, j2, . . . , jI) is the vec-
tor of jump distance between MPi−1 and MPi, or
insert for MPs with null source sides.2 To eval-
uate each of the k-gram models, we use modified
Keneser-Ney smoothing to back off from larger
context to smaller context recursively.

In summary, adding the Markov model into the
decoder involves two passes: 1) training a model
over the MP sequences extracted from a word
aligned parallel corpus; and 2) calculating the
probability of the Markov model for each trans-
lation hypothesis during decoding. This Markov
model is combined with a standard phrase-based
model3 (Koehn et al., 2007) and used as an addi-
tional feature in the linear model.

In what follows, we will describe how to estati-
mate the k-gram Markov model, focusing on back-
off (§2.1) and smoothing (§2.2).

2.1 Parallel Backoff

Backoff is a technique used in language model —
when estimating a higher-order gram, instead of
using the raw occurrence count, only a portion is
used and the remainder is computed using a lower-
order model in which one of the context factors

2Note that factors at indices 0,−1, . . . ,−(k − 1) are set
to a sentinel value to denote the start of sentence.

3The phrase-based model considers larger phrase-pairs
than just MPs, while our Markov model consider only MPs.
As each phrase-pair is composed of a sequence of MPs un-
der fixed word alignment, by keeping the word alignment for
each phrase, a decoder derivation unambiguously specifies
the MP sequence for scoring under our Markov model.
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index sentence pair minimal phrase sequence
wǒmén yīnggāi bǎ tā yě kǎolv̀ jı̀nqù jump source target

1 We T1 1 wǒmén We
2 should T2 1 yīnggāi should
3 also T3 3 yě also
4 take T4 -2 bǎ take
5 it T5 1 tā it
6 into account T6 2 kǎolv̀ jı̀nqù into account

Figure 2: The minimal phrase sequence T1, ..., T6 extracted from the sentence pair in Figure 1.

step 3-gram ē3|f̄3, j3, ē2, f̄2, j2, ē1, f̄1, j1

0 into account | kǎolv̀ jı̀nqù, 2, it, tā, 1, take, bǎ, -2

↓ 1

1 into account | kǎolv̀ jı̀nqù, 2, it, tā, –, take, bǎ, -2

↓ tā

2 into account | kǎolv̀ jı̀nqù, 2, it, –, –, take, bǎ, -2

↓ it

3 into account | kǎolv̀ jı̀nqù, 2, –, –, –, take, bǎ, -2

↓ -2

4 into account | kǎolv̀ jı̀nqù, 2, –, –, –, take, bǎ, –

↓ bǎ

5 into account | kǎolv̀ jı̀nqù, 2, –, –, –, take, –, –

↓ take

6 into account | kǎolv̀ jı̀nqù, 2, –, –, –, –, –, –

↓ 2

7 into account | kǎolv̀ jı̀nqù, –, –, –, –, –, –, –

↓ kǎolv̀ jı̀nqù

8 into account | –, –, –, –, –, –, –, –

Figure 3: One backoff path for the 3-gram in
Equation 2. The symbols besides each arrow mean
the current factor to drop; “–” is a placeholder for
factors which can take any value.

is dropped. Here the probabilities of the lower-
order which is used to construct the higher-order is
called the backoff probability of the higher-order
gram. Different from standard language models
which drop the least recent words first, we em-
ploy a different backoff strategy which considers
all possible backoff paths. Taking as an example
the 3-gram T4T5T6 in Figure 2, when estimating
the probability of the target factor

p(into account | kǎolv̀ jı̀nqù, 2, it, tā, 1, take, bǎ, -2 ) ,
(2)

Figure 4: The backoff graph for the 3-gram model
of the target factor. The symbol beside each arrow
is the factor to drop.

we consider two backoff paths: path1 drops the
factors in the order -2, bǎ, take, 1, tā, it, 2,
kǎolv̀ jı̀nqù; path2 uses order 1, tā, it, -2, bǎ,
take, 2, kǎolv̀ jı̀nqù. Figure 3 shows the backoff
process for path2. In this example with two back-
off paths, the backoff probability g is estimated as

g(into acc.|c) =
1
2
p(into acc.|c′)+1

2
p(into acc.|c′′) ,

where c =< kǎolv̀ jı̀nqù, 2, it, tā, 1, take, bǎ, -2 >,
c′ =< kǎolv̀ jı̀nqù, 2, it, tā, 1, take, bǎ, – > and
c′′ =< kǎolv̀ jı̀nqù, 2, it, tā, –, take, bǎ, -2 >.

Formally, we use the notion of backoff graph to
define the recursive backoff process of a k-gram
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and denote as nodes the k-gram and the lower-
order grams generated by the backoff. Once one
node occurs in the training data fewer than τ times,
then estimates are calculated by backing off to the
nodes in the next lower level where one factor is
dropped (denoted using the placeholder – in Fig-
ure 4). One node can have one or several candidate
backoff nodes. In the latter case, the backoff prob-
ability is defined as the average of the probabilities
of the backoff nodes in the next lower level.

We define the backoff process for the 3-gram
model predicting the target factor, ē3, as illustrated
in Figure 4. The top level is the full 3-gram, from
which we derive two backoff paths by dropping
factors from contextual events, one at a time. For-
mally, the backoff strategy is to drop the previ-
ous two MPs one by one while for each MP the
dropping routine is first the jump factor, then the
source factor and final the target factor. Each step
on the path corresponds to dropping an individ-
ual contextual factor from the context. The paths
converge when only the third MP left, then the
backoff proceeds by dropping the jump action, j3,
then finally the source phrase, f̄3. The paths B-
D-F-H-J and C-E-G-I-K show all the possible or-
derings (corresponding to c′′ and c′, respectively)
for dropping the two previous MPs. The exam-
ple backoff in Figure 3 corresponds the path A-
B-D-F-H-J-L-M-N in Figure 4, shown as heavier
lines. When generizing to the k-gram for target
p(ēk|f̄k1 , jk1 , ēk−1

1 ), the backoff strategy is to first
drop the previous k-1 MPs one by one (for each
MP, still drops in the order of jump, source and
target), then the kth jump factor and finally the kth
source factor. According to the strategy, the top
node has k-1 nodes to back off to and for the node
ēk|f̄k2 , jk2 , ēk−1

2 where only the factors of MP1 are
dropped, there are k-2 nodes to back off to.

2.2 Probability Estimation

We adopt the technique used in factor language
models (Bilmes and Kirchhoff, 2003; Kirchhoff et
al., 2007) to estimate the probability of a k-gram
p(ēi|c) where c = f̄ ii−k+1, j

i
i−k+1, ē

−1
i−k+1. Ac-

cording to the definition of backoff, only when the
count of the k-gram exceeds some given threshold,
its maximum-likelihood estimate, pML(ēk|c) =
N(ēk,c)
N(c) is used, where N(·) is the count of an

event and/or context. Otherwise, only a portion of
pML(ēk|c) is used and the remainder is constructed
from a lower-level (by dropping a factor). In or-
der to ensure valid probability estimates, i.e. sums

to unity, probability mass needs to be “stolen”
from the higher level and given to the lower level.
Hence, the whole definition is

p(ēi|c) =

{
dN(ēi,c)pml(ēi|c) if N(ēi, c) > τk

α(c)g(ēi, c) otherwise
(3)

where dN(ēi,c) is a discount parameter which re-
serves probability from the maximum-likelihood
estimate for backoff smoothing at the next lower-
level, and we estimate dN(ēi,c) using modified
Kneser-Ney smoothing (Kneser and Ney, 1995;
Chen and Goodman, 1996); τk is the threshold for
the count of the k-gram, α(c) is the backoff weight
used to make sure the entire distribution still sums
to unity,

α(c) =
1−∑ē:N(ē,c)>τk

dN(ē,c)pML(ē|c)∑
ē:N(ē,c)≤τk g(ē, c)

,

and g(ēi, c) is the backoff probability which we
estimate by averaging over the nodes in the next
lower level,

g(ēi, c) =
1
φ

∑
c′
p(ēi|c′) ,

where φ is the number of nodes to back off, c′ is
the lower-level context after dropping one factor
from c.

The k-gram for the source and jump factors are
estimated in the same way, using the same backoff
semantics.4 Note (3) is applied independently to
each of the three models, so the use of backoff may
differ in each case.

3 Discussion

As a part of the backoff process our method
can introduce gaps in estimating rule probabili-
ties; these backoff patterns often bear close re-
semblance to SCFG productions in the hierarchi-
cal phrase-based model (Chiang, 2007). For ex-
ample, in step 0 in Figure 3, as all the jump factors
are present, this encodes the full ordering of the
MPs and gives rise to the aligned MP pairs shown
in Figure 5 (a). Note that an X 1 placeholder is
included to ensure the jump distance from the pre-
vious MP to the MP <bǎ, take> is -2. The ap-
proximate SCFG production for the MP pairs is

<bǎ tā X 1 kǎolv̀ jı̀nqù, X 1 take it into account>.

4Although there are fewer final steps, L-M-N in Fig. 4,
as we assume the MP is generated in the order jump, source
phrase then target phrase in a chain rule decomposition.
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Figure 5: Approximate SCFG patterns for step 0,
3 of Figure 3. X is a non-terminal which can only
be rewritten by one MP. · and · · · denote gaps
introduced by the left-to-right decoding algorithm
and · can only cover one MP while · · · can
cover zero or more MPs.

In step 1, as the jump factor 1 is dropped, we do
not know the orientation between bǎ and tā. How-
ever several jump distances are known: from X 1

to bǎ is distance -2 and tā to kǎolv̀ jı̀nqù is 2. In
this case, the source side can be

bǎ tā X 1 kǎolv̀ jı̀nqù,

bǎ · X 1 · · · tā · kǎolv̀ jı̀nqù,
tā bǎ kǎolv̀ jı̀nqù X 1 ,

tā · kǎolv̀ jı̀nqù · · · bǎ · X 1 ,
where X and · can only hold one MP while · · ·
can cover zero or more MPs. In step 3 after drop-
ping tā and it, we introduce a gap X 2 as shown in
Figure 5 (b).

From above, we can see that our model has two
kinds of gaps: 1) in the source due to the left-to-
right target ordering (such as the · in step 3); and
2) in the target, arising from backoff (such as the
X 2 in step 3). Accordingly our model supports
rules than cannot be represented by a 2-SCFG
(e.g., step 3 in Figure 5 requires a 4-SCFG). In
contrast, the hierarchical phrase-based model al-
lows only 2-SCFG as each production can rewrite
as a maximum of two nonterminals. On the other
hand, our approach does not enforce a valid hier-
archically nested derivation which is the case for
Chiang’s approach.

4 Related Work

The method introduced in this paper uses fac-
tors defined in the same manner as in Feng and
Cohn (2013), but the two methods are quite differ-
ent. That method (Feng and Cohn, 2013) is word-
based and under the frame of Bayesian model
while this method is MP-based and uses a sim-
pler Kneser-Ney smoothing method. Durrani et
al. (2013) also present a Markov model based on
MPs (they call minimal translation units) and fur-
ther define operation sequence over MPs which
are taken as the events in the Markov model. For
the probability estimation, they use Kneser-Ney
smoothing with a single backoff path. Different
from operation sequence, our method gives a neat
definition of factors which uses jump distance di-
rectly and avoids the bundle of source words and
target words like in their method, and hence miti-
gates sparsity. Moreover, the use of parallel back-
off infers richer structures and provides robust
modeling.

There are several other work focusing on mod-
eling bilingual information into a Markov model.
Crego et al. (2011) develop a bilingual language
model which incorporates words in the source and
target languages to predict the next unit, and use
it as a feature in a translation system. This line
of work was extended by Le et al. (2012) who de-
velop a novel estimation algorithm based around
discriminative projection into continuous spaces.
Neither work includes the jump distance, and nor
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do they consider dynamic strategies for estimating
k-gram probabilities.

Galley and Manning (2010) propose a method
to introduce discontinuous phrases into the phrase-
based model. It makes use of the decoding mecha-
nism of the phrase-based model which jumps over
the source words and hence can hold discontin-
uous phrases naturally. However, their method
doesn’t touch the correlations between phrases and
probability modeling which are the key points we
focus on.

5 Experiments

We design experiments to first compare our
method with the phrase-based model (PB), the op-
eration sequence model (OSM) and the hierarchi-
cal phrase-based model (HPB), then we present
several experiments to test:

1. how each of the factors in our model and par-
allel backoff affect overall performance;

2. how the language model order affects the rel-
ative gains, in order to test if we are just learn-
ing a high order LM, or something more use-
ful;

3. how the Markov model interplay with the
distortion and lexical reordering models of
Moses, and are they complemenatary;

4. whether using MPs as translation units is bet-
ter in our approach than the simpler tactic of
using only word pairs.

5.1 Data Setup

We consider two language pairs: Chinese-English
and Arabic-English. The Chinese-English paral-
lel training data is made up of the non-UN por-
tions and non-HK Hansards portions of the NIST
training corpora, distributed by the LDC, having
1,658k sentence pairs with 40m and 44m Chinese
and English words. We used the NIST 02 test set
as the development set and evaluated performance
on the test sets from NIST 03 and 05.

For the Arabic-English task, the training data
comprises several LDC corpora,5 including 276k
sentence pairs and 8.21m and 8.97m words in Ara-
bic and English, respectively. We evaluated on the
NIST test sets from 2003 and 2005, and the NIST
02 test set was used for parameter tuning.

On both cases, we used the factor language
model module (Kirchhoff et al., 2007) of the
SRILM toolkit (Stolcke, 2002) to train a Markov

5LDC2004E72, LDC2004T17, LDC2004T18,
LDC2006T02

model with the order = 3 over the MP sequences.6

The threshold count of backoff for all nodes was
τ = 2.

We aligned the training data sets by first using
GIZA++ toolkit (Och and Ney, 2003) to produce
word alignments on both directions and then com-
bining them with the diag-final-and heuristic. All
experiments used a 5-gram language model which
was trained on the Xinhua portion of the GIGA-
WORD corpus using the SRILM toolkit. Transla-
tion performance was evaluated using BLEU (Pa-
pineni et al., 2002) with case-insensitive n ≤ 4-
grams. We used minimum error rate training (Och,
2003) to tune the feature weights to maximize the
BLEU score on the development set.

We used Moses for PB and Moses-chart for
HPB with the configuration as follows. For both,
max-phrase-length=7, ttable-limit7=20, stack-
size=50 and max-pop-limit=500; For Moses,
search-algorithm=1 and distortion-limit=6; For
Moses-chart, search-algorithm=3 and max-char-
span8=20 for Moses-chart. We used both the dis-
tortion model and the lexical reordering model for
Moses (denoted as Moses-l) except in §5.5 we only
used the distortion model (denoted as Moses-d).
We implemented the OSM according to Durrani
et al. (2013) and used the same configuration with
Moses-l. For our method we used the same config-
uration as Moses-l but adding an additional feature
of the Markov model over MPs.

5.2 Performance Comparison
We first give the results of performance compar-
ison. Here we add another system (denoted as
Moses-l+trgLM): Moses-l together with the target
language model trained on the training data set,
using the same configuration with Moses-l. This
system is used to test whether our model gains im-
provement just for using additional information on
the training set. We use the open tool of Clark et
al. (2011) to control for optimizer stability and test
statistical significance.

The results are shown in Tables 1 and 2. The
two language pairs we used are quite different:
Chinese has a much bigger word order differ-
ence c.f. English than does Arabic. The results
show that our system can outperform the baseline

6We only employed MPs with the length≤ 3. If a MP had
more than 3 words on either side, we omitted the alignment
links to the first target word of this MP and extracted MPs
according to the new alignment.

7The maximum number of lexical rules for each source
span.

8The maximum span on the source a rule can cover.
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System NIST 02 (dev) NIST 03 NIST 05
Moses-l 36.0 32.8 32.0
Moses-chart 36.9 33.6 32.6
Moses-l+trgLM 36.4 33.9 32.9
OSM 36.6 34.0 33.1
our model 37.9 36.0 35.1

Table 1: BLEU % scores on the Chinese-English
data set.

System NIST 02 (dev) NIST 03 NIST 05
Moses-l 60.4 52.0 52.8
Moses-chart 60.7 51.8 52.4
Moses-l+trgLM 60.8 52.6 53.3
OSM 61.1 52.9 53.4
our model 62.2 53.6 53.9

Table 2: BLEU % scores on the Arabic-English
data set.

systems significantly (with p < 0.005) on both
language pairs, nevertheless, the improvement on
Chinese-English is bigger. The big improvement
over Moses-l+trgLM proves that the better perfor-
mance of our model does not solely comes from
the use of the training data. And the gain over
OSM means our definition of factors gives a better
handling to sparsity. We also notice that HPB does
not give a higher BLEU score on Arabic-English
than PB. The main difference between HPB and
PB is that HPB employs gapped rules, so this re-
sult suggests that gaps are detrimental for Arabic-
English translation. In §5.3, we experimentally
validate this claim with our Markov model.

5.3 Impact of Factors and Parallel Backoff

We now seek to test the contribution of target,
jump, source factors, as well as the parallel back-
off technique in terms of BLEU score. We
performed experiments on both Chinese-English
and Arabic-English to test whether the contri-
bution was related to language pairs. We de-
signed the experiments as follows. We first
trained a 3-gram Markov model only over tar-
get factors, p(ēI1|f̄ I1 ) =

∏I
i=1 p(ēi|ēi−1

i−2), de-
noted +t. Then we added the jump fac-
tor (+t+j), such that we now considering
both target and jump events, p(ēI1, j̄

I
1 |f̄ I1 ) =∏I

i=1 p(ēi|j̄ii−2, ē
i−1
i−2)p(j̄i|j̄i−1

i−2 , ē
i−1
i−2). Next we

added the source factor (+t+j+s) such that now all
three factors are included from Equation 1. For
the above three Markov models we used simple
least-recent backoff (akin to a standard language
model), and consequently these methods cannot
represent gaps in the target. Finally, we trained an-

System Chinese-English Arabic-English
NIST 02 NIST 03 NIST 02 NIST 03

Moses-l 36.0 32.8 60.4 52.0
+t 36.3 33.8 60.9 52.4
+t+j 37.1 34.7 62.1 53.4
+t+j+s 37.6 34.8 62.5 53.9
+t+j+s+p 37.9 36.0 62.2 53.6

Table 3: The impact of factors and parallel back-
off. Key: t–target, j–jump, s–source, p–parallel
backoff.

System 2gram 3gram 4gram 5gram 6gram
Moses-l 27.2 32.4 33.0 32.8 33.2
our method 31.6 34.0 35.8 36.0 36.2

Table 4: The impact of the order of the standard
language models.

other Markov model by introducing parallel back-
off to the third one as described in §2.1. Each
of the four Markov model approaches are imple-
mented as adding an additional feature, respec-
tively, into the Moses-l baseline.

