
Improving a symbolic parser through partially supervised learning

Éric Villemonte de la Clergerie
INRIA - Rocquencourt - B.P. 105

78153 Le Chesnay Cedex, FRANCE
Eric.De_La_Clergerie@inria.fr

Abstract

Recently, several statistical parsers have been
trained and evaluated on the dependency version
of the French TreeBank (FTB). However, older
symbolic parsers still exist, including FRMG, a
wide coverage TAG parser. It is interesting to
compare these different parsers, based on very
different approaches, and explore the possibili-
ties of hybridization. In particular, we explore
the use of partially supervised learning tech-
niques to improve the performances of FRMG
to the levels reached by the statistical parsers.

1 Introduction

Most stochastic parsers are trained and evaluated on
the same source treebank (for instance the Penn Tree-
Bank), which, by definition, avoid all problems re-
lated to differences between the structures returned by
the parsers and those present in the treebank. Some
symbolic or hybrid parsers are evaluated on a treebank
specifically designed for their underlying formalism,
possibly by converting and hand-correcting the tree-
bank from some other annotation scheme (as done
in (Hockenmaier and Steedman, 2007)). Besides the
cost of the operation, an issue concerns the compar-
ison with other parsers. By contrast, the most prob-
lematic case remains the evaluation of a parser on an
unrelated treebank and scheme (Sagae et al., 2008).

This situation arose for French with the recent
emergence of several statistical parsers trained and
evaluated on the French TreeBank (FTB) (Abeillé et
al., 2003), in particular under its dependency version
(Candito et al., 2010b) represented in CONLL for-
mat (Nivre et al., 2007). On the other hand, older
parsing systems still exist for French, most of them

not based on statistical approaches and not related to
FTB. For instance, FRMG is a wide coverage sym-
bolic parser for French (de La Clergerie, 2005), based
on Tree Adjoining Grammars (TAGs), that has already
participated in several parsing campaigns for French.
It was important to be able to compare it with statisti-
cal parsers on their native treebank, but also possibly
to extend the comparison for other treebanks.

A first necessary step in this direction was a conver-
sion from FRMG’s native dependency scheme into
FTB’s dependency scheme, a tedious task highlight-
ing the differences in design at all levels (segmen-
tation, parts of speech, representation of the syntac-
tic phenomena, etc.). A preliminary evaluation has
shown that accuracy is good, but largely below the
scores reached by the statistical parsers.

A challenge was then to explore if training on the
FTB could be used to improve the accuracy of a
symbolic parser like FRMG. However, the main dif-
ficulty arises from the fact that FTB’s dependency
scheme has little in common with FRMG’s under-
lying grammar, and that no reverse conversion from
FTB to FRMG structures is available. Such a conver-
sion could be investigated but would surely be diffi-
cult to develop. Instead, we tried to exploit directly
FTB data, using only very minimal assumptions, nev-
ertheless leading to important gains and results close
to those obtained by the statistical parsers. The in-
terest is that the technique should be easily adaptable
for training data with different annotation schemes.
Furthermore, our motivation was not just to improve
the performances on the FTB and for the annotation
scheme of FTB, for instance by training a reranker (as
often done for domain adaptation), but to exploit the
FTB to achieve global improvement over all kinds of
corpora and for FRMG native annotation scheme.

54

Section 2 provides some background about FRMG.
We expose in Section 3 how partially supervised
learning may be used to improve its performances.
Section 4 briefly presents the French TreeBank and
several other corpora used for training and evaluation.
Evaluation results are presented and discussed in Sec-
tion 5 with a preliminary analysis of the differences
between FRMG and the other statistical parsers.

2 FRMG, a symbolic TAG grammar

FRMG (de La Clergerie, 2005) denotes (a) a French
meta-grammar; (b) a TAG grammar (Joshi et al.,
1975) generated from the meta-grammar; and (c) a
chart-like parser compiled from the grammar. As a
parser, FRMG parses DAGs of words, built with SX-
PIPE (Sagot and Boullier, 2008), keeping all potential
segmentation ambiguities and with no prior tagging.
The parser tries to get full parses covering the whole
sentence, possibly relaxing some constraints (such as
number agreement between a subject and its verb); if
not possible, it switches to a robust mode looking for
a sequence of partial parses to cover the sentence.

All answers are returned as shared TAG deriva-
tion forests, which are then converted into depen-
dency shared forests, using the anchors of the elemen-
tary trees as sources and targets of the dependencies.
Some elementary trees being not anchored, pseudo
empty words are introduced to serve as source or tar-
get nodes. However, in most cases, by a simple trans-
formation, it is possible to reroot all edges related to
these pseudo anchors to one of their lexical child.

Finally, the dependency forests are disambiguated
using heuristic rules to get a tree. The local
edge rules assign a positive or negative weight
to an edge e, given information provided by e
(form/lemma/category/. . . for the source and target
nodes, edge label and type, anchored trees, . . .), by
neighbouring edges, and, sometimes, by competing
edges. A few other regional rules assign a weight to a
governor node G, given a set of children edges form-
ing a valid derivation from G. The disambiguation
algorithm uses dynamic programming techniques to
sum the weights and to return the best (possibly non-
projective) dependency tree, with maximal weight.

Several conversion schemes may be applied on
FRMG’s native dependency trees. A recent one re-
turns dependency structures following the annotation

scheme used by the dependency version of the French
TreeBank and represented using the column-based
CONLL format (Nivre et al., 2007). The conver-
sion process relies on a 2-stage transformation system,
with constraints on edges used to handle non-local
edge propagation, as formalized in (Ribeyre et al.,
2012). Figure 1 illustrates the native FRMG’s depen-
dency structure (top) and, on the lower side, its con-
version to FTB’s dependency scheme (bottom). One
may observe differences between the two dependency
trees, in particular with a (non-local) displacement of
the root node. It may be noted that FTB’s scheme only
considers projective trees, but that the conversion pro-
cess is not perfect and may return non projective trees,
as shown in Figure 1 for the p_obj edge.

Let’s also mention an older conversion pro-
cess from FRMG dependency scheme to
the EASy/Passage scheme, an hybrid con-
stituency/dependency annotation scheme used
for the first French parsing evaluation campaigns
(Paroubek et al., 2009). This scheme is based on a set
of 6 kinds of chunks and 14 kinds of dependencies.

3 Partially supervised learning

The set of weights attached to the rules may be seen as
a statistical model, initially tailored by hand, through
trials. It is tempting to use training data, provided by
a treebank, and machine learning techniques to im-
prove this model. However, in our case, the “anno-
tation schemes” for the training data (FTB) and for
FRMG are distinct. In other words, the training de-
pendency trees cannot be immediately used as oracles
as done in most supervised learning approaches, in-
cluding well-known perceptron ones. Still, even par-
tial information extracted from the training data may
help, using partially supervised learning techniques.

Figure 2 shows the resulting process flow. Learn-
ing is done, using the disambiguated dependency
trees produced by FRMG on training sentences, with
(partial) information about the discarded alternatives.
The resulting statistical model may then be used to
guide disambiguation, and be improved through itera-
tions. Actually, this simple process may be completed
with the construction and use of (imperfect) oracles
adapted to FRMG. The learning component can pro-
duce such an oracle but can also exploit it. Even bet-
ter, the oracle can be directly used to guide the disam-

55

par qui a -t-elle voulu que ces deux livres et ce DVD lui soient rendus _ ?
by whom did she want that these two books and this DVD to-her be returned _ ?

prep pri aux cln v que det adj nc coo det nc cld aux v S _
P PRO V CL V C D A N C D N CL V V PONCT

preparg

N2
Infl

subject

S

csu
det

N

subject

N2 det
coord3 preparg

Infl S2 void

root

p_obj

obj

aux_tps

suj

root

obj

det

mod

suj

coord det

dep_coord a_obj

aux_pass

obj

ponct

Figure 1: Sample of disambiguated FRMG output, without conversion (top) and with FTB conversion (bottom)

biguation process. Again, by iterating the process, one
can hopefully get an excellent oracle for the learning
component, useful to get better models.

model

oracle

train parsing disamb learning

Figure 2: Parsing and partially supervised learning with
imperfect oracles

The minimal information we have at the level of
a word w is the knowledge that the its incoming de-
pendency d proposed by conversion is correct or not,
leading to 4 situations as summarized in Table 1.

d is correct d is not correct
selected D favor r penalize r′

competitor D′ penalize r′ ??

Table 1: Handling weight updates for rules

For the FTB conversion, when d is correct, we can
generally assume that the FRMG incoming depen-
dency D for w is also correct and that disambigua-
tion is correct in selecting D. We can then con-
sider than any edge disambiguation rule r applicable
on D should then be favored by (slightly) increas-

ing its weight and rules applying on competitors of
D should see their weight decrease (to reinforce the
non-selection of D).

