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Abstract

This paper presents a series of experiments
in applying compositional distributional
semantic models to dialogue act classifica-
tion. In contrast to the widely used bag-of-
words approach, we build the meaning of
an utterance from its parts by composing
the distributional word vectors using vec-
tor addition and multiplication. We inves-
tigate the contribution of word sequence,
dialogue act sequence, and distributional
information to the performance, and com-
pare with the current state of the art ap-
proaches. Our experiment suggests that
that distributional information is useful for
dialogue act tagging but that simple mod-
els of compositionality fail to capture cru-
cial information from word and utterance
sequence; more advanced approaches (e.g.
sequence- or grammar-driven, such as cat-
egorical, word vector composition) are re-
quired.

1 Introduction

One of the fundamental tasks in automatic dia-
logue processing is dialogue act tagging: labelling
each utterance with a tag relating to its function
in the dialogue and effect on the emerging con-
text: greeting, query, statement etc (see e.g. (Core,
1998)). Although factors such as intonation also
play a role (see e.g. (Jurafsky et al., 1998)), one
of the most important sources of information in
this task is the semantic meaning of an utterance,
and this is reflected in the fact that people use
similar words when they perform similar utterance
acts. For example, utterances which state opinion
(tagged sv in the standard DAMSL schema, see
below) often include words such as “I think”, “I
believe”, “I guess” etc. Hence, a similarity-based
model of meaning — for instance, a distributional

semantic model — should provide benefits over
a purely word-based model for dialogue act tag-
ging. However, since utterances generally con-
sist of more than one word, one has to be able
to extend such similarity-based models from sin-
gle words to sentences and/or complete utterances.
Hence, we consider here the application of compo-
sitional distributional semantics for this task.

Here, we extend bag-of-word models com-
mon in previous approaches (Serafin et al., 2003)
with simple compositional distributional opera-
tions (Mitchell and Lapata, 2008) and examine the
improvements gained. These improvements sug-
gest that distributional information does improve
performance, but that more sophisticated compo-
sitional operations such as matrix multiplication
(Baroni and Zamparelli, 2010; Grefenstette and
Sadrzadeh, 2011) should provide further benefits.

The state of the art is a supervised method
based on Recurrent Convolutional Neural Net-
works (Kalchbrenner and Blunsom, 2013). This
method learns both the sentence model and the
discourse model from the same training corpus,
making it hard to understand how much of the
contribution comes from the inclusion of distribu-
tional word meaning, and how much from learn-
ing patterns specific to the corpus at hand. Here,
in contrast, we use an external unlabeled resource
to obtain a model of word meaning, composing
words to obtain representations for utterances, and
rely on training data only for discourse learning
for the tagging task itself.

We proceed as follows. First, we discuss related
work by introducing distributional semantics and
describe common approaches for dialogue act tag-
ging in Section 2. Section 3 proposes several mod-
els for utterance representation based on the bag of
words approach and word vector composition. We
describe the experiment and discuss the result in
Section 4. Finally, Section 5 concludes the work.
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2 Related work

Distributional semantics The aim of natural
language semantics is to provide logical represen-
tations of meaning for information in textual form.
Distributional semantics is based on the idea that
“You shall know a word by the company it keeps”
(Firth, 1957) – in other words, the meaning of a
word is related to the contexts it appears in. Fol-
lowing this idea, word meaning can be represented
as a vector where its dimensions correspond to the
usage contexts, usually other words observed to
co-occur, and the values are the co-occurrence fre-
quencies. Such a meaning representation is easy
to build from raw data and does not need rich an-
notation.

Methods based on this distributional hypothe-
sis have recently been applied to many tasks, but
mostly at the word level: for instance, word sense
disambiguation (Zhitomirsky-Geffet and Dagan,
2009) and lexical substitution (Thater et al., 2010).
They exploit the notion of similarity which corre-
lates with the angle between word vectors (Turney
et al., 2010). Compositional distributional seman-
tics goes beyond the word level and models the
meaning of phrases or sentences based on their
parts. Mitchell and Lapata (2008) perform com-
position of word vectors using vector addition and
multiplication operations. The limitation of this
approach is the operator associativity, which ig-
nores the argument order, and thus word order. As
a result, “John loves Mary” and “Mary loves John”
get assigned the same meaning.

