
Proceedings of the Fourth Workshop on Statistical Parsing of Morphologically Rich Languages, pages 63–70,
Seattle, Washington, USA, 18 October 2013. c©2013 Association for Computational Linguistics

Effective Morphological Feature Selection
with MaltOptimizer at the SPMRL 2013 Shared Task

Miguel Ballesteros
Natural Language Processing Group

Pompeu Fabra University.
Barcelona, Spain

miguel.ballesteros@upf.edu

Abstract

The inclusion of morphological features pro-
vides very useful information that helps to en-
hance the results when parsing morphologi-
cally rich languages. MaltOptimizer is a tool,
that given a data set, searches for the opti-
mal parameters, parsing algorithm and opti-
mal feature set achieving the best results that
it can find for parsers trained with MaltParser.
In this paper, we present an extension of Mal-
tOptimizer that explores, one by one and in
combination, the features that are geared to-
wards morphology. From our experiments
in the context of the Shared Task on Parsing
Morphologically Rich Languages, we extract
an in-depth study that shows which features
are actually useful for transition-based pars-
ing and we provide competitive results, in a
fast and simple way.

1 Introduction

Since the CoNLL Shared Tasks on Syntactic Depen-
dency parsing (Buchholz and Marsi, 2006; Nivre et
al., 2007), the number of treebanks and new pars-
ing methods have considerably increased. Thanks to
that, it has been observed that parsing morphologi-
cally rich languages (henceforth, MRLs) is a chal-
lenge because these languages include multiple lev-
els of information that are difficult to classify and,
therefore, to parse. This is why there has been recent
research in this direction, with for instance a Special
Issue in Computational Linguistics (Tsarfaty et al.,
2012b).

MaltOptimizer (Ballesteros and Nivre, 2012b;
Ballesteros and Nivre, 2012a) is a system that is ca-

pable of providing optimal settings for training mod-
els with MaltParser (Nivre et al., 2006a), a freely
available transition-based parser generator. MaltOp-
timizer, among other things, performs an in-depth
feature selection, selecting the attributes that help
to achieve better parsing results. In this paper –
and in this participation in the Shared Task on Pars-
ing Morphologically Rich Languages (Seddah et al.,
2013) – we present an extension of MaltOptimizer
that performs a deeper search over the morpholog-
ical features that are somewhat one of the keys to
parsing MRLs. Instead of lumping all morphosyn-
tactic features together, we define a different field for
each individual feature (case, number, gender, etc.).
Hence, we are able to extract a study that shows
which features are actually useful for parsing MRLs
with MaltParser.

The new SPMRL-MaltOptimizer imple-
mentation is available for download at
http://nil.fdi.ucm.es/maltoptimizer/spmrl.html.
It is worth noting that it can be applied to any
treebank in CoNLL data format.1

The rest of the paper is organized as follows. Sec-
tion 2 describes MaltOptimizer. Section 3 shows
how we modified MaltOptimizer to make it able to
perform a more complete morphological feature se-
lection. Section 4 describes the experiments that we
carried out with the data sets of the Shared Task on
Parsing Morphologically Rich Languages. Section
5 reports the results of the experiments and the con-
clusions that we can extract. Section 6 discusses re-
lated work on MaltOptimizer and parsing morpho-
logically rich languages. And finally, Section 7 con-

1http://ilk.uvt.nl/conll/#dataformat

63

cludes.

2 MaltOptimizer

MaltOptimizer is a system written in Java that im-
plements a full optimization procedure for Malt-
Parser based on the experience acquired from pre-
vious experiments (Hall et al., 2007; Nivre and
Hall, 2010). MaltOptimizer attempts to find the best
model that it can find, but it does not guarantee that
the outcome is the best model possible because of
the difficulty of exploring all the possibilities that are
provided by the parameters, parsing algorithms and
different feature windows. The optimization proce-
dure is divided in 3 different phases, as follows:

1. Data analysis and initial optimization.

2. Parsing algorithm selection.

3. Feature selection and LIBLINEAR optimiza-
tion.

MaltOptimizer divides the treebank into a train-
ing set and a held-out test set for evaluation. In the
first phase, MaltOptimizer makes an analysis of the
treebank in order to set up the rest of the optimiza-
tion, and it attempts the optimization with some gen-
eral parameters, such as the way of handling covered
roots.2 After that, it tests the parsing algorithms that
are available in MaltParser by selecting the one that
provides best results in default settings. In the third
phase, it explores a wide range of features that are
based on previous parsing steps and/or the informa-
tion annotated in the treebanks. Finally, it also ex-
plores the single hyper-parameter (c) of the LIBLIN-
EAR classifier.