On the other hand, when d is not correct, we should
penalize the rules r applying on D and try to favor
some competitor D′ of D (and favor the rules r′ ap-
plying to D′). However, we do not know which com-
petitor should be selected, except in cases where there
is only one possible choice. By default, we assume
that all competitors have equal chance to be the correct
choice and favor/penalize in proportion their rules. If
we have n competitors, we can say that it is a bad
choice not to keep D′ in 1

n cases (and should favor
rules r′) and it is a bad choice to keep D′ in n−1

n
cases (and should penalize rules r′). So, practically,
the dependency D′ falling in the problematic case is
distributed between the keep/bad case (with weight 1

n
) and the discard/bad case (with weight n−1n). These
proportions may be altered if we have more precise
information about the competitors, provided by an or-
acle (as hinted in Figure 2), weights, ranks, or other el-
ements. For instance, if we known that d is not correct
but has the right dependency label or the right gover-
nor, we use this piece of information to discard some
competitors and rerank the remaining ones.

Of course, the update strategy for the problem-
atic case will fail in several occasions. For instance,
maybe D is the right FRMG dependency to keep, but
the conversion process is incorrect and produces a bad

56

FTB dependency d. Maybe FRMG is incomplete and
has no correct source dependency D. Finally, maybe
d (with target word w) derives from some source de-
pendency Dw′ for some other target word w′. We as-
sume that these cases remain limited and that improv-
ing edge selection for the easy cases will then guide
edge selection for the more complex cases.

The learning algorithm could be used online, ad-
justing the weights when processing a sentence. How-
ever, we have only implemented an offline version
where the weights are updated after considering all
training sentences (but discarding some long sen-
tences and sentences with low accuracy scores).

More formally, given the parses for the training sen-
tences, for any edge disambiguation rule r and value
tuple v for a feature template f , we compute the num-
ber nr,f=v of occurrences of r in context f = v, and
keepokr,f=v the number of occurrences where the edge
was selected and it was a correct choice. Similarly,
but taking into account the above-mentioned redis-
tribution, we compute discardokr,f=v, keepbadr,f=v, and
discardbadr,f=v.

These figures are used to compute an adjustment
δr,f=v added to the base weight wr of r for context
f = v, using Eq (1), where θ denotes a temperature:

(1) δr,f=v = θ.ar,f=v.

{
discardbadr,f=v if ar,f=v > 0

keepbadr,f=v otherwise

The ar,f=v factor is related to the direction and
force of the expected change1, being positive when se-
lecting an edge thanks to r tends to be a good choice,
and negative otherwise (when the edge should rather
be discarded), as expressed in the following formula:

ar,f=v =
keepok

keepok + keepbad
− discardok

discardok + discardbad

The last factor in Eq (1) is the number of edges
whose status (selected or discarded) should ideally
change.

The process is iterated, reducing the temperature at
each step, and we keep the best run. At each iteration,
the edges found to be correctly kept or discarded are
added to an oracle for the next iteration.

1It may be noted that the interpretation of ar,f=v may some-
times be unclear, when both keepok

r,f=v and discardok
r,f=v are low

(i.e., when neither keeping or discarding the corresponding edges
is a good choice). We believe that these cases signal problems in
the conversion process or the grammar.

We use standard features such as form, lemma, pos,
suffixes, sub-categorization information, morphosyn-
tactic features, anchored TAG trees for words (depen-
dency heads and targets, plus adjacent words); and de-
pendency distances, direction, type, label, and rank
for the current dependency and possibly for its par-
ent. For smoothing and out-of-domain adaptation, we
add a cluster feature attached to forms and extracted
from a large raw textual corpus using Brown cluster-
ing (Liang, 2005). It may noted that the name of a
disambiguation rule may be considered as the value
of a rule feature. Each feature template includes the
label and type for the current FRMG dependency.

It seems possible to extend the proposed learning
mechanism to adjust the weight of the regional rules
by considering (second-order) features over pairs of
adjacent sibling edges (for a same derivation). How-
ever, preliminary experiments have shown an explo-
sion of the number of such pairs, and no real gain.

4 The corpora

The learning method was tried on the French Tree-
Bank(Abeillé et al., 2003), a journalistic corpus of
12,351 sentences, annotated in morphology and con-
stituency with the Penn TreeBank format, and then
automatically converted into projective dependency
trees, represented in the CONLL format (Candito et
al., 2010a). For training and benchmarking, the tree-
bank is split into three parts, as summarized in Table 2.

Cover. Time (s)
Corpus #sent. (%) Avg Median

FTB train 9,881 95.9 1.04 0.26
FTB dev 1,235 96.1 0.88 0.30
FTB test 1,235 94.9 0.85 0.30

Sequoia 3,204 95.1 1.53 0.17
EASyDev 3,879 87.2 0.87 0.14

Table 2: General information on FTB and other corpora

To analyze the evolution of the performances, we
also consider two other corpora. The Sequoia corpus
(Candito and Seddah, 2012) also uses the FTB depen-
dency scheme (at least for its version 3), but covers
several styles of documents (medical, encyclopedic,
journalistic, and transcription of political discourses).
The EASyDev corpus also covers various styles (jour-
nalistic, literacy, medical, mail, speech, . . .), but was

57

annotated following the EASy/Passage scheme for
evaluation campaigns (Paroubek et al., 2006).

Table 2 shows that coverage (by full parses) is high
for all corpora (slightly lower for EASyDev because
of the mail and speech sub-corpora). Average time
per sentence is relatively high but, as suggested by the
much lower median times, this is largely due to a few
long sentences and due to a large timeout.

5 Results and discussions

Table 3 shows evaluation results for different versions
of FRMG on each corpus. On FTB and Sequoia, we
use Labelled Attachment Scores (LAS) without tak-
ing into account punctuation, and, on EASyDev, F1-
measure on the dependencies2. The init system corre-
sponds to a baseline version of FRMG with a basic set
of rules and hand-tailored weights. The +restr version
of FRMG adds restriction rules, exploiting attach-
ment preferences and word (semantic) similarities ex-
tracted from a very large corpus parsed with FRMG,
using Harris distributional hypothesis3. This version
shows that unsurpervised learning methods already
improve significantly the performances of a symbolic
parser like FRMG for all corpora. The +tuning ver-
sion of FRMG keeps the restriction rules and adds
the partially supervised learning method. We observe
large improvements on the FTB dev and test parts (be-
tween 4 and 5 points), but also on Sequoia (almost 3
points) on different styles of documents. We also get
similar gains on EASyDev, again for a large diversity
of styles, and, more interestingly, for a different anno-
tation scheme and evaluation metric.

The bottom part of Table 3 lists the accuracy of
3 statistical parsers on FTB as reported in (Candito
et al., 2010b). The Berkeley parser (BKY) is a
constituent-based parser whose parses are then con-
verted into FTB dependencies (using the same tool
used to convert the FTB). MALT parser is a greedy
transition-based parser while MST (maximum span-
ning tree) globally extracts the best dependency tree
from all possible ones. We see that FRMG (with tun-

2F1-measures on chunks are less informative.
3We used a 700Mwords corpus composed of AFP news,

French Wikipedia, French Wikisource, etc.. The attachment
weights are used for handling PP attachments over verbs, nouns,
adjectives, but also for relatives over antecedents, or for filling
some roles (subject, object, attribute). Similarities between words
are used for handling coordination.

FTB other corpora
system train dev test Sequoia EASy

init 79.95 80.85 82.08 81.13 65.92
+restr 80.67 81.72 83.01 81.72 66.33
+tuning 86.60 85.98 87.17 84.56 69.23

BKY – 86.50 86.80 – –
MALT – 86.90 87.30 – –
MST – 87.50 88.20 – –

Table 3: Performances of various systems on French data

system emea-test ftb-test loss

BKY (evalb) 80.80 86.00 5.20
FRMG+tuning (LAS) 84.13 87.17 3.04

Table 4: Evolution for an out-of-domain medical corpus

ing) is better than BKY on the test part (but not on
the dev part), close to MALT, and still below MST.
Clearly, tuning allows FRMG to be more competitive
with statistical parsers even on their native treebank.

We do not have results for the 3 statistical parsers
on the Sequoia corpus. However, (Candito and Sed-
dah, 2012) reports some results for Berkeley parser
on constituents for the medical part of Sequoia, listed
in Table 4. The metrics differ, but we observe a loss
of 5.2 for BKY and only of 3.04 for FRMG, which
tends to confirm the stability of FRMG across do-
mains, possibly due to the constraints of its underlying
linguistically-motivated grammar (even if we observe
some over-fitting on FTB).

Figure 3 shows the evolution of accuracy on the 3
components of FTB during the learning iterations. We
observe that learning is fast with a very strong increase
at the first iteration, and a peak generally reached at
iterations 3 or 4. As mentioned in Section 3, rule
names may be seen as feature values and it is possi-
ble to discard them, using only a single dummy rule.
This dummy edge rule checks nothing on the edges
but only acts as a default value for the rule feature.
However, old experiments showed a LAS on FTB dev
of 84.31% keeping only a dummy rule and of 85.00%
with all rules, which seems to confirm the (global) per-
tinence of the hand-crafted disambiguation rules. In-
deed, these rules are able to consult additional infor-
mation (about adjacent edges and alternative edges)

58

not available through the other features. 4

As suggested in Figure 2, the oracle built by the
learning component on FTB train may be used dur-
ing disambiguation (on FTB train) by setting a very
high weight for the edges in the oracle and a very low
weight for the others. The disambiguation process is
then strongly encouraged to select the edges of the or-
acle (when possible). Iterating the process, we reach
an accuracy of 89.35% on FTB train, an interesting
first step in direction of a FRMG version of the FTB5.