The results are shown in Table 3. Observe that
adding each factor results in near uniform per-
formance improvements on both language pairs.
The jump factor gives big improvements of about
1% BLEU in both language pairs. However when
using parallel backoff, the performance improves
greatly for Chinese-English but degrades slightly
on Arabic-English. The reason may be parallel
backoff is used to encode common structures to
capture the different word ordering between Chi-
nese and English while for Arabic-English there
are fewer consistent reordering patterns. This is
also consistent with the results in Table 1 and 2
where HPB gets a little bit lower BLEU scores.

5.4 Impact of LM order

Our system resembles a language model in com-
mon use in SMT systems, in that it uses a Markov
model over target words, among other factors.
This raises the question of whether its improve-
ments are due to it functioning as a target language
model. Our experiments use order k = 3 over MP
sequences and each MP can have at most 3 words.
Therefore the model could in principle memorize
9-grams, although usually MPs are much smaller.
To test whether our improvements are from using
a higher-order language model or other reasons,
we evaluate our system and the baseline system
with a range of LMs of different order. If we can
get consistent improvements over the baseline for
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System NIST 02 (dev) NIST 03
Moses-d 35.1 31.3
Moses-l 36.0 32.8
Moses-d+M 36.4 34.8
Moses-l+M 37.9 36.0

Table 5: Comparison between our Markov model
(denoted as M) and the lexical reordering model
of Moses.

both small and large n, this suggests it’s not the
long context that plays the key role but is other
information we have learned (e.g., jumps or rich
structures).

Table 4 shows the results of using standard lan-
guage models with orders 2 − 6 in Moses-l and
our method. We can see that language model or-
der is very important. When we increase the order
from 2 to 4, the BLEU scores for both systems in-
creases drastically, but levels off for 4-gram and
larger. Note that our system outperforms Moses-l
by 4.4, 1.6, 2.8, 3.2 and 3.0 BLEU points, respec-
tively. The large gain for 2-grams is likely due to
the model behaving like a LM, however the fact
that consistent gains are still realized for higher
k suggests that the approach brings considerable
complementary information, i.e., it is doing much
more than simply language modelling.

5.5 Comparison with Lexical Reordering

Our Markov model learns a joint model of jump,
source and target factors and this is similar to the
lexical reordering model of Moses (Koehn et al.,
2007), which learns general orientations of pairs
of adjacent phrases (classed as monotone, swap or
other). Our method is more complex, by learning
explicit jump distances, while also using broader
context. Here we compare the two methods, and
test whether our approach is complementary by re-
alizing gains over the lexicalized reordering base-
line. We test this hypothesis by comparing the
results of Moses with its simple distortion model
(Moses-d), then with both simple distortion and
lexicalized reordering (Moses-l), and then with our
Markov model (denoted as Moses-d+M or Moses-
l+M, for both baselines respectively).

The results are shown in Table 5. Comparing
the results of Moses-l and Moses-d, we can see that
the lexical reordering model outperforms the dis-
tortion model by a margin of 1.5% BLEU. Com-
paring Moses-d+M with Moses-l, our Markov
model provides further improvements of 2.0%

System NIST 02 (dev) NIST 03
Moses-l 36.0 32.8
Moses-l+word 36.9 34.0
Moses-l+MP 37.6 34.8

Table 6: Comparison between the MP-based
Markov model and the word-based Markov model.

BLEU. Our approach does much more than model
reordering, so it is unlikely that this improvement
is solely due to being better a model of distor-
tion. This is underscored by the final result in
Table 5, for combining lexicalized distortion with
our model (Moses-l+M) which gives the highest
BLEU score, yielding another 1.2% increase.

5.6 Comparison with Word-based Markov

Our approach uses minimal phrases as its basic
unit of translation, in order to preserve the many-
to-many links found from the word alignments.
However we now seek to assess the impact of the
choice of these basic units, considering instead a
simpler word-based setting which retains only 1-
to-1 links in a Markov model. To do this, we
processed target words left-to-right and for tar-
get words with multiple links, we only retained
the link which had the highest lexical translation
probability. Then we trained a 3-gram word-based
Markov model which backs off by dropping the
factors of the least recent word pairs in the order of
first jump then source then target. This model was
included as a feature in the Moses-l baseline (de-
noted as Moses-l+word), which we compared to a
system using a MP-based Markov model backing
off in the same way (denoted as Moses-l+MP).

According to the results in Table 6, using MPs
leads to better performance. Surprisingly even
the word based method outperforms the baseline.
This points to inadequate phrase-pair features in
the baseline, which can be more robustly esti-
mated using a Markov decomposition. In addition
to allowing for advanced smoothing, the Markov
model can be considered to tile phrases over one
another (each k-gram overlaps k−1 others) rather
than enforcing a single segmentation as is done in
the PB and HPB approaches. Fox (2002) states
that phrases tend to move as a whole during re-
ordering, i.e., breaking MPs into words opens the
possibility of making more reordering errors. We
could easily use larger phrase pairs as the basic
unit, such as the phrases used during decoding.
However, doing this involves a hard segmentation
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and would exacerbate issues of data sparsity.

6 Conclusions

In this paper we try to give a solution to the prob-
lems in phrase-based models, including weak gen-
eralization to unseen data and negligence of cor-
relations between phrases. Our solution is to de-
fine a Markov model over minimal phrases so as
to model translation conditioned on context and
meanwhile use a fancy smoothing technique to
learn richer structures such that can be applied to
unseen data. Our method further decomposes each
minimal phrase into three factors and operates in
the unit of factors in the backoff process to provide
a more robust modeling.

In our experiments, we prove that our defini-
tion of factored Markov model provides comple-
mentary information to lexicalized reordering and
high order language models and the use of paral-
lel backoff infers richer structures even those out
of the reach of 2-SCFG and hence brings big per-
formance improvements. Overall our approach
gives significant improvements over strong base-
lines, giving consistent improvements of between
1.1 and 3.2 BLEU points on large scale Chinese-
English and Arabic-English evaluations.

7 Acknowledges

The first author is supported by DARPA BOLT,
contract HR0011-12-C-0014. The second au-
thor is the recipient of an Australian Re-
search Council Future Fellowship (project number
FT130101105). Thank the anonymous reviews for
their insightful comments.

References
Jeff Bilmes and Katrin Kirchhoff. 2003. Factored lan-

guage models and generalized parallel backoff. In
Proc. of HLT-NAACL.

Stanley F. Chen and Joshua Goodman. 1996. An em-
pirical study of smoothing techniques for language
modeling. In Proc. of ACL, pages 310–318.

David Chiang. 2007. Hierarchical phrase-based trans-
lation. Computational Linguistics, 33:201–228.

Jonathan H. Clark, Chris Dyer, Alon Lavie, and
Noah A. Smith. 2011. Better hypothesis testing for
statistical machine translation: Controlling for opti-
mizer instability. In Proc. of ACL-HLT, pages 176–
181.

Josep Maria Crego, François Yvon, and José B.
Mariño. 2011. Ncode: an open source bilingual

n-gram smt toolkit. Prague Bull. Math. Linguistics,
96:49–58.

Nadir Durrani, Helmut Schmid, and Alexander Fraser.
2011. A joint sequence translation model with in-
tegrated reordering. In Proc. of ACL-HLT, pages
1045–1054, June.

Nadir Durrani, Alexander Fraser, and Helmut Schmid.
2013. Model with minimal translation units, but de-
code with phrases. In Proc. of NAACL, pages 1–11.

Yang Feng and Trevor Cohn. 2013. A markov
model of machine translation using non-parametric
bayesian inference. In Proc. of ACL, pages 333–
342.

Heidi Fox. 2002. Phrasal cohesion and statistical ma-
chine translation. In Proc. of EMNLP, pages 304–
311, July.

Michel Galley and Christopher D. Manning. 2010.
Accurate non-hierarchical phrase-based translation.
In Proc. of NAACL, pages 966–974.

Katrin Kirchhoff, Jeff Bilmes, and Kevin Duh. 2007.
Factored language models tutorial.

Reinhard Kneser and Hermann Ney. 1995. Improved
backing-off for m-gram language modeling. In In
Proceedings of the IEEE International Conference
on Acoustics, Speech and Signal Processing, vol-
ume 1, pages 181–184.

Philipp Koehn, Franz J. Och, and Daniel Marcu. 2003.
Statistical phrase-based translation. In Proc. of HLT-
NAACL, pages 127–133.

Philipp Koehn, Hieu Hoang, Alexandra Birch Mayne,
Christopher Callison-Burch, Marcello Federico,
Nicola Bertoldi, Brooke Cowan, Wade Shen, Chris-
tine Moran, Richard Zens, Chris Dyer, Ondrej Bo-
jar, Alexandra Constantin, and Evan Herbst. 2007.
Moses: Open source toolkit for statistical machine
translation. In Proc. of ACL, Demonstration Ses-
sion.

Hai-Son Le, Alexandre Allauzen, and François Yvon.
2012. Continuous space translation models with
neural networks. In Proc. of NAACL, pages 39–48.

Frans J. Och and Hermann Ney. 2003. A systematic
comparison of various statistical alignment models.
Computational Linguistics, 29:19–51.

Frans J. Och. 2003. Minimum error rate training in sta-
tistical machine translation. In Proc. of ACL, pages
160–167.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic
evaluation of machine translation. In Proceedings
of ACL, pages 311–318.

Andreas Stolcke. 2002. Srilm-an extensible language
modeling toolkit. In Proc. of ICSLP.

159



Proceedings of the Eighteenth Conference on Computational Language Learning, pages 160–170,
Baltimore, Maryland USA, June 26-27 2014. c©2014 Association for Computational Linguistics

Hallucinating Phrase Translations for Low Resource MT

Ann Irvine
Center for Language and Speech Processing

Johns Hopkins University

Chris Callison-Burch
Computer and Information Science Dept.

University of Pennsylvania

Abstract

We demonstrate that “hallucinating”
phrasal translations can significantly im-
prove the quality of machine translation in
low resource conditions. Our hallucinated
phrase tables consist of entries composed
from multiple unigram translations drawn
from the baseline phrase table and from
translations that are induced from mono-
lingual corpora. The hallucinated phrase
table is very noisy. Its translations are low
precision but high recall. We counter this
by introducing 30 new feature functions
(including a variety of monolingually-
estimated features) and by aggressively
pruning the phrase table. Our analysis
evaluates the intrinsic quality of our
hallucinated phrase pairs as well as their
impact in end-to-end Spanish-English and
Hindi-English MT.

1 Introduction

In this work, we augment the translation model for
a low-resource phrase-based SMT system by auto-
matically expanding its phrase table. We “halluci-
nate” new phrase table entries by composing the
unigram translations from the baseline system’s
phrase table and translations learned from compa-
rable monolingual corpora. The composition pro-
cess yields a very large number of new phrase pair
translations, which are high recall but low preci-
sion. We filter the phrase table using a new set of
feature functions estimated from monolingual cor-
pora. We evaluate the hallucinated phrase pairs in-
trinsically as well as in end-to-end machine trans-
lation. The augmented phrase table provides more
coverage than the original phrase table, while be-

ing high quality enough to improve translation per-
formance.

We propose a four-part approach to hallucinat-
ing and using new phrase pair translations:

1. Learn potential translations for out-of-
vocabulary (OOV) words from comparable
monolingual corpora

2. “Hallucinate” a large, noisy set of phrase
translations by composing unigram transla-
tions from the baseline model and from the
monolingually-induced bilingual dictionary

3. Use comparable monolingual corpora to
score, rank, and prune the huge number of
hallucinated translations

4. Augment the baseline phrase table with hal-
lucinated translations and new feature func-
tions estimated from monolingual corpora

We define an algorithm for generating loosely
compositional phrase pairs, which we use to hal-
lucinate new translations. In oracle experiments,
we show that such loosely compositional phrase
pairs contribute substantially to the performance
of end-to-end SMT, beyond that of component un-
igram translations. In our non-oracle experiments,
we show that adding a judiciously pruned set of
automatically hallucinated phrase pairs to an end-
to-end baseline SMT model results in a signifi-
cant improvement in translation quality for both
Spanish-English and Hindi-English.

2 Motivation

Translation models learned over small amounts
of parallel data suffer from the problem of low
coverage. That is, they do not include trans-
lations for many words and phrases. Unknown
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words, or out-of-vocabulary (OOV) words, have
been the focus of previous work on integrating
bilingual lexicon induction and machine transla-
tion (Daumé and Jagarlamudi, 2011; Irvine and
Callison-Burch, 2013a; Razmara et al., 2013).
Bilingual lexicon induction is the task of learning
translations from monolingual texts, and typical
approaches compare projected distributional sig-
natures of words in the source language with dis-
tributional signatures representing target language
words (Rapp, 1995; Schafer and Yarowsky, 2002;
Koehn and Knight, 2002; Haghighi et al., 2008).
If the source and target language each contain, for
example, 100, 000 words, the number of pairwise
comparisons is about 10 billion, which is signifi-
cant but computationally feasible.

In contrast to unigrams, the difficulty in induc-
ing a comprehensive set of phrase translations is
that the number of both source and target phrases
is immense. For example, there are about 83 mil-
lion unique phrases up to length three in the En-
glish Wikipedia. Pairwise comparisons of two sets
of 100 million phrases corresponds to 1 x 1016.
Thus, even if we limit the task to short phrases, the
number of pairwise phrase comparisons necessary
to do an exhaustive search is infeasible. However,
multi-word translation units have been shown to
improve the quality of SMT dramatically (Koehn
et al., 2003). Phrase translations allow transla-
tion models to memorize local context-dependent
translations and reordering patterns.

3 Approach

Rather than compare all source language phrases
with all target language phrases, our approach effi-
ciently proposes a smaller set of hypothesis phrase
translations for each source language phrase. Our
method builds upon the notion that many phrase
translations can be composed from the translations
of its component words and subphrases. For ex-
ample Spanish la bruja verde translates into En-
glish as the green witch. Each Spanish word cor-
responds to exactly one English word. The phrase
pair could be memorized and translated as a unit,
or the English translation could be composed from
the translations of each Spanish unigram.

Zens et al. (2012) found that only 2% of phrase
pairs in German-English, Czech-English, Spanish-
English, and French-English phrase tables consist
of multi-word source and target phrases and are
non-compositional. That is, for these languages,

the vast majority of phrase pairs in a given phrase
table could be composed from smaller units. Our
approach takes advantage of the fact that many
phrases can be translated compositionally.

We describe our approach in three parts. In Sec-
tion 3.1, we begin by inducing translations for un-
known unigrams. Then, in 3.2, we introduce our
algorithm for composing phrase translations. In
order to achieve a high recall in our set of hypoth-
esis translations, we define compositionality more
loosely than is typical. Finally, in 3.3, we use com-
parable corpora to prune the large set of hypothesis
translations for each source phrase.

3.1 Unigram Translations
In any low resource setting, many word transla-
tions are likely to be unknown. Therefore, before
moving to phrases, we use a bilingual lexicon in-
duction technique to identify translations for un-
igrams. Specifically, because we assume a set-
ting where we have some small amount of paral-
lel data, we follow our prior work on supervised
bilingual lexicon induction (Irvine and Callison-
Burch, 2013b). We take examples of good transla-
tion pairs from our word aligned training data (de-
scribed in Section 4) and use random word pairs
as negative supervision. We use this supervision
to learn a log-linear classifier that predicts whether
a given word pair is a translation or not. We pair
and score all source language unigrams in our tun-
ing and test sets with target language unigrams that
appear in our comparable corpora. Then, for each
source language unigram, we use the log-linear
model scores to rerank candidate target language
unigram translations. As in our prior work, we
include the following word pair features in our
log-linear classifier: contextual similarity, tempo-
ral similarity, topic similarity, frequency similar-
ity, and orthographic similarity.

3.2 Loosely Compositional Translations
We propose a novel technique for loosely compos-
ing phrasal translations from an existing dictio-
nary of unigram translations and stop word lists.
Given a source language phrase, our approach
considers all combinations and all permutations
of all unigram translations for each source phrase
content word. We ignore stop words in the in-
put source phrase and allow any number of stop
words anywhere in the output target phrase. In
order to make the enumeration efficient, we pre-
compute an inverted index that maps sorted target
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casa house
linda pretty
linda cute
linda handsome

la casa linda
stop words removed

casa linda
Cartesian product 
of unigram translations

cute, house 
handsome, house 
house, pretty

Inverted Index lookups

pretty house 
the pretty house 
a pretty house 
cute house 
house and handsome

Bilingual Dictionary:

Input Phrase:

A

B

C

D

Figure 1: Example of loosely composed translations for the
Spanish input in A, la casa linda. In B, we remove the stop
word la. Then, in C, we enumerate the cartesian product of all
unigram translations in the bilingual dictionary and sort the
words within each alphabetically. Finally, we look up each
list of words in C in the inverted index, and corresponding
target phrases are enumerated in D. The inverted index con-
tains all phrasal combinations and permutations of the word
lists in C which also appear monolingually with some fre-
quency and with, optionally, any number of stop words.

language content words to sets of phrases contain-
ing those words in any order along with, option-
ally, any number of stop words. Our algorithm for
composing candidate phrase translations is given
in Algorithm 1, and an example translation is com-
posed in Figure 1. Although in our experiments
we compose translations for source phrases up to
length three, the algorithm is generally applicable
to any set of source phrases of interest.

Algorithm 1 yields a set of target language
translations for any source language phrase for
which all content unigrams have at least one
known translation. For most phrases, the result-
ing set of hypothesis translations is very large and
the majority are incorrect. In an initial pruning
step, we add a monolingual frequency cutoff to the
composition algorithm and only add target phrases
that have a frequency of at least θFreqT

to the in-
verted index. Doing so eliminates improbable tar-
get language constructions early on, for example
house handsome her or cute a house.

Input: A set of source language phrases of interest, S,
each consisting of a sequence of words
sm
1 , s

m
2 , ...s

m
i ; A list of all target language

phrases, targetPhrases; Source and target stop
word lists, Stopsrc and Stoptrg; Set of unigram
translations, tsm

i
, for all source language words

sm
i R Stopsrc; monolingual target language

phrase frequencies, FreqT ; Monolingual
frequency threshold θFreqT

Output: @ Sm
P S, a set of candidate phrase

translations, Tm
1 , Tm

2 , ...Tm
k

Construct TargetInvertedIndex:
for T P targetPhrases do

if FreqT pT q ě θFreqT then
T 1
Ðwords tj P T if tj R Stoptrg

T 1
sorted Ð sortedpT 1

q

append T to TargetInvertedIndex[T 1
sorted]

end
end

for Sm
P S do

S1
Ðwords sm

i P Sm if sm
i R Stopsrc

CombsS1 Ð ts11

Ś

ts12

Ś

...
Ś

ts1
k

T Ð r s

for cs1 P CombsS1 do
cs1

sorted
Ð sortedpcs1q

T Ð T`TargetInvertedIndexpcs1
sorted

q

end
Tm

“ T
end

Algorithm 1: Computing a set of candidate composi-
tional phrase translations for each source phrase in the set
S. An inverted index of target phrases is constructed that
maps sorted lists of content words to phrases that contain
those content words, as well as optionally any stop words,
and have a frequency of at least θFreqT . Then, for a given
source phrase Sm, stop words are removed from the phrase.
Next, the cartesian product of all unigram translations is
computed. Each element in the product is sorted and any
corresponding phrases in the inverted index are added to the
output.