In the next Section, we present how we updated
MaltOptimizer for our participation in the Shared
Task of parsing MRLs.

3 Morphological Feature Exploration

The CoNLL data format contains several columns
of information that help to perform the dependency
parsing of a sentence. One of the columns is the
FEATS column that normally contains a set of mor-
phological features, which is normally of the format
a=x|b=y|c=z. At the time of writing, the available

2A covered root is a root node covered by a dependency arc.

version of MaltOptimizer explores the features in-
cluded in this column as a single feature, by lumping
all morphosyntactic features in the MaltParser clas-
sifier, and by splitting the information but including
all of them at the same time without making any dis-
tinctions. This is what MaltParser allows by using
the standard CoNLL format, which contains the fol-
lowing information per column.

1. ID: Identifier.

2. FORM: Word form.

3. LEMMA: Lemma or stemmed version of the
word.

4. CPOSTAG: Coarse-grained part-of-speech
tag.

5. POSTAG: Fine-grained part-of-speech tag.

6. FEATS: Morphosyntactic features (e.g., case,
number, tense, etc.). It is normally of the for-
mat a=x|b=y|c=z.

7. HEAD: Head node.

8. DEPREL: Dependency relation to head.

9. PHEAD: Projective head node.

10. PDEPREL: Projective dependency relation to
head.

However, MaltParser also provides the option of
parsing new data formats that are derived from the
original CoNLL format. Therefore, there is the pos-
sibility to add new columns that may contain use-
ful information for parsing. The new MaltOptimizer
implementation automatically generates a new data
format and a new data set. It creates new columns
that only contain the information of a single feature
which is included in the FEATS column.

Figure 1 shows two versions of a sentence anno-
tated in the French treebank from the Shared Task.
The one shown above is in the standard CoNLL for-
mat, and the one shown below is the extended format
generated by MaltOptimizer in which the FEATS
column has been divided in 10 different columns.

64

1 En en P P mwehead=ADV+|pred=y 4 mod
2 tout tout D DET g=m|n=s|s=ind|pred=y 1 dep_cpd
3 cas cas N NC g=m|s=c|pred=y 1 dep_cpd
4 est łtre V V m=ind|n=s|p=3|t=pst 0 root
5 -il il CL CLS g=m|n=s|p=3|s=suj 4 suj
6 plus plus ADV ADV _ 7 mod
7 nuanc nuanc A ADJ g=m|n=s|s=qual 4 ats
8 . . PONCT PONCT s=s 4 ponct

1 En en P P _ _ _ _ _ _ ADV+ y _ _ 4 mod
2 tout tout D DET ind m s _ _ _ _ y _ _ 1 dep_cpd
3 cas cas N NC c m _ _ _ _ _ y _ _ 1 dep_cpd
4 est łtre V V _ _ s 3 ind pst _ _ _ _ 0 root
5 -il il CL CLS suj m s 3 _ _ _ _ _ _ 4 suj
6 plus plus ADV ADV _ _ _ _ _ _ _ _ _ _ 7 mod
7 nuanc nuanc A ADJ qual m s _ _ _ _ _ _ _ 4 ats
8 . . PONCT PONCT s _ _ _ _ _ _ _ _ _ 4 ponct

Figure 1: A sentence from the French treebank in the standard (above) and complex (below) formats. The projective
columns have been removed for simplicity.