0 2 4 6 8

82

84

86

iteration

L
A

S
(%

)

train
dev
test

Figure 3: LAS evolution on FTB train per iteration

One reason still explaining the differences between
FRMG and the statistical parsers arises from the con-
version process to FTB annotation scheme being not
perfect. For instance, FRMG and FTB do not use the
same list of multi-word expressions, leading to prob-
lems of mapping between words and of dependency
attachments, in particular for complex prepositions
and conjunctions. The segmenter SXPIPE also recog-
nizes named entities such as Communauté européenne
(European Community), 5 millions, or Mardi prochain
(next Tuesday) as single terms whereas FTB adds in-
ternal dependencies for these expressions. During the
conversion phase, most of the missing dependencies
are added leading to an accuracy of 75.38% on the
specific dependencies in FTB train (around 3.5% of
all dependencies), still largely below the global accu-
racy (86.6%). There are also 1259 sentences in FTB
train (12.7%) where FRMG produces non-projective
trees when FTB expects projective ones.6

4However, it is clear that some disambiguation rules are re-
dundant with the other features and could be discarded.

5The problem is that the treebank would have to be re-
generated to follow the evolution of FRMG.

6It does not mean that so many FRMG trees are non-
projective, just that the conversion builds non-projective trees, be-
cause of edge movement. A quick investigation has shown that
many cases were related to punctuation attachment.

Then, following (McDonald and Nivre, 2007), we
tried to compare the performance of FRMG, MST,
and MALT with respect to several properties of the de-
pendencies. Figure 4(a) compares the recall and preci-
sion of the systems w.r.t. the distance of the dependen-
cies (with, in background, the number of gold depen-
dencies). We observe that all systems have very close
recall scores for small distances, then MST is slightly
better, and, at long distance, both MST and MALT are
better. On the other hand, FRMG has a much better
precision than MALT for long distance dependencies.
One may note the specific case of null distance de-
pendencies actually corresponding to root nodes, with
lower precision for FRMG. This drop corresponds to
the extra root nodes added by FRMG in robust mode
when covering a sentence with partial parses.

As shown in Figure 4(b), the recall curves w.r.t.
dependency depths are relatively close, with FRMG
slightly below for intermediate depths and slightly
above for large depths. Again, we observe a preci-
sion drop for root nodes (depth=0) which disappears
when discarding the sentences in robust mode.

In Figure 4(c), we get again a lower recall for large
numbers of sibling edges with, surprisingly, a much
higher precision for the same values.

Figure 4(d) compares recall and precision w.r.t. de-
pendency rank7, with again the lower precision due to
the extra root nodes (rank=0) and again a lower recall
and higher precision for large absolute ranks.

More generally, FRMG tends to behave like MST
rather than like MALT. We hypothesize that it reflects
than both systems share a more global view of the de-
pendencies, in particular thanks to the domain locality
provided by TAGs for FRMG.

Figure 5 shows recall wrt some of the dependency
labels. The most striking point is the weak recall
for coordination by all systems but, nevertheless, the
better score of FRMG. We observe a lower recall
of FRMG for some verbal prepositional arguments
(a_obj, de_obj) that may be confused with verb
modifiers or attached to a noun or some other verb.
Verbal modifiers (mod), a category covering many dif-
ferent syntactic phenomena, seem also difficult, partly
due to the handling of prepositional attachments. On

7defined as the number of siblings (plus 1) between a depen-
dant and its head, counted positively rightward and negatively
leftward.

59

distance

re
ca

ll
(%

)

102

103

104

0 5 10 15

60

80

100
FRMG
MST
MALT

distance

pr
ec

is
io

n
(%

)

0 5 10 15

60

80

100
FRMG
MST
MALT

(a) w.r.t. dependency distance

depth

re
ca

ll
(%

)

102

103

0 2 4 6 8 10 12

80

90

100

FRMG MST MALT

depth

pr
ec

is
io

n
(%

)

0 2 4 6 8 10 12

80

85

90

95

100

FRMG MST MALT

(b) w.r.t. dependency depth

#siblings

re
ca

ll
(%

)

103

104

0 2 4 6 8 10 12
60

70

80

90

100
FRMG MST MALT

#siblings

pr
ec

is
io

n
(%

)
0 2 4 6 8 10 12

70

80

90

100
FRMG MST MALT

(c) w.r.t. number of siblings

rank

re
ca

ll
(%

)

102

103

104

−6 −4 −2 0 2 4 6

40

60

80

100

FRMG
MST
MALT

rank

pr
ec

is
io

n
(%

)

−6 −4 −2 0 2 4 6

40

60

80

100

FRMG
MST
MALT

(d) w.r.t. dependency rank

Figure 4: System comparison

60

50 60 70 80 90

root

suj

deobj

aobj

ats

mod

det

coord

1,235

2,017

288

360

345

7,645

5,195

832

recall (%)

la
be

ls FRMG

MST

MALT

Figure 5: System comparison w.r.t. dependency labels

the other hand, FRMG has a better recall for subjects,
possibly because the grammar accepts a large range of
positions and realization for subjects.

6 Conclusion

We have presented a new partially supervised learn-
ing approach exploiting the information of a train-
ing treebank for tuning the disambiguation process of
FRMG, a symbolic TAG-based parser. Even consid-
ering minimal assumptions for transferring oracle in-
formation from the training treebank, we strongly im-
prove accuracy, allowing FRMG to be on par with
statistical parsers on their native treebank, namely the
French TreeBank. Even if the gains are important,
several extensions of the learning algorithm have still
to be explored, in particular to build and exploit better
oracles, and to incorporate more higher order features,
such as sibling features.

The approach explored in this paper, even if tried
in the specific context of FRMG, is susceptible to be
adapted for other similar contexts, in particular when
some imperfect annotation conversion process takes
place between a disambiguation process and a training
treebank. However, some work remains be done to get
a better characterization of the learning algorithm, for
instance w.r.t. perceptrons.

We are aware that some of the data collected by the
learning algorithm could be used to track problems

either in the conversion process or in FRMG gram-
mar (by exploring the cases where neither selecting
or discarding an edge seems to be a good choice).
We would like to fix these problems, even if most of
them seem to have very low frequencies. The con-
version process could also be improved by allowing
some non-deterministic choices, again controlled by
probabilistic features. However, it is not yet clear how
we can couple learning for the disambiguation process
and learning for the conversion process.

More investigations and comparisons are
needed, but some hints suggest that an underly-
ing linguistically-motivated grammar ensures a better
robustness w.r.t. document styles and domains. On
the other hand, the evaluation shows that the choices
made in FRMG to handle lack of full coverage using
partial parses should be improved, maybe by using
some guiding information provided by a statistical
parser to handle the problematic areas in a sentence.

References
Anne Abeillé, Lionel Clément, and François Toussenel.

2003. Building a treebank for French. In Anne Abeillé,
editor, Treebanks. Kluwer, Dordrecht.

Marie Candito and Djamé Seddah. 2012. Le corpus
sequoia: annotation syntaxique et exploitation pour
l’adaptation d’analyseur par pont lexical. In TALN
2012-19e conférence sur le Traitement Automatique des
Langues Naturelles.

Marie Candito, Benoît Crabbé, and Pascal Denis. 2010a.
Statistical french dependency parsing: treebank con-
version and first results. In Proceedings of the
7th Language Resources and Evaluation Conference
(LREC’10), La Valette, Malte.

Marie Candito, Joakim Nivre, Pascal Denis, and Enrique
Henestroza Anguiano. 2010b. Benchmarking of statis-
tical dependency parsers for french. In Proceedings of
COLING’2010 (poster session), Beijing, China.

Éric de La Clergerie. 2005. From metagrammars to fac-
torized TAG/TIG parsers. In Proceedings of IWPT’05
(poster), pages 190–191, Vancouver, Canada.

Julia Hockenmaier and Mark Steedman. 2007. CCGbank:
A corpus of CCG derivations and dependency structures
extracted from the penn treebank. Computational Lin-
guistics, 33(3):355–396.

Aravind K. Joshi, Leon Levy, and Makoto Takahashi.
1975. Tree Adjunct Grammars. Journal of Computer
and System Science 10, 10(1):136–163.

61

Percy Liang. 2005. Semi-supervised learning for natu-
ral language. Master’s thesis, Massachusetts Institute of
Technology.

Ryan T. McDonald and Joakim Nivre. 2007. Characteriz-
ing the errors of data-driven dependency parsing models.
In EMNLP-CoNLL, pages 122–131.

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan McDonald,
Jens Nilsson, Sebastian Riedel, and Deniz Yuret. 2007.
The CoNLL 2007 shared task on dependency parsing.
In The CoNLL 2007 shared task on dependency parsing.

