
Proceedings of the Fourth Workshop on Statistical Parsing of Morphologically Rich Languages, pages 135–145,
Seattle, Washington, USA, 18 October 2013. c©2013 Association for Computational Linguistics

(Re)ranking Meets Morphosyntax: State-of-the-art Results
from the SPMRL 2013 Shared Task∗

Anders Björkelund§, Özlem Çetinoğlu§, Richárd Farkas†, Thomas Müller§‡, and Wolfgang Seeker§

§Institute for Natural Language Processing , University of Stuttgart, Germany
†Department of Informatics, University of Szeged, Hungary

‡Center for Information and Language Processing, University of Munich, Germany
{anders,ozlem,muellets,seeker}@ims.uni-stuttgart.de

rfarkas@inf.u-szeged.hu

Abstract

This paper describes the IMS-SZEGED-CIS
contribution to the SPMRL 2013 Shared Task.
We participate in both the constituency and
dependency tracks, and achieve state-of-the-
art for all languages. For both tracks we make
significant improvements through high quality
preprocessing and (re)ranking on top of strong
baselines. Our system came out first for both
tracks.

1 Introduction

In this paper, we present our contribution to the 2013
Shared Task on Parsing Morphologically Rich Lan-
guages (MRLs). MRLs pose a number of interesting
challenges to today’s standard parsing algorithms,
for example a free word order and, due to their rich
morphology, greater lexical variation that aggravates
out-of-vocabulary problems considerably (Tsarfaty
et al., 2010).

Given the wide range of languages encompassed
by the term MRL, there is, as of yet, no clear con-
sensus on what approaches and features are gener-
ally important for parsing MRLs. However, devel-
oping tailored solutions for each language is time-
consuming and requires a good understanding of
the language in question. In our contribution to the
SPMRL 2013 Shared Task (Seddah et al., 2013), we
therefore chose an approach that we could apply to
all languages in the Shared Task, but that would also
allow us to fine-tune it for individual languages by
varying certain components.

∗Authors in alphabetical order.

For the dependency track, we combined the n-
best output of multiple parsers and subsequently
ranked them to obtain the best parse. While this
approach has been studied for constituency parsing
(Zhang et al., 2009; Johnson and Ural, 2010; Wang
and Zong, 2011), it is, to our knowledge, the first
time this has been applied successfully within de-
pendency parsing. We experimented with different
kinds of features in the ranker and developed fea-
ture models for each language. Our system ranked
first out of seven systems for all languages except
French.

For the constituency track, we experimented
with an alternative way of handling unknown words
and applied a products of Context Free Grammars
with Latent Annotations (PCFG-LA) (Petrov et al.,
2006), whose output was reranked to select the best
analysis. The additional reranking step improved
results for all languages. Our system beats vari-
ous baselines provided by the organizers for all lan-
guages. Unfortunately, no one else participated in
this track.

For both settings, we made an effort to automat-
ically annotate our data with the best possible pre-
processing (POS, morphological information). We
used a multi-layered CRF (Müller et al., 2013) to
annotate each data set, stacking with the information
provided by the organizers when this was beneficial.
The high quality of our preprocessing considerably
improved the performance of our systems.

The Shared Task involved a variety of settings as
to whether gold or predicted part-of-speech tags and
morphological information were available, as well
as whether the full training set or a smaller (5k sen-

135



Arabic Basque French German Hebrew Hungarian Korean Polish Swedish
MarMoT 97.38/92.22 97.02/87.08 97.61/90.92 98.10/91.80 97.09/97.67 98.72/97.59 94.03/87.68 98.12/90.84 97.27/97.13
Stacked 98.23/89.05 98.56/92.63 97.83/97.62

Table 1: POS/morphological feature accuracies on the development sets.

tences) training set was used for training. Through-
out this paper we focus on the settings with pre-
dicted preprocessing information with gold segmen-
tation and the full1 training sets. Unless stated other-
wise, all given numbers are drawn from experiments
in this setting. For all other settings, we refer the
reader to the Shared Task overview paper (Seddah et
al., 2013).

The remainder of the paper is structured as fol-
lows: We present our preprocessing in Section 2 and
afterwards describe both our systems for the con-
stituency (Section 3) and for the dependency tracks
(Section 4). Section 5 discusses the results on the
Shared Task test sets. We conclude with Section 6.

2 Preprocessing

We first spent some time on preparing the data sets,
in particular we automatically annotated the data
with high-quality POS and morphological informa-
tion. We consider this kind of preprocessing to be an
essential part of a parsing system, since the quality
of the automatic preprocessing strongly affects the
performance of the parsers.

Because our tools work on CoNLL09 format, we
first converted the training data from the CoNLL06
format to CoNLL09. We thus had to decide whether
to use coarse or fine part-of-speech (POS) tags. In
a preliminary experiment we found that fine tags are
the better option for all languages but Basque and
Korean. For Korean the reason seems to be that the
fine tag set is huge (> 900) and that the same infor-
mation is also provided in the feature column.

We predict POS tags and morphological features
jointly using the Conditional Random Field (CRF)
tagger MarMoT2 (Müller et al., 2013).

MarMoT incrementally creates forward-
backward lattices of increasing order to prune
the sizable space of possible morphological analy-
ses. We use MarMoT with the default parameters.

1Although, for Hebrew and Swedish only 5k sentences were
available for training, and the two settings thus coincide.

