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Abstract

In this paper, we present our efforts towards
identifying probable incorrect edges and then
suggesting k-best alternates for the same in a
typed-dependency framework. Such a setup is
beneficial in human aided NLP systems where
the decisions are largely automated with min-
imal human intervention. Minimizing the hu-
man intervention calls for automatic identifica-
tion of ambiguous cases. We have employed an
entropy based confusion measure to capture un-
certainty exerted by the parser oracle and later
flag the highly uncertain predictions. To fur-
ther assist human decisions, k-best alternatives
are supplied in the order of their likelihood. Our
experiments, conducted for Hindi, establish the
effectiveness of the proposed approach towards
increasing the label accuracy with economically
viable manual intervention. This work leads to
new directions for parser development and also
in the human-aided NLP systems.

1 Introduction

Last decade has witnessed an increasing inter-
est in dependency-based syntactic analysis of sen-
tences (Tsarfaty et al., 2013). It is noticed that mor-
phologically rich and free word order languages are
better handled using the dependency based frame-
work than the constituency based one (Mel’čuk, 1988;
Bharati et al., 1995).

The fundamental notion of dependency is based
on the idea that the syntactic structure of a sen-
tence consists of binary asymmetrical relations be-
tween the words, termed as dependencies. In a typed
dependency framework, the relation between a pair of
words, is marked by a dependency label, where one
of the nodes is head and other is dependent (Tesnière

and Fourquet, 1959). Figure 1 shows an example sen-
tence from Hindi, along with syntactic relations and
dependency labels1 marked along the edges.

(( mohn n� )) (( lAl sAb� n s� )) (( ÜAn )) (( EkyA ))
Mohan Erg. red soap Inst. bath do

ROOT
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lwg pspnmod

Figure 1: Dependency Tree with Syntactic Relations
and Labels.

A major goal of dependency parsing research is to
develop quality parsers, which can provide reliable
syntactic analysis for various NLP applications such
as natural language generation (Koller and Striegnitz,
2002), machine translation (Ding and Palmer, 2004),
ontology construction (Snow et al., 2004), etc. De-
spite extensive advancements in parsing research, it is
observed that parsers perform clumsily when incorpo-
rated in NLP applications (Kolachina and Kolachina,
2012). The remedies addressing the shortcomings in
the past have adopted building further high quality
parsers with domain adaptations (Blitzer et al., 2006;
McClosky et al., 2006). However, it is practically im-
possible to account for all the domains and build an
ideal universal parser. This has been a major reason
for exploring Human Aided NLP systems which aims
at providing quality output with minimal human inter-
vention for crucial decisions.

The practical impact of parsing errors, at applica-
1k1: Doer, k3: Instrument, k7p: Place, pof: Part-of (complex

predicate), ccof: co-ordination and sub-ordination, nmod: Noun
Modifier, lwg psp: Local-word-group post-position
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tion’s end, may be more severe as depicted by the ac-
curacy of a parser. Popel (2011), in the context of ma-
chine translation, pointed out that an acutely incorrect
parse can degrade the quality of output.

In this paper, we explore human assisted automated
parsing, with human intervention limited to only those
cases which are difficult for the statistical model (ora-
cle) to disambiguate. Our focus has been to minimize
human intervention in terms of effort and time. The
scheme involves running a data driven dependency
parser and later involving a human validation step for
the probably incorrect decisions which are also iden-
tified and flagged by the system.

Minimizing the human intervention calls for auto-
matic identification of ambiguous cases. We have em-
ployed an entropy based confusion measure to capture
uncertainty exerted by the parser oracle and later flag
the highly uncertain predictions. To further assist hu-
man decision, we also provide k probable alternatives
in the order of their likelihood. In all, the approach
comprises of the following two steps:-

• Identification of probable incorrect predictions.
• Selection of k-best alternates.

2 Background and Motivation

We have worked with Hindi, a relatively free-word-
order and morphologically rich, Indo-Aryan lan-
guage. In previous attempts to parse Hindi(Ambati
et al., 2010), it has been observed that UAS2 is greater
than LS3 by ∼ 6%, which is reconfirmed by our base-
line parser (later described in Section 5) where UAS is
6.22% more than LS. The UAS in our baseline is well
above 90% (92.44%) while the LS is still 86.21%.
This drives us to focus on improving LS, to boost the
overall accuracy(LA4) of the parser.