Patrick Paroubek, Isabelle Robba, Anne Vilnat, and Chris-
telle Ayache. 2006. Data, Annotations and Measures in
EASy, the Evaluation Campaign for Parsers of French.
In Proceedings of the 5th international conference on
Language Resources and Evaluation (LREC’06), Gênes,
Italie.

Patrick Paroubek, Éric Villemonte de la Clergerie, Sylvain
Loiseau, Anne Vilnat, and Gil Francopoulo. 2009. The
PASSAGE syntactic representation. In 7th International
Workshop on Treebanks and Linguistic Theories (TLT7),
Groningen, January.

Corentin Ribeyre, Djamé Seddah, and Éric Villemonte De
La Clergerie. 2012. A Linguistically-motivated 2-stage
Tree to Graph Transformation. In Chung-Hye Han and
Giorgio Satta, editors, TAG+11 - The 11th International
Workshop on Tree Adjoining Grammars and Related
Formalisms - 2012, Paris, France. INRIA.

K. Sagae, Y. Miyao, T. Matsuzaki, and J. Tsujii. 2008.
Challenges in mapping of syntactic representations for
framework-independent parser evaluation. In Proceed-
ings of the Workshop on Automated Syntatic Annotations
for Interoperable Language Resources at the First Inter-
national Conference on Global Interoperability for Lan-
guage Resources (ICGL’08), Hong-Kong, January.

Benoît Sagot and Pierre Boullier. 2008. SXPIPE 2 : ar-
chitecture pour le traitement présyntaxique de corpus
bruts. Traitement Automatique des Langues (T.A.L.),
49(2):155–188.

62

On Different Approaches to Syntactic Analysis Into Bi-Lexical Dependencies
An Empirical Comparison of Direct, PCFG-Based, and HPSG-Based Parsers

Angelina Ivanova♠, Stephan Oepen♠♥, Rebecca Dridan♠, Dan Flickinger♣, and Lilja Øvrelid♠

♠ University of Oslo, Department of Informatics
♥ Potsdam University, Department of Linguistics

♣ Stanford University, Center for the Study of Language and Information

{angelii |oe |rdridan |liljao}@ifi.uio.no, danf@stanford.edu

Abstract
We compare three different approaches to pars-
ing into syntactic, bi-lexical dependencies for
English: a ‘direct’ data-driven dependency
parser, a statistical phrase structure parser, and a
hybrid, ‘deep’ grammar-driven parser. The anal-
yses from the latter two are post-converted to bi-
lexical dependencies. Through this ‘reduction’
of all three approaches to syntactic dependency
parsers, we determine empirically what perfor-
mance can be obtained for a common set of de-
pendency types for English, across a broad va-
riety of domains. In doing so, we observe what
trade-offs apply along three dimensions, accu-
racy, efficiency, and resilience to domain vari-
ation. Our results suggest that the hand-built
grammar in one of our parsers helps in both ac-
curacy and cross-domain performance.

1 Motivation
Bi-lexical dependencies, i.e. binary head–argument
relations holding exclusively between lexical units,
are widely considered an attractive target representa-
tion for syntactic analysis. At the same time, Cer et
al. (2010) and Foster et al. (2011), inter alios, have
demonstrated that higher dependency accuracies can
be obtained by parsing into a phrase structure rep-
resentation first, and then reducing parse trees into
bi-lexical dependencies.1 Thus, if one is willing to
accept pure syntactic dependencies as a viable inter-
face (and evaluation) representation, an experimental
setup like the one of Cer et al. (2010) allows the ex-
act experimental comparison of quite different parsing
approaches.2 Existing such studies to date are lim-

1This conversion from one representation of syntax to an-
other is lossy, in the sense of discarding constituency information,
hence we consider it a reduction in linguistic detail.

2In contrast, much earlier work on cross-framework compari-
son involved post-processing parser outputs in form and content,
into a target representation for which gold-standard annotations
were available. In § 2 below, we argue that such conversion in-
evitably introduces blur into the comparison.

ited to purely data-driven (or statistical) parsers, i.e.
systems where linguistic knowledge is exclusively ac-
quired through supervised machine learning from an-
notated training data. For English, the venerable Wall
Street Journal (WSJ) portion of the Penn Treebank
(PTB; Marcus et al., 1993) has been the predominant
source of training data, for phrase structure and de-
pendency parsers alike.

Two recent developments make it possible to
broaden the range of parsing approaches that can be
assessed empirically on the task of deriving bi-lexical
syntactic dependencies. Flickinger et al. (2012) make
available another annotation layer over the same WSJ
text, ‘deep’ syntacto-semantic analyses in the linguis-
tic framework of Head-Driven Phrase Structure Gram-
mar (HPSG; Pollard & Sag, 1994; Flickinger, 2000).
This resource, dubbed DeepBank, is available since
late 2012. For the type of HPSG analyses recorded
in DeepBank, Zhang and Wang (2009) and Ivanova
et al. (2012) define a reduction into bi-lexical syn-
tactic dependencies, which they call Derivation Tree-
Derived Dependencies (DT). Through application of
the converter of Ivanova et al. (2012) to DeepBank,
we can thus obtain a DT-annotated version of the stan-
dard WSJ text, to train and test a data-driven depen-
dency and phrase structure parser, respectively, and to
compare parsing results to a hybrid, grammar-driven
HPSG parser. Furthermore, we can draw on a set
of additional corpora annotated in the same HPSG
format (and thus amenable to conversion for both
phrase structure and dependency parsing), instantiat-
ing a comparatively diverse range of domains and gen-
res (Oepen et al., 2004). Adding this data to our setup
for additional cross-domain testing, we seek to doc-
ument not only what trade-offs apply in terms of de-
pendency accuracy vs. parser efficiency, but also how
these trade-offs are affected by domain and genre vari-
ation, and, more generally, how resilient the different
approaches are to variation in parser inputs.

63

2 Related Work

Comparing between parsers from different frame-
works has long been an area of active interest, rang-
ing from the original PARSEVAL design (Black et al.,
1991), to evaluation against ‘formalism-independent’
dependency banks (King et al., 2003; Briscoe &
Carroll, 2006), to dedicated workshops (Bos et al.,
2008). Grammatical Relations (GRs; Briscoe & Car-
roll, 2006) have been the target of a number of bench-
marks, but they require a heuristic mapping from
‘native’ parser outputs to the target representations
for evaluation, which makes results hard to interpret.
Clark and Curran (2007) established an upper bound
by running the mapping process on gold-standard
data, to put into perspective the mapped results from
their CCG parser proper. When Miyao et al. (2007)
carried out the same experiment for a number of dif-
ferent parsers, they showed that the loss of accuracy
due to the mapping process can swamp any actual
parser differences. As long as heuristic conversion
is required before evaluation, cross-framework com-
parison inevitably includes a level of fuzziness. An
alternative approach is possible when there is enough
data available in a particular representation, and con-
version (if any) is deterministic. Cer et al. (2010)
used Stanford Dependencies (de Marneffe & Man-
ning, 2008) to evaluate a range of statistical parsers.
Pre- or post-converting from PTB phrase structure
trees to the Stanford dependency scheme, they were
able to evaluate a large number of different parsers.

Fowler and Penn (2010) formally proved that a
range of Combinatory Categorial Grammars (CCGs)
are context-free. They trained the PCFG Berkeley
parser on CCGBank, the CCG annotation of the PTB
WSJ text (Hockenmaier & Steedman, 2007), advanc-
ing the state of the art in terms of supertagging ac-
curacy, PARSEVAL measures, and CCG dependency
accuracy. In other words, a specialized CCG parser
is not necessarily more accurate than the general-
purpose Berkeley parser; this study, however, fails to
also take parser efficiency into account.

In related work for Dutch, Plank and van Noord
(2010) suggest that, intuitively, one should expected
that a grammar-driven system can be more resiliant
to domain shifts than a purely data-driven parser. In
a contrastive study on parsing into Dutch syntactic
dependencies, they substantiated this expectation by

showing that their HPSG-based Alpino system per-
formed better and was more resilient to domain varia-
tion than data-driven direct dependency parsers.

3 Background: Experimental Setup

In the following, we summarize data and software re-
sources used in our experiments. We also give a brief
introduction to the DT syntactic dependency scheme
and a comparison to ‘mainstream’ representations.

DeepBank HPSG analyses in DeepBank are man-
ually selected from the set of parses licensed by the
English Resource Grammar (ERG; Flickinger, 2000).
Figure 1 shows an example ERG derivation tree,
where labels of internal nodes name HPSG construc-
tions (e.g. subject–head or head–complement: sb-
hd_mc_c and hd-cmp_u_c, respectively; see below
for more details on unary rules). Preterminals are
labeled with fine-grained lexical categories, dubbed
ERG lexical types, that augment common parts of
speech with additional information, for example argu-
ment structure or the distinction between count, mass,
and proper nouns. In total, the ERG distinguishes
about 250 construction types and 1000 lexical types.