2https://code.google.com/p/cistern/

Since morphological dictionaries can improve au-
tomatic POS tagging considerably, we also created
such dictionaries for each language. For this, we an-
alyzed the word forms provided in the data sets with
language-specific morphological analyzers except
for Hebrew and German where we just extracted the
morphological information from the lattice files pro-
vided by the organizers. For the other languages
we used the following tools: Arabic: AraMorph
a reimplementation of Buckwalter (2002), Basque:
Apertium (Forcada et al., 2011), French: an IMS
internal tool,3 Hungarian: Magyarlanc (Zsibrita et
al., 2013), Korean: HanNanum (Park et al., 2010),
Polish: Morfeusz (Woliński, 2006), and Swedish:
Granska (Domeij et al., 2000).

The created dictionaries were shared with the
other Shared Task participants. We used these dic-
tionaries as additional features for MarMoT.

For some languages we also integrated the pre-
dicted tags provided by the organizers into the fea-
ture model. These stacked models gave improve-
ments for Swedish, Polish and Basque (cf. Table 1
for accuracies).

For the full setting the training data was annotated
using 5-fold jackknifing. In the 5k setting, we addi-
tionally added all sentences not present in the parser
training data to the training data sets of the tagger.
This is similar to the predicted 5k files provided by
the organizers, where more training data than the 5k
was also used for prediction.

Table 3 presents a comparison between our graph-
based baseline parser using the preprocessing ex-
plained in this section (denoted mate) and the
preprocessing provided by the organizers (denoted
mate’). Our preprocessing yields improvements
for all languages but Swedish. The worse perfor-
mance for Swedish is due to the fact that the pre-
dictions provided by the organizers were produced
by models that were trained on a much larger data

3The French morphology was written by Zhenxia Zhou,
Max Kisselew and Helmut Schmid. It is an extension of Zhou
(2007) and implemented in SFST (Schmid, 2005).

136



Arabic Basque French German Hebrew Hungarian Korean Polish Swedish
Berkeley 78.24 69.17 79.74 81.74 87.83 83.90 70.97 84.11 74.50
Replaced 78.70 84.33 79.68 82.74 89.55 89.08 82.84 87.12 75.52
Product 80.30 86.21 81.42 84.56 90.49 89.80 84.15 88.32 79.25
Reranked 81.24 87.35 82.49 85.01 90.49 91.07 84.63 88.40 79.53

Table 2: PARSEVAL scores on the development sets.

set. The comparison with other parsers demonstrates
that for some languages (e.g., Hebrew or Korean)
the improvements due to better preprocessing can
be greater than the improvements due to a better
parser. For instance, for Hebrew the parser trained
on the provided preprocessing is more than three
points (LAS) behind the three parsers trained on
our own preprocessing. However, the difference be-
tween these three parsers is less than a point.

3 Constituency Parsing

The phrase structure parsing pipeline is based on
products of Context Free Grammars with Latent An-
notations (PCFG-LA) (Petrov et al., 2006) and dis-
criminative reranking. We further replace rare words
by their predicted morphological analysis.

We preprocess the treebank trees by removing the
morphological annotation of the POS tags and the
function labels of all non-terminals. We also reduce
the 177 compositional Korean POS tags to their first
atomic tag, which results in a POS tag set of 9 tags.

PCFG-LAs are incrementally built by split-
ting non-terminals, refining parameters using EM-
training and reversing splits that only cause small
increases in likelihood.

Running the Berkeley Parser4 – the reference im-
plementation of PCFG-LAs – on the data sets results
in the PARSEVAL scores given in Table 2 (Berke-
ley). The Berkeley parser only implements a simple
signature-based unknown word model that seems to
be ineffective for some of the languages, especially
Basque and Korean.

We thus replace rare words (frequency < 20) by
the predicted morphological tags of Section 2 (or the
true morphological tag for the gold setup). The intu-
ition is that our discriminative tagger has a more so-
phisticated unknown word treatment than the Berke-
ley parser, taking for example prefixes, suffixes and

4http://code.google.com/p/
berkeleyparser/

the immediate lexical context into account. Further-
more, the morphological tag contains most of the
necessary syntactic information. An exception, for
instance, might be the semantic information needed
to disambiguate prepositional attachment. We think
that replacing rare words by tags has an advan-
tage over constraining the pre-terminal layer of the
parser, because the parser can still decide to assign
a different tag, for example in cases were the tag-
ger produces errors due to long-distance dependen-
cies. The used frequency threshold of 20 results
in token replacement rates of 18% (French) to 57%
(Korean and Polish), which correspond to 209 (for
Polish) to 3221 (for Arabic) word types that are not
replaced. The PARSEVAL scores for the described
method are again given in Table 2 (Replaced). The
method yields improvements for all languages ex-
cept for French where we observe a drop of 0.06.
The improvements range from 0.46 for Arabic to
1.02 for Swedish, 3.1 for Polish and more than 10
for Basque and Korean.

To further improve results, we employ the
product-of-grammars procedure (Petrov, 2010),
where different grammars are trained on the same
data set but with different initialization setups. We
trained 8 grammars and used tree-level inference.
In Table 2 (Product) we can see that this leads to
improvements from 0.72 for Hungarian to 3.73 for
Swedish.

On the 50-best output of the product parser,
we also carry out discriminative reranking. The
reranker is trained for the maximum entropy objec-
tive function of Charniak and Johnson (2005) and
use the standard feature set – without language-
specific feature engineering – from Charniak and
Johnson (2005) and Collins (2000). We use a
slightly modified version of the Mallet toolkit (Mc-
Callum, 2002) for reranking.

Improvements range from negligible differences
(< .1) for Hebrew and Polish to substantial differ-
ences (> 1.) for Basque, French, and Hungarian.

137



mate parser

best-first
parser

turboparser

merged list
of 50-100 best
trees/sentence

merged list
scored by
all parsers

ranker

ptb trees

Parsing Ranking

IN OUT

scores

scores

scores

features

Figure 1: Architecture of the dependency ranking system.