4 Experiments

With the intention of both assessing the usefulness
of the new MaltOptimizer implementation and test-
ing which features are useful for each targeted lan-
guage, we carried out a series of experiments over
the data sets from the Shared Task on Parsing MRLs
(Seddah et al., 2013). We run the new MaltOpti-
mizer implementation for all the data sets provided
by the Shared Task organizers and we run Malt-
Parser with the model suggested. Therefore, we had
36 different runs, 4 for each language (gold and pre-
dicted scenarios with 5k treebanks, and gold and
predicted scenarios with full treebanks).

In order to have a comparable set of results, we
performed all the optimization processes with the
smaller versions of the treebanks (5k) and both op-
timization and training steps with both the small
and larger version for all languages. Each MaltOp-
timizer run took approximately 3-4 hours for opti-
mization (the running time also depends on the size
of the set of morphological features, or other param-
eters, such as the number of dependency relations)
and it takes around 20 extra minutes to get the final
model with MaltParser. These estimates are given
with an Intel Xeon server with 8 cores, 2.8GHz and
a heap space of, at least, 8GB.

5 Results and Discussion

Table 1 shows the results for gold-standard input
while Table 2 shows the results for the provided pre-
dicted inputs for the best model that the new Mal-
tOptimizer implementation can find (Dev-5k, Dev,
Test-5k and Test) and a baseline, which is Malt-

Parser in default settings (Malt-5k and Malt) on the
test sets. The first conclusion to draw is that the dif-
ference between gold and predicted inputs is nor-
mally of 2 points, however for some languages such
as French the drop reaches 6 points. It is also ev-
idenced that, as shown by Ballesteros and Nivre
(2012a), some languages benefit more from the fea-
ture selection phase, while others achieve higher im-
provements by selecting a different parsing algo-
rithm.

In general terms, almost all languages bene-
fit from having an accurate stemmed version of
the word in the LEMMA column, providing very
substantial improvements when accurately selecting
this feature. Another key feature, for almost all lan-
guages, is the grammatical CASE that definitely en-
hances the performance; we can therefore conclude
that it is essential for MRLs. Both aspects evidence
the lexical challenge of parsing MRLs without using
this information.

There is a positive average difference comparing
with the MaltParser baseline of 4.0 points training
over the full treebanks and predicted scenario and
5.6 points training over the full treebanks and gold
scenario. It is therefore evident how useful MaltOp-
timizer is when it can perform an in-depth morpho-
logical feature exploration. In the following subsec-
tions we explain the results for each targeted lan-
guage, giving special emphasis to the ones that turn
out to be more meaningful.

5.1 Arabic

For Arabic, we used the shared task Arabic data
set, originally provided by the LDC (Maamouri et

65

Language Default Phase 1 Phase 2 Phase 3 Diff Dev-5k Dev Malt-5k Malt Test-5k Test
Arabic 83.48 83.49 83.49 87.95 4.47 85.98 87.60 80.36 82.28 85.30 87.03
Basque 67.05 67.33 67.45 79.89 13.30 80.35 81.65 67.13 69.19 81.40 82.07
French 77.96 77.96 78.27 85.24 7.28 85.19 86.30 78.16 79.86 84.93 85.71
German 79.90 81.09 84.85 87.70 7.80 87.32 90.40 76.64 79.98 83.59 86.96
Hebrew 76.78 76.80 79.37 80.17 3.39 79.83 79.83 76.61 76.61 80.03 80.03

Hungarian 70.37 71.11 71.98 81.91 11.54 80.69 80.74 71.27 72.34 82.37 83.14
Korean 87.22 87.22 87.22 88.94 1.72 86.52 90.20 81.69 88.43 83.74 89.39
Polish 75.52 75.58 79.28 80.27 4.75 81.58 81.91 76.64 77.70 79.79 80.49

Swedish 76.75 76.75 78.91 79.76 3.01 74.85 74.85 75.73 75.73 77.67 77.67

Table 1: Labeled attachment score per phase compared to default settings for all training sets from the Shared Task
on PMRLs in the gold scenario on the held-out test set for optimization. The first columns shows results per phase
(the procedure of each phase is briefly described in Section 2) on the held-out sets for evaluation. The Dev-5k and
Dev columns report labeled attachment score on the development sets. The columns Malt and Malt-5k report results
of MaltParser in default settings on the test sets. And the columns, Test-5k and Test report results for the best model
found by SPMRL-MaltOptimizer on the test sets.

