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Abstract

Bayesian topic models have recently been
shown to perform well in word sense in-
duction (WSI) tasks. Such models have al-
most exclusively used bag-of-words features,
and failed to attain improvement by includ-
ing other feature types. In this paper, we
investigate the impact of integrating syntac-
tic and knowledge-based features and show
that both parametric and non-parametric mod-
els consistently benefit from additional fea-
ture types. We perform evaluation on the Se-
mEval2010 WSI verb data and show statisti-
cally significant improvement in accuracy (p
< 0.001) both over the bag-of-words baselines
and over the best system that competed in the
SemEval2010 WSI task.

1 Introduction

The resolution of lexical ambiguity in language is
essential to true language understanding. It has
been shown to improve the performance of such ap-
plications as statistical machine translation (Chan
et al., 2007; Carpuat and Wu, 2007), and cross-
language information retrieval and question answer-
ing (Resnik, 2006). Word sense induction (WSI) is
the task of automatically grouping the target word’s
contexts of occurrence into clusters corresponding
to different senses. Unlike word sense disambigua-
tion (WSD), it does not rely on a pre-existing set of
senses.

Much of the classic bottom-up WSI and thesaurus
construction work – as well as many successful
systems from the recent SemEval competitions –

have explicitly avoided the use of existing knowl-
edge sources, instead representing the disambiguat-
ing context using bag-of-words (BOW) or syntac-
tic features (Schütze, 1998; Pantel and Lin, 2002;
Dorow and Widdows, 2003; Pedersen, 2010; Kern
et al., 2010).

This particularly concerns the attempts to in-
tegrate the information about semantic classes of
words present in the sense-selecting contexts. Se-
mantic roles (such as those found in PropBank
(Palmer et al., 2005) or FrameNet (Ruppenhofer et
al., 2006)) tend to generalize poorly across the vo-
cabulary. Lexical ontologies (and WordNet (Fell-
baum, 2010) in particular) are not always empiri-
cally grounded in language use and often do not rep-
resent the relevant semantic distinctions. Very often,
some parts of the ontology are better suited for a par-
ticular disambiguation task than others. In this work,
we assume that features based on such ontology seg-
ments would correlate well with other context fea-
tures.

Consider, for example, the expression ”to deny
the visa”. When choosing between two senses
of ’deny’ (’refuse to grant’ vs. ’declare untrue’),
we would like our lexical ontology to place ’visa’
in the same subtree as approval, request, recogni-
tion, commendation, endorsement, etc. And indeed,
WordNet places all of these, including ’visa’, un-
der the same node. However, their least common
subsumer is ’message, content, subject matter, sub-
stance’, which also subsumes ’statement’, ’signifi-
cance’, etc., which would activate the other sense of
’deny’. In other words, the distinctions made at this
level in the nominal hierarchy in WordNet would not



be useful in disambiguating the verb ’deny’, unless
our model can select the appropriate nodes of the
subtree rooted at the synset ’message, content, sub-
ject matter, substance’. Our model should also infer
the associations between such nodes and other con-
text relevant features that select the sense ’refuse to
grant’ (such as the presence of ditransitive construc-
tions, etc.)

In this paper, we use the topic modeling approach
to identify ontology-derived features that can prove
useful for sense induction. Bayesian approaches to
sense induction have recently been shown to per-
form well in the WSI task. In particular, Brody
and Lapata (2009) have adapted the Latent Dirich-
let Allocation (LDA) generative topic model to WSI
by treating each occurrence context of an ambigu-
ous word as a document, and the derived topics as
sense-selecting context patterns represented as col-
lections of features. They applied their model to the
SemEval2007 set of ambiguous nouns, beating the
best-performing system in its WSI task. Yao and
Van Durme (2011) used a non-parametric Bayesian
model, the Hierarchical Dirichlet Process (HDP), for
the same task and showed that following the same
basic assumptions, it performs comparably, with the
advantage of avoiding the extra tuning for the num-
ber of senses.

We investigate the question of how well such
models would perform when some knowledge of
syntactic structure and semantics is added into the
system, in particular, when bag-of-words features
are supplemented by the knowledge-enriched syn-
tactic features. We use the SemEval2010 WSI task
data for the verbs for evaluation (Manandhar et al.,
2010). This data set choice is motivated by the fact
that (1) for verbs, sense-selecting context patterns
often most directly depend on the nouns that occur in
syntactic dependencies with them, and (2) the nom-
inal parts of WordNet tend to have much cleaner on-
tological distinctions and property inheritance than,
say, the verb synsets, where the subsumption hierar-
chy is organized according how specific the verb’s
manner of action is.