Dependency annotation scheme followed in Hindi
Dependency Treebank (Bhatt et al., 2009) consists
tag-set of ∼ 95 dependency labels which is compar-
atively larger than the tag-set for other languages5,
like Arabic(∼ 10), English(∼ 55), German(∼ 45) etc.
This apparently is a major reason behind the observed
gap between LS and UAS for Hindi parsing. One of

2UAS = Unlabeled Attachment Score
3LS = Label Accuracy Score
4LA = Labeled Attachment Score
5As observed on the CoNLL-X and CoNLL2007 data for the

shared tasks on dependency parsing.

the frequent labeling errors that the parser makes is
observed to be between closely related dependency
tags, for eg. k7 (abstract location) and k7p (physical
location) are often interchangeably marked (Singla et
al., 2012). We have reasons to believe that such a deci-
sion is comparatively tougher for an automatic parser
to disambiguate than a human validator.

In the past, annotation process has benefited
from techniques like Active Learning(Osborne and
Baldridge, 2004) where unannotated instances ex-
hibiting high confusions can be prioritized for manual
annotation. However, in Active Learning, the anno-
tators or validators generally have no information
about the potentially wrong sub-parts of a parse and
thus full parse needs to be validated. Even if the the
annotators are guided to smaller components (as in
Sassano and Kurohashi (2010)), the potentially cor-
rect alternates are not endowed. In our approach the
validator is informed about the edges which are likely
to be incorrect and to further assist the correction k
best potential label-replacements are also furnished.
So, effectively just partial corrections are required
and only in worst case (when a correction triggers
correction for other nodes also) a full sentence needs
to be analyzed. The efforts saved in our process are
tough to be quantified, but the following example
provides a fair idea of efficacy of our proposition. In
figure 2, second parse has information of the probable
incorrect label and also has 2 options to correct the
incorrect label to guide a human validator.

(1) ...
...

j�lo\
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m�\
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sm-yA
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...

...
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j�lo\
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hl
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=⇒ krn�
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Figure 2: Example showing output from conventional
parser v/s output from our approach. Arc-label with
‘#’ represents incorrect arc label (confusion score >
θ) along with 2-best probable arc labels.
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3 Methodology

Recently there has been focus on the confidence esti-
mation of attachments and arc-labels of a dependency
parse. Mejer and Crammer (2012) have worked with
MSTParser (McDonald et al., 2005) to give confi-
dence scores for attachments while Jain and Agrawal
(2013) have worked with MaltParser (Nivre et al.,
2007) to render the confusion scores for arc-labels.
Since our focus is on arc-labels we follow the ap-
proach proposed in Jain and Agrawal (2013). They
captured the confusion exerted on the parser’s oracle
while predicting a parser action and propagated it to
the arc-label of the dependency tree. The quantifica-
tion of confusion is done by calculating entropy with
the class membership probabilities of the parser ac-
tions.

We obtained the confusion score for each arc-label
in our data. Next, we obtained a threshold (θ =
0.137) for which the maximum F1-score is observed
for incorrect label identification on the development
set(Figure 3). In figure 2, the edge with the label
‘ccof’ has been flagged (#) because the confusion
score is greater than θ, which signifies that it is proba-
bly incorrect. The proposition is indeed correct as the
correct label is ‘k7p’ instead of ‘ccof’.

The additional details about the correctness of an
arc-label, can duly indicate the cases where the prob-
ability of the arc-label to be incorrect is high. In our
efforts to minimize the human intervention, we pro-
pose to subject the reviewer only to the cases where
the confusion score is above θ. At this stage the re-
viewer will be required to judge if the flagged label
is indeed incorrect and if it is, then choose the corre-
sponding correct label among all the remaining labels.

To further assist human decision, we also provide
k probable alternatives in the order of their likelihood
as proposed by the oracle. The reason behind this hy-
pothesis is that it is likely that the correct label exists
among the top label candidates. This, potentially, can
give quick alternates to the reviewer for choosing the
correct label and thereby speedup the review process.

4 k-Best Dependency Labels for the Flagged
Arc-Labels

The likelihood of the arc-labels is obtained and ranked
using the following three strategies:-

• V oting: The list of predicted labels, using vot-
ing mechanism, is sorted in decreasing order of
number of votes, obtained during classification.
The label with maximum number of votes is
emitted as the resultant dependency label in the
output parse. Broadly, this can be viewed as pre-
dicting 1-best label using voting strategy which
can easily be extended to predict k-best labels.

• Probability: The calculation of confusion
scores demand for class membership probabili-
ties for arc-label (refer section 3). The posterior
probabilities for the candidate labels can also be
alternatively used to emit out the resultant depen-
dency label. Similar to voting scheme, the labels
are sorted in decreasing order of their probabili-
ties. The sorted list of predicated labels may dif-
fer from that of voting mechanism, which moti-
vate us to consider probability for choosing the
k-best dependency labels.

