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ABSTRACT 

This paper presents our research in preparation to compile a Lithuanian intonation 
corpus. The main objective of this research was to discover characteristic patterns of 
Lithuanian intonation through clustering of pitch contours of intermediate intonation 
phrases. The paper covers the set of procedures that were used to extend an ordinary 
speech corpus to make it suitable for intonation analysis. The process of intonation 
analysis included pitch extraction, pitch normalization, estimation of the representative 
frequency of a syllable, measurement of an inter-phrase similarity, k-means phrase 
clustering, and visualisation of clustering results. These computational procedures were 
applied to 23 hours of read speech containing 41417 phrases. The clustering results 
revealed some interesting intonation patterns of Lithuanian that could be related to the 
well known linguistic-prosodic phenomena. Language-independence is an important 
feature of computational procedures covered by this paper. If speech waveforms and 
the knowledge of phone and phrase boundaries are given, these procedures can be used 
for the analysis of intonation of other languages. 

KEYWORDS: corpus, prosody, intonation, pitch, syllable, dynamic time warping, k-means 
clustering, Lithuanian. 
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1 Introduction 

Intonation corpus can be thought of as a speech corpus that has its orthographic / 
phonetic annotations complemented with prosodic labels. Prosodic labels may 
characterize both prosodic phenomena themselves (e.g. pitch accents and boundary 
tones) and features that affect prosody (e.g. logical stress). Some prosodic labels may be 
associated to a precise timing in speech. 

Fuelled by the needs of the text-to-speech synthesis, corpus-based intonation research 
has been an active research field for more than two decades. Automatic prosodic 
labelling is among its main topics of interest. Prosodic labels such as word boundary 
strength (Wightman and Ostendorf, 1994; Vereecken et al., 1998, Heggtveit and Natvig, 
2004), stress (Heggtveit and Natvig, 2004), syllable prominence (Wightman and 
Ostendorf, 1994), word prominence (Vereecken et al., 1998), and pitch accent type 
(Levow, 2008; Escudero-Mancebo et al, 2012) have been predicted using a variety of 
supervised machine learning techniques. These techniques included decision trees 
(Wightman and Ostendorf, 1994), artificial neural nets (Vereecken et al., 1998), 
classification and regression trees (Heggtveit and Natvig, 2004) sometimes coupled 
with probabilistic sequential smoothing methods such as Markov models (Wightman 
and Ostendorf, 1994) and Conditional Random Fields (Levow, 2008).  

Supervised machine learning techniques must be trained on a carefully hand-labelled 
intonation corpora. Manual labelling is usually done by domain experts and represents 
a tedious and time consuming task. It comes as no surprise that Lithuanian has not any 
intonation corpus available.  

Consequently, corpus-based research of Lithuanian intonation has not received much 
attention. It has been suggested that Lithuanian is characterized by 7 distinct intonation 
patterns (Kundrotas, 2008), this suggestion being based on the hypothesis-driven 
investigative approach inspired by the Lithuanian-Russian intonation parallels 
(Kundrotas, 2009). Those few audio recordings that have been made during these 
investigations represent cases illustrating the preliminary set of hypotheses. 

Our ultimate research objective is to compile a Lithuanian intonation corpus which 
could be further explored via supervised machine learning techniques. The main 
objective of this research is limited in scope and aims to discover characteristic patterns 
of Lithuanian intonation. In contrast to the abovementioned investigation, we follow a 
data-driven approach. It assumes that reliable discoveries about intonation patterns of a 
given language can be made through the computer-aided analysis of a real world 
intonation phenomena. It would be of a great help to a human expert if similar 
intonation patterns are collected together and presented to him/her in a user-friendly 
way. Then, he/she could assign these collections to particular intonation categories, 
construct “an inventory” of intonation patterns, easily detect and eliminate “false” 
members out of these collections, mark pitch accents and boundary tones in a more 
uniform way. 

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 354 of 474]



This paper describes computational procedures that allow to find clusters of pitch1 
contours of spoken phrases2 in a speech corpus consisting of audio records and their 
orthographic transcriptions. The whole process consists of the following steps: 

• manually complementing speech corpus with the word ”break indices” that show 
the strength of the boundary between two orthographic words. 