Language Default Phase 1 Phase 2 Phase 3 Diff Dev-5k Dev Malt-5k Malt Test-5k Test
Arabic 83.20 83.21 83.21 85.68 2.48 80.35 82.28 78.30 80.36 79.64 81.90
Basque 68.80 69.33 69.89 77.24 8.44 78.12 79.46 68.12 70.11 77.59 78.58
French 77.43 77.43 77.63 79.42 1.99 77.65 79.33 76.54 77.98 77.56 79.00
German 78.69 79.87 82.58 83.97 5.28 83.39 86.63 74.81 77.81 79.22 82.75
Hebrew 76.29 76.31 79.01 79.67 3.38 73.40 73.40 69.97 69.97 73.01 73.01

Hungarian 68.26 69.12 69.96 78.71 10.45 76.82 77.62 69.08 70.15 79.00 79.63
Korean 80.08 80.08 80.08 81.63 1.55 77.96 83.02 74.87 82.06 75.90 82.65
Polish 74.43 74.49 76.93 78.41 3.98 80.61 80.83 75.29 75.63 79.50 80.49

Swedish 74.53 74.53 76.51 77.66 3.13 72.90 72.90 73.21 73.21 75.82 75.82

Table 2: Labeled attachment score per phase compared to default settings for all training sets from the Shared Task on
PMRLs in the predicted scenario on the held-out test set for optimization. The columns of this table report the results
in the same way as Table 1 but using predicted inputs.

al., 2004), specifically its SPMRL 2013 dependency
instance, derived from the Columbia Catib Tree-
bank (Habash and Roth, 2009; Habash et al., 2009),
extended according to the SPMRL 2013 extension
scheme (Seddah et al., 2013).

For the gold input, the most useful feature is, by
far, DASHTAG3 with an improvement of 2 points.
CASE is also very useful, as it is for most of the
languages, with 0.67 points. Moreover, SUBCAT
(0.159) and CAT (0.129) provide improvements as
well.

In the pred scenario, there is no DASHTAG, and
this allows other features to rise, for instance, CASE
(0.66), CPOSTAG (0.12), GENDER (0.08), SUB-
CAT (0.07) and CAT (0.06) provide improvements.
Finally it is worth noting that the TED accuracy

3DASHTAG comes from the original constituent data, when
a DASHTAG was present in a head node label, this feature was
kept in the Catib corpus.

(Tsarfaty et al., 2011) for the lattices is 0.8674 with
the full treebanks and 0.8563 with 5k treebanks,
which overcomes the baseline in more than 0.06
points, this shows that MaltOptimizer is also useful
under TED evaluation constraints.

5.2 Basque

The improvement provided by the feature selection
for Basque (Aduriz et al., 2003) is really high. It
achieves almost 13 points improvement with the
gold input and around 8 points with the predicted
input. The results in the gold scenario are actually
a record if we also consider the experiments per-
formed over the treebanks of the CoNLL Shared
Tasks (Ballesteros and Nivre, 2012a). One of the
reasons is the treatment of covered roots that is opti-
mized during the first phase of optimization. This
corpus has multiple root labels, ROOT being the
most common one and the one selected by MaltOp-

66

timizer as default.
For the gold input, the CPOSTAG and LEMMA

columns turn out to be very useful, providing an
improvement of 2.5 points and slightly less than 1
point respectively, MaltOptimizer selects them all
over the more central tokens over the stack and the
buffer. The Basque treebank contains a very big
set of possible features in the FEATS column, how-
ever only some of them provide significant improve-
ments, which evidences the usefulness of selecting
them one by one. The most useful feature with a
huge difference is KASE (or CASE) that provides
5.9 points by itself. MaltOptimizer fills out all the
available positions of the stack and the buffer with
this feature. Another useful feature is ERL [type of
subordinated sentence], providing almost 0.8 points.
Moreover, NUMBER (0.3), NORK2 (0.15), ASP
[aspect] (0.09), NOR1 (0.08), and NMG (0.06) pro-
vide slighter, but significant, improvements as well.4