• V oting + Probability: A tie can occur be-
tween two or more labels in the list of k-best can-
didate labels if their votes/posterior probabilities
are same. However, the phenomenon is unlikely
in case of probabilities due to the real valued
nature calculated up-to 10 decimal places. On
the other hand votes are integer-values ({0, ...,
nC2}, where n is number of labels) and are much
more susceptible to ties. The tie in voting can
be resolved using complement information from
probabilities (and vice-versa).

5 Experiments

In our experiments, we focus on correctly establish-
ing dependency relations between the chunk6 heads
which we henceforth refer as inter-chunk parsing. The
relations between the tokens of a chunk (intra-chunk
dependencies) are not considered for experimentation.
The decision is driven by the fact that the intra-chunk
dependencies can easily be predicated automatically
using a finite set of rules (Kosaraju et al., 2012).
Moreover we also observed the high learnability of
intra-chunk relations from a pilot experiment. We
found the accuracies of intra-chunk dependencies to

6A chunk is a set of adjacent words which are in dependency
relation with each other, and are connected to the rest of the words
by a single incoming arc.
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Figure 3: Precision, Recall and F1-score for vari-
ous values of confusion score on ‘Hindi’ development
set.

be more than 99.00% for both LA and UAS.

Each experiment assumes the availability of a hu-
man expert for validation of the machine parsed data,
who, when queried for a potential incorrect edge label,
responds with the correct edge label. The experiments
aim to measure the assistance provided to human ex-
pert by our approach. We varied the list of k-best la-
bels from k=1 to k=5.

We setup a baseline parser on the lines of Singla et
al. (2012) with minor modifications in the parser fea-
ture model. We employ MaltParser version-1.7 and
Nivre’s Arc Eager algorithm for all our experiments
reported in this work. All the results reported for over-
all parsing accuracy are evaluated using eval07.pl7.
We use MTPIL (Sharma et al., 2012) dependency
parsing shared task data. Among the features avail-
able in the FEATS column of the CoNLL format data,
we only consider Tense, Aspect, Modality (tam), post-
positions(vib) and chunkId while training the baseline
parser. Other columns like POS, LEMMA, etc. are
used as such.

In case of typed-dependency parsing, the accuracy
can be LA, UAS or LS. However, in our case, we are
focusing on the correct prediction of arc-labels, the
results are on LS. In terms of strategies mentioned in
Section 4, baseline system is generated using Voting
strategy with k = 1. The LS is 86.21% as shown in
Table 1.

7http://nextens.uvt.nl/depparse-wiki/SoftwarePage/#eval07.pl

6 Evaluation and Discussion

The evaluation of an interactive parse correction is a
complicated task due to intricate cognitive, physical
and conditional factors associated with a human anno-
tator. Since a human may not match the consistency
of a machine, we have to resort to few compelling as-
sumptions which would give an idea of the approxi-
mate benefit from our proposed approach. We have
assumed a perfect human oracle who always identi-
fies incorrect label and picks the correct label from
the available k-best list, if correct label is present in
the list. The simulation of the perfect human oracle is
done using the gold annotation. It is also assumed that
the decision of the correct label can be taken with the
information of local context and the whole sentence
is not reviewed(which is not always true in case of a
human annotator). This gives the upper bound of the
accuracies that can be reached with our approach. The
validation of the results obtained by automatic evalu-
ation is done by performing a separate human evalua-
tion for 100 nodes with the highest confusion score.

In our dataset, we found ∼23% (4, 902 edges) of
total (21, 165) edges having confusion score above θ
and thus marked as potentially incorrect arc-labels.
Table 1 exhibits LS improved by perfect human or-
acle, for k-best experiments where k=1 to 5 on ∼23%
potentially incorrect identified arc-labels.

k Voting(%) Probability(%) Voting+Probability(%)
1 86.21 86.35 86.28
2 90.86 90.96 90.91
3 92.13 92.24 92.18
4 92.72 92.86 92.74
5 92.97 93.16 93.04

Table 1: k-Best improved LS on inspecting ∼23% (>
θ) edges.

Table 1 also depicts that as the value of k increases,
the label accuracy also increases. The best results are
obtained for Probability scheme. There is a substan-
tial increment in LS moving from 1-best to 2-best in
all the schemes. The amount of gain, however, de-
creases with increase in k.