To capture word order, various approaches
have been proposed. Grefenstette and Sadrzadeh
(2011) extend the compositional approach by us-
ing non-associative linear algebra operators as
proposed in the theoretical work of (Coecke et
al., 2010). Socher et al. (2012) present a recur-
sive technique to build compositional meaning of
phrases from their constituents, where the non-
linear composition operators are learned by Neural
Networks.

Dialogue act tagging There are many ways to
approach the task of dialogue act tagging (Stol-
cke et al., 2000). The most successful approaches
combine intra-utterance features, such as the (se-
quences of) words and intonational contours used,
together with inter-utterance features, such as the
sequence of utterance tags being used previously.
To capture both of these aspects, sequence models

such as Hidden Markov Models are widely used
(Stolcke et al., 2000; Surendran and Levow, 2006).
The sequence of words is an observable variable,
while the sequence of dialogue act tags is a hidden
variable.

However, some approaches have shown com-
petitive results without exploiting features of inter-
utterance context. Webb et al. (2005) concentrate
only on features found inside an utterance, identi-
fying ngrams that correlate strongly with particu-
lar utterance tags, and propose a statistical model
for prediction which produces close to the state of
the art results.

The current state of the art (Kalchbrenner and
Blunsom, 2013) uses Recurrent Convolutional
Neural Networks to achieve high accuracy. This
model includes information about word identity,
intra-utterance word sequence, and inter-utterance
tag sequence, by using a vector space model of
words with a compositional approach. The words
vectors are not based on distributional frequencies
in this case, however, but on randomly initialised
vectors, with the model trained on a specific cor-
pus. This raises several questions: what is the con-
tribution of word sequence and/or utterance (tag)
sequence; and might further gains be made by ex-
ploiting the distributional hypothesis?

As our baseline, we start with an approach
which uses only word information, and excludes
word sequence, tag sequence and word distribu-
tions. Serafin et al. (2003) use Latent Semantic
Analysis for dialogue act tagging: utterances are
represented using a bag-of-words representation
in a word-document matrix. The rows in the ma-
trix correspond to words, the columns correspond
to documents and each cell in the matrix contains
the number of times a word occurs in a document.
Singular Value Decomposition (SVD) is then ap-
plied to reduce the number of rows in the matrix,
with the number of components in the reduced
space set to 50. To predict the tag of an unseen
utterance, the utterance vector is mapped to the re-
duced space and the tag of the closest neighbor is
assigned to it (using cosine similarity as a similar-
ity measure). The reported accuracy on the Span-
ish Call Home corpus for predicting 37 different
utterance tags is 65.36%.

3 Utterance models

In this paper, we investigate the extent to which
distributional representations, word order infor-
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mation, and utterance order information can im-
prove this basic model, by choosing different ways
to represent an utterance in a vector space. We de-
sign three basic models. The first model is based
directly on the bag-of-words model which serves
as the baseline in our experiment, following (Ser-
afin et al., 2003); and extends this to investigate the
effect of word order information by moving from
word unigrams to bigrams. The second model
investigates distributional information, by calcu-
lating word vector representations from a general
corpus, and obtaining utterance representations by
composing the word vectors using simple opera-
tors. The third model extends this idea to inves-
tigate the role of utterance order information, by
including the information about the previous ut-
terance.

Bag of words The first model represents an ut-
terance as a vector where each component corre-
sponds to a word. The values of vector compo-
nents are the number of times the corresponding
words occured in the utterance. The model is sim-
ilar to (Serafin et al., 2003), but the matrix is trans-
posed. We refer to it as bag of unigrams in Table 1.

However, this bag of words approach does not
preserve any word order information. As it has
been said previously, for the dialogue act tagging
word order may be crucial. Consider these utter-
ances:

• John, are there cookies

• John, there are cookies

One of the utterances is a question (or request)
while the other is a statement. However, the bag
of words model will extract the same vector repre-
sentation for both.

To overcome this problem we also represent an
utterance as a bag of bigrams. When bigrams are
used in place of single words, the utterance rep-
resentation will differ. The question contains the
bigram “are there”, while the statement contains
the bigram “there are”.

Simple composition Our second model ex-
ploits the distributional hypothesis, by represent-
ing words not as atomic types (i.e. individual di-
mensions in the utterance matrix, as above), but
as vectors encoding their observed co-occurrence
distributions. We estimate these from a large cor-
pus of general written English (the Google Books
Ngrams corpus – see below).