• automatic alignment of speech waveforms and phonetic symbols (phone level) 
resulting in the knowledge of both phone boundaries and phrase boundaries. 

• estimation of pitch contours of speech waveforms. 
• chunking pitch contours to segments corresponding to phrases, and estimating a 

“representative” pitch for every syllable nucleus of a phrase. 
• estimating distances between all possible phrase pairs (on the basis of a pitch). 
• grouping phrases by their distances using the k-means clustering technique. 
• concatenating clustered data into one audio and one annotation file per cluster. 

The steps above are described in more detail in the following sections. 

2 Extending speech corpus 

We started from the speech corpus that had been used for speech recognition research 
of Lithuanian (Vaičiūnas, 2006). This corpus consists of audio recordings produced by 
50 speakers (25 males, 25 females), each of them speaking for 1 hour. The speech is 
stored as a collection of 2 min. audio files. The orthographic word-level transcriptions 
had been prepared to describe the content of audio recordings as accurately as possible. 

2.1 Extending speech corpus with word “break indices” 

Word “break indices”, representing the strength of the boundary between two 
orthographic words, were assigned to each pair of contiguous words and were inserted 
at the “orthographic” level of a text (see fig 1) by a human expert. Our set of indices 
followed the standard of the ToBI transcription framework (Beckman et. al., 2005). 

<file name="SIR_A001"> devyni4 kieti4 / plieni4niai  skam3balo sm ū3giai / 

paža3dino liu4d ą vasa3r į iš_mie3go // kr ū9ptel ÷j ęs jis_atme9rk ÷ aki4s / 

ir_valand ÷3l ę negal ÷9jo susivo9kti kame4 / <accent correct="e3s ąs">es ą3s</accent> 

// bu4vo ly9giai penkta4 valanda4 ša9lto ruden3s ry 9to </file>  

FIGURE 1: An excerpt of the “extended” orthographic transcription associated to an 
audio file. Both “ortographic” and “break index” levels of the ToBI framework are 
mixed together. The symbols / and // indicate an intermediate and a full intonation 
phrase boundary respectively. The symbol _ indicates the absence of a word boundary 

(with evidence of cliticisation). 

                                                   
1 Though the term “pitch“ is a perceptual characteristics, we use it in the sense of fundamental frequency. 
2 We use the short term “phrase” to denote the speech segment within intermediate phrase boundaries. 
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2.2 Automatic alignment of speech waveforms and phonetic symbols 

The process of automatic alignment of speech waveforms and phonetic symbols (phone 
level) had the objective of identifying timings of phone and phrase boundaries within 
speech waveforms. The extended orthographic transcription was submitted to the 
Lithuanian grapheme-to-phoneme converter (Norkevičius et al, 2005) which output the 
corresponding sequence of phones. Within this sequence, full intonation phrase 
boundaries were replaced by the “silence” phone, and the optional “short pause” phone 
was allowed between words. 

Given speech waveforms and their corresponding phone sequences the stochastic 
alignment approach was used. First, speaker-specific (trained on 1 hour of speech) 
acoustic models were constructed closely following the sequence of processing steps 
suggested by the HTK book (Young et al., 2000). Thereafter automatic alignment of 
speech waveforms and phonetic symbols was realized by the Viterbi algorithm which 
makes part of the same HTK toolkit. Phone and phrase boundaries were identified with 
the time resolution of 5 ms.  

The results of automatic alignment were inspected manually and were found to be 
satisfactory. Phone boundaries resulting from an automatic alignment procedure are 
illustrated in fig. 4 (top tier out of three tiers) 

3 Intonation analysis and clustering 

3.1 Pitch extraction 

The following processing steps were used for pitch extraction out of speech waveforms: 

• low-pass filtering speech files at cut-off frequency of 1837.5 Hz and downsampling 
them to 3675 Hz3. 

• estimating the average pitch period avgp per speech file on the basis of the 
downsampled speech in order to define the pitch analysis range of 3 octaves from 
1/(4*avgp) to 2/avgp 

• low-pass filtering the original speech waveform at a cut-off frequency of 
2/avgp+200 Hz. 

• finding pitch period candidates in this filtered waveform using a cross-correlation 
technique and time resolution of 2.5 ms (400 Hz sampling rate). 