Surprisingly, the predicted input provides bet-
ter results in the first 2 phases, which means that
for some reason MaltParser is able to parse better
by using just the predicted POS column, however,
the improvement achieved by MaltOptimizer dur-
ing Phase 3 are (just) a bit more than 7 points. In
this case, the CPOSTAG column is less useful, pro-
viding only 0.13 points, while the LEMMA (1.2) is
still very useful. CASE provides 4.5 points, while
NUM (0.17), ASP (0.13) and ADM (0.11) provide
improvements as well.

5.3 French

For French (Abeillé et al., 2003) there is a huge dif-
ference between the results with gold input and the
results with predicted input. With gold input, the
feature selection provides a bit less than 8 points
while there is just an improvement of around 2
points with predicted input. In this case, the lack
of quality in the predicted features is evident. It is
also interesting that the lexical column, FORM, pro-
vides a quite substantial improvement when Mal-
tOptimizer attempts to modify it, which is some-
thing that does not happen with the rest of lan-
guages.

For the gold input, apart from LEMMA that pro-
vides around 0.7 points, the most useful feature is

4NORK2, NOR1 and NMG are auxiliaries case markers.

MWEHEAD [head of a multi word expression, if
exists] that does not exist in the predicted scenario.
MWEHEAD provides more than 4 points; this fact
invites us to think that a predicted version of this
feature would be very useful for French, if possi-
ble. PRED [automatically predicted] (0.8), G [gen-
der] (0.6), N [number] (0.2) and S [subcat] (0.14)
are also useful.

In the predicted scenario, the CPOSTAG column
provides some improvements (around 0.1) while the
LEMMA is less useful than the one in the gold sce-
nario (0.2). The morphological features that are use-
ful are S [subcat] (0.3) and G [gender] (0.3).

5.4 German

For German (Brants et al., 2002) the results are more
or less in the average. For the gold input, LEMMA
is the best feature providing around 0.8 points; from
the morphological features the most useful one is, as
expected, CASE with 0.58 points. GENDER (0.16)
and NUMBER (0.16) are also useful.

In the predicted scenario, CASE is again very use-
ful (0.67). Other features, such as, NUMBER (0.10)
and PERSON (0.10) provide improvements, but as
we can observe a little bit less than the improve-
ments provided in the gold scenario.

5.5 Hebrew

For the Hebrew (Sima’an et al., 2001; Tsarfaty,
2013) treebank, unfortunately we did not see a lot
of improvements by adding the morphological fea-
tures. For the gold input, only CPOSTAG (0.08)
shows some improvements, while the predicted sce-
nario shows improvements for NUM (0.08) and PER
(0.08). It is worth noting that the TED accuracy
(Tsarfaty et al., 2011) for the lattices is 0.8305 which
is ranked second.

This outcome is different from the one obtained
by Goldberg and Elhadad (2010), but it is also true
that perhaps by selecting a different parsing algo-
rithm it may turn out different, because two parsers
may need different features, as shown by Zhang and
Nivre (2012). This is why, it would be very interest-
ing to perform new experiments with MaltOptimizer
by testing different parsing algorithms included in
MaltParser with the Hebrew treebank.

67

5.6 Hungarian

The Hungarian (Vincze et al., 2010) results are
also very consistent. During the feature selection
phase, MaltOptimizer achieves an improvement of
10 points by the inclusion of morphological features.
This also happens in the initial experiments per-
formed with MaltOptimizer (Ballesteros and Nivre,
2012a), by using the Hungarian treebank of the
CoNLL 2007 Shared Task. The current Hungarian
treebank presents covered roots and multiple root la-
bels and this is why we also get substantial improve-
ments during Phase 1.