However, this raises the question of how to
compose these word vectors into a single repre-
sentation for an utterance. Various approaches to
compositional vector space modelling have been
successfully applied to capture the meaning of a
phrase in a range of tasks (Mitchell and Lapata,
2008; Grefenstette and Sadrzadeh, 2011; Socher
et al., 2013). In this work, we follow (Mitchell and
Lapata, 2008) and apply vector addition and point-
wise multiplication to obtain the vector of an ut-
terance from the words it consists of. This has the
advantage of simplicity and domain-generality, re-
quiring no sentence grammar (problematic for the
non-canonical language in dialogue) or training on
a specific corpus to obtain the appropriate compo-
sitionality operators or associative model; but has
the disadvantage of losing word order information.
The corresponding models are referred as addition
and multiplication in Table 1 and Table 2.

Previous utterance A conversation is a se-
quence of utterances, and the tag of an utter-
ance often depends on the previous utterance
(e.g. answers tend to follow questions). Hid-
den Markov Models (Surendran and Levow, 2006;
Stolcke et al., 2000) are often used to cap-
ture these dependencies; Recurrent Convolutional
Neural Networks (Kalchbrenner and Blunsom,
2013) have been used to simultaneously capture
the intra-utterance sequence of words and the
inter-utterance sequence of dialog tags in a con-
versation.

In this model, we are interested specifically in
the effect of inter-utterance (tag) sequence. We
provide previous addition and previous multipli-
cation models as simple attempts to capture this
phenomenon: the vector of an utterance is the con-
catenation of its vector obtained in the correspond-
ing compositional model (addition or multiplica-
tion) and the vector of the previous utterance.

4 Predicting dialogue acts

4.1 The resources

This section describes the resources we use to
evaluate and compare the proposed models.

Switchboard corpus The Switchboard corpus
(Godfrey et al., 1992) is a corpus of telephone con-
versations on selected topics. It consists of about
2500 conversations by 500 speakers from the U.S.
The conversations in the corpus are labeled with
42 unique dialogue act tags and split to 1115 train
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A o : Okay. /
A qw : {D So, }
B qyˆd: [ [I guess, +
A + : What kind of experience

[ do you, + do you ] have,
then with child care? /

B + : I think, ] + {F uh, }
I wonder if that worked. /

(a) A conversation with interrupted utterances.

A o : Okay.
A qw : So What kind of experience

do you do you have then
with child care?

B qyˆd: I guess I think uh I wonder
if that worked.

(b) A preprocessed conversation.

Figure 1: A example of interrupted utterances from Switchboard and their transformation.

and 19 test conversations (Jurafsky et al., 1997;
Stolcke et al., 2000).

In addition to the dialog act tags, utterances
interrupted by the other speaker (and thus split
into two or more parts) have their continuations
marked with a special tag “+”. Tag prediction of
one part of an interrupted utterance in isolation is
a difficult task even for a human; for example, it
would not be clear why the utterance “So,” should
be assigned the tag qw (wh-question) in Figure 1a
without the second part “What kind of experience
do you have [. . . ]”. Following (Webb et al., 2005)
we preprocess Switchboard by concatenating the
parts of an interrupted utterance together, giving
the result the tag of the first part and putting it in
its place in the conversation sequence. We also
remove commas and disfluency markers from the
raw text. Figure 1b illustrates the transformation
we do as preprocessing.

We split the utterances between training and
testing as suggested in (Stolcke et al., 2000).

Google Books Ngram Corpus The Google
Books Ngram Corpus (Lin et al., 2012) is a col-
lection of n-gram frequencies over books written
in 8 languages. The English part of the corpus is
based on more than 4.5 million books and contains
more than four thousand billion tokens. The re-
source provides frequencies of n-grams of length
1 to 5. For our experiments we use 5-grams from
the English part of the resource.

4.2 Word vector spaces
In distributional semantics, the meanings of words
are captured by a vector space model based on a
word co-occurrence matrix. Each row in the ma-
trix represents a target word, and each column rep-
resents a context word; each element in the matrix
is the number of times a target word co-occured
with a corresponding context word. The frequency
counts are typically normalized, or weighted us-
ing tf-idf or log-likelihood ratio to obtain better re-

sults, see (Mitchell and Lapata, 2008; Agirre et al.,
2009) for various approaches. It is also common
to apply dimensionality reduction to get higher
performance (Dinu and Lapata, 2010; Baroni and
Zamparelli, 2010).