• smoothing pitch contour (selecting one candidate per frame) using the “islands of 
confidence” approach (Raškinis, 2000) 

3.2 Grouping phrases into similarity clusters 

3.2.1 Estimating the representative pitch of a syllable 

In order to minimize the inter-talker variability (males, females), pitch contours were 
converted to logarithmic scale (semitones) and zero-centred by subtracting the pitch 
average of an entire audio file.  

                                                   
3 The frequency of 3675 Hz was selected for its integer ratios with the common sampling frequencies of 

11025Hz, 22050Hz and 44100Hz. 

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 356 of 474]



In order to make the intonation description of a phrase more compact the pitch contour 
of a phrase (sampled at 400 Hz) was replaced by the sequence of syllable pitches of that 
phrase. The pitch of a syllable varies over time. Thus, every syllable was assigned a 
“representative” pitch on the basis of the pitch contour over a syllable nucleus 
(vowel/diphthong). Because of the assumption that the pitch target is best 
approximated in the later portion of the syllable (Xu, 2004), the representative pitch 
was calculated by linearly weighting pitch contour values. Pitch contour values at the 
beginning and the end of a syllable nucleus were de-emphasized and emphasized 
respectively. Let f0[i] denote the normalized pitch value of the i

th frame, and let [tbeg tend] 
be the boundaries of a syllable nucleus, then the frequency representative sf of the 
syllable was estimated as follows: 

 

Unvoiced frames (undefined f0[i] values) were skipped when iterating through pitch 
contour values. Unvoiced syllables, i.e. syllables for which the pitch detection failed for 
every frame, were omitted from further consideration. 

3.2.2 Defining distance between two phrases 

One of the main problems in estimating the similarity of intonation between two 
phrases was the large variation in their syllable numbers (see fig. 2). Let F1 = {sf1,1, 
sf1,2, ..., sf1,n1} and F2 = {sf2,1, sf2,2, ..., sf2,n2} be two phrases consisting of sequences of 
representative syllable pitches, where n1 and n2 denote the number of syllables in the 
phrases F1 and F2 respectively. Let d(i, j) denote the distance between truncated 
sequences {sf1,1, sf1,2, ..., sf1,i} and {sf2,1, sf2,2, ..., sf2,j} both corresponding to initial 
segments of F1 and F2 respectively. Then the similarity between F1 and F2 d(F1, F2) = 
d(n1, n2) was defined by the recursive formula below:  

 

This formula means that the sequences F1 and F2 can be matched by "warping" them 
non-linearly in the time dimension. One syllable from the first sequence can be matched 
up to three syllables from the second sequence and vice versa. 
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Distances between all possible pairs of phrases in the corpus need to be calculated using 
this formula. For this purpose an efficient dynamic time warping procedure (Vintsyuk, 
1968) was implemented that estimates phrase-to-phrase distances in polynomial time 
O(n1*n2) 

3.2.3 K-means based clustering 

Having obtained distances among all possible pairs of phrases, k-means clustering can 
be applied to them. The clustering consists of iterating through every phrase, removing 
it from its current cluster and placing it into the nearest cluster (it may also be the same 
cluster). The distance between the phrase F and the cluster C is estimated by: 

 

The initial assignment of phrases to clusters is randomized. However the assignment 
process forbids placing or later moving a phrase into a cluster if there exists at least one 
other phrase in that cluster that is incompatible with the phrase under scrutiny (the 
distance between the two might not be calculated due to the required extension/ 
contraction exceeding the factor of 3). This prevents the formation of mutually 
incompatible sub-clusters within a single cluster. The k-means algorithm stops when 
either there’s no phrase changing its cluster through the entire iteration or the 
maximum number of allowed iterations is reached. 

4 Experimental evaluation 

Human experts have selected 14 male and 9 female speakers (23 hours of speech) out 
of our 50 hour speech corpus. They selected speakers whose reading intonation was as 
expressive as possible as well as the accuracy of time aligned transcriptions. There were 
41417 spoken phrases in the selected part of the corpus. Spoken phrases had a wide 
variety of durations.  