3.3 Pruning Phrase Pairs Using Scores
Derived from Comparable Corpora

We further prune the large, noisy set of hypothe-
sized phrase translations before augmenting a seed
translation model. To do so, we use a supervised
setup very similar to that used for inducing uni-
gram translations; we estimate a variety of sig-
nals that indicate translation equivalence, includ-
ing temporal, topical, contextual, and string simi-
larity. As we showed in Klementiev et al. (2012),
such signals are effective for identifying phrase
translations as well as unigram translations. We
add ngram length, alignment, and unigram trans-
lation features to the set, listed in Appendix A.

We learn a log-linear model for combining the
features into a single score for predicting the qual-
ity of a given phrase pair. We extract training data
from the seed translation model. We rank hypoth-
esis translations for each source phrase using clas-
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sification scores and keep the top-k. We found that
using a score threshold sometimes improves pre-
cision. However, as experiments below show, the
recall of the set of phrase pairs is more important,
and we did not observe improvements in transla-
tion quality when we used a score threshold.

4 Experimental Setup

In all of our experiments, we assume that we have
access to only a small parallel corpus. For our
Spanish experiments, we randomly sample 2, 000
sentence pairs (about 57, 000 Spanish words) from
the Spanish-English Europarl v5 parallel corpus
(Koehn, 2005). For Hindi, we use the parallel cor-
pora released by Post et al. (2012). Again, we
randomly sample 2, 000 sentence pairs from the
training corpus (about 39, 000 Hindi words). We
expect that this amount of parallel text could be
compiled for a single text domain and any pair of
modern languages. Additionally, we use approxi-
mately 2, 500 and 1, 000 single-reference parallel
sentences each for tuning and testing our Span-
ish and Hindi models, respectively. Spanish tun-
ing and test sets are newswire articles taken from
the 2010 WMT shared task (Callison-Burch et al.,
2010).1 We use the Hindi development and testing
splits released by Post et al. (2012).

4.1 Unigram Translations

Of the 16, 269 unique unigrams in the source side
of our Spanish MT tuning and test sets, 73% are
OOV with respect to our training corpus. 21% of
unigram tokens are OOV. For Hindi, 61% of the
8, 137 unique unigrams in the tuning and test sets
are OOV with respect to our training corpus, and
18% of unigram tokens are OOV. However, be-
cause automatic word alignments estimated over
the small parallel training corpora are noisy, we
use bilingual lexicon induction to induce transla-
tions for all unigrams. We use the Wikipedia and
online news web crawls datasets that we released
in Irvine and Callison-Burch (2013b) to estimate
similarity scores. Together, the two datasets con-
tain about 900 million words of Spanish data and
about 50 million words of Hindi data. For both
languages, we limit the set of hypothesis target un-
igram translations to those that appear at least 10
times in our comparable corpora.

We use 3, 000 high probability word translation

1news-test2008 plus news-syscomb2009 for tuning and
newstest2009 for testing.

pairs extracted from each parallel corpus as posi-
tive supervision and 9, 000 random word pairs as
negative supervision. We use Vowpal Wabbit2 for
learning. The top-5 induced translations for each
source language word are used as both a baseline
set of new translations (Section 6.3) and for com-
posing phrase translations.

4.2 Composing and Pruning Phrase
Translations

There are about 183 and 66 thousand unique bi-
grams and trigrams in the Spanish and Hindi tun-
ing and test sets, respectively. However, many
of these phrases do not demand new hypothesis
translations. We do not translate those which con-
tain numbers or punctuation. Additionally, for
Spanish, we exclude names, which are typically
translated identically between Spanish and En-
glish.3 We exclude phrases which are sequences of
stop words only. Additionally, we exclude phrases
that appear more than 100 times in the small train-
ing corpus because our seed phrase table likely al-
ready contains high quality translations for them.
Finally, we exclude phrases that appear fewer than
20 times in our comparable corpora as our fea-
tures are unreliable when estimated over so few
tokens. We hypothesize translations for the ap-
proximately 15 and 6 thousand Spanish and Hindi
phrases, respectively, which meet these criteria.
Our approach for inducing translations straightfor-
wardly generalizes to any set of source phrases.

In defining loosely compositional phrase trans-
lations, we use both the induced unigram dictio-
nary (Section 3.1) and the dictionary extracted
from the word aligned parallel corpus. We ex-
pand these dictionaries further by mapping uni-
grams to their five-character word prefixes. We
use monolingual corpora of Wikipedia articles4 to
construct stop word lists, containing the most fre-
quent 300 words in each language, and indexes of
monolingual phrase frequencies. There are about
83 million unique phrases up to length three in
the English Wikipedia. However, we ignore tar-
get phrases that appear fewer than three times, re-
ducing this set to 10 million English phrases. On

2http://hunch.net/˜vw/, version 6.1.4. with
standard learning parameters

3Our names list comes from page titles of Spanish
Wikipedia pages about people. We iterate through years, be-
ginning with 1AD, and extract names from Wikipedia ‘born
in’ category pages, e.g. ‘2013 births,’ or ‘Nacidos en 2013.’

4All inter-lingually linked source language and English
articles.
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average, our Spanish model yields 7, 986 English
translations for each Spanish bigram, and 9, 231
for each trigram, or less than 0.1% of all possi-
ble candidate English phrases. Our Hindi model
yields even fewer candidate English phrases, 826
for each bigram and 1, 113 for each trigram, on
average.

We use the same comparable corpora used for
bilingual lexicon induction to estimate features
over hypothesis phrase translations. The full fea-
ture set is listed in Appendix A. We extract su-
pervision from the seed translation models by first
identifying phrase pairs with multi-word source
strings, that appear at least three times in the train-
ing corpus, and that are composeable using base-
line model unigram translations and induced dic-
tionaries. Then, for each language pair, we use
the 3, 000 that have the highest ppf |eq scores as
positive supervision. We randomly sample 9, 000
compositional phrase pairs from those not in each
phrase table as negative supervision. Again, we
use Vowpal Wabbit for learning a log linear model
to score any phrase pair.

4.3 Machine Translation

We use GIZA++ to word align each training cor-
pus. We use the Moses SMT framework (Koehn et
al., 2007) and the standard phrase-based MT fea-
ture set, including phrase and lexical translation
probabilities and a lexicalized reordering model.
When we augment our models with new transla-
tions, we use the average reordering scores over
all bilingually estimated phrase pairs. We tune
all models using batch MIRA (Cherry and Fos-
ter, 2012). We average results over three tuning
runs and use approximate randomization to mea-
sure statistical significance (Clark et al., 2011).

For Spanish, we use a 5-gram language model
trained on the English side of the complete Eu-
roparl corpus and for Hindi a 5-gram language
model trained on the English side of the com-
plete training corpus released by Post et al. (2012).
We train our language models using SRILM with
Kneser-Ney smoothing. Our baseline models use
a phrase limit of three, and we augment them with
translations of phrases up to length three in our ex-
periments.

5 Oracle Experiment

Before moving to the results of our proposed
approach for composing phrase translations, we

present an oracle experiment to answer these re-
search questions: Would a low resource transla-
tion model benefit from composing its unigram
translations into phrases? Would this be fur-
ther improved by adding unigram translations that
are learned from monolingual texts? We an-
swer these questions by starting with our low-
resource Spanish-English and Hindi-English base-
lines and augmenting each with (1) phrasal trans-
lations composed from baseline model unigram
translations, and (2) phrasal translations composed
of a mix of baseline model unigram translations
and the monolingually-induced unigrams.

Figure 2 illustrates how our hallucinated phrase-
table entries can result in improved translation
quality for Spanish to English translation. Since
the baseline model is trained from such a small
amount of data, it typically translates individual
words instead of phrases. In our augmented sys-
tem, we compose a translation of was no one from
habia nadie, since habia translates as was in the
baseline model, nadie translates as one, and no is
a stop word. We are able to monolingually-induce
translations for the OOVs centros and electorales
before composing the phrase translation polling
stations for centros electorales.

In our oracle experiments, composed transla-
tions are only added to the phrase table if they
are contained in the reference. This eliminates the
huge number of noisy translations that our com-
positional algorithm generates. We augment base-
line models with translations for the same sets of
source language phrases described in Section 4.
We use GIZA++ to word align our tuning and
test sets5 and use a standard phrase pair extraction
heuristic6 to identify oracle phrase translations.
We add oracle translations to each baseline model
without bilingually estimated translation scores7

because such scores are not available for our auto-
matically induced translations. Instead, we score
the oracle phrase pairs using the 30 new phrase ta-
ble features described in Section 3.3.

Table 1 shows the results of our oracle experi-
ments. Augmenting the baselines with the subset
of oracle translations which are composed given
the unigram translations in the baseline models
themselves (i.e. in the small training sets) yields

5For both languages, we learn an alignment over our tun-
ing and test sets and complete parallel training sets.

6grow-diag-final
7We use an indicator feature for distinguishing new com-

posed translations from bilingually extracted phrase pairs.
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not having dependent on the centros electorales .

no was no one in the polling stations .

no había nadie en los centros electorales .

original composeable 
from original

original composeable 
from induced

original

Baseline:

Input:

Hallucination 
Oracle:

Figure 2: Example output from motivating experiment: a comparison of the baseline and full oracle translations of Spanish
no habı́a nadie en los centros electorales, which translates correctly as there was nobody at the voting offices. The full oracle
is augmented with translations composed from the seed model as well as induced unigram translations. The phrase was no one
is composeable from habı́a nadie given the seed model. In contrast, the phrase polling stations is composeable from centros
electorales using induced translations. For each translation, the phrase segmentations used by the decoder are highlighted.

Experiment
BLEU

Baseline Monolingually
Features Estimated Feats.

Spanish
Low Resource Baseline 13.47 13.35
+ Composeable Oracle 14.90 15.18from Initial Model
+ Composeable Oracle 15.47 15.94w/ Induced Unigram Trans.
Hindi
Low Resource Baseline 8.49 8.26
+ Composeable Oracle 9.12 9.54from Initial Model
+ Composeable Oracle 10.09 10.19w/ Induced Unigram Trans.

Table 1: Motivating Experiment: BLEU results using the
baseline SMT model and composeable oracle translations
with and without induced unigram translations.

a BLEU score improvement of about 1.4 points
for Spanish and about 0.6 for Hindi. This find-
ing itself is noteworthy, and we investigated the
reason for it. A representative example of a com-
positional oracle translation that was added to the
Spanish model is para evitarlos, which translates
as to prevent them. In the training corpus, para
translates far more frequently as for than to. Thus,
it is useful for the translation model to know that,
in the context of evitarlos, para should translate
as to and not for. Additionally, evitarlos was ob-
served only translating as the unigram prevent.
The small model fails to align the adjoined clitic
los with its translation them. However, our loose
definition of compositionality allows the English
stop word them to appear anywhere in the target
translation.

In the first result, composeable translations do
not include those that contain new, induced word
translations. Using the baseline model and in-
duced unigram translations to compose phrase
translations results in a 2 and 1.6 BLEU point gain
for Spanish and Hindi, respectively.

The second column of Table 1 shows the results

of augmenting the baseline models with the same
oracle phrase pairs as well as the new features esti-
mated over all phrase pairs. Although the features
do not improve the performance of the baseline
models, this diverse set of scores improves perfor-
mance dramatically when new, oracle phrase pairs
are added. Adding all oracle translations and the
new feature set results in a total gain of about 2.6
BLEU points for Spanish and about 1.9 for Hindi.
These gains are the maximum that we could hope
to achieve by augmenting models with our hallu-
cinated translations and new feature set.

6 Experimental Results

6.1 Unigram Translations

Table 2 shows examples of top ranked transla-
tions for several Spanish words. Although per-
formance is generally quite good, we do observe
some instances of false cognates, for example the
top ranked translation for aburridos, which trans-
lates correctly as bored, is burritos. Using au-
tomatic word alignments as a reference, we find
that 44% of Spanish tuning set unigrams have a
correct translation in their top-10 ranked lists and
62% in the top-100. For Hindi, 31% of tuning set
unigrams have a correct translation in their top-10
ranked lists and 43% in the top-100.

6.2 Hallucinated Phrase Pairs

Before moving to end-to-end SMT experiments,
we evaluate the goodness of the hallucinated and
pruned phrase pairs themselves. In order to do so,
we use the same set of oracle phrase translations
described in Section 5.

Table 3 shows the top three English transla-
tions for several Spanish phrases along with their
model scores. Common, loose translations of
some phrases are scored higher than less common
but literal translations. For example, very obvi-
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Spanish abdominal abejorro abril aburridos accionista aceite actriz

Top 5
English
Translations

abdominal bumblebees april burritos actionists adulterated actress
abdomen bombus march boredom actionist iooc actor

bowel xylocopa june agatean telmex olive award
appendicitis ilyitch july burrito shareholder milliliters american

acute bumble december poof antagonists canola singer

Table 2: Top five induced translations for several source words. Correct translations are bolded. aceite translates as oil.

Spanish English Score

ambos partidos
two parties 5.72
both parties 5.31
and parties 3.16

habı́a apoyado
were supported 4.80
were members 4.52
had supported 4.39

ministro neerlandès
finnish minister 4.76
finnish ministry 2.77
dutch minister 1.31

unas cuantas semanas
over a week 4.30
a few weeks 3.72
few weeks 3.22

muy evidentes
very obvious 1.88
very evident 1.87

obviously very 1.84

Table 3: Top three compositional translations for several
source phrases and their model scores. Correct translations
are bolded.

ous scores higher than very evident as a translation
of Spanish muy evidentes. Similarly, dutch minis-
ter is scored higher than netherlands minister as a
translation for ministro neerlandès.

We use model scores to rerank candidate trans-
lations for each source phrase and keep the top-
k translations. Figure 3 shows the precision and
type-based recall (the percent of source phrases
for which at least one correct translation is gen-
erated) as we vary k for each language pair. At
k “ 1, precision and recall are about 27% for
Spanish and about 25% for Hindi.8 At k “ 200,
recall increases to 57% for Spanish and precision
drops to 2%. For Hindi, recall increases to 40%
and precision drops to 1%.

Moving from k “ 1 to k “ 200, precision
drops at about the same rate for the two source lan-
guages. However, recall increases less for Hindi
than for Spanish. We attribute this to two things.
First, Hindi and English are less related than Span-
ish and English, and fewer phrases are translated
compositionally. Our oracle experiments showed
that there is less to gain in composing phrase trans-
lations for Hindi than for Spanish. Second, the
accuracy of our induced unigram translations is
lower for Hindi than it is for Spanish. Without ac-
curate unigram translations, we are unable to com-
pose high quality phrase translations.

8Since we are computing type-based recall, and at k=1,
we produce exactly one translation for each source phrase,
precision and recall are the same.
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Figure 3: Precision Recall curve with BLEU scores for the
top-k scored hallucinated translations. k varies from 1 to 200.
Baseline model performance is shown with a red triangle.

Because we hallucinate translations for source
phrases that appear in the training data up to 100
times, our baseline models include some of the
oracle phrase translations. Not surprisingly, the
bilingually extracted phrase pairs have relatively
high precision (81% and 40% for Spanish and
Hindi, respectively) and low recall (6% and 15%
for Spanish and Hindi, respectively).

6.3 End-to-End Translation

Table 4 shows end-to-end translation BLEU score
results (Papineni et al., 2002). Our first baseline
SMT models are trained using only 2, 000 paral-
lel sentences and no new translation model fea-
tures. Our Spanish baseline achieves a BLEU
score of 13.47 and our Hindi baseline a BLEU
score of 8.49. When we add the 30 new feature
functions estimated over comparable monolingual
corpora, performance is slightly lower, 13.35 for
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Experiment BLEU
Spanish Hindi

Baseline 13.47 8.49
+ Mono. Scores 13.35 8.26
+ Mono. Scores & OOV Trans 14.01 8.31
+ Phrase Trans, k=1 13.90 8.16
+ Phrase Trans, k=2 14.07 8.86*
+ Phrase Trans, k=5 14.30* 8.89*
+ Phrase Trans, k=25 14.50* 9.00*
+ Phrase Trans, k=200 14.57* 9.04*

Table 4: Experimental results. First, the baseline models
are augmented with monolingual phrase table features and
then also with the top-5 induced translations for all OOV un-
igrams. Then, we append the top-k hallucinated phrase trans-
lations to the third baseline models. BLEU scores are aver-
aged over three tuning runs. We measure the statistical sig-
nificance of each +Phrase Trans model in comparison with
the highest performing (bolded) baseline for each language;
* indicates statistical significance with p ă 0.01.

Spanish and 8.26 for Hindi. Our third baselines
augment the second with unigram translations for
all OOV tuning and test set source words using the
bilingual lexicon induction techniques described
in Section 3.1. We append the top-5 translations
for each,9 score both the original and the new
phrase pairs with the new feature set, and retune.
With these additional unigram translations, perfor-
mance increases to 14.01 for Spanish and 8.31 for
Hindi.

We append the top-k composed translations for
the source phrases described in Section 4 to the
third baseline models. Both original and new
phrase pairs are scored using the new feature set.
BLEU score results are shown at different values
of k along the precision-recall plots for each lan-
guage pair in Figure 3 as well as in Table 4. We
would expect that higher precision and higher re-
call would benefit end-to-end SMT. As usual, a
tradeoff exists between precision and recall, how-
ever, in this case, improvements in recall outweigh
the risk of a lower precision. As k increases, pre-
cision decreases but both recall and BLEU scores
increase. For both Spanish and Hindi, BLEU score
gains start to taper off at k values over 25.

In additional experiments, we found that with-
out the new features the same sets of hallucinated
phrase pairs hurt performance slightly in compar-
ison with the baseline augmented with unigram
translations, and results don’t change as we vary
k.10 Thus, the translation models are able to ef-
fectively use the higher recall sets of new phrase

9The same set used for composing phrase translations.
10For all values of k between 1 and 100, without the new

features, BLEU scores are about 13.70 for Spanish

pairs because we also augmented the models with
30 new feature functions, which help them distin-
guish good from bad translations.