The choice of the SemEval2010 verb data set was
motivated by the fact that SemEval2007 verb data
is dominated by the most frequent sense for many
target verbs, with 11 out of 65 verbs only having
one sense in the combined test and training data.

All verbs in the SemEval2010 verb data set have
at least two senses in the data provided. The im-
plications of this work are two-fold: (1) we con-
firm independently on a different data set that para-
metric and non-parametric models perform com-
parably, and outperform the current state-of-the-art
methods using the baseline bag-of-words feature set
(2) we show that integrating populated syntactic
and ontology-based features directly into the gen-
erative model consistently leads to statistically sig-
nificant improvement in accuracy. Our system out-
performs both the bag-of-words baselines and the
best-performing system in the SemEval2010 com-
petition.

The remainder of the paper is organized as fol-
lows. In Section 2, we review the relevant related
work. Sections 3 and 4 give the details on how the
models are defined and trained, and describe the in-
corporated feature classes. Section 5 describes the
data used to conduct the experiments. Finally, in
Section 6, we describe the evaluation methods and
present and discuss the experimental results.

2 Related Work

Over the past twenty years, a number of unsuper-
vised methods for word sense induction have been
developed, both for clustering contexts and for clus-
tering word senses based on their distributional sim-
ilarity (Hindle, 1990; Pereira et al., 1993; Schütze,
1998; Grefenstette, 1994; Lin, 1998; Pantel and Lin,
2002; Dorow and Widdows, 2003; Agirre et al.,
2006).

One of the recent evaluations of the state of the
art in word sense induction was conducted at Se-
mEval2010 (Manandhar et al., 2010). The partici-
pant systems focused on a variety of WSI improve-
ments including feature selection/dimensionality re-
duction techniques (Pedersen, 2010), experiments
with bigram and cooccurrence features (Pedersen,
2010) and syntactic features (Kern et al., 2010), and
increased scalability (Jurgens and Stevens, 2010).

Following the success of topic modeling in infor-
mation retrieval, Boyd-Graber et al. (2007) devel-
oped an extension of the LDA model for word sense
disambiguation that used WordNet walks to gener-
ate sense assignments for lexical items. Their model
treated synset paths as hidden variables, with the as-



sumption that words within the same topic will share
synset paths within WordNet, i.e. each topic will be
associated with walks that prefer different “neigh-
borhoods”of WordNet. One problem with their ap-
proach is that it relies fully on the integrity of Word-
Net’s organization, and has no way to disprefer cer-
tain segments of WordNet, nor the ability to reorga-
nize or redefine the senses it identifies for a given
lexical item.

Brody and Lapata (2009) have proposed another
adaptation of the LDA generative topic model to the
WSI task. Text segments that contain instances of
the target word are treated as documents in the clas-
sical IR setup for the LDA. The target word’s senses
are then similar to the hidden topics and are associ-
ated with a probability distribution over context fea-
tures.

LDA assumes that each instance has been pro-
duced by a process that generates each of its con-
text features by picking a sense of the target word
from a known set of senses and then picking a fea-
ture for the context based on a sense-specific under-
lying probability distribution over context features.
Importantly, the same prior distribution is assumed
for all the features of an instance. However for
many feature classes, for example, words vs. part-
of-speech tags, this is false. Thus these algorithms
do not immediately adapt well to being given fea-
tures from many classes.

Brody and Lapata (2009) used part-of-speech and
word n-grams as well as syntactic dependencies in
addition to bag-of-words features, and used a multi-
layer LDA model to handle the different classes sep-
arately in different “layers”, bringing them together
when necessary in a weighted combination. Their
best model, however, showed very similar perfor-
mance to the LDA model using only bag-of-words
features. Yao and Van Durme (2011) reproduced
some of their LDA experiments using HDP, a non-
parametric model that induces the number of topics
from data, over bag-of-words context representation.

3 Methods

We applied the LDA model (Brody and Lapata,
2009) and the the HDP model (Yao and Durme,
2011) over a set of features that included popu-
lated syntactic dependencies as well as knowledge-

enriched syntactic features. Note that unlike the
model proposed by Boyd et al (2007), which relies
fully on the on the pre-existing sense structure re-
flected in WordNet, under this setup, we will only
incorporate the relevant information from the ontol-
ogy, while allowing the senses themselves to be de-
rived empirically from the distributional context pat-
terns. The assumption here is that if any semantic
features prove relevant for a particular target word,
i.e. if they correlate well with other features char-
acterizing the word’s context patterns, they will be
strongly associated with the corresponding topic.