DeepBank annotations were created by combin-
ing the native ERG parser, dubbed PET (Callmeier,
2002), with a discriminant-based tree selection tool
(Carter, 1997; Oepen et al., 2004), thus making it pos-
sible for annotators to navigate the large space of pos-
sible analyses efficiently, identify and validate the in-
tended reading, and record its full HPSG analysis in
the treebank. Owing to this setup, DeepBank in its
current version 1.0 lacks analyses for some 15 percent
of the WSJ sentences, for which either the ERG parser
failed to suggest a set of candidates (within certain
bounds on time and memory usage), or the annotators
found none of the available parses acceptable.3 Fur-
thermore, DeepBank annotations to date only com-
prise the first 21 sections of the PTB WSJ corpus.
Following the splits suggested by the DeepBank de-
velopers, we train on Sections 0–19, use Section 20
for tuning, and test against Section 21 (abbreviated as
WSJ below).4

3Thus, limitations in the current ERG and PET effectively lead
to the exclusion of a tangible percentage of sentences from our
training and testing corpora. We discuss methodological ramifi-
cations of this setup to our study in § 9 below.

4To ‘protect’ Section 21 as unseen test data, also for the ERG
parser, this final section in Version 1.0 of DeepBank was not ex-

64

sb-hd_mc_c

hdn_bnp-pn_c

aj-hdn_norm_c

n-nh_v-cpd_c

w_hyphen_plr

n_-_pn_le

Sun-

v_pas_odlr

v_np_noger_le

filled

n_sg_ilr

n_-_pn_le

Mountain View

hd-cmp_u_c

v_vp_did-n_le

didn’t

hd-cmp_u_c

v_n3s-bse_ilr

v_np*_le

impress

hdn_bnp-qnt_c

w_period_plr

n_-_pr-me_le

me.

Figure 1: Sample HPSG derivation: construction identifiers label internal nodes, lexical types the preterminals.

Sun- filled Mountain View didn’t impress me.
n_-_pn_le v_np_noger_le n_-_pn_le v_vp_did-n_le v_np*_le n_-_pr-me_le

root

sb-hdaj-hdnn-nh hd-cmp hd-cmp

Figure 2: Sample DT bi-lexical dependencies: construction identifiers are generalized at the first underscore.

DT Dependencies As ERG derivations are
grounded in a formal theory of grammar that explic-
itly marks heads, mapping these trees onto bi-lexical
dependencies is straightforward (Zhang & Wang,
2009). Ivanova et al. (2012) coin the term DT for
ERG Derivation Tree-Derived Dependencies, where
they reduce the inventory of some 250 ERG syntactic
rules to 48 broad HPSG constructions. The DT
syntactic dependency tree for our running example is
shown in Figure 2.

To better understand the nature of the DT scheme,
Ivanova et al. (2012) offer a quantitative, structural
comparison against two pre-existing dependency stan-
dards for English, viz. those from the CoNLL de-
pendency parsing competitions (Nivre et al., 2007)
and the ‘basic’ variant of Stanford Dependencies.
They observe that the three dependency representa-
tions are broadly comparable in granularity and that
there are substantial structural correspondences be-
tween the schemes. Measured as average Jaccard sim-
ilarity over unlabeled dependencies, they observe the
strongest correspondence between DT and CoNLL (at
a Jaccard index of 0.49, compared to 0.32 for DT and
Stanford, and 0.43 between CoNLL and Stanford).

posed to its developers until the grammar and disambiguation
model were finalized and frozen for this release.

Ivanova et al. (2013) complement this comparison
of dependency schemes through an empirical asses-
ment in terms of ‘parsability’, i.e. accuracy levels
available for the different target representations when
training and testing a range of state-of-the-art parsers
on the same data sets. In their study, the dependency
parser of Bohnet and Nivre (2012), henceforth B&N,
consistently performs best for all schemes and output
configurations. Furthermore, parsability differences
between the representations are generally very small.

Based on these observations, we conjecture that DT
is as suitable a target representation for parser compar-
ison as any of the others. Furthermore, two linguistic
factors add to the attractiveness of DT for our study:
it is defined in terms of a formal (and implemented)
theory of grammar; and it makes available more fine-
grained lexical categories, ERG lexical types, than is
common in PTB-derived dependency banks.

Cross-Domain Test Data Another benefit of the
DT target representation is the availability of com-
paratively large and diverse samples of additional test
data. The ERG Redwoods Treebank (Oepen et al.,
2004) is similar in genealogy and format to Deep-
Bank, comprising corpora from various domains and
genres. Although Redwoods counts a total of some
400,000 annotated tokens, we only draw on it for addi-

65

Name Sentences Tokens Types

D
ee

pB
an

k Train 33,783 661,451 56,582
Tune 1,721 34,063 8,964
WSJ 1,414 27, 515 7,668

R
ed

w
oo

ds CB 608 11,653 3,588
SC 864 13,696 4,925
VM 993 7,281 1,007
WS 520 8,701 2,974

Table 1: Sentence, token, and type counts for data sets.

tional testing data. In other words, we do not attempt
parser re-training or adaptation against this additional
data, but rather test our WSJ-trained parsers on out-of-
domain samples from Redwoods. We report on four
such test corpora, viz. (a) a software advocacy essay,
The Cathedral and the Bazaar (CB); (b) a subset of
the SemCor portion of the Brown Corpus (SC; Francis
& Kucera, 1982); (c) a collection of transcribed, task-
oriented spoken dialogues (VM; Wahlster, 2000); and
(d) part of the Wikipedia-derived WeScience Corpus
(WS; Ytrestøl et al., 2009). Table 1 provides exact
sentence, token, and type counts for these data sets.

Tokenization Conventions A relevant peculiarity
of the DeepBank and Redwoods annotations in this
context is the ERG approach to tokenization. Three
aspects in Figure 1 deviate from the widely used PTB
conventions: (a) hyphens (and slashes) introduce to-
ken boundaries; (b) whitespace in multi-word lexical
units (like ad hoc, of course, or Mountain View) does
not force token boundaries; and (c) punctuation marks
are attached as ‘pseudo-affixes’ to adjacent words, re-
flecting the rules of standard orthography. Adolphs et
al. (2008) offer some linguistic arguments for this ap-
proach to tokenization, but for our purposes it suffices
to note that these differences to PTB tokenization may
in part counter-balance each other, but do increase the
types-per-tokens ratio somewhat. This property of the
DeepBank annotations, arguably, makes English look
somewhat similar to languages with moderate inflec-
tional morphology. To take advantage of the fine-
grained ERG lexical categories, most of our experi-
ments assume ERG tokenization. In two calibration
experiments, however, we also investigate the effects
of tokenization differences on our parser comparison.

PET: Native HPSG Parsing The parser most com-
monly used with the ERG is called PET (Callmeier,
2002), a highly engineered chart parser for unification
grammars. PET constructs a complete parse forest,

using subsumption-based ambiguity factoring (Oepen
& Carroll, 2000), and then extracts from the forest
n-best lists of complete analyses according to a dis-
criminative parse ranking model (Zhang et al., 2007).
For our experiments, we trained the parse ranker on
Sections 00–19 of DeepBank and otherwise used the
default configuration (which corresponds to the envi-
ronment used by the DeepBank and Redwoods devel-
opers), which is optimized for accuracy. This parser,
performing exact inference, we will call ERGa.

In recent work, Dridan (2013) augments ERG pars-
ing with lattice-based sequence labeling over lexi-
cal types and lexical rules. Pruning the parse chart
prior to forest construction yields greatly improved
efficiency at a moderate accuracy loss. Her lexical
pruning model is trained on DeepBank 00–19 too,
hence compatible with our setup. We include the best-
performing configuration of Dridan (2013) in our ex-
periments, a variant henceforth referred to as ERGe.
Unlike the other parsers in our study, PET internally
operates over an ambiguous token lattice, and there is
no easy interface to feed the parser pre-tokenized in-
puts. We approximate the effects of gold-standard to-
kenization by requesting from the parser a 2000-best
list, which we filter for the top-ranked analysis whose
leaves match the treebank tokenization. This approach
is imperfect, as in some cases no token-compatible
analysis may be on the n-best list, especially so in
the ERGe setup (where lexical items may have been
pruned by the sequence-labeling model). When this
happens, we fall back to the top-ranked analysis and
adjust our evaluation metrics to robustly deal with to-
kenization mismatches (see below).

B&N: Direct Dependency Parsing The parser of
Bohnet and Nivre (2012), henceforth B&N, is a
transition-based dependency parser with joint tag-
ger that implements global learning and a beam
search for non-projective labeled dependency parsing.
This parser consistently outperforms pipeline systems
(such as the Malt and MST parsers) both in terms of
tagging and parsing accuracy for typologically diverse
languages such as Chinese, English, and German. We
apply B&N mostly ‘out-of-the-box’, training on the
DT conversion of DeepBank Sections 00–19, and run-
ning the parser with an increased beam size of 80.