7 Discussion

Our results showed that including a high recall
set of “hallucinated” translations in our augmented
phrase table successfully improved the quality of
our machine translations. The algorithm that we
proposed for hypothesizing translations is flexible,
and in future work we plan to modify it slightly
to output even more candidate translations. For
example, we could retrieve target phrases which
contain at least one source word translation instead
of all. Alternatively, we could identify candidates
using entirely different information, for example
the monolingual frequency of a source and target
word, instead of unigram translations. This type
of inverted index may improve recall in the set of
hypothesis phrase translations at the cost of gener-
ating a much bigger set for reranking.

Our new phrase table features were informa-
tive in distinguishing correct from incorrect phrase
translations, and they allowed us to make use of
noisy but high recall supplemental phrase pairs.
This is a critical result for research on identify-
ing phrase translations from non-parallel text. We
also believe that using fairly strong target (En-
glish) language models contributed to our models’
ability to discriminate between good and bad hal-
lucinated phrase pairs. We leave research on the
influence of the language model in our setting to
future work.

In this work, we experimented with two lan-
guage pairs, Spanish-English and Hindi-English.
While Spanish and English are very closely re-
lated, Hindi and English are less related. Our
oracle experiments showed potential for compos-
ing phrase translations for both language pairs,
and, indeed, in our experiments using hallucinated
phrase translations we saw significant translation
quality gains for both. We expect that improving
the quality of induced unigram translations will
yield even more performance gains.

The vast majority of prior work on low resource
MT has focused on Spanish-English (Haghighi
et al., 2008; Klementiev et al., 2012; Ravi and
Knight, 2011; Dou and Knight, 2012; Ravi, 2013;
Dou and Knight, 2013). Although such experi-
ments serve as important proofs of concept, we
found it important to also experiment with a more
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truly low resource language pair. The success of
our approach that we have seen for Spanish and
Hindi suggests that it is worth pursuing such di-
rections for other even less related and resourced
language pairs. In addition to language pair, text
genre and the degree of looseness or literalness of
given parallel corpora may also affect the amount
of phrase translation compositionality.

8 Related Work

Phrase-based SMT models estimated over very
large parallel corpora are expensive to store and
process. Prior work has reduced the size of SMT
phrase tables in order to improve efficiency with-
out the loss of translation quality (He et al., 2009;
Johnson et al., 2007; Zens et al., 2012). Typi-
cally, the goal of pruning is to identify and re-
move phrase pairs which are likely to be inaccu-
rate, using either the scores and counts of a given
pair itself or those relative to other phrase pairs.
Our work, in contrast, focuses on low resource set-
tings, where training data is limited and provides
incomplete and unreliable scored phrase pairs. We
begin by dramatically increasing the size of our
SMT phrase table in order to expand its coverage
and then use non-parallel data to rescore and filter
the table.

In the decipherment task, translation models
are learned from comparable corpora without any
parallel text (Ravi and Knight, 2011; Dou and
Knight, 2012; Ravi, 2013). In contrast, we be-
gin with a small amount of parallel data and take
a very different approach to learning translation
models. In our prior work (Irvine and Callison-
Burch, 2013b), we showed how effective even
small amounts of bilingual data can be for learning
translations from monolingual texts.

Garera and Yarowsky (2008) pivot through
bilingual dictionaries in several language pairs to
compose translations for compound words. Zhang
and Zong (2013) construct a set of new, additional
phrase pairs for the task of domain adaptation for
machine translation. That work uses two dictio-
naries to bootstrap a set of phrase pair transla-
tions: one probabilistic dictionary extracted from
2 million words of bitext and one manually created
new-domain dictionary of 140, 000 word transla-
tions. Our approach to the construction of new
phrase pairs is somewhat similar to Zhang and
Zong (2013), but we don’t rely on a very large
manually generated dictionary. Additionally, we

focus on the low resource language pair setting,
where a large training corpus is not available.

Deng et al. (2008) work in a standard SMT set-
ting but use a discriminative framework for ex-
tracting phrase pairs from parallel corpora. That
approach yields a phrase table with higher preci-
sion and recall than the table extracted by stan-
dard world alignment based heuristics (Och and
Ney, 2003; Koehn et al., 2003). The discrimi-
native model combines features from word align-
ments and bilingual training data as well as infor-
mation theoretic features estimated over monolin-
gual data into a single log-linear model and then
the phrase pairs are filtered using a threshold on
model scores. The phrase pairs that it extracts are
limited to those that appear in pairs of sentences in
the parallel training data. Our work takes a similar
approach to that of Deng et al. (2008), however,
unlike that work, we hallucinate phrase pairs that
did not appear in training data in order to augment
the original, bilingually extracted phrase table.

Other prior work has used comparable cor-
pora to extract parallel sentences and phrases
(Munteanu and Marcu, 2006; Smith et al., 2010).
Such efforts are orthogonal to our approach. We
use parallel corpora, when available, and hallu-
cinates phrase translations without assuming any
parallel text in our comparable corpora.

9 Conclusions

We showed that “hallucinating” phrasal transla-
tions can significantly improve machine transla-
tion performance in low resource conditions. Our
hallucinated translations are composed from uni-
gram translations. The translations are low preci-
sion but high recall. We countered this by intro-
ducing new feature functions and pruning aggres-
sively.
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Appendix A: Phrase pair filtering features

The first ten features are similar to those described
by Irvine and Callison-Burch (2013b). Stop words
are defined as the most frequent 300 words in each
language’s Wikipedia, and content words are all
non-stop words.

• Web crawl phrasal context similarity score
• Web crawl lexical context similarity score, averaged over

aligned unigrams
• Web crawl phrasal temporal similarity score
• Web crawl lexical temporal similarity score, averaged

over aligned unigrams
• Wikipedia phrasal context similarity score
• Wikipedia lexical context similarity score, averaged over

aligned unigrams
• Wikipedia phrasal topic similarity score
• Wikipedia lexical topic similarity score, averaged over

aligned unigrams
• Normalized edit distance, averaged over aligned unigrams
• Absolute value of difference between the logs of the

source and target phrase Wikipedia monolingual frequen-
cies

• Log target phrase Wikipedia monolingual frequency
• Log source phrase Wikipedia monolingual frequency
• Indicator: source phrase is longer
• Indicator: target phrase is longer
• Indicator: source and target phrases same length
• Number of source content words higher than target
• Number of target content words higher than source
• Number of source and target content words same
• Number of source stop words higher than target
• Number of target stop words higher than source
• Number of source and target stop words same
• Percent of source words aligned to at least one target word
• Percent of target words aligned to at least one source word
• Percent of source content words aligned to at least one

target word
• Percent of target content words aligned to at least one

source word
• Percent of aligned word pairs aligned in bilingual training

data
• Percent of aligned word pairs in induced dictionary
• Percent of aligned word pairs in stemmed induced dictio-

nary
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Abstract

Recent work has shown that neural-
embedded word representations capture
many relational similarities, which can be
recovered by means of vector arithmetic
in the embedded space. We show that
Mikolov et al.’s method of first adding
and subtracting word vectors, and then
searching for a word similar to the re-
sult, is equivalent to searching for a word
that maximizes a linear combination of
three pairwise word similarities. Based on
this observation, we suggest an improved
method of recovering relational similar-
ities, improving the state-of-the-art re-
sults on two recent word-analogy datasets.
Moreover, we demonstrate that analogy
recovery is not restricted to neural word
embeddings, and that a similar amount
of relational similarities can be recovered
from traditional distributional word repre-
sentations.

1 Introduction

Deep learning methods for language processing
owe much of their success to neural network lan-
guage models, in which words are represented as
dense real-valued vectors in Rd. Such representa-
tions are referred to as distributed word represen-
tations or word embeddings, as they embed an en-
tire vocabulary into a relatively low-dimensional
linear space, whose dimensions are latent contin-
uous features. The embedded word vectors are
trained over large collections of text using vari-
ants of neural networks (Bengio et al., 2003; Col-
lobert and Weston, 2008; Mnih and Hinton, 2008;
Mikolov et al., 2011; Mikolov et al., 2013b). The

∗ Supported by the European Community’s Seventh
Framework Programme (FP7/2007-2013) under grant agree-
ment no. 287923 (EXCITEMENT).

word embeddings are designed to capture what
Turney (2006) calls attributional similarities be-
tween vocabulary items: words that appear in sim-
ilar contexts will be close to each other in the
projected space. The effect is grouping of words
that share semantic (“dog cat cow”, “eat devour”)
or syntactic (“cars hats days”, “emptied carried
danced”) properties, and are shown to be effective
as features for various NLP tasks (Turian et al.,
2010; Collobert et al., 2011; Socher et al., 2011;
Al-Rfou et al., 2013). We refer to such word rep-
resentations as neural embeddings or just embed-
dings.

Recently, Mikolov et al. (2013c) demonstrated
that the embeddings created by a recursive neu-
ral network (RNN) encode not only attributional
similarities between words, but also similarities
between pairs of words. Such similarities are
referred to as linguistic regularities by Mikolov
et al. and as relational similarities by Turney
(2006). They capture, for example, the gen-
der relation exhibited by the pairs “man:woman”,
“king:queen”, the language-spoken-in relation in
“france:french”, “mexico:spanish” and the past-
tense relation in “capture:captured”, “go:went”.
Remarkably, Mikolov et al. showed that such rela-
tions are reflected in vector offsets between word
pairs (apples − apple ≈ cars − car), and
that by using simple vector arithmetic one could
apply the relation and solve analogy questions of
the form “a is to a∗ as b is to —” in which the
nature of the relation is hidden. Perhaps the most
famous example is that the embedded representa-
tion of the word queen can be roughly recovered
from the representations of king, man and woman:

queen ≈ king −man + woman

The recovery of relational similarities using vector
arithmetic on RNN-embedded vectors was evalu-
ated on many relations, achieving state-of-the-art
results in relational similarity identification tasks
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(Mikolov et al., 2013c; Zhila et al., 2013). It was
later demonstrated that relational similarities can
be recovered in a similar fashion also from embed-
dings trained with different architectures (Mikolov
et al., 2013a; Mikolov et al., 2013b).

This fascinating result raises a question: to what
extent are the relational semantic properties a re-
sult of the embedding process? Experiments in
(Mikolov et al., 2013c) show that the RNN-based
embeddings are superior to other dense represen-
tations, but how crucial is it for a representation to
be dense and low-dimensional at all?

An alternative approach to representing words
as vectors is the distributional similarity repre-
sentation, or bag of contexts. In this representa-
tion, each word is associated with a very high-
dimensional but sparse vector capturing the con-
texts in which the word occurs. We call such vec-
tor representations explicit, as each dimension di-
rectly corresponds to a particular context. These
explicit vector-space representations have been
extensively studied in the NLP literature (see (Tur-
ney and Pantel, 2010; Baroni and Lenci, 2010) and
the references therein), and are known to exhibit
a large extent of attributional similarity (Pereira
et al., 1993; Lin, 1998; Lin and Pantel, 2001;
Sahlgren, 2006; Kotlerman et al., 2010).

In this study, we show that similarly to the
neural embedding space, the explicit vector space
also encodes a vast amount of relational similar-
ity which can be recovered in a similar fashion,
suggesting the explicit vector space representation
as a competitive baseline for further work on neu-
ral embeddings. Moreover, this result implies that
the neural embedding process is not discovering
novel patterns, but rather is doing a remarkable
job at preserving the patterns inherent in the word-
context co-occurrence matrix.

A key insight of this work is that the vector
arithmetic method can be decomposed into a linear
combination of three pairwise similarities (Section
3). While mathematically equivalent, we find that
thinking about the method in terms of the decom-
posed formulation is much less puzzling, and pro-
vides a better intuition on why we would expect
the method to perform well on the analogy re-
covery task. Furthermore, the decomposed form
leads us to suggest a modified optimization objec-
tive (Section 6), which outperforms the state-of-
the-art at recovering relational similarities under
both representations.

2 Explicit Vector Space Representation

We adopt the traditional word representation used
in the distributional similarity literature (Turney
and Pantel, 2010). Each word is associated with
a sparse vector capturing the contexts in which it
occurs. We call this representation explicit, as each
dimension corresponds to a particular context.

For a vocabulary V and a set of contexts C,
the result is a |V |×|C| sparse matrix S in which
Sij corresponds to the strength of the association
between word i and context j. The association
strength between a word w ∈ V and a context
c ∈ C can take many forms. We chose to use
the popular positive pointwise mutual information
(PPMI) metric:

Sij = PPMI(wi, cj)

PPMI(w, c) =

{
0 PMI(w, c) < 0

PMI(w, c) otherwise

PMI(w, c) = log P (w,c)
P (w)P (c)

= log freq(w,c)|corpus|
freq(w)freq(c)

where |corpus| is the number of items in the cor-
pus, freq(w, c) is the number of times word w
appeared in context c in the corpus, and freq(w),
freq(c) are the corpus frequencies of the word
and the context respectively.

The use of PMI in distributional similarity mod-
els was introduced by Church and Hanks (1990)
and widely adopted (Dagan et al., 1994; Turney,
2001). The PPMI variant dates back to at least
(Niwa and Nitta, 1994), and was demonstrated to
perform very well in Bullinaria and Levy (2007).

In this work, we take the linear contexts in
which words appear. We consider each word sur-
rounding the target word w in a window of 2 to
each side as a context, distinguishing between dif-
ferent sequential positions. For example, in the
sentence a b c d e the contexts of the word c
are a−2, b−1, d+1 and e+2. Each vector’s dimen-
stion is thus |C| ≈ 4 |V |. Empirically, the num-
ber of non-zero dimensions for vocabulary items
in our corpus ranges between 3 (for some rare to-
kens) and 474,234 (for the word “and”), with a
mean of 1595 and a median of 415.

Another popular choice of context is the syntac-
tic relations the word participates in (Lin, 1998;
Padó and Lapata, 2007; Levy and Goldberg,
2014). In this paper, we chose the sequential
context as it is compatible with the information
available to the state-of-the-art neural embedding
method we are comparing against.
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3 Analogies and Vector Arithmetic

Mikolov et al. demonstrated that vector space rep-
resentations encode various relational similarities,
which can be recovered using vector arithmetic
and used to solve word-analogy tasks.

3.1 Analogy Questions
In a word-analogy task we are given two pairs of
words that share a relation (e.g. “man:woman”,
“king:queen”). The identity of the fourth word
(“queen”) is hidden, and we need to infer it based
on the other three (e.g. answering the question:
“man is to woman as king is to — ?”). In the rest
of this paper, we will refer to the four words as
a:a∗, b:b∗. Note that the type of the relation is
not explicitly provided in the question, and solv-
ing the question correctly (by a human) involves
first inferring the relation, and then applying it to
the third word (b).

3.2 Vector Arithmetic
Mikolov et al. showed that relations between
words are reflected to a large extent in the
offsets between their vector embeddings
(queen − king ≈ woman − man),
and thus the vector of the hidden word b∗ will be
similar to the vector b − a + a∗, suggesting that
the analogy question can be solved by optimizing:

arg max
b∗∈V

(sim (b∗, b− a + a∗))

where V is the vocabulary excluding the question
words b, a and a∗, and sim is a similarity mea-
sure. Specifically, they used the cosine similarity
measure, defined as:

cos (u, v) =
u · v
‖u‖‖v‖

resulting in:

arg max
b∗∈V

(cos (b∗, b− a + a∗)) (1)

Since cosine is inverse to the angle, high cosine
similarity (close to 1) means that the vectors share
a very similar direction. Note that this metric nor-
malizes (and thus ignores) the vectors’ lengths,
unlike the Euclidean distance between them. For
reasons that will be clear later, we refer to (1) as
the 3COSADD method.

An alternative to 3COSADD is to require that
the direction of transformation be conserved:

arg max
b∗∈V

(cos (b∗ − b, a∗ − a)) (2)

This basically means that b∗ − b shares the same
direction with a∗ − a, ignoring the distances. We
refer to this method as PAIRDIRECTION. Though
it was not mentioned in the paper, Mikolov
et al. (2013c) used PAIRDIRECTION for solving
the semantic analogies of the SemEval task, and
3COSADD for solving the syntactic analogies.1

3.3 Reinterpreting Vector Arithmetic

In Mikolov et al.’s experiments, all word-vectors
were normalized to unit length. Under such nor-
malization, the arg max in (1) is mathematically
equivalent to (derived using basic algebra):

arg max
b∗∈V

(cos (b∗, b)− cos (b∗, a) + cos (b∗, a∗))

(3)
This means that solving analogy questions with
vector arithmetic is mathematically equivalent to
seeking a word (b∗) which is similar to b and a∗

but is different from a. Relational similarity is
thus expressed as a sum of attributional similari-
ties. While (1) and (3) are equal, we find the intu-
ition as to why (3) ought to find analogies clearer.

4 Empirical Setup

We derive explicit and neural-embedded vec-
tor representations, and compare their capacities
to recover relational similarities using objectives
3COSADD (eq. 3) and PAIRDIRECTION (eq. 2).

Underlying Corpus and Preprocessing Previ-
ous reported results on the word analogy tasks us-
ing vector arithmetics were obtained using propri-
etary corpora. To make our experiments repro-
ducible, we selected an open and widely accessi-
ble corpus – the English Wikipedia. We extracted
all sentences from article bodies (excluding ti-
tles, infoboxes, captions, etc) and filtered non-
alphanumeric tokens, allowing mid-token symbols
as apostrophes, hyphens, commas, and periods.
All the text was lowercased. Duplicates and sen-
tences with less than 5 tokens were then removed.
Overall, we retained a corpus of about 1.5 billion
tokens, in 77.5 million sentences.

Word Representations To create contexts for
both embedding and sparse representation, we
used a window of two tokens to each side (5-
grams, in total), ignoring words that appeared less

1This was confirmed both by our independent trials and
by corresponding with the authors.
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than 100 times in the corpus. The filtered vocabu-
lary contained 189,533 terms.2

The explicit vector representations were created
as described in Section 2. The neural embeddings
were created using the word2vec software3 ac-
companying (Mikolov et al., 2013b). We embed-
ded the vocabulary into a 600 dimensional space,
using the state-of-the-art skip-gram architecture,
the negative-training approach with 15 negative
samples (NEG-15), and sub-sampling of frequent
words with a parameter of 10−5. The parameter
settings follow (Mikolov et al., 2013b).

4.1 Evaluation Conditions

We evaluate the different word representations us-
ing the three datasets used in previous work. Two
of them (MSR and GOOGLE) contain analogy
questions, while the third (SEMEVAL) requires
ranking of candidate word pairs according to their
relational similarity to a set of supplied word pairs.

Open Vocabulary The open vocabulary
datasets (MSR and GOOGLE) present questions
of the form “a is to a∗ as b is to b∗”, where b∗

is hidden, and must be guessed from the entire
vocabulary. Performance on these datasets is
measured by micro-averaged accuracy.