For our final submission, we used the reranker
output for all languages except French, Hebrew, Pol-
ish, and Swedish. This decision was based on an
earlier version of the evaluation setting provided by
the organizers. In this setup, reranking did not help
or was even harmful for these four languages. The
figures in Table 2 use the latest evaluation script and
are thus consistent with the test set results presented
in Section 5.

After the submission deadline the Shared Task
organizers made us aware that we had surprisingly
low exact match scores for Polish (e.g., 1.22 for
the reranked setup). The reason seems to be that
the Berkeley parser cannot produce unary chains of
length > 2. The gold development set contains 1783
such chains while the prediction of the reranked sys-
tem contains none. A particularly frequent unary
chain with 908 occurences in the gold data is ff →
fwe → formaczas. As this chain cannot be pro-
duced the parser leaves out the fwe phrase. Inserting
new fwe nodes between ff and formacszas nodes
raises the PARSEVAL scores of the reranked model
from 88.40 to 90.64 and the exact match scores to
11.34. This suggests that the Polish results could be
improved substantially if unary chains were properly
dealt with, for example by collapsing unary chains.5

4 Dependency Parsing

The core idea of our dependency parsing system
is the combination of the n-best output of several

5Thanks to Slav Petrov for pointing us to the unary chain
length limit.

parsers followed by a ranking step on the com-
bined list. Specifically, we first run two parsers that
each output their 50-best analyses for each sentence.
These 50-best analyses are merged together into one
single n-best list of between 50 and 100 analyses
(depending on the overlap between the n-best lists
of the two parsers). We then use the two parsers
plus an additional one to score each tree in the n-
best lists according to their parsing model, thus pro-
viding us with three different scores for each tree in
the n-best lists. The n-best lists are then given to
a ranker, which ranks the list using the three scores
and a small set of additional features in order to find
the best overall analysis. Figure 1 shows a schematic
of the process.

As a preprocessing step, we reduced the depen-
dency label set for the Hungarian training data.
The Hungarian dependency data set encodes ellipses
through composite edge labels which leads to a pro-
liferation of edge labels (more than 400). Since
many of these labels are extremely rare and thus hard
to learn for the parsers, we reduced the set of edge la-
bels during the conversion. Specifically, we retained
the 50 most frequent labels, while reducing the com-
posite labels to their base label.

For producing the initial n-best lists, we use
the mate parser6 (Bohnet, 2010) and a variant of
the EasyFirst parser (Goldberg and Elhadad, 2010),
which we here call best-first parser.

The mate parser is a state-of-the-art graph-based
dependency parser that uses second-order features.

6https://code.google.com/p/mate-tools

138



The parser works in two steps. First, it uses dy-
namic programming to find the optimal projective
tree using the Carreras (2007) decoder. It then
applies the non-projective approximation algorithm
proposed by McDonald and Pereira (2006) in or-
der to produce non-projective parse trees. The non-
projective approximation algorithm is a greedy hill
climbing algorithm that starts from the optimal pro-
jective parse and iteratively tries to reattach all to-
kens, one at a time, everywhere in the sentence as
long as the tree property holds. It halts when the in-
crease in the score of the tree according to the pars-
ing model is below a certain threshold.

n-best lists are obtained by applying the non-
projective approximation algorithm in a non-greedy
manner, exploring multiple possibilities. All trees
are collected in a list, and when no new trees are
found, or newer trees have a significantly lower
score than the currently best one, search halts. The
n best trees are then retrieved from the list. It
should be noted that, in the standard case, the non-
projective approximation algorithm may find a local
optimum, and that there may be other trees that have
a higher score which were not explored. Thus the
best parse in the greedy case may not necessarily
be the one with the highest score in the n-best list.
Since the parser is trained with the greedy version
of the non-projective approximation algorithm, the
greedily chosen output parse tree is of special in-
terest. We thus flag this tree as the baseline mate
parse, in order to use that for features in the ranker.
The baseline mate parse is also our overall baseline
in the dependency track.

The best-first parser deviates from the EasyFirst
parser in several small respects: The EasyFirst de-
coder creates dependency links between the roots of
adjacent substructures, which gives an O(n log n)
complexity, but restricts the output to projective
trees. The best-first parser is allowed to choose as
head any node of an adjacent substructure instead of
only the root, which increases complexity to O(n2),
but accounts for a big part of possible non-projective
structures. We additionally implemented a swap-
operation (Nivre, 2009; Tratz and Hovy, 2011) to
account for the more complex structures. The best-
first parser relies on a beam-search strategy7 to pur-

7Due to the nature of the decoder, the parser can produce

sue multiple derivations, which we also use to pro-
duce the n-best output.

In the scoring step, we additionally apply the tur-
boparser8 (Martins et al., 2010), which is based on
linear programming relaxations.9 We changed all
three parsers such that they would return a score for
a given tree. We use this to extract scores from each
parser for all trees in the n-best lists. It is impor-
tant to have a score from every parser for every tree,
as previously observed by Zhang et al. (2009) in the
context of constituency reranking.

4.1 Ranking

Table 3 shows the performance of the individual
parsers measured on the development sets. It also
displays the oracle scores over the different n-best
lists, i.e., the maximal possible score over an n-best
list if the best tree is always selected.

The mate parser generally performs best followed
by turboparser, while the best-first parser comes last.
But we can see from the oracle scores that the best-
first parser often shows comparable or even higher
oracle scores than mate, and that the combination
of the n-best lists always adds substantial improve-
ments to the oracle scores. These findings show that
the mate and best-first parsers are providing differ-
ent sets of n-best lists. Moreover, all three parsers
rely on different parsing algorithms and feature sets.
For these reasons, we hypothesized that the parsers
contribute different views on the parse trees and that
their combination would result in better overall per-
formance.