Berkeley: PCFG Parsing The Berkeley parser
(Petrov et al., 2006; henceforth just Berkeley) is a gen-

66

Unary Rules Preserved Unary Rules Removed
Labels Long Short Mixed Long Short
Cycles 5 6 5 6 5 6 5 6 5 6
Gaps 2 5 0 0 11 19 3 3 0 0
TA 90.96 90.62 91.11 91.62 90.93 90.94 88.46 87.65 89.16 88.46
F1 76.39 75.66 79.81 80.33 76.70 76.74 74.53 73.72 75.15 73.56

LAS 86.26 85.90 82.50 83.15 86.72 86.16 83.96 83.20 80.49 79.56
UAS 89.34 88.92 89.80 90.34 89.42 88.84 87.12 86.54 87.95 87.15

Table 2: Tagging accuracy, PARSEVAL F1, and dependency accuracy for Berkeley on WSJ development data.

erative, unlexicalized phrase structure parser that au-
tomatically derives a smoothed latent-variable PCFG
from the treebank and refines the grammar by a split–
merge procedure. The parser achieves state-of-the-art
performance on various standard benchmarks. In § 4
below, we explain how we adapt ERG derivations for
training and testing with Berkeley; for comparison to
the other parsers in terms of DT dependency accu-
racy, we apply the converter of Ivanova et al. (2012)
to Berkeley outputs. For technical reasons, however,
the optional mapping from ERG to PTB tokenization
is not applicable in this setup, and hence our experi-
ments involving Berkeley are limited to ERG tokens
and fine-grained lexical categories.

Evaluation Standard evaluation metrics in depen-
dency parsing are labeled and unlabeled attachment
scores (LAS, UAS; implemented by the CoNLL
eval.pl scorer). These measure the percentage of to-
kens which are correctly attached to their head token
and, for LAS, have the right dependency label. As as-
signment of lexical categories is a core part of syntac-
tic analysis, we complement LAS and UAS with tag-
ging accuracy scores (TA), where appropriate. How-
ever, in our work there are two complications to con-
sider when using eval.pl. First, some of our parsers oc-
casionally fail to return any analysis, notably Berkeley
and ERGe. For these inputs, our evaluation re-inserts
the missing tokens in the parser output, padding with
dummy ‘placeholder’ heads and dependency labels.

Second, a more difficult issue is caused by occas-
sional tokenization mismatches in ERG parses, as dis-
cussed above. Since eval.pl identifies tokens by their
position in the sentence, any difference of tokeniza-
tion will lead to invalid results. One option would be
to treat all system outputs with token mismatches as
parse failures, but this over-penalizes, as potentially
correct dependencies among corresponding tokens are
also removed from the parser output. For this reason,
we modify the evaluation of dependency accuracy to

use sub-string character ranges, instead of consecutive
identifiers, to encode token identities. This way, tok-
enization mismatches local to some sub-segment of
the input will not ‘throw off’ token correspondences
in other parts of the string.5 We will refer to this
character-based variant of the standard CoNLL met-
rics as LASc and UASc.

4 PCFG Parsing of HPSG Derivations

Formally, the HPSG analyses in the DeepBank and
Redwoods treebanks transcend the class of context-
free grammars, of course. Nevertheless, one can prag-
matically look at an ERG derivation as if it were a
context-free phrase structure tree. On this view, stan-
dard, off-the-shelf PCFG parsing techniques are ap-
plicable to the ERG treebanks. Zhang and Krieger
(2011) explore this space experimentally, combining
the ERG, Redwoods (but not DeepBank), and massive
collections of automatically parsed text. Their study,
however, does not consider parser efficiency.6.

In contrast, our goal is to reflect on practical trade-
offs along multiple dimensions. We therefore focus
on Berkeley, as one of the currently best-performing
(and relatively efficient) PCFG engines. Due to its
ability to internally rewrite node labels, this parser
should be expected to adapt well also to ERG deriva-
tions. Compared to the phrase structure annotations
in the PTB, there are two structural differences evi-
dent in Figure 1. First, the inventories of phrasal and
lexical labels are larger, at around 250 and 1000, re-
spectively, compared to only about two dozen phrasal
categories and 45 parts of speech in the PTB. Second,
ERG derivations contain more unary (non-branching)

5Where tokenization is identical for the gold and system out-
puts, the score given by this generalized metric is exactly the same
as that of eval.pl. Unless indicated otherwise, punctuation marks
are included in scoring.

6Their best PCFG results are only a few points F1 below the
full HPSG parser, using massive PCFGs and exact inference;
parsing times in fact exceed those of the native HPSG parser

67

Gaps Time TAc LASc UASc
Berkeley 1+0 1.0 92.9 86.65 89.86

B&N 0+0 1.7 92.9 86.76 89.65
ERGa 0+0 10 97.8 92.87 93.95
ERGe 13+44 1.8 96.4 91.60 92.72

Table 3: Parse failures and token mismatches (‘gaps’), effi-
ciency, and tagging and dependency accuracy on WSJ.

rules, recording for example morphological variation
or syntacto-semantic category changes.7

Table 2 summarizes a first series of experiments,
seeking to tune the Berkeley parser for maximum ac-
curacy on our development set, DeepBank Section 20.
We experimented with preserving unary rules in ERG
derivations or removing them (as they make no dif-
ference to the final DT analysis); we further ran ex-
periments using the native (‘long’) ERG construction
identifiers, their generalizations to ‘short’ labels as
used in DT, and a variant with long labels for unary
and short ones for branching rules (‘mixed’). We re-
port results for training with five or six split–merge
cycles, where fewer iterations generally showed infe-
rior accuracy, and larger values led to more parse fail-
ures (‘gaps’ in Table 2). There are some noticeable
trade-offs across tagging accuracy, dependency accu-
racy, and coverage, without a single best performer
along all three dimensions. As our primary interest
across parsers is dependency accuracy, we select the
configuration with unary rules and long labels, trained
with five split–merge cycles, which seems to afford
near-premium LAS at near-perfect coverage.8

5 In-Domain Results

Our first cross-paradigm comparison of the three
parsers is against the WSJ in-domain test data, as
summarized in Table 3. There are substantive dif-
ferences between parsers both in terms of coverage,
speed, and accuracy. Berkeley fails to return an analy-
sis for one input, whereas ERGe cannot parse 13 sen-
tences (close to one percent of the test set); just as the
44 inputs where parser output deviates in tokenization
from the treebank, this is likely an effect of the lexi-
cal pruning applied in this setup. At an average of one

7Examples of morphological rules in Figure 1 include
v_pas_odlr and v_n3s-bse_ilr, for past-participle and non-third
person singular or base inflection, respectively. Also, there are
two instances of bare noun phrase formation: hdn_bnp-pn_c and
hdn_bnp-qnt_c.

8A welcome side-effect of this choice is that we end up using
native ERG derivations without modifications.

second per input, Berkeley is the fastest of our parsers;
ERGa is exactly one order of magnitude slower. How-
ever, the lexical pruning of Dridan (2013) in ERGe

leads to a speed-up of almost a factor of six, mak-
ing this variant of PET perform comparable to B&N.
Maybe the strongest differences, however, we observe
in tagging and dependency accuracies: The two data-
driven parsers perform very similarly (at close to 93%
TA and around 86.7% LAS); the two ERG parsers are
comparable too, but at accuracy levels that are four to
six points higher in both TA and LAS. Compared to
ERGa, the faster ERGe variant performs very slightly
worse—which likely reflects penalization for missing
coverage and token mismatches—but it nevertheless
delivers much higher accuracy than the data-driven
parsers. In subsequent experiments, we will thus fo-
cus only on ERGe.

6 Error Analysis
The ERG parsers outperform the two data-driven
parsers on the WSJ data. Through in-depth error anal-
ysis, we seek to identify parser-specific properties that
can explain the observed differences. In the following,
we look at (a) the accuracy of individual dependency
types, (b) dependency accuracy relative to (predicted
and gold) dependency length, and (c) the distribution
of LAS over different lexical categories.

Among the different dependency types, we observe
that the notion of an adjunct is difficult for all three
parsers. One of the hardest dependency labels is
hdn-aj (post-adjunction to a nominal head), the rela-
tion employed for relative clauses and prepositional
phrases attaching to a nominal head. The most com-
mon error for this relation is verbal attachment.

It has been noted that dependency parsers may ex-
hibit systematic performance differences with respect
to dependency length (i.e. the distance between a head
and its argument; McDonald & Nivre, 2007). In our
experiments, we find that the parsers perform compa-
rably on longer dependency arcs (upwards of fifteen
words), with ERGa constantly showing the highest ac-
curacy, and Berkeley holding a slight edge over B&N
as dependency length increases.

In Figure 3, one can eyeball accuracy levels per
lexical category, where conjunctions (c) and various
types of prepositions (p and pp) are the most difficult
for all three parsers. That the DT analysis of coordi-
nation is challenging is unsurprising. Schwartz et al.

68

Figure 3: WSJ per-category dependency accuracies on
coarse lexical head categories: adjective, adverb, conjunc-
tion, complementizer, determiner, noun, preposition, lexi-
cal prepositional phrase, punctuation, verb, and others.