The MSR dataset4 (Mikolov et al., 2013c) con-
tains 8000 analogy questions. The relations por-
trayed by these questions are morpho-syntactic,
and can be categorized according to parts of
speech – adjectives, nouns and verbs. Adjec-
tive relations include comparative and superlative
(good is to best as smart is to smartest). Noun
relations include single and plural, possessive and
non-possessive (dog is to dog’s as cat is to cat’s).
Verb relations are tense modifications (work is to
worked as accept is to accepted).

The GOOGLE dataset5 (Mikolov et al., 2013a)
contains 19544 questions. It covers 14 relation
types, 7 of which are semantic in nature and 7
are morpho-syntactic (enumerated in Section 8).
The dataset was created by manually constructing
example word-pairs of each relation, and provid-
ing all the pairs of word-pairs (within each relation
type) as analogy questions.

2Initial experiments with different window-sizes and cut-
offs showed similar trends.

3http://code.google.com/p/word2vec
4research.microsoft.com/en-us/

projects/rnn/
5code.google.com/p/word2vec/source/

browse/trunk/questions-words.txt

Out-of-vocabulary words6 were removed from
both test sets.

Closed Vocabulary The SEMEVAL dataset con-
tains the collection of 79 semantic relations that
appeared in SemEval 2012 Task 2: Measuring Re-
lation Similarity (Jurgens et al., 2012). Each rela-
tion is exemplified by a few (usually 3) character-
istic word-pairs. Given a set of several dozen tar-
get word pairs, which supposedly have the same
relation, the task is to rank the target pairs ac-
cording to the degree in which this relation holds.
This can be cast as an analogy question in the
following manner: For example, take the Recipi-
ent:Instrument relation with the prototypical word
pairs king:crown and police:badge. To measure
the degree that a target word pair wife:ring has the
same relation, we form the two analogy questions
“king is to crown as wife is to ring” and “police is
to badge as wife is to ring”. We calculate the score
of each analogy, and average the results. Note that
as opposed to the first two test sets, this one does
not require searching the entire vocabulary for the
most suitable word in the corpus, but rather to rank
a list of existing word pairs.

Following previous work, performance on SE-
MEVAL was measured using accuracy, macro-
averaged across all the relations.

5 Preliminary Results

Our first experiment uses 3COSADD (method (3)
in Section 3) to measure the prevalence of linguis-
tic regularities within each representation.

Representation MSR GOOGLE SEMEVAL
Embedding 53.98% 62.70% 38.49%

Explicit 29.04% 45.05% 38.54%

Table 1: Performance of 3COSADD on different tasks with
the explicit and neural embedding representations.

The results in Table 1 show that a large amount
of relational similarities can be recovered with
both representations. In fact, both representations
achieve the same accuracy on the SEMEVAL task.
However, there is a large performance gap in favor
of the neural embedding in the open-vocabulary
MSR and GOOGLE tasks.

Next, we run the same experiment with
PAIRDIRECTION (method (2) in Section 3).

6i.e. words that appeared in English Wikipedia less
than 100 times. This removed 882 instances from the
MSR dataset and 286 instances from GOOGLE.
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Representation MSR GOOGLE SEMEVAL
Embedding 9.26% 14.51% 44.77%

Explicit 0.66% 0.75% 45.19%

Table 2: Performance of PAIRDIRECTION on different tasks
with the explicit and neural embedding representations.

The results in Table 2 show that the PAIRDI-
RECTION method is better than 3COSADD on
the restricted-vocabulary SEMEVAL task (accu-
racy jumps from 38% to 45%), but fails at the
open-vocabulary questions in GOOGLE and MSR.
When the method does work, the numbers for the
explicit and embedded representations are again
comparable to one another.

Why is PAIRDIRECTION performing so well
on the SEMEVAL task, yet so poorly on the oth-
ers? Recall that the PAIRDIRECTION objective
focuses on the similarity of b∗ − b and a∗ − a,
but does not take into account the spatial distances
between the individual vectors. Relying on di-
rection alone, while ignoring spatial distance, is
problematic when considering the entire vocabu-
lary as candidates (as is required in the MSR and
GOOGLE tasks). We are likely to find candidates
b∗ that have the same relation to b as reflected by
a − a∗ but are not necessarily similar to b. As a
concrete example, in man:woman, king:?, we are
likely to recover feminine entities, but not neces-
sarily royal ones. The SEMEVAL test set, on the
other hand, already provides related (and therefore
geometrically close) candidates, leaving mainly
the direction to reason about.

6 Refining the Objective Function

The 3COSADD objective, as expressed in (3), re-
veals a “balancing act” between two attractors and
one repeller, i.e. two terms that we wish to maxi-
mize and one that needs to be minimized:

arg max
b∗∈V

(cos (b∗, b)− cos (b∗, a) + cos (b∗, a∗))

A known property of such linear objectives is that
they exhibit a “soft-or” behavior and allow one
sufficiently large term to dominate the expression.
This behavior is problematic in our setup, because
each term reflects a different aspect of similarity,
and the different aspects have different scales. For
example, king is more royal than it is masculine,
and will therefore overshadow the gender aspect
of the analogy. It is especially true in the case of
explicit vector representations, as each aspect of

the similarity is manifested by a different set of
features with varying sizes and weights.

A case in point is the analogy question “London
is to England as Baghdad is to — ?”, which we
answer using:

arg max
x∈V

(cos (x, en)− cos (x, lo) + cos (x, ba))

We seek a word (Iraq) which is similar to Eng-
land (both are countries), is similar to Baghdad
(similar geography/culture) and is dissimilar to
London (different geography/culture). Maximiz-
ing the sum yields an incorrect answer (under both
representations): Mosul, a large Iraqi city. Look-
ing at the computed similarities in the explicit vec-
tor representation, we see that both Mosul and Iraq
are very close to Baghdad, and are quite far from
England and London:

(EXP) ↑ England ↓ London ↑ Baghdad Sum
Mosul 0.031 0.031 0.244 0.244
Iraq 0.049 0.038 0.206 0.217

The same trends appear in the neural embedding
vectors, though with different similarity scores:

(EMB) ↑ England ↓ London ↑ Baghdad Sum
Mosul 0.130 0.141 0.755 0.748
Iraq 0.153 0.130 0.631 0.655

While Iraq is much more similar to England than
Mosul is (both being countries), both similarities
(0.049 and 0.031 in explicit, 0.130 and 0.153 in
embedded) are small and the sums are dominated
by the geographic and cultural aspect of the anal-
ogy: Mosul and Iraq’s similarity to Baghdad (0.24
and 0.20 in explicit, 0.75 and 0.63 in embedded).

To achieve better balance among the different
aspects of similarity, we propose switching from
an additive to a multiplicative combination:

arg max
b∗∈V

cos (b∗, b) cos (b∗, a∗)
cos (b∗, a) + ε

(4)

(ε = 0.001 is used to prevent division by zero)

This is equivalent to taking the logarithm of each
term before summation, thus amplifying the dif-
ferences between small quantities and reducing
the differences between larger ones. Using this ob-
jective, Iraq is scored higher than Mosul (0.259 vs
0.236, 0.736 vs 0.691). We refer to objective (4)
as 3COSMUL.7

73COSMUL requires that all similarities be non-negative,
which trivially holds for explicit representations. With em-
beddings, we transform cosine similarities to [0, 1] using
(x + 1)/2 before calculating (4).
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7 Main Results

We repeated the experiments, this time using the
3COSMUL method. Table 3 presents the results,
showing that the multiplicative objective recov-
ers more relational similarities in both representa-
tions. The improvements achieved in the explicit
representation are especially dramatic, with an ab-
solute increase of over 20% correctly identified re-
lations in the MSR and GOOGLE datasets.

Objective Representation MSR GOOGLE

3COSADD
Embedding 53.98% 62.70%

Explicit 29.04% 45.05%

3COSMUL
Embedding 59.09% 66.72%

Explicit 56.83% 68.24%

Table 3: Comparison of 3COSADD and 3COSMUL.

3COSMUL outperforms the state-of-the-art
(3COSADD) on these two datasets. Moreover, the
results illustrate that a comparable amount of rela-
tional similarities can be recovered with both rep-
resentations. This suggests that the linguistic reg-
ularities apparent in neural embeddings are not a
consequence of the embedding process, but rather
are well preserved by it.

On SEMEVAL, 3COSMUL preformed on par
with 3COSADD , recovering a similar amount of
analogies with both explicit and neural representa-
tions (38.37% and 38.67%, respectively).

8 Error Analysis

With 3COSMUL, both the explicit vectors and
the neural embeddings recover similar amounts of
analogies, but are these the same patterns, or per-
haps different types of relational similarities?

8.1 Agreement between Representations

Considering the open-vocabulary tasks (MSR and
GOOGLE), we count the number of times both rep-
resentations guessed correctly, both guessed in-
correctly, and when one representations leads to
the right answer while the other does not (Ta-
ble 4). While there is a large amount of agreement
between the representations, there is also a non-
negligible amount of cases in which they comple-
ment each other. If we were to run in an ora-
cle setup, in which an answer is considered cor-
rect if it is correct in either representation, we
would have achieved an accuracy of 71.9% on the
MSR dataset and 77.8% on GOOGLE.

Both Both Embedding Explicit
Correct Wrong Correct Correct

MSR 43.97% 28.06% 15.12% 12.85%
GOOGLE 57.12% 22.17% 9.59% 11.12%

ALL 53.58% 23.76% 11.08% 11.59%

Table 4: Agreement between the representations on open-
vocabulary tasks.

Relation Embedding Explicit

G
O

O
G

L
E

capital-common-countries 90.51% 99.41%
capital-world 77.61% 92.73%
city-in-state 56.95% 64.69%
currency 14.55% 10.53%
family (gender inflections) 76.48% 60.08%
gram1-adjective-to-adverb 24.29% 14.01%
gram2-opposite 37.07% 28.94%
gram3-comparative 86.11% 77.85%
gram4-superlative 56.72% 63.45%
gram5-present-participle 63.35% 65.06%
gram6-nationality-adjective 89.37% 90.56%
gram7-past-tense 65.83% 48.85%
gram8-plural (nouns) 72.15% 76.05%
gram9-plural-verbs 71.15% 55.75%

M
S

R adjectives 45.88% 56.46%
nouns 56.96% 63.07%
verbs 69.90% 52.97%

Table 5: Breakdown of relational similarities in each repre-
sentation by relation type, using 3COSMUL.

8.2 Breakdown by Relation Type
Table 5 presents the amount of analogies dis-
covered in each representation, broken down by
relation type. Some trends emerge: the ex-
plicit representation is superior in some of the
more semantic tasks, especially geography re-
lated ones, as well as the ones superlatives and
nouns. The neural embedding, however, has the
upper hand on most verb inflections, compara-
tives, and family (gender) relations. Some rela-
tions (currency, adjectives-to-adverbs, opposites)
pose a challenge to both representations, though
are somewhat better handled by the embedded
representations. Finally, the nationality-adjectives
and present-participles are equally handled by
both representations.

8.3 Default-Behavior Errors
The most common error pattern under both repre-
sentations is that of a “default behavior”, in which
one central representative word is provided as an
answer to many questions of the same type. For
example, the word “Fresno” is returned 82 times
as an incorrect answer in the city-in-state rela-
tion in the embedded representation, and the word
“daughter” is returned 47 times as an incorrect an-
swer in the family relation in the explicit represen-
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RELATION WORD EMB EXP

gram7-past-tense who 0 138
city-in-state fresno 82 24
gram6-nationality-adjective slovak 39 39
gram6-nationality-adjective argentine 37 39
gram6-nationality-adjective belarusian 37 39
gram8-plural (nouns) colour 36 35
gram3-comparative higher 34 35
city-in-state smith 1 61
gram7-past-tense and 0 49
gram1-adjective-to-adverb be 0 47
family (gender inflections) daughter 8 47
city-in-state illinois 3 40
currency currency 5 40
gram1-adjective-to-adverb and 0 39
gram7-past-tense enhance 39 20

Table 6: Common default-behavior errors under both repre-
sentations. EMB / EXP: the number of time the word was
returned as an incorrect answer for the given relation under
the embedded or explicit representation.

tation. Loosely, “Fresno” is identified by the em-
bedded representation as a prototypical location,
while “daughter” is identified by the explicit rep-
resentation as a prototypical female. Under a def-
inition in which a default behavior error is one in
which the same incorrect answer is returned for a
particular relation 10 or more times, such errors
account for 49% of the errors in the explicit repre-
sentation, and for 39% of the errors in the embed-
ded representation.

Table 6 lists the 15 most common default er-
rors under both representations. In most default er-
rors the category of the default word is closely re-
lated to the analogy question, sharing the category
of either the correct answer, or (as in the case of
“Fresno”) the question word. Notable exceptions
are the words “who”, “and”, “be” and “smith” that
are returned as default answers in the explicit rep-
resentation, and which are very far from the in-
tended relation. It seems that in the explicit repre-
sentation, some very frequent function words act
as “hubs” and confuse the model. In fact, the
performance gap between the representations in
the past-tense and plural-verb relations can be at-
tributed specifically to such function-word errors:
23.4% of the mistakes in past-tense relation are
due to the explicit representation’s default answer
of “who” or “and”, while 19% of the mistakes in
the plural-verb relations are due to default answers
of “is/and/that/who”.

8.4 Verb-inflection Errors
A correct solution to the morphological anal-
ogy task requires recovering both the correct in-

flection (requiring syntactic similarity) and the
correct base word (requiring semantic similar-
ity). We observe that linguistically, the mor-
phological distinctions and similarities tend to
rely on a few common word forms (for exam-
ple, the “walk:walking” relation is characterized
by modals such as “will” appearing before “walk”
and never before “walking”, and be verbs ap-
pearing before walking and never before “walk”),
while the support for the semantic relations is
spread out over many more items. We hypothe-
size that the morphological distinctions in verbs
are much harder to capture than the semantics. In-
deed, under both representations, errors in which
the selected word has a correct form with an incor-
rect inflection are over ten times more likely than
errors in which the selected word has the correct
inflection but an incorrect base form.

9 Interpreting Relational Similarities

The ability to capture relational similarities by
performing vector (or similarity) arithmetic is re-
markable. In this section, we try and provide intu-
ition as to why it works.

Consider the word “king”; it has several aspects,
high-level properties that it implies, such as roy-
alty or (male) gender, and its attributional simi-
larity with another word is based on a mixture of
those aspects; e.g. king is related to queen on the
royalty and the human axes, and shares the gender
and the human aspect with man. Relational simi-
larities can be viewed as a composition of attribu-
tional similarities, each one reflecting a different
aspect. In “man is to woman as king is to queen”,
the two main aspects are gender and royalty. Solv-
ing the analogy question involves identifying the
relevant aspects, and trying to change one of them
while preserving the other.

How are concepts such as gender, royalty, or
“cityness” represented in the vector space? While
the neural embeddings are mostly opaque, one of
the appealing properties of explicit vector repre-
sentations is our ability to read and understand the
vectors’ features. For example, king is represented
in our explicit vector space by 51,409 contexts, of
which the top 3 are tut+1, jeongjo+1, adulyadej+2

– all names of monarchs. The explicit representa-
tion allows us to glimpse at the way different as-
pects are represented. To do so, we choose a repre-
sentative pair of words that share an aspect, inter-
sect their vectors, and inspect the highest scoring
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Aspect Examples Top Features
Female woman� queen estrid+1 ketevan+1 adeliza+1 nzinga+1 gunnhild+1 impregnate−2 hippolyta+1

Royalty queen� king savang+1 uncrowned−1 pmare+1 sisowath+1 nzinga+1 tupou+1 uvea+2 majesty−1

Currency yen� ruble devalue−2 banknote+1 denominated+1 billion−1 banknotes+1 pegged+2 coin+1

Country germany � australia emigrates−2 1943-45+2 pentathletes−2 emigrated−2 emigrate−2 hong-kong−1

Capital berlin� canberra hotshots−1 embassy−2 1925-26+2 consulate-general+2 meetups−2 nunciature−2

Superlative sweetest� tallest freshest+2 asia’s−1 cleveland’s−2 smartest+1 world’s−1 city’s−1 america’s−1

Height taller � tallest regnans−2 skyscraper+1 skyscrapers+1 6’4+2 windsor’s−1 smokestacks+1 burj+2

Table 7: The top features of each aspect, recovered by pointwise multiplication of words that share that aspect. The result of
pointwise multiplication is an “aspect vector” in which the features common to both words, characterizing the relation, receive
the highest scores. The feature scores (not shown) correspond to the weight the feature contributes to the cosine similarity
between the vectors. The superscript marks the position of the feature relative to the target word.

features in the intersection. Table 7 presents the
top (most influential) features of each aspect.

Many of these features are names of people or
places, which appear rarely in our corpus (e.g.
Adeliza, a historical queen, and Nzinga, a royal
family) but are nonetheless highly indicative of
the shared concept. The prevalence of rare words
stems from PMI, which gives them more weight,
and from the fact that words like woman and queen
are closely related (a queen is a woman), and thus
have many features in common. Ordering the fea-
tures of woman � queen by prevalence reveals
female pronouns (“she”, “her”) and a long list of
common feminine names, reflecting the expected
aspect shared by woman and queen. Word pairs
that share more specific aspects, such as capital
cities or countries, show features that are charac-
teristic of their shared aspect (e.g. capital cities
have embassies and meetups, while immigration
is associated with countries). It is also interesting
to observe how the relatively syntactic “superlativ-
ity” aspect is captured with many regional posses-
sives (“america’s”, “asia’s”, “world’s”).

10 Related Work

Relational similarity (and answering analogy
questions) was previously tackled using explicit
representations. Previous approaches use task-
specific information, by either relying on a
(word-pair, connectives) matrix rather than the
standard (word, context) matrix (Turney and
Littman, 2005; Turney, 2006), or by treating anal-
ogy detection as a supervised learning task (Ba-
roni and Lenci, 2009; Jurgens et al., 2012; Turney,
2013). In contrast, the vector arithmetic approach
followed here is unsupervised, and works on a
generic single-word representation. Even though
the training process is oblivious to the task of anal-
ogy detection, the resulting representation is able
to detect them quite accurately. Turney (2012) as-

sumes a similar setting but with two types of word
similarities, and combines them with products and
ratios (similar to 3COSMUL) to recover a variety
of semantic relations, including analogies.

Arithmetic combination of explicit word vec-
tors is extensively studied in the context of com-
positional semantics (Mitchell and Lapata, 2010),
where a phrase composed of two or more words
is represented by a single vector, computed by a
function of its component word vectors. Blacoe
and Lapata (2012) compare different arithmetic
functions across multiple representations (includ-
ing embeddings) on a range of compositionality
benchmarks. To the best of our knowledge such
methods of word vector arithmetic have not been
explored for recovering relational similarities in
explicit representations.