In order to leverage the diversity between the
parsers we experimented with ranking10 on the
n-best lists. We used the same ranking model in-
troduced in Section 3 here as well. The model is
trained to select the best parse according to the la-
beled attachment score (LAS). The training data for
the ranker was created by 5-fold jackknifing on the
training sets. The feature sets for the ranker for

spurious ambiguities in the beam. If this occurs, only the one
with the higher score is kept.

8http://www.ark.cs.cmu.edu/TurboParser/
9Ideally we would also extract n-best lists from the tur-

boparser, however time prevented us from making the necessary
modifications.

10We refrain from calling it reranking in this setting, since
we are using merged n-best lists and the initial ranking is not
entirely clear to begin with.

139



Arabic Basque French German Hebrew Hungarian Korean Polish Swedish
Baseline results for individual parsers

mate’ 88.50/83.50 88.18/84.49 92.71/90.85 83.63/75.89 87.07/82.84 86.06/82.39 91.17/85.81 83.65/77.16
mate 87.68/85.42 89.11/84.43 88.30/84.84 93.15/91.46 86.05/79.37 88.03/84.41 87.91/85.76 91.51/86.30 83.53/77.05
bf 87.61/85.32 84.07/75.90 87.45/83.92 92.90/91.10 86.10/79.57 83.85/75.94 86.54/83.97 90.10/83.75 82.27/75.36
turbo 87.82/85.35 88.88/83.84 88.24/84.57 93.59/91.54 85.74/78.95 86.86/82.80 88.35/86.23 90.97/85.55 83.24/76.15

Oracle scores for n-best lists
mate 90.85/88.74 93.39/89.85 90.99/87.81 97.14/95.84 89.05/83.03 91.41/88.19 94.86/92.96 95.19/91.67 87.19/81.66
bf 91.47/89.46 91.68/86.46 91.38/88.68 97.40/96.60 91.04/85.67 87.64/81.79 94.90/92.94 96.25/93.74 87.60/82.46
merged 92.65/90.71 95.15/91.91 92.97/90.43 98.19/97.44 92.39/87.18 92.12/88.76 96.23/94.65 97.28/95.29 89.87/84.96

Table 3: Baseline performance and n-best oracle scores (UAS/LAS) on the development sets. mate’ uses the prepro-
cessing provided by the organizers, the other parsers use the preprocessing described in Section 2.

each language were optimized manually via cross-
validation on the training sets. The features used for
each language, as well as a default (baseline) fea-
ture set, are shown in Table 4. We now outline the
features we used in the ranker:

Score from the base parsers – denoted B, M,
T, for the best-first, mate, and turbo parsers, re-
spectively. We also have indicator features whether
a certain parse was the best according to a given
parser, denoted GB, GM, GT, respectively. Since
the mate parser does not necessarily assign the high-
est score to the baseline mate parse, the GM fea-
ture is a ternary feature which indicates whether a
parse is the same as the baseline mate parse, or bet-
ter, or worse. We also experimented with transfor-
mations and combinations of the scores from the
parsers. Specifically, BMProd denotes the product
of B and M; BMeProd denotes the sum of B and M
in e-space, i.e., eB+M ; reBMT, reBT, reMT denote
the normalized product of the corresponding scores,
where scores are normalized in a softmax fashion
such that all features take on values in the interval
(0, 1).

Projectivity features (Hall et al., 2007) – the
number of non-projective edges in a tree, denoted
np. Whether a tree is ill-nested, denoted I. Since ill-
nested trees are extremely rare in the treebanks, this
helps the ranker filter out unlikely candidates from
the n-best lists. For a definition and further discus-
sion of ill-nestedness, we refer to (Havelka, 2007).

Constituent features – from the constituent track
we also have constituent trees of all sentences which
can be used for feature extraction. Specifically, for
every head-dependent pair, we extract the path in the
constituent tree between the nodes, denoted ptbp.

Case agreement – on head-dependent pairs that
both have a case value assigned among their mor-
phological features, we mark whether it is the same
case or not, denoted case.

Function label uniqueness – on each training set
we extracted a list of function labels that generally
occur at most once as the dependent of a node, e.g.,
subjects or objects. Features are then extracted from
all nodes that have one or more dependents of each
label aimed at capturing mistakes such as double
subjects on a verb. This template is denoted FL.

In addition to the features mentioned above, we
experimented with a variety of feature templates, in-
cluding features drawn from previous work on de-
pendency reranking (Hall, 2007), e.g., lexical and
POS-based features over edges, “subcategorization”
frames (i.e., the concatenation of POS-tags that are
headed by a certain node in the tree), etc, although
these features did not seem to help. For German we
created feature templates based on the constraints
used in the constraint-based parser by Seeker and
Kuhn (2013). This includes, e.g., violations in case
or number agreement between heads and depen-
dents, as well as more complex features that con-
sider labels on entire verb complexes. None of these
features yielded any clear improvements though. We
also experimented with features that target some
specific constructions (and specifics of annotation
schemes) which the parsers typically cannot fully
see, such as coordination, however, also here we saw
no clear improvements.