In reality, the topics modeled by LDA and HDP
may not correspond directly to senses, but may rep-
resent some subsense or supersense. In fact, the in-
duced topics are more likely to correspond to the
sense-selecting patterns, rather than the senses per
se, and quite frequently the same sense may be ex-
pressed with multiple patterns. We describe how we
deal with this in Section 6.1.

3.1 Model Description
The LDA model is more formally defined as fol-
lows: Consider one target word with M instances
and K senses, and let the context of instance j be
described by some set of Nj features from a vocab-
ulary of size V . These may be the words around
the target or could be any properties of the instance.
LDA assumes that there are M probability distribu-
tions θj = (θj1, θj2, . . . , θjK), with θjk = the prob-
ability of generating sense k for instance j, and K
probability distributions φk = (φk1, φk2, . . . , φkV ),
with φkf = the probability of generating feature f
from sense k. This makes the probability of generat-
ing the corpus where the features for instance j are
fj1, fj2, . . . , fjNj :

P (corpus) =
M∏
j=1

NJ∏
i=1

K∑
k=1

θjkφkfji

The goal of LDA for WSI is to obtain the distri-
bution θj∗ for an instance j∗ of interest, as this gives
each sense’s probability of being picked to generate
some feature in the instance, which corresponds to
the probability of being the correct sense for the tar-
get word in this context.

The corpus generation process for HDP is similar
to that of LDA, but obtains the document-specific



sense distribution (corresponding to LDA’s θj) via a
Dirichlet Process whose base distribution is deter-
mined via another Dirichlet Process, allowing for an
unfixed number of senses because the draws from
the resulting sense distribution are not limited to a
preset range. The concentration parameters of both
Dirichlet Processes are determined via hyperparam-
eters.

3.2 Model Training

LDA
Our process for training an LDA model uses

Gibbs sampling to assign topics to each feature
in each instance, utilizing GibbsLDA++ (Phan and
Nguyen, 2007). Initially topics are assigned ran-
domly and during each subsequent iteration, as-
signments are made by sampling from the prob-
ability distributions resulting from the last itera-
tion. Following the previous work in applying topic-
modeling to WSI, we use hyperparameters α =
0.02, β = 0.1 (Brody and Lapata, 2009). We train
the model using 2000 iterations of Gibbs sampling
(GibbsLDA++ default). To obtain θ for an instance
of interest, the inference mode initializes the train-
ing corpus with the assignments from the model and
initializes new test documents with random assign-
ments. We then run 20 iterations of Gibbs sampling
on this augmented corpus. 5 models are trained
for each target using the same parameters and data.
This is done to reduce the effect of randomization in
the training algorithms on our results. Although the
randomization is also present in the inference algo-
rithms and we do not perform more than one infer-
ence run per model.

HDP
The HDP training and inference procedures are

similar to LDA, but using Gibbs sampling on topic
and table assignment in a Chinese Restaurant Pro-
cess. We use Chong Wang’s program for HDP
(Wang and Blei, 2012) running the Gibbs sam-
pling for 1000 iterations during training and an-
other 1000 during inference (the defaults), and
using the hyperparameters suggested in previous
work (Yao and Durme, 2011) of H = 0.1, α0 ∼
Gamma(0.1, 0.028), γ ∼ Gamma(1, 0.1).

This software does not directly produce θ values
but instead produces all assignments of words to top-

ics. This output is used to compute

θjk =
count(words in document j labeled k)

count(words in document j)
.

Since new topics can appear during inference, we
smooth these probabilities with additive smoothing
using a parameter of 0.02 to avoid the case where all
words are labeled with unseen topics, which would
make prediction of a sense using our evaluation
methods impossible.

4 Features

We used three types of features: bag-of-words with
different window sizes, populated syntactic features,
and ontology-populated syntactic features. Instead
of using a multi-layered LDA model, we attempt to
mitigate the effects of using multiple classes of fea-
tures by choosing extra features whose distributions
are sufficiently similar to the bag-of-words features.
We describe these classes in more detail below.

Preprocessing done on the data includes: (1) to-
kenization, (2) identifying stopwords, (3) stemming
tokens, (4) detecting sentence boundaries, (5) tag-
ging tokens with their parts of speech, and (6) ob-
taining collapsed dependencies within sentences in-
cluding the target words. For tokenization, sen-
tence boundary detection, and part-of-speech tag-
ging, we use OpenNLP (OpenSource, 2010). We
remove the stop words and stem using the Snow-
ball stemmer. For collapsed syntactic dependencies
we use the Stanford Dependency Parser (Klein and
Manning, 2003).