11 Discussion

Mikolov et al. showed how an unsupervised neural
network can represent words in a space that “nat-
urally” encodes relational similarities in the form
of vector offsets. This study shows that finding
analogies through vector arithmetic is actually a
form of balancing word similarities, and that, con-
trary to the recent findings of Baroni et al. (2014),
under certain conditions traditional word similar-
ities induced by explicit representations can per-
form just as well as neural embeddings on this
task.

Learning to represent words is a fascinating and
important challenge with implications to most cur-
rent NLP efforts, and neural embeddings in par-
ticular are a promising research direction. We
believe that to improve these representations we
should understand how they work, and hope that
the methods and insights provided in this work
will help to deepen our grasp of current and future
investigations of word representations.

178



References
Rami Al-Rfou, Bryan Perozzi, and Steven Skiena.

2013. Polyglot: Distributed word representations
for multilingual nlp. In Proc. of CoNLL 2013.

Marco Baroni and Alessandro Lenci. 2009. One dis-
tributional memory, many semantic spaces. In Pro-
ceedings of the Workshop on Geometrical Models
of Natural Language Semantics, pages 1–8, Athens,
Greece, March. Association for Computational Lin-
guistics.

Marco Baroni and Alessandro Lenci. 2010. Dis-
tributional memory: A general framework for
corpus-based semantics. Computational Linguis-
tics, 36(4):673–721.

Marco Baroni, Georgiana Dinu, and Germán
Kruszewski. 2014. Dont count, predict! a
systematic comparison of context-counting vs.
context-predicting semantic vectors. In Proceedings
of the 52nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Pa-
pers), Baltimore, Maryland, USA, June. Association
for Computational Linguistics.
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Abstract
Most traditional distributional similarity
models fail to capture syntagmatic patterns
that group together multiple word features
within the same joint context. In this work
we introduce a novel generic distributional
similarity scheme under which the power
of probabilistic models can be leveraged
to effectively model joint contexts. Based
on this scheme, we implement a concrete
model which utilizes probabilistic n-gram
language models. Our evaluations sug-
gest that this model is particularly well-
suited for measuring similarity for verbs,
which are known to exhibit richer syntag-
matic patterns, while maintaining compa-
rable or better performance with respect
to competitive baselines for nouns. Fol-
lowing this, we propose our scheme as a
framework for future semantic similarity
models leveraging the substantial body of
work that exists in probabilistic language
modeling.

1 Introduction

The Distributional Hypothesis is commonly
phrased as “words which are similar in meaning
occur in similar contexts” (Rubenstein and Good-
enough, 1965). Distributional similarity models
following this hypothesis vary in two major as-
pects, namely the representation of the context and
the respective computational model. Probably the
most prominent class of distributional similarity
models represents context as a vector of word fea-
tures and computes similarity using feature vector
arithmetics (Lund and Burgess, 1996; Turney et
al., 2010). To construct the feature vectors, the
context of each target word token1, which is com-
monly a word window around it, is first broken

1We use word type to denote an entry in the vocabulary,
and word token for a particular occurrence of a word type.

into a set of individual independent words. Then
the weights of the entries in the word feature vec-
tor capture the degree of association between the
target word type and each of the individual word
features, independently of one another.

Despite its popularity, it was suggested that
the word feature vector approach misses valu-
able information, which is embedded in the co-
location and inter-relations of words (e.g. word
order) within the same context (Ruiz-Casado et al.,
2005). Following this motivation, Ruiz-Casado
et al. (2005) proposed an alternative composite-
feature model, later adopted in (Agirre et al.,
2009). This model adopts a richer context repre-
sentation by considering entire word window con-
texts as features, while keeping the same compu-
tational vector-based model. Although showing
interesting potential, this approach suffers from a
very high-dimensional feature space resulting in
data sparseness problems. Therefore, it requires
exceptionally large learning corpora to consider
large windows effectively.

A parallel line of work adopted richer context
representations as well, with a different compu-
tational model. These works utilized neural net-
works to learn low dimensional continuous vector
representations for word types, which were found
useful for measuring semantic similarity (Col-
lobert and Weston, 2008; Mikolov et al., 2013).
These vectors are trained by optimizing the pre-
diction of target words given their observed con-
texts (or variants of this objective). Most of these
models consider each observed context as a joint
set of context words within a word window.

In this work we follow the motivation in the pre-
vious works above to exploit richer joint-context
representations for modeling distributional simi-
larity. Under this approach the set of features in
the context of each target word token is consid-
ered to jointly reflect on the meaning of the target
word type. To further facilitate this type of mod-
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eling we propose a novel probabilistic computa-
tional scheme for distributional similarity, which
leverages the power of probabilistic models and
addresses the data sparseness challenge associated
with large joint-contexts. Our scheme is based on
the following probabilistic corollary to the distri-
butional hypothesis:

(1)“words are similar in meaning if
they are likely to occur in the same contexts”

To realize this corollary, our distributional sim-
ilarity scheme assigns high similarity scores to
word pairs a and b, for which a is likely in the con-
texts that are observed for b and vice versa. The
scheme is generic in the sense that various under-
lying probabilistic models can be used to provide
the estimates for the likelihood of a target word
given a context. This allows concrete semantic
similarity models based on this scheme to lever-
age the capabilities of probabilistic models, such
as established language models, which typically
address the modeling of joint-contexts.

We hypothesize that an underlying model that
could capture syntagmatic patterns in large word
contexts, yet is flexible enough to deal with data
sparseness, is desired. It is generally accepted
that the semantics of verbs in particular are cor-
related with their syntagmatic properties (Levin,
1993; Hanks, 2013). This provides grounds to ex-
pect that such model has the potential to excel for
verbs. To capture syntagmatic patterns, we choose
in this work standard n-gram language models as
the basis for a concrete model implementing our
scheme. This choice is inspired by recent work on
learning syntactic categories (Yatbaz et al., 2012),
which successfully utilized such language mod-
els to represent word window contexts of target
words. However, we note that other richer types
of language models, such as class-based (Brown
et al., 1992) or hybrid (Tan et al., 2012), can be
seamlessly integrated into our scheme.

Our evaluations suggest that our model is in-
deed particularly advantageous for measuring se-
mantic similarity for verbs, while maintaining
comparable or better performance with respect to
competitive baselines for nouns.

2 Background

In this section we provide additional details re-
garding previous works that we later use as base-
lines in our evaluations.

To implement the composite-feature approach,
Ruiz-Casado et al. (2005) used a Web search en-
gine to compare entire window contexts of target
word types. For example, a single feature that
could be retrieved this way for the target word like
is “Children cookies and milk”. They showed
good results on detecting synonyms in the 80
multiple-choice questions TOEFL test. Agirre et
al. (2009) constructed composite-feature vectors
using an exceptionally large 1.6 Teraword learn-
ing corpus. They found that this approach out-
performs the traditional independent feature vec-
tor approach on a subset of the WordSim353 test-
set (Finkelstein et al., 2001), which is designed to
test the more restricted relation of semantic simi-
larity (to be distinguished from looser semantic re-
latedness). We are not aware of additional works
following this approach, of using entire word win-
dows as features.

Neural networks have been used to train lan-
guage models that are based on low dimensional
continuous vector representations for word types,
also called word embeddings (Bengio et al., 2003;
Mikolov et al., 2010). Although originally de-
signed to improve language models, later works
have shown that such word embeddings are useful
in various other NLP tasks, including measuring
semantic similarity with vector arithmetics (Col-
lobert and Weston, 2008; Mikolov et al., 2013).
Specifically, the recent work by Mikolov et al.
(2013) introduced the CBOW and Skip-gram mod-
els, achieving state-of-the-art results in detecting
semantic analogies. The CBOW model is trained
to predict a target word given the set of context
words in a word window around it, where this
context is considered jointly as a bag-of-words.
The Skip-gram model is trained to predict each of
the context words independently given the target
word.

3 Probabilistic Distributional Similarity

3.1 Motivation

In this section we briefly demonstrate the bene-
fits of considering joint-contexts of words. As an
illustrative example, we note that the target words
like and surround may share many individual word
features such as “school” and “campus” in the sen-
tences “Mary’s son likes the school campus” and
“The forest surrounds the school campus”. This
potentially implies that individual features may
not be sufficient to accurately reflect the difference
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between such words. Alternatively, we could use
the following composite features to model the con-
text of these words, “Mary’s son the school
campus” and “The forest the school campus”.
This would discriminate better between like and
surround. However, in this case sentences such as
“Mary’s son likes the school campus” and “John’s
son loves the school campus” will not provide any
evidence to the similarity between like and love,
since “Mary’s son the school campus” is a dif-
ferent feature than “John’s son the school cam-
pus”.

In the remainder of this section we propose
a modeling scheme and then a concrete model,
which can predict that like and love are likely to
occur in each other’s joint-contexts, whereas like
and surround are not, and then assign similarity
scores accordingly.

3.2 The probabilistic similarity scheme
We now present a computational scheme that re-
alizes our proposed corollary (1) to the distribu-
tional hypothesis and facilitates robust probabilis-
tic modeling of joint contexts. First, we slightly
rephrase this corollary as follows: “words a and
b are similar in meaning if word b is likely in
the contexts of a and vice versa”. We denote the
probability of an occurrence of a target word b
given a joint-context c by p(b|c). For example,
p(love|“Mary’s son the school campus”) is the
probability of the word love to be the filler of the
‘place-holder’ in the given joint-context “Mary’s
son the school campus”. Similarly, we denote
p(c|a) as the probability of a joint-context c given
a word a, which fills its place-holder. We now
propose psim(b|a) to reflect how likely b is in the
joint-contexts of a. We define this measure as:

(2)psim(b|a) =
∑
c

p(c|a) · p(b|c)

where c goes over all possible joint-contexts in the
language.

To implement this measure we need to find
an efficient estimate for psim(b|a). The most
straight forward strategy is to compute sim-
ple corpus count ratio estimates for p(b|c) and
p(c|a), denoted p#(b|c) = count(b,c)

count(∗,c) and

p#(c|a) = count(a,c)
count(a,∗) . However, when consid-

ering large joint-contexts for c, this approach be-
comes similar to the composite-feature approach
since it is based on co-occurrence counts of tar-
get words with large joint-contexts. Therefore, we

expect in this case to encounter the data sparse-
ness problems mentioned in Section 1, where se-
mantically similar word type pairs that share only
few or no identical joint-contexts yield very low
psim(b|a) estimates.

To address the data sparseness challenge and
adopt more advanced context modeling, we aim to
use a more robust underlying probabilistic model
θ for our scheme and denote the probabilities es-
timated by this model by pθ(b|c) and pθ(c|a). We
note that contrary to the count ratio model, given a
robust model θ, such as a language model, pθ(b|c)
and pθ(c|a) can be positive even if the target words
b and a were not observed with the joint-context c
in the learning corpus.

While using pθ(b|c) and pθ(c|a) to estimate the
value of psim(b|a) addresses the sparseness chal-
lenge, it introduces a computational challenge.
This is because estimating psim(b|a) would re-
quire computing the sum over all of the joint-
contexts in the learning corpus regardless of
whether they were actually observed with either
word type a or b. For that reason we choose a
middle ground approach, estimating p(b|c) with
θ, while using a count ratio estimate for p(c|a),
as follows. We denote the collection of all joint-
contexts observed for the target word a in the
learning corpus by Ca, where |Ca|= count(a, ∗).
For example, Clike = {c1=“Mary’s son the
school campus”, c2=“John’s daughter to read
poetry”,...}. We note that this collection is a multi-
set, where the same joint-context can appear more
than once.

We now approximate psim(b|a) from Equation
(2) as follows:

(3)

p̂simθ (b|a) =
∑
c

p#(c|a) · pθ(b|c) =

1
|Ca| ·

∑
c∈Ca

pθ(b|c)

We note that this formulation still addresses
sparseness of data by using a robust model, such as
a language model, to estimate pθ(b|c). At the same
time it requires our model to sum only over the
joint-contexts in the collection Ca, since contexts
not observed for a yield p#(c|a) = 0. Even so,
since the size of these context collections grows
linearly with the corpus size, considering all ob-
served contexts may still present a scalability chal-
lenge. Nevertheless, we expect our approximation
p̂simθ (b|a) to converge with a reasonable sample
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size from a’s joint-contexts. Therefore, in order
to bound computational complexity, we limit the
size of the context collections used to train our
model to a maximum of N by randomly sampling
N entries from larger collections. In all our ex-
periments we use N = 10, 000. Higher values
of N yielded negligible performances differences.
Overall we see that our model estimates p̂simθ (b|a)
as the average probability predicted for b in (a
large sample of) the contexts observed for a.

Finally, we define our similarity measure for tar-
get word types a and b:

(4)simθ(a, b) =
√
p̂simθ (b|a) · p̂simθ (a|b)

As intended, this similarity measure promotes
word pairs in which both b is likely in the con-
texts of a and vice versa. Next, we describe a
model which implements this scheme with an n-
gram language model as a concrete choice for θ.

3.3 Probabilistic similarity using language
models

In this work we focus on the word window context
representation, which is the most common. We
define a word window of order k around a target
word as a window with up to k words to each side
of the target word, not crossing sentence bound-
aries. The word window does not include the tar-
get word itself, but rather a ‘place-holder’ for it.

Since word windows are sequences of words,
probabilistic language models are a natural choice
of a model θ for estimating pθ(b|c). Language
models assign likelihood estimates to sequences
of words using approximation strategies. In
this work we choose n-gram language models,
aiming to capture syntagmatic properties of the
word contexts, which are sensitive to word or-
der. To approximate the probability of long se-
quences of words, n-gram language models com-
pute the product of the estimated probability of
each word in the sequence conditioned on at most
the n − 1 words preceding it. Furthermore, they
use ‘discounting’ methods to improve the esti-
mates of conditional probabilities when learning
data is sparse. Specifically, in this work we use
the Kneser-Ney n-gram model (Kneser and Ney,
1995).

We compute pθ(b|c) as follows:

(5)pθ(b|c) =
pθ(b, c)
pθ(c)

where pθ(b, c) is the probability of the word se-
quence comprising the word window c, in which
the word b fills the place-holder. For instance, for
c = “I drive my to work every” and b = car,
pθ(b, c) is the estimated language model probabil-
ity of “I drive my car to work every”. pθ(c) is the
marginal probability of pθ(∗, c) over all possible
words in the vocabulary. 2

4 Experimental Settings

Although sometimes used interchangeably, it is
common to distinguish between semantic simi-
larity and semantic relatedness (Budanitsky and
Hirst, 2001; Agirre et al., 2009). Semantic simi-
larity is used to describe ‘likeness’ relations, such
as the relations between synonyms, hypernym-
hyponyms, and co-hyponyms. Semantic relat-
edness refers to a broader range of relations in-
cluding also meronymy and various other asso-
ciative relations as in ‘pencil-paper’ or ‘penguin-
Antarctica’. In this work we focus on semantic
similarity and evaluate all compared methods on
several semantic similarity tasks.

Following previous works (Lin, 1998; Riedl and
Biemann, 2013) we use Wordnet to construct large
scale gold standards for semantic similarity evalu-
ations. We perform the evaluations separately for
nouns and verbs to test our hypothesis that our
model is particularly well-suited for verbs. To fur-
ther evaluate our results on verbs we use the verb
similarity test-set released by (Yang and Powers,
2006), which contains pairs of verbs associated
with semantic similarity scores based on human
judgements.

4.1 Compared methods
We compare our model with a traditional fea-
ture vector model, the composite-feature model
(Agirre et al., 2009), and the recent state-of-the-art
word embedding models, CBOW and Skip-gram
(Mikolov et al., 2013), all trained on the same
learning corpus and evaluated on equal grounds.

We denote the traditional feature vector baseline
by IFV W−k, where IFV stands for “Independent-
Feature Vector” and k is the order of the con-
text word window considered. Similarly, we

2Computing pθ(c) by summing over all possible place-
holder filler words, as we did in this work, is computation-
ally intensive. However, this can be done more efficiently
by implementing customized versions of (at least some) n-
gram language models with little computational overhead,
e.g. by counting the learning corpus occurrences of n-gram
templates, in which one of the elements matches any word.
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denote the composite-feature vector baseline by
CFV W−k, where CFV stands for “Composite-
Feature Vector”. This baseline constructs
traditional-like feature vectors, but considers en-
tire word windows around target word tokens as
single features. In both of these baselines we use
Cosine as the vector similarity measure, and posi-
tive pointwise mutual information (PPMI) for the
feature vector weights. PPMI is a well-known
variant of pointwise mutual information (Church
and Hanks, 1990), and the combination of Cosine
with PPMI was shown to perform particularly well
in (Bullinaria and Levy, 2007).

We denote Mikolov’s CBOW and Skip-gram
baseline models by CBOWW−k and SKIPW−k

respectively, where k denotes again the order of
the window used to train these models. We used
Mikolov’s word2vec utility3 with standard param-
eters (600 dimensions, negative sampling 15) to
learn the word embeddings, and Cosine as the vec-
tor similarity measure between them.

As the underlying probabilistic language model
for our method we use the Berkeley implementa-
tion4 (Pauls and Klein, 2011) of the Kneser-Ney
n-gram model with the default discount parame-
ters. We denote our model PDSW−k, where PDS
stands for “Probabilistic Distributional Similar-
ity”, and k is the order of the context word win-
dow. In order to avoid giving our model an un-
fair advantage of tuning the order of the language
model n as an additional parameter, we use a fixed
n = k + 1. This means that the conditional prob-
abilities that our n-gram model learns consider a
scope of up to half the size of the window, which
is the distance in words between the target word
and either end of the window. We note that this
is the smallest reasonable value for n, as smaller
values effectively mean that there will be context
words within the window that are more than n
words away from the target word, and therefore
will not be considered by our model.

As learning corpus we used the first CD of
the freely available Reuters RCV1 dataset (Rose
et al., 2002). This learning corpus contains ap-
proximately 100M words, which is comparable in
size to the British National Corpus (BNC) (As-
ton, 1997). We first applied part-of-speech tag-
ging and lemmatization to all words. Then we
represented each word w in the corpus as the pair

3http://code.google.com/p/word2vec
4http://code.google.com/p/berkeleylm/

[pos(w), lemma(w)], where pos(w) is a coarse-
grained part-of-speech category and lemma(w) is
the lemmatized form of w. Finally, we converted
every pair [pos(w), lemma(w)] that occurs less
than 100 times in the learning corpus to the pair
[pos(w), ? ], which represents all rare words of the
same part-of-speech tag. Ignoring rare words is a
common practice used in order to clean up the cor-
pus and reduce the vocabulary size (Gorman and
Curran, 2006; Collobert and Weston, 2008).