4.2 Effects of Ranking
In Table 5, we show the improvements from using
the ranker, both with the baseline and optimized fea-
tures sets for the ranker. For the sake of comparison,

140



Arabic Basque French German Hebrew Hungarian Korean Polish Swedish
Baseline 87.68/85.42 89.11/84.43 88.30/84.84 93.15/91.46 86.05/79.37 88.03/84.41 87.91/85.76 91.51/86.30 83.53/77.05
Ranked-dflt 88.54/86.32 89.99/85.43 88.85/85.39 94.06/92.36 87.28/80.44 88.16/84.54 88.71/86.65 92.26/87.12 84.51/77.83
Ranked 88.93/86.74 89.95/85.61 89.37/85.96 94.20/92.68 87.63/81.02 88.38/84.77 89.20/87.12 93.02/87.69 85.04/78.57
Oracle 92.65/90.71 95.15/91.91 92.97/90.43 98.19/97.44 92.39/87.18 92.12/88.76 96.23/94.65 97.28/95.29 89.87/84.96

Table 5: Performance (UAS/LAS) of the reranker on the development sets. Baseline denotes our baseline. Ranked-dflt
and Ranked denote the default and optimized ranker feature sets, respectively. Oracle denotes the oracle scores.

default B, M, T, GB, GM, GT, I
Arabic B, M, T, GB, GM, I, ptbp, reBMT
Basque B, M, T, GB, GM, GT, I, ptbp, I, reMT, case
French B, M, T, GB, GM, GT, I, ptbp
German B, M, T, GM, I, BMProd, FL
Hebrew B, M, T, GB, GM, GT, I, ptbp, FL, BMeProd
Hungarian B, M, T, GB, GM, GT, I, ptbp, reBM, FL
Korean B, M, T, GB, GM, GT, I, ptbp, reMT, FL
Polish B, M, T, GB, GM, GT, I, ptbp, np
Swedish B, M, T, GB, GM, GT, I, ptbp, reBM, FL

Table 4: Feature sets for the dependency ranker for each
language. default denotes the default ranker feature set.

the baseline mate parses as well as the oracle parses
on the merged n-best lists are repeated from Table 3.
We see that ranking clearly helps, both with a tai-
lored feature set, as well as the default feature set.
The improvement in LAS between the baseline and
the tailored ranking feature sets ranges from 1.1%
(French) to 1.6% (Hebrew) absolute, with the excep-
tion of Hungarian, where improvements on the dev
set are more modest (contrary to the test set results,
cf. Section 5). Even with the default feature set, the
improvements range from 0.5% (French) to 1.1%
(Hebrew) absolute, again setting Hungarian aside.
We believe that this is an interesting result consid-
ering the simplicity of the default feature set.

5 Test Set Results

In this section we outline our final results on the test
sets. As previously, we focus on the setting with
predicted tags in gold segmentation and the largest
training set. We also present results on Arabic and
Hebrew for the predicted segmentation setting. For
the gold preprocessing and all 5k settings, we refer
the reader to the Shared Task overview paper (Sed-
dah et al., 2013).11

In Table 7, we present our results in the con-

11Or the results page online: http://www.spmrl.org/
spmrl2013-sharedtask-results.html

stituency track. Since we were the only participat-
ing team in the constituency track, we compare our-
selves with the best baseline12 provided by the or-
ganizers. Our system outperforms the baseline for
all languages in terms of PARSEVAL F1. Follow-
ing the trend on the development sets, reranking is
consistently helping across languages.13 Despite the
lack of other submissions in the shared task, we be-
lieve our numbers are generally strong and hope that
they can serve as a reference for future work on con-
stituency parsing on these data sets.

Table 8 displays our results in the dependency
track. We submitted two runs: a baseline, which
is the baseline mate parse, and the reranked trees.
The table also compares our results to the best per-
forming other participant in the shared task (denoted
Other) as well as the MaltParser (Nivre et al., 2007)
baseline provided by the shared task organizers (de-
noted ST Baseline). We obtain the highest scores
for all languages, with the exception of French. It is
also clear that we make considerable gains over our
baseline, confirming our results on the development
sets reported in Section 4. It is also noteworthy that
our baseline (i.e., the mate parser with our own pre-
processing) outperforms the best other system for 5
languages.

Arabic Hebrew
Other 90.75/8.48 88.33/12.20
Dep. Baseline 91.13/9.10 89.27/15.01
Dep. Ranked 91.74/9.83 89.47/16.97
Constituency 92.06/9.49 89.30/13.60

Table 6: Unlabeled TedEval scores (accuracy/exact
match) for the test sets in the predicted segmentation set-
ting. Only sentences of length ≤ 70 are evaluated.

12It should be noted that the Shared Task organizers com-
puted 2 different baselines on the test sets. The best baseline
results for each language thus come from different parsers.

13We remind the reader that our submission decisions are not
based on figures in Table 2, cf. Section 3.

141



Arabic Basque French German Hebrew Hungarian Korean Polish Swedish
ST Baseline 79.19 74.74 80.38 78.30 86.96 85.22 78.56 86.75 80.64
Product 80.81 87.18 81.83 80.70 89.46 90.58 83.49 87.55 83.99
Reranked 81.32 87.86 82.86 81.27 89.49 91.85 84.27 87.76 84.88

Table 7: Final PARSEVAL F1 scores for constituents on the test set for the predicted setting. ST Baseline denotes the
best baseline (out of 2) provided by the Shared Task organizers. Our submission is underlined.

Arabic Basque French German Hebrew Hungarian Korean Polish Swedish
ST Baseline 83.18/80.36 79.77/70.11 82.49/77.98 81.51/77.81 76.49/69.97 80.72/70.15 85.72/82.06 82.19/75.63 80.29/73.21
Other 85.78/83.20 89.19/84.25 89.19/85.86 90.80/88.66 81.05/73.63 88.93/84.97 85.84/82.65 88.12/82.56 87.28/80.88
Baseline 86.96/84.81 89.32/84.25 87.87/84.37 90.54/88.37 85.88/79.67 89.09/85.31 87.41/85.51 90.30/85.51 86.85/80.67
Ranked 88.32/86.21 89.88/85.14 88.68/85.24 91.64/89.65 86.70/80.89 89.81/86.13 88.47/86.62 91.75/87.07 88.06/82.13

Table 8: Final UAS/LAS scores for dependencies on the test sets for the predicted setting. Other denotes the highest
scoring other participant in the Shared Task. ST Baseline denotes the MaltParser baseline provided by the Shared Task
organizers.