(2012) show that choosing conjunctions as heads in
coordinate structures is harder to parse for direct de-
pendency parsers (while this analysis also is linguisti-
cally more expressive). Our results confirm this effect
also for the PCFG and (though to a lesser degree) for
ERGa. At the same time, conjunctions are among the
lexical categories for which ERGa most clearly out-
performs the other parsers. Berkeley and B&N exhibit
LAS error rates of around 35–41% for conjunctions,
whereas the ERGa error rate is below 20%. For many
of the coordinate structures parsed correctly by ERGa

but not the other two, we found that attachment to root
constitutes the most frequent error type—indicating
that clausal coordination is particularly difficult for
the data-driven parsers.

The attachment of prepositions constitutes a noto-
rious difficulty in syntactic analysis. Unlike ‘stan-
dard’ PoS tag sets, ERG lexical types provide a more
fine-grained analysis of prepositions, for example rec-
ognizing a lexicalized PP like in full, or making ex-
plicit the distinction between semantically contenful
vs. vacuous prepositions. In our error analysis, we
find that parser performance across the various prepo-
sitional sub-types varies a lot. For some preposi-
tions, all parsers perform comparatively well; e.g.
p_np_ptcl-of_le, for semantically vacuous of, ranks
among the twenty most accurate lexical categories
across the board. Other types of prepositions are
among the categories exhibiting the highest error
rates, e.g. p_np_i_le for ‘common’ prepositions, tak-
ing an NP argument and projecting intersective mod-
ifier semantics. Even so, Figure 3 shows that the at-
tachment of prepositions (p and pp) is an area where
ERGa excels most markedly. Three frequent prepo-

Gaps TAc LASc UASc

C
B

Berkeley 1+0 87.1 78.13 83.14
B&N 0+0 87.7 77.70 82.96

ERGe 8+8 95.3 90.02 91.58

S
C

Berkeley 1+0 87.2 79.81 85.10
B&N 0+0 85.9 78.08 83.21

ERGe 11+7 94.9 89.94 91.26

V
M

Berkeley 7+0 84.0 74.40 83.38
B&N 0+0 83.1 75.28 82.86

ERGe 11+42 94.4 90.18 91.75

W
S

Berkeley 7+0 87.7 80.31 85.09
B&N 0+0 88.4 80.63 85.24

ERGe 4+12 96.9 90.64 91.76

Table 4: Cross-domain coverage (parse failures and token
mismatches) and tagging and dependency accuracies.

sitional lexical types that show the largest ERGa

advantages are p_np_ptcl-of_le (history of Linux),
p_np_ptcl_le (look for peace), and p_np_i_le (talk
about friends). Looking more closely at inputs where
the parsers disagree, they largely involve (usages of)
prepositions which are lexically selected for by their
head. In other words, most prepositions in isolation
are ambiguous lexical items. However, it appears that
lexical information about the argument structure of
heads encoded in the grammar allows ERGa to anal-
yse these prepositions (in context) much more accu-
rately.

7 Cross-Domain Results
To gauge the resilience of the different systems to do-
main and genre variation, we applied the same set of
parsers—without re-training or other adaptation—to
the additional Redwoods test data. Table 4 summa-
rizes coverage and accuracy results across the four
diverse samples. Again, Berkeley and B&N pattern
alike, with Berkeley maybe slightly ahead in terms
of dependency accuracy, but penalized on two of the
test sets for parse failures. LAS for the two data-
driven parsers ranges between 74% and 81%, up to
12 points below their WSJ performance. Though
large, accuracy drops on a similar scale have been ob-
served repeatedly for purely statistical systems when
moving out of the WSJ domain without adaptation
(Gildea, 2001; Nivre et al., 2007). In contrast, ERGe

performance is more similar to WSJ results, with a
maximum LAS drop of less than two points.9 For

9It must be noted that, unlike the WSJ test data, some of
these cross-domain data sets have been used in ERG development
throughout the years, notably VM and CB, and thus the grammar
is likely to have particularly good linguistic coverage of this data.

69

Lexical Types PTB PoS Tags
Gaps LASc UASc LASc UASc

W
S

J B&N 0+0 88.78 91.52 91.56 93.63
ERGe 13+9 92.38 93.53 92.38 93.53

C
B B&N 0+0 81.56 86.18 84.54 88.53

ERGe 8+4 90.77 92.21 90.77 92.21

S
C B&N 0+0 81.69 86.11 85.17 88.85

ERGe 11+0 90.13 91.86 90.13 91.86

V
M B&N 0+0 77.00 83.73 82.76 88.11

ERGe 10+0 91.55 93.08 91.55 93.08

W
S B&N 0+0 82.09 86.17 84.59 88.41

ERGe 4+0 91.61 92.62 91.61 92.62

Table 5: Coverage and dependency accuracies with PTB
tokenization and either detailed or coarse lexical categories.

Wikipedia text (WS; previously unseen data for the
ERG, just as for the other two), for example, both tag-
ging and dependency accuracies are around ten points
higher, an error reduction of more than 50%. From
these results, it is evident that the general linguistic
knowledge available in ERG parsing makes it far more
resilient to variation in domain and text type.

8 Sanity: PTB Tokenization and PoS Tags

Up to this point, we have applied the two data-driven
parsers in a setup that one might consider somewhat
‘off-road’; although our experiments are on English,
they involve unusual tokenization and lexical cate-
gories. For example, the ERG treatment of punc-
tuation as ‘pseudo-affixes’ increases vocabulary size,
which PET may be better equipped to handle due to
its integrated treatment of morphological variation. In
two concluding experiments, we seek to isolate the ef-
fects of tokenization conventions and granularity of
lexical categories, taking advantage of optional out-
put flexibility in the DT converter of Ivanova et al.
(2012).10 Table 5 confirms that tokenization does
make a difference. In combination with fine-grained
lexical categories still, B&N obtains LAS gains of two
to three points, compared to smaller gains (around or
below one point) for ERGe.11 However, in this setup

Conversely, SC has hardly had a role in grammar engineering so
far, and WS is genuinely unseen (for the current ERG and Red-
woods release), i.e. treebankers were first exposed to it once the
grammar and parser were frozen.

10As mapping from ERG derivations into PTB-style tokens and
PoS tags is applied when converting to bi-lexical dependencies,
we cannot easily include Berkeley in these final experiments.

11When converting to PTB-style tokenization, punctuation
marks are always attached low in the DT scheme, to the imme-
diately preceding or following token, effectively adding a large
group of ‘easy’ dependencies.

our two earlier observations still hold true: ERGe is
substantially more accurate within the WSJ domain
and far more resilient to domain and genre variation.
When we simplify the syntactic analysis task and train
and test B&N on coarse-grained PTB PoS tags only,
in-domain differences between the two parsers are fur-
ther reduced (to 0.8 points), but ERGe still delivers an
error reduction of ten percent compared to B&N. The
picture in the cross-domain comparison is not qual-
itatively different, also in this simpler parsing task,
with ERGe maintaining accuracy levels comparable
to WSJ, while B&N accuracies degrade markedly.

9 Discussion and Conclusion
Our experiments sought to contrast state-of-the-art
representatives from three parsing paradigms on the
task of producing bi-lexical syntactic dependencies
for English. For the HPSG-derived DT scheme, we
find that hybrid, grammar-driven parsing yields supe-
rior accuracy, both in- and in particular cross-domain,
at processing times comparable to the currently best
direct dependency parser. These results corroborate
the Dutch findings of Plank and van Noord (2010) for
English, where more training data is available and in
comparison to more advanced data-driven parsers. In
most of this work, we have focussed exclusively on
parser inputs represented in the DeepBank and Red-
woods treebanks, ignoring 15 percent of the original
running text, for which the ERG and PET do not make
available a gold-standard analysis. While a parser
with partial coverage can be useful in some contexts,
obviously the data-driven parsers must be credited for
providing a syntactic analysis of (almost) all inputs.
However, the ERG coverage gap can be straighfor-
wardly addressed by falling back to another parser
when necessary. Such a system combination would
undoubtedly yield better tagging and dependency ac-
curacies than the data-driven parsers by themselves,
especially so in an open-domain setup. A secondary
finding from our experiments is that PCFG parsing
with Berkeley and conversion to DT dependencies
yields equivalent or mildly more accurate analyses, at
much greater efficiency. In future work, it would be
interesting to include in this comparison other PCFG
parsers and linear-time, transition-based dependency
parsers, but a tentative generalization over our find-
ings to date is that linguistically richer representations
enable more accurate parsing.

70

Acknowledgments

We are grateful to our colleagues Emily M. Bender,
Francis Bond, Rui Wang, and Yi Zhang for many
helpful discussions and suggestions, as well as to our
three anonymous reviewers for insightful comments.
This work is in part funded by the Norwegian Re-
search Council through its WeSearch project. Large-
scale experimentation is made possible through access
to the ABEL high-performance computing facilities at
the University of Oslo, and we are grateful to the Sci-
entific Computing staff at UiO, as well as to the Nor-
wegian Metacenter for Computational Science, and
the Norwegian tax payer.

References
Adolphs, P., Oepen, S., Callmeier, U., Crysmann, B.,

Flickinger, D., & Kiefer, B. (2008). Some fine
points of hybrid natural language parsing. In Pro-
ceedings of the 6th International Conference on
Language Resources and Evaluation. Marrakech,
Morocco.