The above procedure resulted in a word vocabu-
lary of 27K words. From this vocabulary we con-
structed a target verb set with over 2.5K verbs by
selecting all verbs that exist in Wordnet (Fellbaum,
2010). We repeated this procedure to create a tar-
get noun set with over 9K nouns. We used our
learning corpus for all compared methods and had
them assign a semantic similarity score for every
pair of verbs and every pair of nouns in these tar-
get sets. These scores were later used in all of our
evaluations.

4.2 Wordnet evaluation

There is a shortage of large scale test-sets for se-
mantic similarity. Popular test-sets such as Word-
Sim353 and the TOEFL synonyms test contain
only 353 and 80 test items respectively, and there-
fore make it difficult to obtain statistically signif-
icant results. To automatically construct larger-
scale test-sets for semantic similarity, we sampled
large target word subsets from our corpus and used
Wordnet as a gold standard for their semantically
similar words, following related previous evalua-
tions (Lin, 1998; Riedl and Biemann, 2013). We
constructed two test-sets for our primary evalua-
tion, one for verb similarity and another for noun
similarity.

To perform the verb similarity evaluation, we
randomly sampled 1,000 verbs from the target
verb set, where the probability of each verb to be
sampled is set to be proportional to its frequency in
the learning corpus. Next, for each sampled verb
a we constructed a Wordnet-based gold standard
set of semantically similar words. In this set each
verb a′ is annotated as a ‘synonym’ of a if at least
one of the senses of a′ is a synonym of any of the
senses of a. In addition, each verb a′ is annotated
as a ‘semantic neighbor’ of a if at least one of the
senses of a′ is a synonym, co-hyponym, or a di-
rect hypernym/hyponym of any of the senses of a.
We note that by definition all verbs annotated as
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synonyms of a are annotated as semantic neigh-
bors as well. Next, per each verb a and an evalu-
ated method, we generated a ranked list of all other
verbs, which was induced according to the similar-
ity scores of this method.

Finally, we evaluated the compared methods
on two tasks, ‘synonym detection’ and ‘seman-
tic neighbor detection’. In the synonym detection
task we evaluated the methods’ ability to retrieve
as much verbs annotated in our gold standard as
‘synonyms’, in the top-n entries of their ranked
lists. Similarly, we evaluated all methods on the
‘semantic neighbors’ task. The synonym detec-
tion task is designed to evaluate the ability of the
compared methods to identify a more restrictive
interpretation of semantic similarity, while the se-
mantic neighbor detection task does the same for
a somewhat broader interpretation.

We repeated the above procedure for sam-
pling 1,000 target nouns, constructing the noun
Wordnet-based gold standards and evaluating on
the two semantic similarity tasks.

4.3 VerbSim evaluation

The publicly available VerbSim test-set contains
130 verb pairs, each annotated with an average of
6 human judgements of semantic similarity (Yang
and Powers, 2006). We extracted a 107 pairs sub-
set of this dataset for which all verbs are in our
learning corpus. We followed works such as (Yang
and Powers, 2007; Agirre et al., 2009) and com-
pared the Spearman correlations between the verb-
pair similarity scores assigned by the compared
methods and the manually annotated scores in this
dataset.

5 Results

For each method and verb a in our 1,000 tested
verbs, we used the Wordnet gold standard to com-
pute the precision at top-1, top-5 and top-10 of the
ranked list generated by this method for a. We
then computed mean precision values averaged
over all verbs for each of the compared methods,
denoted as P@1, P@5 and P@10. The detailed
report of P@10 results is omitted for brevity, as
they behave very similarly to P@5. We varied the
context window order used by all methods to test
its effect on the results. We measured the same
metrics for nouns.

The results of our Wordnet-based 1,000 verbs
evaluation are presented in the upper part of Fig-

ure 1. The results show significant improvement
of our method over all baselines, with a margin
between 2 to 3 points on the synonyms detection
task and 5 to 7 points on the semantic neighbors
detection task. Our best performing configura-
tions are PDSW−3 and PDSW−4, outperform-
ing all other baselines on both tasks and in all pre-
cision categories. This difference is statistically
significant at p < 0.001 using a paired t-test in all
cases except for the P@1 in the synonyms detec-
tion task. Within the baselines, the composite fea-
ture vector (CFV) performs somewhat better than
the independent feature vector (IFV) baseline, and
both methods perform best around window order
of two, with gradual decline for larger windows.
The word embedding baselines, CBOW and SKIP,
perform comparably to the feature vector base-
lines and to one another, with best performance
achieved around window order of four.

When gradually increasing the context window
order within the range of up to 4 words, our PDS
model shows improvement. This is in contrast to
the feature vector baselines, whose performance
declines for context window orders larger than 2.
This suggests that our approach is able to take ad-
vantage of larger contexts in comparison to stan-
dard feature vector models. The decline in perfor-
mance for the independent feature vector baseline
(IFV) may be related to the fact that independent
features farther away from the target word are gen-
erally more loosely related to it. This seems con-
sistent with previous works, where narrow win-
dows of the order of two words performed well
(Bullinaria and Levy, 2007; Agirre et al., 2009;
Bruni et al., 2012) and in particular so when eval-
uating semantic similarity rather than relatedness.
On the other hand, the decline in performance for
the composite feature vector baseline (CFV) may
be attributed to the data sparseness phenomenon
associated with larger windows. The performance
of the word embedding baselines (CBOW and
SKIP) starts declining very mildly only for win-
dow orders larger than 4. This might be attributed
to the fact that these models assign lower weights
to context words the farther away they are from the
center of the window.

The results of our Wordnet-based 1,000 nouns
evaluation are presented in the lower part of Fig-
ure 1. These results are partly consistent with the
results achieved for verbs, but with a couple of
notable differences. First, though our model still
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Figure 1: Mean precision scores as a function of window order, obtained against the Wordnet-based gold
standard, on both the verb and noun test-sets with both the synonyms and semantic neighbor detection
tasks. “P@n” stands for precision in the top-n words of the ranked lists. Note that the Y-axis scale varies
between graphs.

outperforms or performs comparably to all other
baselines, in this case the advantage of our model
over the feature vector baselines is much more
moderate and not statistically significant. Second,
the word embedding baselines generally perform
worst (with CBOW performing a little better than
SKIP), and our model outperforms them in both
P@5 and P@10 with a margin of around 2 points
for the synonyms detection task and 3-4 points for
the neighbor detection task, with statistical signif-
icance at p < 0.001.

Next, to reconfirm the particular applicability
of our model to verb similarity as apparent from
the Wordnet evaluation, we performed the Verb-
Sim evaluation and present the results in Table 1.

We compared the Spearman correlation obtained
for the top-performing window order of each of
the evaluated methods in the Wordnet verbs eval-
uation. We present two sets of results. The ‘all
scores‘ results follow the standard evaluation pro-
cedure, considering all similarity scores produced
by each method. In the ‘top-100 scores‘ results,
for each method we converted to zero the scores
that it assigned to word pairs, where neither of
the words is in the top-100 most similar words
of the other. Then we performed the evaluation
with these revised scores. This procedure focuses
on evaluating the quality of the methods’ top-
100 ranked word lists. The results show that our
method outperforms all baselines by a nice mar-
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Method All scores top-100 scores

PDS W-4 0.616 0.625

CFV W-2 0.477 0.497

IFV W-2 0.467 0.546

SKIP W-4 0.469 0.512

CBOW W-5 0.528 0.469

Table 1: Spearman correlation values obtained for
the VerbSim evaluation. Each method was evalu-
ated with the optimal window order found in the
Wordnet verbs evaluation.

gin of more than 8 points with the score of 0.616
and 0.625 for the ‘all scores‘ and ‘top-100 scores‘
evaluations respectively. Though not statistically
significant, due to the small test-set size, these re-
sults support the ones from the Wordnet evalu-
ation, suggesting that our model performs better
than the baselines on measuring verb similarity.

In summary, our results suggest that in lack of a
robust context modeling scheme it is hard for dis-
tributional similarity models to effectively lever-
age larger word window contexts for measuring
semantic similarity. It appears that this is some-
what less of a concern when it comes to noun sim-
ilarity, as the simple feature vector models reach
near-optimal performance with small word win-
dows of order 2, but it is an important factor for
verb similarity. In his recent book, Hanks (2013)
claims that contrary to nouns, computational mod-
els that are to capture the meanings of verbs must
consider their syntagmatic patterns in text. Our
particularly good results on verb similarity sug-
gest that our modeling approach is able to cap-
ture such information in larger context windows.
We further conjecture that the reason the word em-
bedding baselines did not do as well as our model
on verb similarity might be due to their particular
choice of joint-context formulation, which is not
sensitive to word order. However, these conjec-
tures should be further validated with additional
evaluations in future work.

6 Future Directions

In this paper we investigated the potential for im-
proving distributional similarity models by model-
ing jointly the occurrence of several features under
the same context. We evaluated several previous
works with different context modeling approaches
and suggest that the type of the underlying con-

text modeling may have significant effect on the
performance of the semantic model. Further-
more, we introduced a generic probabilistic distri-
butional similarity approach, which can leverage
the power of established probabilistic language
models to effectively model joint-contexts for the
purpose of measuring semantic similarity. Our
concrete model utilizing n-gram language models
outperforms several competitive baselines on se-
mantic similarity tasks, and appears to be partic-
ularly well-suited for verbs. In the remainder of
this section we describe some potential future di-
rections that can be pursued.

First, the performance of our generic scheme
is largely inherited from the nature of its under-
lying language model. Therefore, we see much
potential in exploring the use of other types of
language models, such as class-based (Brown et
al., 1992), syntax-based (Pauls and Klein, 2012)
or hybrid (Tan et al., 2012). Furthermore, a sim-
ilar approach to ours could be attempted in word
embedding models. For instance, our syntagmatic
joint-context modeling approach could be investi-
gated by word embedding models to generate bet-
ter embeddings for verbs.

Another direction relates to the well known ten-
dency of many words, and particularly verbs, to
assume different meanings (or senses) under dif-
ferent contexts. To address this phenomenon con-
text sensitive similarity and inference models have
been proposed (Dinu and Lapata, 2010; Melamud
et al., 2013). Similarly to many semantic similar-
ity models, our current model aggregates informa-
tion from all observed contexts of a target word
type regardless of its different senses. However,
we believe that our approach is well suited to ad-
dress context sensitive similarity with proper en-
hancements, as it considers joint-contexts that can
more accurately disambiguate the meaning of tar-
get words. As an example, it is possible to con-
sider the likelihood of word b to occur in a subset
of the contexts observed for word a, which is bi-
ased towards a particular sense of a.

Finally, we note that our model is not a classic
vector space model and therefore common vec-
tor composition approaches (Mitchell and Lap-
ata, 2008) cannot be directly applied to it. In-
stead, other methods, such as similarity of com-
positions (Turney, 2012), should be investigated to
extend our approach for measuring similarity be-
tween phrases.
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Abstract

Infants spontaneously discover the rele-
vant phonemes of their language without
any direct supervision. This acquisition
is puzzling because it seems to require
the availability of high levels of linguistic
structures (lexicon, semantics), that logi-
cally suppose the infants having a set of
phonemes already. We show how this cir-
cularity can be broken by testing, in real-
size language corpora, a scenario whereby
infants would learn approximate represen-
tations at all levels, and then refine them in
a mutually constraining way. We start with
corpora of spontaneous speech that have
been encoded in a varying number of de-
tailed context-dependent allophones. We
derive, in an unsupervised way, an approx-
imate lexicon and a rudimentary seman-
tic representation. Despite the fact that
all these representations are poor approxi-
mations of the ground truth, they help re-
organize the fine grained categories into
phoneme-like categories with a high de-
gree of accuracy.

One of the most fascinating facts about human
infants is the speed at which they acquire their
native language. During the first year alone, i.e.,
before they are able to speak, infants achieve im-
pressive landmarks regarding three key language
components. First, they tune in on the phone-
mic categories of their language (Werker and Tees,
1984). Second, they learn to segment the continu-
ous speech stream into discrete units (Jusczyk and
Aslin, 1995). Third, they start to recognize fre-
quent words (Ngon et al., 2013), as well as the
semantics of many of them (Bergelson and Swing-
ley, 2012).

Even though these landmarks have been doc-
umented in detail over the past 40 years of re-

search, little is still known about the mechanisms
that are operative in infant’s brain to achieve such
a result. Current work in early language acquisi-
tion has proposed two competing but incomplete
hypotheses that purports to account for this stun-
ning development path. The bottom-up hypothesis
holds that infants converge onto the linguistic units
of their language through a statistical analysis over
of their input. In contrast, the top-down hypothesis
emphasizes the role of higher levels of linguistic
structure in learning the lower level units.

1 A chicken-and-egg problem

1.1 Bottom-up is not enough

Several studies have documented the fact that in-
fants become attuned to the native sounds of their
language, starting at 6 months of age (see Ger-
vain & Mehler, 2010 for a review). Some re-
searchers have claimed that such an early attune-
ment is due to a statistical learning mechanism that
only takes into account the distributional prop-
erties of the sounds present in the native input
(Maye et al., 2002). Unsupervised clustering al-
gorithms running on simplified input have, indeed,
provided a proof of principle for bottom-up learn-
ing of phonemic categories from speech (see for
instance Vallabha et al., 2007).

It is clear, however, that distributional learning
cannot account for the entire developmental pat-
tern. In fact, phoneme tokens in real speech ex-
hibit high acoustic variability and result in phone-
mic categories with a high degree of overlap (Hil-
lenbrand et al., 1995). When purely bottom up
clustering algorithms are tested on realistic input,
they ended up in either a too large number of sub-
phonemic units (Varadarajan et al., 2008) or a too
small number of coarse grained categories (Feld-
man et al., 2013a).
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1.2 The top-down hypothesis

Inspection of the developmental data shows that
infants do not wait to have completed the acqui-
sition of their native phonemes to start to learn
words. In fact, lexical and phonological acquisi-
tion largely overlap. Infant can recognize highly
frequent word forms like their own names, by as
early as 4 months of age (Mandel et al., 1995).
Vice versa, the refinement of phonemic categories
does not stop at 12 months. The sensitivity to pho-
netic contrasts has been reported to continue at 3
years of age (Nittrouer, 1996) and beyond (Hazan
and Barrett, 2000), on par with the development of
the lexicon.

Some researchers have therefore suggested that
there might be a learning synergy which allows in-
fants to base some of their acquisition not only on
bottom up information, but also on statistics over
lexical items or even on the basis of word mean-
ing (Feldman et al., 2013a; Feldman et al., 2013b;
Yeung and Werker, 2009)

These experiments and computational models,
however, have focused on simplified input or/and
used already segmented words. It remains to be
shown whether the said top-down strategies scale
up when real size corpora and more realistic repre-
sentations are used. There are indeed indications
that, in the absence of a proper phonological repre-
sentation, lexical learning becomes very difficult.
For example, word segmentation algorithms that
work on the basis of phoneme-like units tend to
degrade quickly if phonemes are replaced by con-
textual allophones (Boruta et al., 2011) or with the
output of phone recognizers (Jansen et al., 2013;
Ludusan et al., 2014).

In brief, we are facing a chicken-and-egg prob-
lem: lexical and semantic information could help
to learn the phonemes, but phonemes are needed
to acquire lexical information.

1.3 Breaking the circularity: An incremental
discovery procedure

Here, we explore the idea that instead of learning
adult-like hierarchically organized representations
in a sequential fashion (phonemes, words, seman-
tics), infants learn approximate, provisional lin-
guistic representations in parallel. These approxi-
mate representations are subsequently used to im-
prove each other.

More precisely, we make four assumptions.
First, we assume that infants start by paying atten-

tion to fine grained variation in the acoustic input,
thus constructing perceptual phonetic categories
that are not phonemes, but segments encoding fine
grained phonetic details (Werker and Curtin, 2005;
Pierrehumbert, 2003). Second, we assume that
these units enable infants to segment proto-words
from continuous speech and store them in this de-
tailed format. Importantly, this proto-lexicon will
not be adult-like: it will contain badly segmented
word forms, and store several alternant forms for
the same word. Ngon et al. (2013) have shown
that 11 month old infants recognize frequent sound
sequences that do not necessarily map to adult
words. Third, we assume that infants can use this
imperfect lexicon to acquire some semantic repre-
sentation. As shown in Shukla et al. (2011), in-
fants can simultaneously segment words and asso-
ciate them with a visual referent. Fourth, we as-
sume that as their exposure to language develops,
infants reorganize these initial categories along the
relevant dimensions of their native language based
on cues from all these representations.

The aim of this work is to provide a proof of
principle for this general scenario, using real size
corpora in two typologically different languages,
and state-of-the-art learning algorithms.

The paper is organized as follows. We begin
by describing how we generated the input and
how we modeled different levels of representation.
Then, we explain how information from the higher
levels (word forms and semantics) can be used to
refine the learning of the lower level (phonetic cat-
egories). Next, we present the results of our sim-
ulations and discuss the potential implications for
the language learning process.

2 Modeling the representations

Here, we describe how we model different levels
of representation (phonetic categories, lexicon and
semantics) starting from raw speech in English
and Japanese.

2.1 Corpus

We use two speech corpora: the Buckeye Speech
corpus (Pitt et al., 2007), which contains 40 hours
of spontaneous conversations in American En-
glish, and the 40 hours core of the Corpus of Spon-
taneous Japanese (Maekawa et al., 2000), which
contains spontaneous conversations and public
speeches in different fields, ranging from engi-
neering to humanities. Following Boruta (2012),
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we use an inventory of 25 phonemes for transcrib-
ing Japanese, and for English, we use the set of 45
phonemes in the phonemic transcription of Pitt et
al. (2007).

2.2 Phonetic categories
Here, we describe how we model the percep-
tual phonetic categories infants learn in a first
step before converging on the functional cate-
gories (phonemes). We make the assumption that
these initial categories correspond to fine grained
allophones, i.e., different systematic realizations
of phonemes, depending on context. Allophonic
variation can range from categorical effects due to
phonological rules to gradient effects due to coar-
ticulation, i.e, the phenomenon whereby adjacent
sounds affect the physical realization of a given
phoneme. An example of a rather categorical allo-
phonic rule is given by /r/ devoicing in French:

/r/→
{

[X] / before a voiceless obstruent
[K] elsewhere

Figure 1: Allophonic variation of French /r/

The phoneme /r/ surfaces as voiced ([K]) be-
fore a voiced obstruent like in [kanaK Zon] (“ca-
nard jaune”, yellow duck) and as voiceless ([X])
before a voiceless obstruent as in [kanaX puXpK]
(“canard pourpre”, purple duck). The challenge
facing the leaner is, therefore, to distinguish pairs
of segments that are in an allophonic relationship
([K], [X]) from pairs that are two distinct phonemes
and can carry a meaning difference ([K],[l]).

Previous work has generated allophonic varia-
tion artificially (Martin et al., 2013). Here, we fol-
low Fourtassi et al. (2014b) in using a linguisti-
cally and statistically controlled method, starting
from audio recordings and using a standard Hid-
den Markov Models (HMM) phone recognizer to
generate them, as follows.