Table 6 shows the unlabeled TedEval (Tsarfaty et
al., 2012) scores (accuracy/exact match) on the test
sets for the predicted segmentation setting for Ara-
bic and Hebrew. Note that these figures only include
sentences of length less than or equal to 70. Since
TedEval enables cross-framework comparison, we
compare our submissions from the dependency track
to our submission from the constituency track. In
these runs we used the same systems that were used
for the gold segmentation with predicted tags track.
The predicted segmentation was provided by the
Shared Task organizers. We also compare our re-
sults to the best other system from the Shared Task
(denoted Other).

Also here we obtain the highest results for both
languages. However, it is unclear what syntactic
paradigm (dependencies or constituents) is better
suited for the task. All in all it is difficult to assess
whether the differences between the best and second
best systems for each language are meaningful.

6 Conclusion

We have presented our contribution to the 2013
SPMRL Shared Task. We participated in both the
constituency and dependency tracks. In both tracks
we make use of a state-of-the-art tagger for POS and
morphological features. In the constituency track,
we use the tagger to handle unknown words and em-
ploy a product-of-grammars-based PCFG-LA parser
and parse tree reranking. In the dependency track,
we combine multiple parsers output as input for a
ranker.

Since there were no other participants in the con-
stituency track, it is difficult to draw any conclusions
from our results. We do however show that the ap-
plication of product grammars, our handling of rare
words, and a subsequent reranking step outperforms
a baseline PCFG-LA parser.

In the dependency track we obtain the best re-
sults for all languages except French among 7 partic-
ipants. Our reranking approach clearly outperforms
a baseline graph-based parser. This is the first time
multiple parsers have been used in a dependency
reranking setup.

Aside from minor decisions made on the basis
of each language, our approach is language agnos-
tic and does not target morphology in any particu-
lar way as part of the parsing process. We show
that with a strong baseline and with no language
specific treatment it is possible to achieve state-of-
the-art results across all languages. Our architec-
ture for the dependency parsing track enables the use
of language-specific features in the ranker, although
we only had minor success with features that target
morphology. However, it may be the case that ap-
proaches from previous work on parsing MRLs, or
the approaches taken by other teams in the Shared
Task, can be successfully combined with ours and
improve parsing accuracy even more.

Acknowledgments

Richárd Farkas is funded by the European Union and
the European Social Fund through the project Fu-
turICT.hu (grant no.: TÁMOP-4.2.2.C-11/1/KONV-

142



2012-0013). Thomas Müller is supported by a
Google Europe Fellowship in Natural Language
Processing. The remaining authors are funded by
the Deutsche Forschungsgemeinschaft (DFG) via
the SFB 732, projects D2 and D8 (PI: Jonas Kuhn).

We also express our gratitude to the treebank
providers for each language: Arabic (Maamouri et
al., 2004; Habash and Roth, 2009; Habash et al.,
2009; Green and Manning, 2010), Basque (Aduriz
et al., 2003), French (Abeillé et al., 2003), He-
brew (Sima’an et al., 2001; Tsarfaty, 2010; Gold-
berg, 2011; Tsarfaty, 2013), German (Brants et al.,
2002; Seeker and Kuhn, 2012), Hungarian (Csendes
et al., 2005; Vincze et al., 2010), Korean (Choi
et al., 1994; Choi, 2013), Polish (Świdziński and
Woliński, 2010), and Swedish (Nivre et al., 2006).

References
Anne Abeillé, Lionel Clément, and François Toussenel.

2003. Building a treebank for french. In Anne
Abeillé, editor, Treebanks. Kluwer, Dordrecht.

I. Aduriz, M. J. Aranzabe, J. M. Arriola, A. Atutxa,
A. Dı́az de Ilarraza, A. Garmendia, and M. Oronoz.
2003. Construction of a Basque dependency treebank.
In TLT-03, pages 201–204.

Bernd Bohnet. 2010. Top Accuracy and Fast Depen-
dency Parsing is not a Contradiction. In Proceed-
ings of the 23rd International Conference on Compu-
tational Linguistics (Coling 2010), pages 89–97, Bei-
jing, China, August. Coling 2010 Organizing Commit-
tee.

Sabine Brants, Stefanie Dipper, Silvia Hansen, Wolf-
gang Lezius, and George Smith. 2002. The TIGER
treebank. In Erhard Hinrichs and Kiril Simov, edi-
tors, Proceedings of the First Workshop on Treebanks
and Linguistic Theories (TLT 2002), pages 24–41, So-
zopol, Bulgaria.

Tim Buckwalter. 2002. Buckwalter Arabic Morpholog-
ical Analyzer Version 1.0. Linguistic Data Consor-
tium, University of Pennsylvania, 2002. LDC Catalog
No.: LDC2002L49.

Xavier Carreras. 2007. Experiments with a Higher-
Order Projective Dependency Parser. In Proceedings
of the CoNLL Shared Task Session of EMNLP-CoNLL
2007, pages 957–961, Prague, Czech Republic, June.
Association for Computational Linguistics.

Eugene Charniak and Mark Johnson. 2005. Coarse-to-
fine n-best parsing and MaxEnt discriminative rerank-
ing. In Proceedings of the 43rd Annual Meeting on
Association for Computational Linguistics, ACL ’05,
pages 173–180.