For the gold input, as expected the LEMMA col-
umn is very useful, providing more than 1.4 points,
while MaltOptimizer selects it all over the available
feature windows. The best morphological feature
is again CASE providing an improvement of 5.7
points just by itself, in a similar way as in the ex-
periments with Basque. In this case, the SUBPOS
[grammatical subcategory] feature that is included
in the FEATS column is also very useful, provid-
ing around 1.2 points. Other features that are useful
are NUMP [number of the head] (0.2), NUM [num-
ber of the current token] (0.16), DEF [definiteness]
(0.11) and DEG [degree] (0.09).

In the predicted scenario, we can observe a sim-
ilar behavior for all features. MOOD provides 0.4
points while it does not provide improvements in the
gold scenario. The results of the SUBPOS feature
are a bit lower in this case (0.5 points), which evi-
dences the quality lost by using predicted inputs.

5.7 Korean

As Korean (Choi, 2013) is the language in which
our submission provided the best results comparing
to other submissions, it is interesting to dedicate a
section by showing its results. For the 5k input, our
model provides the best results of the Shared Task,
while the results of the model trained over the full
treebank qualified the second.

For the gold input, the most useful feature is
CPOSTAG providing around 0.6 points. Looking
into the morphological features, CASE, as usual, is
the best feature with 0.24 points, AUX-Type (0.11),
FNOUN-Type (0.08) are also useful.

In the predicted scenario, MaltOptimizer per-
forms similarly, having CPOSTAG (0.35) and CASE

(0.32) as most useful features. ADJ-Type (0.11) and
PUNCT-Type (0.06) are also useful. The results of
the features are a bit lower with the predicted input,
with the exception of CASE which is better.

5.8 Polish

Polish (Świdziński and Woliński, 2010) is one of the
two languages (with Swedish) in which our model
performs with the worst results.

In the gold scenario only the LEMMA (0.76)
shows some substantial improvements during the
optimization process; unfortunately, the morpholog-
ical features that are extracted when MaltOptimizer
generates the new complex data format did not fire.

For the predicted input, LEMMA (0.66) is again
the most useful feature, but as happened in the gold
scenario, the rest of the features did not fire during
the feature selection.

5.9 Swedish

As happened with Polish, the results for Swedish
(Nivre et al., 2006b) are not as good as we could ex-
pect; however we believe that the information shown
in this paper is useful because MaltOptimizer detects
which features are able to outperform the best model
found so far and the model trained with MaltParser
in default settings by a bit less than 2 points in the
predicted scenario and more than 2 points in the gold
scenario.

For the gold scenario only two features are ac-
tually useful according to MaltOptimizer, MaltOp-
timizer shows improvements by adding GENDER
(0.22) and PERFECTFORM (0.05).

For the predicted input, MaltOptimizer shows im-
provements by adding DEGREE (0.09), GENDER
(0.08) and ABBRV (0.06). However, as we can see
the improvements for Swedish are actually lower
compared to the rest of languages.

6 Related Work

There has been some recent research making use of
MaltOptimizer. For instance, Seraji et al. (2012)
used MaltOptimizer to get optimal models for pars-
ing Persian. Tsarfaty et al. (2012a) worked with
MaltOptimizer and Hebrew by including the opti-
mization for presenting new ways of evaluating sta-
tistical parsers. Mambrini and Passarotti (2012),

68

Agirre et al. (2012), Padró et al. (2013) and Balles-
teros et al. (2013) applied MaltOptimizer to test dif-
ferent features of Ancient Greek, Basque and Span-
ish (the last 2) respectively; however at that time
MaltOptimizer did not allow the FEATS column to
be divided. Finally, Ballesteros et al. (2012) applied
MaltOptimizer for different parsing algorithms that
are not included in the downloadable version show-
ing that it is also possible to optimize different pars-
ing algorithms.

7 Conclusions

This new MaltOptimizer implementation helps the
developers to adapt MaltParser models to new lan-
guages in which there is a rich set of features. It
shows which features are able to make a change in
the parsing results and which ones are not, in this
way, it is possible to focus annotation effort for the
purpose of parsing. We clearly observe that MaltOp-
timizer outperforms very substantially the results
shown in the baseline, which is MaltParser in default
settings, and it is also nice to see that the improve-
ments provided by MaltOptimizer for the morpho-
logical features are actually very high, if we com-
pare to the ones obtained by MaltOptimizer for the
corpora of the CoNLL shared tasks (Ballesteros and
Nivre, 2012a).