We convert the raw speech waveform into suc-
cessive 10ms frames containing a vector of Mel
Frequency Cepstrum Coefficients (MFCC). We
use 12 MFC coefficients (plus the energy) com-
puted over a 25ms window, to which we add the
first and second order derivatives, yielding 39 di-
mensions per frame.

The HMM training starts with one three-state
model per phoneme. Each state is modeled by
a mixture of 17 diagonal Gaussians. After train-

ing, each phoneme model is cloned into context-
dependent triphone models, for each context in
which the phoneme actually occurs (for example,
the phoneme /A/ occurs in the context [d–A–g] as
in the word /dAg/ (“dog”). The triphone models
cloned from the phonemes are then retrained, but,
this time, only on the relevant subset of the data,
corresponding to the given triphone context. Fi-
nally, these detailed models are clustered back into
inventories of various sizes (from 2 to 20 times
the size of the phonemic inventory) and retrained.
Clustering is done state by state using a phonetic
feature-based decision tree, and results in tying
together the HMM states of linguistically simi-
lar triphones so as to maximize the likelihood of
the data. The HMM were built using the HMM
Toolkit (HTK: Young et al., 2006).

2.3 The proto-lexicon
Finding word boundaries in the continuous se-
quence of phones is part of the problem infants
have to solve without direct supervision. We
model this segmentation using a state-of-the-art
unsupervised word segmentation model based on
the Adaptor Grammar framework (Johnson et al.,
2007). The input consists of a phonetic transcrip-
tion of the corpus, with boundaries between words
eliminated (we vary this transcription to corre-
spond to different inventories with different granu-
larity in the allophonic representation as explained
above). The model tries to reconstruct the bound-
aries based on a Pitman-Yor process (Pitman and
Yor, 1997), which uses a language-general sta-
tistical learning process to find a compact rep-
resentation of the input. The algorithm stores
high frequency chunks and re-uses them to parse
novel utterances. We use a grammar which learns
a hierarchy of three levels of chunking and use
the intermediate level to correspond to the lexi-
cal level. This grammar was shown by Fourtassi
et al. (2013) to avoid both over-segmentation and
under-segmentation.

2.4 The proto-semantics
It has been shown that infants can keep track of co-
occurrence statistics (see Lany and Saffran (2013)
for a review). This ability can be used to develop a
sense of semantic similarity as suggested by Har-
ris (1954). The intuition behind the distributional
hypothesis is that words that are similar in mean-
ing occur in similar contexts. In order to model
the acquisition of this semantic similarity from a
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transcribed and segmented corpus, we use one of
the simplest and most commonly used distribu-
tional semantic models, Latent Semantic Analysis
(LSA: Landauer & Dumais, 1997). The LSA al-
gorithm takes as input a matrix consisting of rows
representing word types and columns represent-
ing contexts in which tokens of the word type oc-
cur. A context is defined as a fixed number of
utterances. Singular value decomposition (a kind
of matrix factorization) is used to extract a more
compact representation. The cosine of the angle
between vectors in the resulting space is used to
measure the semantic similarity between words.
Two words have a high semantic similarity if they
have similar distributions, i.e., if they co-occur in
most contexts. The model parameters, namely the
dimension of the semantic space and the number
of utterances to be taken as defining the context
of a given word form, are set in an unsupervised
way to optimize the latent structure of the seman-
tic model (Fourtassi and Dupoux, 2013). Thus, we
use 20 utterances as a semantic window and set the
semantic space to 100 dimensions.

3 Method

Here we explore whether the approximate high
level representations, built bottom-up and with-
out supervision, still contain useful information
one can use to refine the phonetic categories into
phoneme-like units. To this end, we extract po-
tential cues from the lexical and the semantic in-
formation, and test their performance in discrim-
inating allophonic contrasts from non-allophonic
(phonemic) contrasts.

3.1 Top down cues

3.1.1 Lexical cue
The top down information from the lexicon is
based on the insight of Martin et al. (2013). It rests
on the idea that true lexical minimal pairs are not
very frequent in human languages, as compared to
minimal pairs due to mere phonological processes
(figure 1). The latter creates alternants of the same
lexical item since adjacent sounds condition the
realization of the first and final phoneme. There-
fore, finding a minimal pair of words differing in
the first or last segment (as in [kanaX] and [kanaK])
is good evidence that these two phones ([K], [X])
are allophones of one another. Conversely, if a
pair of phones is not forming any minimal pair,
it is classified as non-allophonic (phonemic).

However, this binary strategy clearly gives rise
to false alarms in the (albeit relatively rare) case
of true minimal pairs like [kanaX] (“duck”) and
[kanal] (“canal”), where ([X], [l]) will be mis-
takenly labeled as allophonic. In order to miti-
gate the problem of false alarms, we use Boruta’s
continuous version (Boruta, 2011) and we define
the lexical cue of a pair of phones Lex(x, y) as
the number of lexical minimal pairs that vary on
the first segment (xA, yA) or the last segment
(Ax, Ay). The higher this number, the more the
pair of phones is likely to be considered as allo-
phonic.

The lexical cue is consistent with experimen-
tal findings. For example Feldman et al. (2013b)
showed that 8 month-old infants pay attention
to word level information, and demonstrated that
they do not discriminate between sound contrasts
that occur in minimal pairs (as suggested by our
cue), and, conversely, discriminate contrasts that
occur in non-minimal pairs.

3.1.2 Semantic cue

The semantic cue is based on the intuition that
true minimal pairs ([kanaX] and [kanal]) are asso-
ciated with different events, whereas alternants of
the same word ([kanaX] and [kanal]) are expected
to co-occur with similar events.

We operationalize the semantic cue associated
with a pair of phones Sem(x, y) as the average
semantic similarity between all the lexical mini-
mal pairs generated by this pair of phones. The
higher the average semantic similarity, the more
the learner is prone to classify them as allophonic.
We take as a measure of the semantic similar-
ity, the cosine of the angle between word vec-
tors of the pairs that vary on the final segment
cos(Âx, Ay) or the first segment cos(x̂A, yA).

This strategy is similar in principle to the phe-
nomenon of acquired distinctiveness, according
to which, pairing two target stimuli with distinct
events enhances their perceptual differentiation,
and acquired equivalence, whereby pairing two
target stimuli with the same event, impairs their
subsequent differentiation (Lawrence, 1949). In
the same vein, Yeung and Werker (2009) tested 9
month-olds english learning infants in a task that
consists in discriminating two non-native phonetic
categories. They found that infants succeeded only
when the categories co-occurred with two distinct
visual cues.
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— Segmentation Lexicon
— English Japanese English Japanese
Allo./phon. F P R F P R F P R F P R
2 0.61 0.57 0.65 0.45 0.44 0.47 0.29 0.42 0.22 0.23 0.54 0.15
4 0.52 0.46 0.59 0.38 0.34 0.43 0.22 0.37 0.15 0.16 0.50 0.10
10 0.51 0.45 0.59 0.34 0.30 0.38 0.21 0.34 0.16 0.16 0.41 0.10
20 0.42 0.38 0.47 0.28 0.26 0.32 0.21 0.29 0.17 0.16 0.32 0.10

Table 1 : Scores of the segmentation and the resulting lexicon, as a function of the average number of
allophones per phoneme. P=Precison, R=Recall and F=F-score.

3.1.3 Combined cue
Finally, we consider the combination of both cues
in one single cue where the contextual information
(semantics) is used as a weighing scheme of the
lexical information, as follows:

Comb(x, y) =
∑

(Ax,Ay)∈L2

cos(Âx, Ay) +
∑

(xA,yA)∈L2

cos(x̂A, yA)

(1)
where {Ax ∈ L} is the set of words in the lex-

icon L that end in the phone x, and {(Ax, Ay) ∈
L2} is the set of phonological minimal pairs in
L× L that vary on the final segment.

The lexical cue is incremented by one, for ev-
ery minimal pair. The combined cue is, instead,
incremented by one, times the cosine of the angle
between the word vectors of this pair. When the
words have similar distributions, the angle goes to
zero and the cosine goes to 1, and when the words
have orthogonal distributions, the angle goes to
90◦ and the cosine goes to 0.

The semantic information here would basically
enable us to avoid false alarms generated by poten-
tial true minimal pairs like the above-mentioned
example of ( [kanaX] and [kanal]). Such a pair will
probably score high as far as the lexical cue is con-
cerned, but it will score low on the semantic level.
Thus, by taking the combination, the model will
be less prone to mistakenly classify ([X], [l]) as al-
lophones.

3.2 Task

For each corpus we list all possible pairs of al-
lophones. Some of these pairs are allophones of
the same phoneme (allophonic pair) and others are
allophones of different phonemes (non-allophonic
pairs). The task is a same-different classification,
whereby each of these pairs is given a score from
the cue that is being tested. A good cue gives
higher scores to allophonic pairs.

Only pairs of phones that generate at least one
lexical minimal pair are considered. Phonetic vari-
ation that does not cause lexical variation is “in-
visible” to top down strategies, and is, therefore,
more probably clustered through purely bottom up
strategies (Fourtassi et al., 2014b)

3.3 Evaluation
We use the same evaluation procedure as Martin et
al. (2013). This is carried out by computing the as-
sociated ROC curve (varying the z-score threshold
and computing the resulting proportions of misses
and false alarms). We then derive the Area Under
the Curve (AUC), which also corresponds to the
probability that given two pairs of phones, one al-
lophonic, one not, they are correctly classified on
the basis of the score. A value of 0.5 represents
chance and a value of 1 represents perfect perfor-
mance.

In order to lessen the potential influence of the
structure of the corpus (mainly the order of the ut-
terances) on the results, we use a statistical resam-
pling scheme. The corpus is divided into small
blocks of 20 utterances each (the semantic win-
dow). In each run, we draw randomly with re-
placement from this set of blocks a sample of
the same size as the original corpus. This sam-
ple is then used to retrain the acoustic models and
generate a phonetic inventory that we used to re-
transcribe the corpus and re-compute the cues. We
report scores averaged over 5 such runs.

4 Results and discussion

4.1 Segmentation
We first explore how phonetic variation influences
the quality of the segmentation and the resulting
lexicon. For the evaluation, we use the same mea-
sures as Brent (1999) and Goldwater et al. (2009),
namely Segmentation Precision (P), Recall (R)
and F-score (F). Segmentation precision is defined
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as the number of correct word tokens found, out of
all tokens posited. Recall is the number of correct
word tokens found, out of all tokens in the ideal
segmentation. The F-score is defined as the har-
monic mean of Precision and Recall:

F =
2 ∗ P ∗R

P + R

We define similar measures for word types (lex-
icon). Table 1 shows the scores as a function of
the number of allophones per phonemes. For both
corpora, the segmentation performance decreases
as we increase the number of allophones. As for
the lexicon, the recall scores show that only 15
to 22% of the ’words’ found by the algorithm in
the English corpus are real words; in Japanese,
this number is even lower (between 10 and 15%).
This pattern can be attributed in part to the fact
that increasing the number of allophones increases
the number of word forms, which occur therefore
with less frequency, making the statistical learn-
ing harder. Table 2 shows the average number of
word forms per word as a function of the average
number of allophones per phoneme, in the case of
ideal segmentation.

Allo./Phon. W. forms/Word
— English Japanese
2 1.56 1.20
4 2.03 1.64
10 2.69 2.11
20 3.47 2.83

Table 2 : Average number of word-forms per
word as a function of the average number of

allophones per phoneme.

Another effect seen in Table 1 is the lower
overall performance of Japanese compared to En-
glish. This difference was shown by Fourtassi et
al. (2013) to be linked to the intrinsic segmenta-
tion ambiguity of Japanese, caused by the fact that
Japanese words contain more syllables compared
to English.

4.2 Allophonic vs phonemic status of sound
contrasts

Here we test the performance of the cues described
above, in discriminating between allophonic con-
trasts from phonemic ones. We vary the number
of allophones per phoneme, on the one hand (Fig-
ure 2a), and the amount of data available to the

learner, on the other hand, in the case of two allo-
phones per phonemes (Figure 2b). In both situa-
tions, we compare the case wherein the lexical and
semantic cues are computed on the output of the
unsupervised segmentation (right), to the control
case where these cues are computed on the ideally
segmented speech (left).

We see that the overall accuracy of the cues is
quite high, even in the case of bad word segmen-
tation and very small amount of data.

The lexical cue is robust to extreme variation
and to the scarcity of data. Indeed, it does not seem
to vary monotonically neither with the number of
allophones, nor with the size of the corpus. The as-
sociated f-score generally remains above the value
of 0.7 (chance level is 0.5). The semantics, on
the other hand, gets better as the variability de-
creases and as the amount of data increases. This
is a natural consequence of the fact that the se-
mantic structure is more accurate with more data
and with word forms consistent enough to sustain
a reasonable co-occurrence statistics.

The comparison with the ideal segmentation,
shows, interestingly, that the semantics is more ro-
bust to segmentation errors than the lexical cue. In
fact, while the lexical strategy performs, overall,
better than the semantics under the ideal segmen-
tation, the patterns reverses as we move to a a more
realistic (unsupervised) segmentation.

These results suggest that both lexical and se-
mantic strategies can be crucial to learning the
phonemic status of phonetic categories since they
provide non-redundant information. This finding
is summarized by the combined cue which resists
to both variation and segmentation errors, overall,
better than each of the cues taken alone.

From a developmental point of view, this shows
that infants can, in principle, benefit from higher
level linguistic structures to refine their phonetic
categories, even if these structures are rudimen-
tary. Previous studies about top down strategies
have mainly emphasized the role of word forms;
the results of this work show that the semantics
can be at least as useful. Note that the notion
of semantics used here is weaker than the clas-
sic notion of referential semantics as in a word-
concept matching. The latter might, indeed, not
be fully operative at the early stages of the child
development, since it requires some advanced con-
ceptual abilities (like forming symbolic represen-
tations and understanding a speaker’s referential

196



a)

Ideal Unsupervised

0.5

0.6

0.7

0.8

0.9

1.0

2 5 10 20 2 5 10 20

Allophones/Phoneme

A
U

C
English

Ideal Unsupervised

0.5

0.6

0.7

0.8

0.9

1.0

2 5 10 20 2 5 10 20

Allophones/Phoneme

A
U

C

Japanese

Cues

Lexical

Semantic

Combined

b)

Ideal Unsupervised

0.5

0.6

0.7

0.8

0.9

1.0

1 2 4 8 20 40 1 2 4 8 20 40

Size (in hours)

A
U

C

English
Ideal Unsupervised

0.5

0.6

0.7

0.8

0.9

1.0

1 2 4 8 20 40 1 2 4 8 20 40

Size (in hours)

A
U

C

Japanese

Cues

Lexical

Semantic

Combined

Figure 2: Same-different scores (AUC) for different cues as a function of the average number of allo-
phones per phoneme (a), and as a function of the size of the corpus, in the case of two allophones per
phonemes (b). The scores are shown for both ideal and unsupervised word segmentation in English and
Japanese. The points show the mean scores over 5 runs. The lines are smoothed interpolations (local
regressions) through the means. The grey band shows a 95% confidence interval.

intentions) (Waxman and Gelman, 2009). What
we call the “semantics” of a word in this study, is
the general context provided by the co-occurrence
with other words. Infants have been shown to have
a powerful mechanism for tracking co-occurrence
relationships both in the speech and the visual do-
main (Lany and Saffran, 2013) . Our experiments
demonstrate that a similar mechanism could be
enough to develop a sense of semantic similarity
that can successfully be used to refine phonetic
categories.

5 General discussion and future work

Phonemes are abstract categories that form the ba-
sis for words in the lexicon. There is a traditional
view that they should be defined by their ability to
contrast word meanings (Trubetzkoy, 1939). Their
full acquisition, therefore, requires lexical and se-
mantic top-down information. However, since the
quality of the semantic representations depends on
the quality of the phonemic representations that

are used to build the lexicon, we face a chicken-
and-egg problem. In this paper, we proposed a
way to break the circularity by building approxi-
mate representation at all the levels.

The infants’ initial attunement to language-
specific categories was represented in a way that
mirrors the linguistic and statistical properties of
the speech closely. We showed that this de-
tailed (proto-phonemic) inventory enabled word
segmentation from continuous transcribed speech,
but, as expected, resulted in a low quality lexicon.
The poorly segmented corpus was then used to de-
rive a semantic similarity matrix between pairs of
words, based on their co-occurrence statistics. The
results showed that information from the derived
lexicon and semantics, albeit very rudimentary,
help discriminate between allophonic and phone-
mic contrasts, with a high degree of accuracy.
Thus, this works strongly support the claim that
the lexicon and semantics play a role in the re-
finement of the phonemic inventory (Feldman et
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al., 2013a; Frank et al., 2014), and, interestingly,
that this role remains functional under more realis-
tic assumptions (unsupervised word segmentation,
and bottom-up inferred semantics). We also found
that lexical and semantic information were not re-
dundant and could be usefully combined, the for-
mer being more resistant to the scarcity of data
and variation, and the latter being more resistant
to segmentation errors.

That being said, this work relies on the assump-
tion that infants start with initial perceptual cate-
gories (allophones), but we did not show how such
categories could be constructed from raw speech.
More work is needed to explore the robustness of
the model when these units are learned in an unsu-
pervised fashion (Lee and Glass, 2012; Huijbregts
et al., 2011; Jansen and Church, 2011; Varadarajan
et al., 2008).

This work could be seen as a proof of princi-
ple for an iterative learning algorithm, whereby
phonemes emerge from the interaction of low level
perceptual categories, word forms, and the seman-
tics (see Werker and Curtin (2005) for a similar
theoretical proposition). The algorithm has yet to
be implemented, but it has to address at least two
major issues: First, the fact that some sound pairs
are not captured by top down cues because they
do not surface as minimal word forms. For in-
stance, in English, /h/ and /N/ occur in different
syllable positions and therefore, cannot appear in
any minimal pair. Second, even if we have enough
information about how phonetic categories are or-
ganized in the perceptual space, we still need to
know how many categories are relevant in a par-
ticular language (i.e., where to stop the categoriza-
tion process).

For the first problem, Fourtassi et al. (2014b)
showed that the gap could, in principle, be filled by
bottom-up information (like acoustic similarity).
As for the second problem, a possible direction
could be found in the notion of Self-Consistency.
In fact, (Fourtassi et al., 2014a) proposed that an
optimal level of clustering is also a level that glob-
ally optimizes the predictive power of the lexicon.
Too detailed allophones result in too many syn-
onyms. Too broad classes result in too many ho-
mophones. Somewhere in the middle, the optimal
number of phonemes optimizes how lexical items
predict each other. Future work will address these
issues in more detail in order to propose a com-
plete phoneme learning algorithm.
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