Key-Sun Choi, Young S Han, Young G Han, and Oh W
Kwon. 1994. Kaist tree bank project for korean:
Present and future development. In Proceedings of
the International Workshop on Sharable Natural Lan-
guage Resources, pages 7–14. Citeseer.

Jinho D. Choi. 2013. Preparing korean data for
the shared task on parsing morphologically rich lan-
guages. ArXiv e-prints.

Michael Collins. 2000. Discriminative Reranking for
Natural Language Parsing. In Proceedings of the Sev-
enteenth International Conference on Machine Learn-
ing, ICML ’00, pages 175–182.

Dóra Csendes, Janós Csirik, Tibor Gyimóthy, and András
Kocsor. 2005. The Szeged treebank. In Václav Ma-
toušek, Pavel Mautner, and Tomáš Pavelka, editors,
Text, Speech and Dialogue: Proceedings of TSD 2005.
Springer.

Rickard Domeij, Ola Knutsson, Johan Carlberger, and
Viggo Kann. 2000. Granska-an efficient hybrid sys-
tem for Swedish grammar checking. In In Proceed-
ings of the 12th Nordic Conference in Computational
Linguistics.

Mikel L Forcada, Mireia Ginestı́-Rosell, Jacob Nord-
falk, Jim O’Regan, Sergio Ortiz-Rojas, Juan An-
tonio Pérez-Ortiz, Felipe Sánchez-Martı́nez, Gema
Ramı́rez-Sánchez, and Francis M Tyers. 2011. Aper-
tium: A free/open-source platform for rule-based ma-
chine translation. Machine Translation.

Yoav Goldberg and Michael Elhadad. 2010. An Ef-
ficient Algorithm for Easy-First Non-Directional De-
pendency Parsing. In Human Language Technologies:
The 2010 Annual Conference of the North American
Chapter of the Association for Computational Linguis-
tics, pages 742–750, Los Angeles, California, June.
Association for Computational Linguistics.

Yoav Goldberg. 2011. Automatic syntactic processing of
Modern Hebrew. Ph.D. thesis, Ben Gurion University
of the Negev.

Spence Green and Christopher D. Manning. 2010. Bet-
ter arabic parsing: Baselines, evaluations, and anal-
ysis. In Proceedings of the 23rd International Con-
ference on Computational Linguistics (Coling 2010),
pages 394–402, Beijing, China, August. Coling 2010
Organizing Committee.

Nizar Habash and Ryan Roth. 2009. Catib: The
columbia arabic treebank. In Proceedings of the ACL-
IJCNLP 2009 Conference Short Papers, pages 221–
224, Suntec, Singapore, August. Association for Com-
putational Linguistics.

Nizar Habash, Reem Faraj, and Ryan Roth. 2009. Syn-
tactic Annotation in the Columbia Arabic Treebank. In
Proceedings of MEDAR International Conference on
Arabic Language Resources and Tools, Cairo, Egypt.

143



Keith Hall, Jiri Havelka, and David A. Smith. 2007.
Log-Linear Models of Non-Projective Trees, k-best
MST Parsing and Tree-Ranking. In Proceedings of the
CoNLL Shared Task Session of EMNLP-CoNLL 2007,
pages 962–966, Prague, Czech Republic, June. Asso-
ciation for Computational Linguistics.

Keith Hall. 2007. K-best Spanning Tree Parsing. In Pro-
ceedings of the 45th Annual Meeting of the Association
of Computational Linguistics, pages 392–399, Prague,
Czech Republic, June. Association for Computational
Linguistics.

Jiri Havelka. 2007. Beyond Projectivity: Multilin-
gual Evaluation of Constraints and Measures on Non-
Projective Structures. In Proceedings of the 45th
Annual Meeting of the Association of Computational
Linguistics, pages 608–615, Prague, Czech Republic,
June. Association for Computational Linguistics.

Mark Johnson and Ahmet Engin Ural. 2010. Rerank-
ing the Berkeley and Brown Parsers. In Human Lan-
guage Technologies: The 2010 Annual Conference of
the North American Chapter of the Association for
Computational Linguistics, pages 665–668, Los An-
geles, California, June. Association for Computational
Linguistics.

Mohamed Maamouri, Ann Bies, Tim Buckwalter, and
Wigdan Mekki. 2004. The Penn Arabic Treebank:
Building a Large-Scale Annotated Arabic Corpus. In
NEMLAR Conference on Arabic Language Resources
and Tools.

Andre Martins, Noah Smith, Eric Xing, Pedro Aguiar,
and Mario Figueiredo. 2010. Turbo Parsers: Depen-
dency Parsing by Approximate Variational Inference.
In Proceedings of the 2010 Conference on Empirical
Methods in Natural Language Processing, pages 34–
44, Cambridge, MA, October. Association for Compu-
tational Linguistics.

Andrew Kachites McCallum. 2002. ”mal-
let: A machine learning for language toolkit”.
http://mallet.cs.umass.edu.

Ryan McDonald and Fernando Pereira. 2006. On-
line learning of approximate dependency parsing al-
gorithms. In Proceedings of the 11th Conference of
the European Chapter of the Association for Compu-
tational Linguistics, pages 81–88, Trento, Italy. Asso-
ciation for Computational Linguistics.

Thomas Müller, Helmut Schmid, and Hinrich Schütze.
2013. Efficient Higher-Order CRFs for Morphological
Tagging. In In Proceedings of EMNLP.

Joakim Nivre, Jens Nilsson, and Johan Hall. 2006. Tal-
banken05: A Swedish treebank with phrase structure
and dependency annotation. In Proceedings of LREC,
pages 1392–1395, Genoa, Italy.