Bag of Words Following previous literature
(Brody and Lapata, 2009), we use a 20 word window
(excluding stopwords) for BOW features. In our ex-
periments, a smaller window size failed to produce
better performance.

Ontology-Based Populated Syntactic Features
To capture syntactic information, we use populated
dependency relations. We populate these relations
with semantic information from WordNet (Miller et
al., 1990) as follows. For each syntactic dependency
between the target word and the context word, we
locate all synsets for the context word. We then tra-
verse the WordNet hierarchy upwards from each of
these synsets, and include a feature for each node
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Figure 1: WordNet hierarchy path for “actor”.

we visit. We use collapsed relations produced by the
Stanford Dependency Parser (Klein and Manning,
2003).

For example, consider the path up the hierarchy
for the word “visa”, given in Figure 1. If the noun
“visa” is found in direct object position of the target
verb, traversing the tree to the root would produce
features such as noun-approval dobj, etc.

5 Data

We evaluate our methods on the 50 verb targets from
the SemEval2010 dataset. The evaluation data is
split into 5 mapping/test set pairs, with 60% for
mapping (2179 instances) and 40% for testing (1451
instances). Each split is created randomly and inde-
pendently each time, and 3354 out of 3630 instances
appear in a test set at least once.

We train our topic models on unlabeled data from
SemEval2010, which contains a total of 162,862
instances for all verbs. The targets “happen” and
“regain” have the most and fewest instances with
11,286 and 266 respectively. We use this data to
train our topic models. We limit each target to
50,000 instances for training HDP models, in order
to maintain reasonable processing time.

6 Results

We show the comparisons of our systems with (1)
the most-frequent-sense (MFS) (MFS in the map-
ping set predicted for all instances in the test set), (2)

BOW baseline models, and (3) the best-performing
system from SemEval2010. Since HDP performs
better overall, we chose the HDP model to exper-
iment with syntactic and ontological features. For
completeness, we include results for the WordNet-
populated syntactic features with the LDA model.

6.1 Evaluation Measures
Following the established practice in SemEval com-
petitions and subsequent work (Agirre and Soroa,
2007; Manandhar et al., 2010; Brody and Lapata,
2009; Yao and Durme, 2011), we conduct super-
vised evaluation. A small amount of labeled data
is used to map the induced topics to real-world
senses; for a description of the method see (Agirre
and Soroa, 2007). The resulting mapping is proba-
bilistic; for topics 1, . . . ,K and senses 1, . . . , S, we
compute the KS values

P (s|k) = count(instances predicted k, labeled s)
count(instances predicted k)

.

Then given θj∗ , we can make a better prediction for
instance j∗ than just assigning the most likely sense
to its most likely topic. Instead, we compute

argmaxSs=1

K∑
k=1

θj∗kP (s|k),

the sense with the highest probability of being cor-
rect for this instance, given the topic probabilities
and the KS mapping probabilities.

The supervised metrics traditionally reported in-
clude precision, recall, and F-score, but since our
WSI system makes a prediction for every instance,
we report accuracy throughout this section.

6.2 Cross-Validation
We use cross-validation on the mapping set to se-
lect the best system configuration. We use leave-
one-out or 50-fold cross-validation, whichever has
fewer folds for a given target word. The system
configurations that we compare vary with respect to
the following: (1) topic modeling algorithm (HDP
or LDA), (2) included feature classes (bag-of-words
with different window sizes, populated syntactic
features, ontology-populated syntactic features), and
(3) number of topics (i.e. senses) for the LDA
model. The best configuration is then tested on the



Configuration CV acc.
HDP, 20w +WN1h 72.5%
HDP, 20w +WN1h-limited 70.8%
HDP, 20w +Synt 71.3%
HDP, 20w (baseline) 69.7%
LDA, 5 senses, 20w +WN1h 71.2%
LDA, 5 senses, 20w 71.2%
LDA, 12 senses, 20w +WN1h 72.2%
LDA, 12 senses, 20w 70.2%

Table 1: Cross-validation accuracies using the Se-
mEval2010 mapping sets.

evaluation data. Table 1 shows cross-validation re-
sults for some of the relevant configurations on the
SemEval2010 dataset.

Since the evaluation data has 5 different mapping
sets, one for each 60/40 split, we do cross-validation
on each and average the results. We perform this
process for each of our 5 trained models and again
average the results.