As target words we select all the words in our
(Switchboard) training split. As context words
we choose the 3000 most frequent words in the
Google Ngram Corpus, excluding the 100 most
frequent. To obtain co-occurrence frequencies
from ngrams we sum up the frequency of a 5-gram
over the years, treat the word in the middle as a
target, and the other words as its contexts.

For normalization, we experiment with a vec-
tor space based on raw co-occurrences; a vector
space where frequencies are weighted using tf-idf;
and another one with the number of dimensions
reduced to 1000 using Non-negative Matrix Fac-
torization (NMF) (Hoyer, 2004).

We use the NMF and tf-idf implementations
provided by scikit-learn version 0.14 (Pe-
dregosa et al., 2011). For tf-idf, the term vectors
are L2 normalized. For NMF, NNDSVD initial-
ization (Boutsidis and Gallopoulos, 2008) is used,
and the tolerance value for stopping conditions is
set to 0.001. The co-occurrence matrix is line-
normalized, so the sum of the values in each row
is 1 before applying NMF.1

4.3 Evaluation
To evaluate these possible models we follow (Ser-
afin et al., 2003). Once we have applied a model
to extract features from utterances and build a vec-
tor space, the dimensionality of the vector space
is reduced using SVD to 50 dimensions. Then a
k-nearest neighbours (KNN) classifier is trained
and used for utterance tag prediction. In contrast
to (Serafin et al., 2003), we use Euclidean dis-
tance as a distance metric and choose the most

1The co-occurrence matrix and the information about the
software used in the experiment are available at

http://www.eecs.qmul.ac.uk/˜dm303/cvsc14.html
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Method Accuracy

(Kalchbrenner and Blunsom, 2013) 0.739
(Webb et al., 2005) 0.719
(Stolcke et al., 2000) 0.710
(Serafin et al., 2003) 0.654

Bag of unigrams 0.602
Bag of bigrams 0.621
Addition 0.639
Multiplication 0.572
Previous addition 0.569
Previous multiplication 0.497

Table 1: Comparison with previous work. Note
that (Serafin et al., 2003) do not use Switchboard
and therefore their results are not directly compa-
rable to others.

frequent label among the 5 closest neighbors.
The SVD and KNN classifier implementations in
scikit-learn are used.

Baseline In our experiments, the bag of uni-
grams model accuracy of 0.602 is lower than the
accuracy of 0.654 reported in (Serafin et al., 2003),
see Table 1. The lower performance may be due
to the differences between Switchboard and Call-
Home37 corpora, in particular the tag distribu-
tion.2 In CallHome37, 42.7% of utterances are la-
beled with the most frequent dialogue act, while
the figure in Switchboard is 31.5%; the more even
distribution in Switchboard is likely to make over-
all average accuracy levels lower.

Word order As Table 1 shows, the bag of bi-
grams model improves over unigrams. This con-
firms that word order provides important informa-
tion for predicting dialogue act tags.

Distributional models Performance of compo-
sitional distributional models depends both on
compositional operator and weighting. Table 2
demonstrates accuracy of the models. We instan-
tiate 3 vector spaces from Google Ngrams: one
space with raw co-occurrence frequencies, a tf-idf
weighted space and a reduced space using NMF.

Addition outperforms multiplication in our ex-
periments, although for other tasks multiplication
has been shown to perform better (Grefenstette
and Sadrzadeh, 2011; Mitchell and Lapata, 2008).
Lower multiplication performance here might be

2The CallHome37 corpus is not currently available to us.

Space

Model Raw tf-idf NMF

Addition without SVD 0.592
Addition 0.610 0.639 0.620
Multiplication 0.572 0.568 0.525
Previous addition 0.569
Previous multiplication 0.497

Table 2: Accuracy results for different composi-
tional models and vector spaces.

due to the fact that some utterances are rather long
(for example, more than 70 tokens), and the result-
ing vectors get many zero components.

Selection of the optimal weighting method
could be crucial for overall model performance.
The 3 weighting schemes we use give a broad va-
riety of results; more elaborate weighting and con-
text selection might give higher results.

Figure 2 illustrates dialog tag assignment us-
ing addition and the tf-idf weighted vector space.
As we do not use any inter-utterance features, the
first two statements, which consist only of the
word Okay, got assigned wrong tags. However,
the Wh-question in the conversation got classified
as a Yes-No-question, probably because what did
not influence the classification decision strongly
enough and could have been classified correctly
using only intra-utterance features. Also, the ex-
ample shows how important grammatical features
are: the verb think appears in many different con-
text, and its presence does not indicate a certain
type of an utterance.