Joakim Nivre, Johan Hall, Jens Nilsson, Atanas Chanev,
Gülşen Eryiğit, Sandra Kübler, Svetoslav Marinov,

and Erwin Marsi. 2007. MaltParser: A language-
independent system for data-driven dependency pars-
ing. Natural Language Engineering, 13:95–135, 6.

Joakim Nivre. 2009. Non-Projective Dependency Pars-
ing in Expected Linear Time. In Proceedings of the
Joint Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP, pages
351–359, Suntec, Singapore, August. Association for
Computational Linguistics.

S Park, D Choi, E-k Kim, and KS Choi. 2010. A plug-in
component-based Korean morphological analyzer. In
Proceedings of HCLT2010.

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan
Klein. 2006. Learning accurate, compact, and inter-
pretable tree annotation. In Proceedings of the 21st
International Conference on Computational Linguis-
tics and the 44th annual meeting of the Association for
Computational Linguistics, pages 433–440. Associa-
tion for Computational Linguistics.

Slav Petrov. 2010. Products of Random Latent Variable
Grammars. In Human Language Technologies: The
2010 Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics,
pages 19–27, Los Angeles, California, June. Associa-
tion for Computational Linguistics.

Helmut Schmid. 2005. A programming language for
finite state transducers. In FSMNLP.

Djamé Seddah, Reut Tsarfaty, Sandra Kübler, Marie Can-
dito, Jinho Choi, Richárd Farkas, Jennifer Foster, Iakes
Goenaga, Koldo Gojenola, Yoav Goldberg, Spence
Green, Nizar Habash, Marco Kuhlmann, Wolfgang
Maier, Joakim Nivre, Adam Przepiorkowski, Ryan
Roth, Wolfgang Seeker, Yannick Versley, Veronika
Vincze, Marcin Woliński, and Alina Wróblewska.
2013. Overview of the SPMRL 2013 Shared Task: A
Cross-Framework Evaluation of Parsing Morphologi-
cally Rich Languages. In Proceedings of the 4th Work-
shop on Statistical Parsing of Morphologically Rich
Languages: Shared Task, Seattle, WA.

Wolfgang Seeker and Jonas Kuhn. 2012. Making El-
lipses Explicit in Dependency Conversion for a Ger-
man Treebank. In Proceedings of the 8th Interna-
tional Conference on Language Resources and Eval-
uation, pages 3132–3139, Istanbul, Turkey. European
Language Resources Association (ELRA).

Wolfgang Seeker and Jonas Kuhn. 2013. Morphological
and Syntactic Case in Statistical Dependency Parsing.
Computational Linguistics, 39(1):23–55.

Khalil Sima’an, Alon Itai, Yoad Winter, Alon Altman,
and Noa Nativ. 2001. Building a Tree-Bank for
Modern Hebrew Text. In Traitement Automatique des
Langues.

144



Marek Świdziński and Marcin Woliński. 2010. Towards
a bank of constituent parse trees for Polish. In Text,
Speech and Dialogue: 13th International Conference
(TSD), Lecture Notes in Artificial Intelligence, pages
197—204, Brno, Czech Republic. Springer.

Stephen Tratz and Eduard Hovy. 2011. A Fast, Ac-
curate, Non-Projective, Semantically-Enriched Parser.
In Proceedings of the 2011 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1257–1268, Edinburgh, Scotland, UK., July. Associa-
tion for Computational Linguistics.

Reut Tsarfaty, Djamé Seddah, Yoav Goldberg, Sandra
Kuebler, Yannick Versley, Marie Candito, Jennifer
Foster, Ines Rehbein, and Lamia Tounsi. 2010. Sta-
tistical Parsing of Morphologically Rich Languages
(SPMRL) What, How and Whither. In Proc. of the
SPMRL Workshop of NAACL-HLT, pages 1–12, Los
Angeles, CA, USA.

Reut Tsarfaty, Joakim Nivre, and Evelina Andersson.
2012. Joint Evaluation of Morphological Segmen-
tation and Syntactic Parsing. In Proceedings of the
50th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
6–10, Jeju Island, Korea, July. Association for Com-
putational Linguistics.

Reut Tsarfaty. 2010. Relational-Realizational Parsing.
Ph.D. thesis, University of Amsterdam.

Reut Tsarfaty. 2013. A Unified Morpho-Syntactic
Scheme of Stanford Dependencies. Proceedings of
ACL.

Veronika Vincze, Dóra Szauter, Attila Almási, György
Móra, Zoltán Alexin, and János Csirik. 2010. Hun-
garian dependency treebank. In LREC.

Zhiguo Wang and Chengqing Zong. 2011. Parse Rerank-
ing Based on Higher-Order Lexical Dependencies. In
Proceedings of 5th International Joint Conference on
Natural Language Processing, pages 1251–1259, Chi-
ang Mai, Thailand, November. Asian Federation of
Natural Language Processing.

Marcin Woliński. 2006. Morfeusz - A practical tool for
the morphological analysis of Polish. In Intelligent in-
formation processing and web mining, pages 511–520.
Springer.

Hui Zhang, Min Zhang, Chew Lim Tan, and Haizhou
Li. 2009. K-Best Combination of Syntactic Parsers.
In Proceedings of the 2009 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1552–1560, Singapore, August. Association for Com-
putational Linguistics.

Zhenxia Zhou. 2007. Entwicklung einer französischen
Finite-State-Morphologie. Diplomarbeit, Institute for
Natural Language Processing, University of Stuttgart.

János Zsibrita, Veronika Vincze, and Richárd Farkas.
2013. Magyarlanc 2.0: Szintaktikai elemzés és fel-
gyorsı́tott szófaji egyértelműsı́tés. In IX. Magyar
Számı́tógépes Nyelvészeti Konferencia.

145