Black, E., Abney, S., Flickinger, D., Gdaniec, C.,
Grishman, R., Harrison, P., . . . Strzalkowski, T.
(1991). A procedure for quantitatively comparing
the syntactic coverage of English grammars. In
Proceedings of the workshop on speech and natu-
ral language (p. 306 – 311). Pacific Grove, USA.

Bohnet, B., & Nivre, J. (2012). A transition-based
system for joint part-of-speech tagging and labeled
non-projective dependency parsing. In Proceedings
of the 2012 Joint Conference on Empirical Methods
in Natural Language Processing and Conference
on Natural Language Learning (p. 1455 – 1465).
Jeju Island, Korea.

Bos, J., et al. (Eds.). (2008). Workshop on cross-
framework and cross-domain parser evaluation.
Manchester, UK.

Briscoe, T., & Carroll, J. (2006). Evaluating the ac-
curacy of an unlexicalised statistical parser on the
PARC DepBank. In Proceedings of the 21st Inter-
national Conference on Computational Linguistics
and the 44th Meeting of the Association for Compu-
tational Linguistics (p. 41 – 48). Sydney, Australia.

Callmeier, U. (2002). Preprocessing and encoding
techniques in PET. In S. Oepen, D. Flickinger,
J. Tsujii, & H. Uszkoreit (Eds.), Collaborative
language engineering. A case study in efficient
grammar-based processing (p. 127 – 140). Stan-
ford, CA: CSLI Publications.

Carter, D. (1997). The TreeBanker. A tool for super-
vised training of parsed corpora. In Proceedings of
the Workshop on Computational Environments for
Grammar Development and Linguistic Engineering
(p. 9 – 15). Madrid, Spain.

Cer, D., de Marneffe, M.-C., Jurafsky, D., & Man-
ning, C. (2010). Parsing to Stanford Dependen-
cies. Trade-offs between speed and accuracy. In
Proceedings of the 7th International Conference
on Language Resources and Evaluation (p. 1628 –
1632). Valletta, Malta.

Clark, S., & Curran, J. R. (2007). Formalism-
independent parser evaluation with CCG and Dep-
Bank. In Proceedings of the 45th Meeting of the
Association for Computational Linguistics (p. 248 –
255). Prague, Czech Republic.

de Marneffe, M.-C., & Manning, C. D. (2008). The
Stanford typed dependencies representation. In
Proceedings of the COLING Workshop on Cross-
Framework and Cross-Domain Parser Evaluation
(p. 1 – 8). Manchester, UK.

Dridan, R. (2013). Ubertagging. Joint segmentation
and supertagging for English. In Proceedings of
the 2013 Conference on Empirical Methods in Nat-
ural Language Processing (p. 1 – 10). Seattle, WA,
USA.

Flickinger, D. (2000). On building a more efficient
grammar by exploiting types. Natural Language
Engineering, 6 (1), 15 – 28.

Flickinger, D., Zhang, Y., & Kordoni, V. (2012).
DeepBank. A dynamically annotated treebank of
the Wall Street Journal. In Proceedings of the 11th
International Workshop on Treebanks and Linguis-
tic Theories (p. 85 – 96). Lisbon, Portugal: Edições
Colibri.

Foster, J., Cetinoglu, O., Wagner, J., Le Roux, J.,
Nivre, J., Hogan, D., & van Genabith, J. (2011).
From news to comment. Resources and bench-
marks for parsing the language of Web 2.0. In
Proceedings of the 2011 International Joint Con-
ference on Natural Language Processing (p. 893 –
901).

Fowler, T. A. D., & Penn, G. (2010). Accurate
context-free parsing with Combinatory Categorial
Grammar. In Proceedings of the 48th Meeting of the
Association for Computational Linguistics (p. 335 –
344). Uppsala, Sweden.

Francis, W. N., & Kucera, H. (1982). Frequency anal-
ysis of english usage. New York: Houghton Mifflin
Co.

71

Gildea, D. (2001). Corpus variation and parser perfor-
mance. In Proceedings of the 2001 Conference on
Empirical Methods in Natural Language Process-
ing (p. 167 – 202). Pittsburgh, USA.

Hockenmaier, J., & Steedman, M. (2007). CCG-
bank. A corpus of CCG derivations and dependency
structures extracted from the Penn Treebank. Com-
putational Linguistics, 33, 355 – 396.

Ivanova, A., Oepen, S., & Øvrelid, L. (2013). Sur-
vey on parsing three dependency representations
for English. In Proceedings of the 51th Meeting
of the Association for Computational Linguistics
(p. 31 – 37). Sofia, Bulgaria.

Ivanova, A., Oepen, S., Øvrelid, L., & Flickinger, D.
(2012). Who did what to whom? A contrastive
study of syntacto-semantic dependencies. In Pro-
ceedings of the sixth linguistic annotation work-
shop (p. 2 – 11). Jeju, Republic of Korea.

King, T. H., Crouch, R., Riezler, S., Dalrymple, M.,
& Kaplan, R. M. (2003). The PARC 700 Depen-
dency Bank. In Proceedings of the 4th Interna-
tional Workshop on Linguistically Interpreted Cor-
pora (p. 1 – 8). Budapest, Hungary.

Marcus, M., Santorini, B., & Marcinkiewicz, M. A.
(1993). Building a large annotated corpora of En-
glish: The Penn Treebank. Computational Linguis-
tics, 19, 313 – 330.

McDonald, R. T., & Nivre, J. (2007). Characterizing
the errors of data-driven dependency parsing mod-
els. In Proceedings of the 2007 Joint Conference on
Empirical Methods in Natural Language Process-
ing and Conference on Natural Language Learning
(p. 122 – 131). Prague, Czech Republic.

Miyao, Y., Sagae, K., & Tsujii, J. (2007). To-
wards framework-independent evaluation of deep
linguistic parsers. In Proceedings of the 2007 Work-
shop on Grammar Engineering across Frameworks
(p. 238 – 258). Palo Alto, California.

Nivre, J., Hall, J., Kübler, S., McDonald, R., Nilsson,
J., Riedel, S., & Yuret, D. (2007). The CoNLL 2007
shared task on dependency parsing. In Proceedings
of the 2007 Joint Conference on Empirical Meth-
ods in Natural Language Processing and Confer-
ence on Natural Language Learning (p. 915 – 932).
Prague, Czech Republic.

Oepen, S., & Carroll, J. (2000). Ambiguity packing in
constraint-based parsing. Practical results. In Pro-
ceedings of the 1st Meeting of the North American
Chapter of the Association for Computational Lin-
guistics (p. 162 – 169). Seattle, WA, USA.

Oepen, S., Flickinger, D., Toutanova, K., & Manning,
C. D. (2004). LinGO Redwoods. A rich and dy-
namic treebank for HPSG. Research on Language
and Computation, 2(4), 575 – 596.

Petrov, S., Barrett, L., Thibaux, R., & Klein, D.
(2006). Learning accurate, compact, and inter-
pretable tree annotation. In Proceedings of the 21st
International Conference on Computational Lin-
guistics and the 44th Meeting of the Association for
Computational Linguistics (p. 433 – 440). Sydney,
Australia.

Plank, B., & van Noord, G. (2010). Grammar-driven
versus data-driven. Which parsing system is more
affected by domain shifts? In Proceedings of the
2010 Workshop on NLP and Linguistics: Finding
the common ground (p. 25 – 33). Uppsala, Sweden:
Association for Computational Linguistics.

Pollard, C., & Sag, I. A. (1994). Head-Driven Phrase
Structure Grammar. Chicago, USA: The Univer-
sity of Chicago Press.

Schwartz, R., Abend, O., & Rappoport, A. (2012).
Learnability-based syntactic annotation design. In
Proceedings of the 24th International Conference
on Computational Linguistics. Mumbai, India.

Wahlster, W. (Ed.). (2000). Verbmobil. Foundations
of speech-to-speech translation (Artificial Intelli-
gence ed.). Berlin, Germany: Springer.

Ytrestøl, G., Oepen, S., & Flickinger, D. (2009). Ex-
tracting and annotating Wikipedia sub-domains. In
Proceedings of the 7th International Workshop on
Treebanks and Linguistic Theories (p. 185 – 197).
Groningen, The Netherlands.

Zhang, Y., & Krieger, H.-U. (2011). Large-scale
corpus-driven PCFG approximation of an HPSG. In
Proceedings of the 12th International Conference
on Parsing Technologies (p. 198 – 208). Dublin, Ire-
land.

Zhang, Y., Oepen, S., & Carroll, J. (2007). Effi-
ciency in unification-based n-best parsing. In Pro-
ceedings of the 10th International Conference on
Parsing Technologies (p. 48 – 59). Prague, Czech
Republic.

Zhang, Y., & Wang, R. (2009). Cross-domain depen-
dency parsing using a deep linguistic grammar. In
Proceedings of the 47th Meeting of the Association
for Computational Linguistics (p. 378 – 386). Sun-
tec, Singapore.

72