In addition, we observed that SVD improves
classification accuracy. The accuracy of KNN
classification without prior dimensionality reduc-
tion drops from 0.610 to 0.592 for vector addition
on the raw vector space.

Utterance sequence To solve the issue of utter-
ances that can be tagged correctly only by consid-
ering inter-utterance features, we included previ-
ous utterance. However, in our experiment, such
inclusion by vector concatenation does not im-
prove tagging accuracy (Table 2). The reason for
this could be that after concatenation the dimen-
sionality of the space doubles, and SVD can not
handle it properly. We evaluated only dimension-
ally reduced spaces because of the memory limit.
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B ** (b) : Okay.
A bˆm (b) : Okay.
B qw (qy): Well what do you think about the idea of uh kids having to do public

service work for a year?
B qy (sd): Do you think it’s a <breathing>
A sv (sv): Well I I think it’s a pretty good idea.
A sv (sd): I think they should either do that or or afford some time to the military

or or helping elderly people.
B aa (aa): Yes
B aa (b) : yes
B % (%) : def
A sv (sv): I I you know I think that we have a bunch of elderly folks in the country

that could use some help

Figure 2: The beginning of the conversation 2151 from the test split of Switchboard. In brackets the
tags predicted using vector addition as a composition method on the tf-idf space are given. We mark
fo o fw " by bc as **.

Summary Our accuracy is lower compared to
other work. Webb et al. (2005)’s method, based
only on intra-utterance lexical features, but incor-
porating longer ngram sequences and feature se-
lection, yields accuracy of 0.719. Advanced treat-
ment of both utterance and discourse level features
yields accuracy of 0.739 (Kalchbrenner and Blun-
som, 2013). However, our experiments allow us to
evaluate the contribution of various kinds of infor-
mation: vector spaces based on word bigrams and
on co-occurrence distributions both outperformed
the bag of words approach; but incorporation of
previous utterance information did not.

5 Conclusions and future work

In this work we evaluated the contribution of
word and utterance sequence, and of distributional
information using simple compositional vector
space models, for dialogue act tagging. Our exper-
iments show that information about intra-utterance
word order (ngrams), and information about word
co-occurence distributions, outperforms the bag of
words models, although not competitive with the
state of the art given the simplistic compositional
approach used here. Information about utterance
tag sequence, on the other hand, did not.

The usage of an external, large scale resource
(here, the Google Ngram Corpus) to model word
senses improves the tagging accuracy in compari-
son to the bag of word model, suggesting that the
dialogue act tag of an utterance depends on its se-
mantics.

However, the improvements in performance of
the bag of bigrams model in comparison to bag of
unigrams, and the much higher results of Webb et
al. (2005)’s intra-utterance approach, suggest that

the sequence of words inside an utterance is cru-
cial for the dialogue act tagging task. This sug-
gests that our simplistic approaches to vector com-
position (addition and multiplication) are likely
to be insufficient: more advanced, sequence- or
grammar-driven composition, such as categorical
composition (Coecke et al., 2010), might improve
the tagging accuracy.

In addition, our results show that the perfor-
mance of distributional models depends on many
factors, including compositional operator selec-
tion and weighting of the initial co-occurrence ma-
trix. Our work leaves much scope for improve-
ments in these factors, including co-occurrence
matrix instantiation. For example, the window
size of 2, which we used to obtain co-occurrence
counts, is lower than the usual size of 5 (Dinu and
Lapata, 2010), or the sentence level (Baroni and
Zamparelli, 2010). Word representation in a vec-
tor space using neural networks might improve ac-
curacy as well (Mikolov et al., 2013).

Previous approaches to dialogue act tagging
have shown utterance/tag sequence to be a use-
ful source of information for improved accuracy
(Stolcke et al., 2000). We therefore conclude that
the lower accuracy we obtained using models that
include information about the previous utterance
is due again to our simplistic method of compo-
sition (vector concatenation); models which re-
flect dialogue structure or sequence explicitly are
likely to be more suited. Kalchbrenner and Blun-
som (2013) give one way in which this can be
achieved by learning from a specific corpus, and
the question of possible alternatives and more gen-
eral models remains for future research.
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