Ideally to achieve maximum possible LS, all the
edges should be reviewed. Table 2 confirms that if all
the edges are reviewed, an LS of 93.18% to 96.57% is
achievable for k, ranging over 2 to 5. But practically
this would be too costly in terms of time and effort. In
order to economize, we wish to only review the cases
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k Voting(%) Probability(%) Voting+Probability(%)
1 86.21 86.35 86.28
2 93.19 93.18 93.26
3 95.10 95.11 95.14
4 95.94 96.06 95.97
5 96.41 96.57 96.49

Table 2: k-Best improved LS on inspecting 100% edges.

which are probable enough to be incorrect. Confusion
scores give a prioritized list of edges, which dictates
the cases that should be dispatched first for review.
To relate the review cost against LS gain we present a
metric AGIx defined as:-

AGIx :“Accuracy Gain on Inspecting top x%
edges” corresponds to the ratio of accuracy gain from
baseline by inspecting top x% of total edges, when
sorted in decreasing order of their confusion score.
The metric takes into account the human effort that
goes into validation or revision, and thus gives a bet-
ter overview of ROI(Return on Investment).

AGIx =
Accuracy after validating top x% edges − Baseline accuracy

x

From Table 1 and Table 2 we observe for k = 2 and
probability scheme that the improved LSs are 90.96%
and 93.18% on inspecting 23% and 100% edges re-
spectively. Although the latter is greater than former
by ∼ 2% but this additional increment requires an
extra inspection of additional ∼77% edges, which is
economically inviable. The fact is better captured in
Table 3, where AGI23 subdues AGI100 for different
values of k using different ‘schemes’.

Further to incorporate the fact that ‘larger the can-
didate list more will be the human efforts required to
pick the correct label’, we also present the results of
AGIx/k, which can govern the choice of k, best suited
in practice. While taking this into account, we assume
that the human efforts are inversely proportional to k.
Results for AGI23/k on improved LS, over all the ex-
periments are reported in Table 4.

As shown in Table 3, AGI23 increases with increase
in the value of k, but it is practically inefficient to keep
large value of k. Optimum choice of k is observed to
be 2 from the metric AGIx/k, as shown in Table 4,
where the maximum value for AGI23/k is ∼ 0.10 for
all the ‘schemes’, which corresponds k = 2.

Voting Probability Voting+Probability
k AGI23 AGI100 AGI23 AGI100 AGI23 AGI100
1 0.0000 0.0000 0.0060 0.0014 0.0030 0.0007
2 0.2008 0.0698 0.2051 0.0697 0.2029 0.0705
3 0.2556 0.0889 0.2604 0.0890 0.2578 0.0893
4 0.2811 0.0973 0.2871 0.0985 0.2820 0.0976
5 0.2919 0.1020 0.3001 0.1036 0.2949 0.1028

Table 3: AGI23 and AGI100 for k=1 to 5

AGI23/k AGI23/k AGI23/k
k (Voting) (Probability) (Voting+Probability)
1 0.0000 0.0060 0.0030
2 0.1004 0.1025 0.1015
3 0.0852 0.0868 0.0859
4 0.0703 0.0718 0.0705
5 0.0584 0.0600 0.0590

Table 4: AGI23/k for k=1 to 5

From the above analysis, we can establish that with
2 probable alternatives, a perfect human oracle can
increase the LS by 4.61%, inspecting top ∼ 23%
of total edges. The corresponding LA increase is
4.14%(earlier 83.39% to now 87.53%).

The validation of the observation is done by a hu-
man expert who confirmed of the assistance from the
above methodology over the default procedure. He
was given with 2-best alternatives for the top 100
edges that are obtained using probability scheme. The
LS gain on his evaluation is approximately 10% which
matches the expected gain.

7 Conclusion

In this paper we explored the possibility of human in-
tervention to achieve higher accuracies in parsing. A
major hurdle in the process is to effectively utilize the
valuable human resources. We employed an entropy
based confusion measure to capture uncertainty ex-
erted by the parser oracle and later flag the highly un-
certain labels. We further asserted that with 2 proba-
ble alternatives, a human expert can increase the label
accuracy by 4.61%, inspecting ∼ 23% of total edges.
In future we would also like to study the effectiveness
of our approach on attachment validation in parsing.
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Hajič. 2005. Non-projective dependency parsing using
spanning tree algorithms. In Proceedings of the con-
ference on Human Language Technology and Empirical
Methods in Natural Language Processing, pages 523–
530. Association for Computational Linguistics.

Sambhav Jain and Bhasha Agrawal. 2013. A dynamic
confusion score for dependency arc labels. In Proceed-
ings of the Sixth International Joint Conference on Nat-
ural Language Processing, pages 1237–1242, Nagoya,
Japan, October. Asian Federation of Natural Language
Processing.

Sudheer Kolachina and Prasanth Kolachina. 2012. Pars-
ing any domain english text to conll dependencies. In
LREC, pages 3873–3880.

Yuan Ding and Martha Palmer. 2004. Synchronous de-
pendency insertion grammars: A grammar formalism
for syntax based statistical mt. In Workshop on Recent
Advances in Dependency Grammars (COLING), pages
90–97.

146