It is worth noting that the experiments with Mal-
tOptimizer do not take so long. The time needed to
perform the optimization is actually very short if we
compare to the efforts needed to achieve results in
the same range of accuracy by careful manual op-
timization. The MaltOptimizer process was sped
up following heuristics derived from deep proven
experience (Nivre and Hall, 2010), which means
that there are several combinations that are untested;
however, it is worth noting that these heuristics re-
sulted in similar performance to more exhaustive
search for a big set of languages (Ballesteros, 2013).

From the feature study shown in Section 5, we ex-
pect that it could be useful for people doing parsing
research and interested in parsing MRLs. Finally,
comparing our submission with the results of other
teams, we believe that we provide a fast and effec-
tive parser optimization for parsing MRLs, having
competitive results for most of the languages.

Acknowledgments

I would like to thank Koldo Gojenola who initially
gave me the idea presented in this paper. I am also
very thankful to Joakim Nivre for his constant help
and support. Finally, special thanks to the organizers
Djamé Seddah, Reut Tsarfaty and Sandra Kübler.

References
Anne Abeillé, Lionel Clément, and François Toussenel.

2003. Building a treebank for french. In Anne
Abeillé, editor, Treebanks. Kluwer, Dordrecht.

I. Aduriz, M. J. Aranzabe, J. M. Arriola, A. Atutxa,
A. Dı́az de Ilarraza, A. Garmendia, and M. Oronoz.
2003. Construction of a Basque dependency treebank.
In Proceedings of the 2nd Workshop on Treebanks and
Linguistic Theories (TLT), pages 201–204.

Eneko Agirre, Aitziber Atutxa, and Kepa Sarasola. 2012.
Contribution of complex lexical information to solve
syntactic ambiguity in Basque. In Proceedings of the
24th International Conference on Computational Lin-
guistics (COLING 2012), Mumbai, India, 12/2012.

Miguel Ballesteros and Joakim Nivre. 2012a. MaltOp-
timizer: A System for MaltParser Optimization. In
Proceedings of the Eighth International Conference on
Language Resources and Evaluation (LREC 2012).

Miguel Ballesteros and Joakim Nivre. 2012b. Mal-
tOptimizer: An Optimization Tool for MaltParser. In
Proceedings of the System Demonstration Session of
the Thirteenth Conference of the European Chapter of
the Association for Computational Linguistics (EACL
2012).

Miguel Ballesteros, Carlos Gómez-Rodrı́guez, and
Joakim Nivre. 2012. Optimizing Planar and 2-
Planar Parsers with MaltOptimizer. Procesamiento del
Lenguaje Natural, 49, 09/2012.

Miguel Ballesteros, Simon Mille, and Alicia Burga.
2013. Exploring Morphosyntactic Annotation Over a
Spanish Corpus for Dependency Parsing . In Proceed-
ings of the Second International Conference on De-
pendency Linguistics (DEPLING 2013).

Miguel Ballesteros. 2013. Exploring Automatic Feature
Selection for Transition-Based Dependency Parsing.
Procesamiento del Lenguaje Natural, 51.

Sabine Brants, Stefanie Dipper, Silvia Hansen, Wolf-
gang Lezius, and George Smith. 2002. The TIGER
treebank. In Erhard Hinrichs and Kiril Simov, edi-
tors, Proceedings of the First Workshop on Treebanks
and Linguistic Theories (TLT 2002), pages 24–41, So-
zopol, Bulgaria.

Sabine Buchholz and Erwin Marsi. 2006. CoNLL-X
shared task on multilingual dependency parsing. In

69

Proceedings of the 10th Conference on Computational
Natural Language Learning (CoNLL), pages 149–164.

Jinho D. Choi. 2013. Preparing Korean Data for the
Shared Task on Parsing Morphologically Rich Lan-
guages. ArXiv e-prints, September.