 

FIGURE 2: The histogram of phrase durations in syllables. 
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The set of 41417 phrases was divided into two subsets of “short” (15417 items) and 
“long” (26000 items) phrases4. A phrase was considered to be short if it had 6 syllables 
or less. Otherwise it was considered to be long. The number of clusters k was set to 40 
and 80 for the sets of short and long phrases respectively. The clustering algorithm was 
run for a maximum of 100 iterations, though 10 iterations were generally enough for 
the convergence (see fig. 3). 

 

FIGURE 3: The convergence of the k-means clustering algoritm while processing the long 
phrase set.  

Once the clustering process was finished the clustered data was concatenated into one 
audio and one annotation file per cluster, so that clusters could be visualised (see fig. 4) 
by Praat software (Boersma and Weenink, 2006). 

Human experts complained about clusters being denoted by integer numbers, so we had 
to look for a more comprehensive naming approach. The decision was taken to find the 
most “central” phrase of a cluster, i.e. the phrase which has the least average distance 
to every other phrase in that same cluster, and to use it as the basis for naming the 
cluster. Every syllable of such “central” phrase was assigned an integer number 
denoting its pitch in semitones either below (L) or above (H) the normalized pitch 
average. For instance, the cluster name H5_L5_H1 signifies that the “central” phrase of 
this cluster is characterized by pitch movements of the high-low-high type that are 5 
semitones above, 5 semitones below, and 1 semitone above the normalized pitch 
average respectively. 

 

 

                                                   
4 This division was due to the limitations in computer memory. It would have been necessary to store 857 

mln. distances between all possible pairs of 41417 phrases. We assume that this division is not significant 

because many phrases from the “short” set and from the “long” set cannot belong to the same cluster 

simultaneously due to the maximum allowed warping factor of 3. 
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FIGURE 4: An excerpt of the clustering results (cluster H5_L5_H1) visualised by Praat 
software. Concatenated speech waveform is shown on the top, pitch contours are shown 
in the middle, and concatenated annotations (phone, word, phrase levels) are at the 

bottom. 

Clustering results are presently being examined by professional phoneticians. Though 
the evaluation is still in progress, the following remarks can already be made: 

• Clustering procedure is efficient in revealing annotation errors (misplaced phrase 
boundaries). Such phrases tend to form their own clusters. 

• Some clusters are dominated by phrases of a few particular speakers. This 
observation needs further investigation as it may indicate that either pitch 
normalization is still imperfect or speaker-specific intonation patterns are 
discovered (e.g. dialect).  

• Some clusters contain phrases that should be placed to different clusters from the 
perceptual point of view. This is mainly due to the emphasis put on different 
words. This suggests reviewing our present inter-phrase distance metrics and 
probably including other physical characteristics of speech such as intensity and 
duration. 

• Some clusters appear to be related to certain phenomena of spoken language. 
There are clusters characterized by the imitation of emotions (not natural for 
read speech) by the enumerative intonation, by ellipses indicating an unfinished 
thought at the end of a phrase, etc. 

5 Discussion and future work 

Language-independence is an important feature of our computational approach. Though 
computation steps covered by the section 2 are language-specific, all computation steps 
covered by the section 3 (intonation analysis and clustering) are language-independent. 
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If speech waveforms and the knowledge of phone and phrase boundaries is available for 
some language, the set of abovementioned computation steps could be applied. 

Computations have been implemented in C++and optimized for speed. The most 
costly computational procedure is the step of inter-phrase distance estimation. It has 
the worst case complexity of O(N2*n2), where N denotes the number of phrases in the 
corpus and n denotes the average phrase length in syllables.  

Processing N n Computation time, hours 

Short phrases 15417 4.11 1.68 

Long phrases 26000 11.87 12.74 

TABLE 1: Computation time on a computer with Intel Core 2 Duo T7300 2.00 GHz 
processor and 3 GB of memory. 

The table 1 shows that despite speed optimizations scaling this procedure to larger 
intonation corpora may be problematic. However, we believe that the discovery of 
intonation patterns proper to a given language could be made within smaller but more 
carefully selected intonation corpora. 

Our future research will be mostly driven by the feedback received from human 
experts. In addition to those few research issues that have been mentioned in the 
section 4.2, our future research may focus on the optimization of the number of 
clusters, on different methods of estimating the representative frequency of a syllable, 
on the normalization of this frequency with respect to the intrinsic vowel pitch. 
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