The best HDP configuration outperforms the
LDA configurations with low numbers of top-
ics. This configuration combines the 20 closest
non-stopwords bag-of-words (20w) with WordNet-
populated syntactic dependencies (+WN1h) and
achieves 72.5% accuracy. We evaluate two other
configurations using HDP as well: 20w +WN1h-
limited, which is 20w +WN1h minus those fea-
tures from WordNet within 5 hops of the hierar-
chy’s root; and 20w +Synt, which is the 20 closest
non-stopwords bag-of-words plus syntactic depen-
dencies 1 hop away from the target word populated
with the stemmed token appearing there. As shown
in Table 1, WordNet-based populated features do in-
troduce some gain with respect to the syntactic fea-
tures populated only at the word level. Interestingly,
removing the top-level WordNet-based features, and
therefore making the possible restrictions on the se-
mantics of the dependent nouns more specific, does
not lead to performance improvement.

Each topic produced by the model is a distribution
over all feature types, and is comprised by a mix of
bag-of-words and ontology-populated syntactic fea-
tures. Each node on the path from a given synset
to the root generates its own ontological feature, so
when many nodes that activate the same sense have a
common hypernym, that hypernym is likely to “float

to the top” - become more strongly associated with
the corresponding topic.

To illustrate this, consider the following two
senses of the verb ‘cultivate’: “prepare the soil for
crops” and “teach or refine”. Topic 1 generated by
the HDP 20w +WN1h model corresponds to the first
sense and is associated with examples about cultivat-
ing land, earth, grassland, waste areas. Topic 5 gen-
erated by the same model corresponds to the second
sense and is associated with examples about cultivat-
ing knowledge, understanding, habits, etc. One of
the top-scoring features for Topic 1 is location dobj
which corresponds to the direct object position being
occupied by one of the ‘location’ synsets, with direct
hyponym nodes for ‘region’ and ‘space’ contribut-
ing the most. For topic 5, cognition dobj is selected
as one of the top features, with direct hyponyms for
‘ability’, ‘process’, and ‘information’ contributing
the most.

In this best configuration, HDP produces an aver-
age of 18.6 topics, far more than the number of real-
world senses. We investigated the possibility that its
improvement over LDA might be due to this larger
number of topics, testing the same feature combi-
nation on LDA with 12 topics. This does produce
a similar accuracy, 72.2%, and the simpler bag-of-
words features with 12 topics yield an accuracy drop
to 70.2%, similar to the drop seen between HDP 20w
+WN1h and HDP 20w.

6.3 Evaluation Set Results
For the five SemEval2010 test sets, senses are as-
signed slightly differently than in cross-validation.
Instead of averaging over five models trained per tar-
get, for each instance, we predict the sense assigned
by the majority of these models.

Table 2 shows the comparison of the configura-
tion with the best cross-validation accuracy (HDP,
20w +WN1h) against the following: (1) MSF base-
line, (2) the baseline bag-of-words model (3) the re-
sults obtained on this data set by the best-performing
SemEval2010 system using supervised evaluation,
Duluth-Mix-Narrow-Gap from the University of
Minnesota Duluth (Manandhar et al., 2010). The
HDP model with knowledge-enriched features ob-
tains the best accuracy of 73.3%. For comparison,
we also show results for the LDA model with 12 top-
ics that performed well in cross-validation.



System Accuracy
MFS 66.7 %
HDP, 20w +WN1h 73.3%
HDP, 20w (baseline) 71.2%
LDA, 12 senses, 20w +WN1h 72.5%
LDA, 12 senses, 20w 71.1%
Duluth-Mix-Narrow-Gap 68.6%

Table 2: Test set accuracies, SemEval2010 verbs

The improvements obtained by the best configura-
tion are statistically significant by paired two-tailed
t-test, treating each of the 3354 distinct test instances
as separate samples. We consider a system’s predic-
tion on one such instance to be the sense it predicted
in the majority of the test sets in which the instance
appears. Significance levels are as follows:

• The best HDP configuration (20w +WN1h) vs.
Duluth-Mix-Narrow-Gap: p < 0.0001

• The best HDP configuration (20w +WN1h) vs.
HDP 20w: p < 0.001

• 12-sense LDA configuration 20w +WN1h vs.
Duluth-Mix-Narrow-Gap: p < 0.0001

• 12-sense LDA configuration 20w +WN1h vs.
12-sense LDA 20w: p < 0.05.

7 Conclusion

We have presented a system that uses an adapta-
tion of two Bayesian topic modeling algorithms to
the task of word sense induction. Both the para-
metric and the non-parametric versions, when en-
riched with WordNet-based populated syntactic fea-
tures, outperform the baseline bag-of-words models
as well as the current state of the art in the WSI task
for verbs. The next step for this system is an im-
proved integration of knowledge-based features that
would not require assuming a similar distribution on
different feature types.
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