Yoav Goldberg and Michael Elhadad. 2010. Easy first
dependency parsing of modern hebrew. In Proceed-
ings of the NAACL HLT 2010 First Workshop on Sta-
tistical Parsing of Morphologically-Rich Languages,
SPMRL ’10, pages 103–107, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Nizar Habash and Ryan Roth. 2009. Catib: The
columbia arabic treebank. In Proceedings of the ACL-
IJCNLP 2009 Conference Short Papers, pages 221–
224, Suntec, Singapore, August. Association for Com-
putational Linguistics.

Nizar Habash, Reem Faraj, and Ryan Roth. 2009. Syn-
tactic Annotation in the Columbia Arabic Treebank. In
Proceedings of MEDAR International Conference on
Arabic Language Resources and Tools, Cairo, Egypt.

Johan Hall, Jens Nilsson, Joakim Nivre, Gülsen Eryiğit,
Beáta Megyesi, Mattias Nilsson, and Markus Saers.
2007. Single malt or blended? A study in multilingual
parser optimization. In Proceedings of the CoNLL
Shared Task of EMNLP-CoNLL 2007, pages 933–939.

Mohamed Maamouri, Ann Bies, Tim Buckwalter, and
Wigdan Mekki. 2004. The Penn Arabic Treebank:
Building a Large-Scale Annotated Arabic Corpus. In
NEMLAR Conference on Arabic Language Resources
and Tools.

Francesco Mambrini and Marco Carlo Passarotti. 2012.
Will a Parser Overtake Achilles? First experiments on
parsing the Ancient Greek Dependency Treebank. In
Proceedings of the Eleventh International Workshop
on Treebanks and Linguistic Theories (TLT11).

Joakim Nivre and Johan Hall. 2010. A quick guide
to MaltParser optimization. Technical report, malt-
parser.org.

Joakim Nivre, Johan Hall, and Jens Nilsson. 2006a.
Maltparser: A data-driven parser-generator for depen-
dency parsing. In Proceedings of the 5th International
Conference on Language Resources and Evaluation
(LREC), pages 2216–2219.

Joakim Nivre, Jens Nilsson, and Johan Hall. 2006b. Tal-
banken05: A Swedish treebank with phrase structure
and dependency annotation. In Proceedings of LREC,
pages 1392–1395, Genoa, Italy.

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan McDon-
ald, Jens Nilsson, Sebastian Riedel, and Deniz Yuret.
2007. The CoNLL 2007 shared task on dependency
parsing. In Proceedings of the CoNLL Shared Task of
EMNLP-CoNLL 2007, pages 915–932.

Muntsa Padró, Miguel Ballesteros, Hector Martı́nez, and
Bernd Bohnet. 2013. Finding dependency pars-
ing limits over a large spanish corpus. In IJCNLP,
Nagoya, Japan. Association for Computational Lin-
guistics.

Djamé Seddah, Reut Tsarfaty, Sandra Kübler, Marie Can-
dito, Jinho Choi, Richárd Farkas, Jennifer Foster, Iakes
Goenaga, Koldo Gojenola, Yoav Goldberg, Spence
Green, Nizar Habash, Marco Kuhlmann, Wolfgang
Maier, Joakim Nivre, Adam Przepiorkowski, Ryan
Roth, Wolfgang Seeker, Yannick Versley, Veronika
Vincze, Marcin Woliński, and Alina Wróblewska.
2013. Overview of the spmrl 2013 shared task: A
cross-framework evaluation of parsing morphologi-
cally rich languages. In Proceedings of the 4th Work-
shop on Statistical Parsing of Morphologically Rich
Languages: Shared Task, Seattle, WA.

Mojgan Seraji, Beáta Megyesi, and Joakim Nivre. 2012.
Dependency parsers for persian. In Proceedings of
10th Workshop on Asian Language Resources, at 24th
International Conference on Computational Linguis-
tics (COLING 2012). ACL Anthology.

Khalil Sima’an, Alon Itai, Yoad Winter, Alon Altman,
and Noa Nativ. 2001. Building a Tree-Bank for
Modern Hebrew Text. In Traitement Automatique des
Langues.

Marek Świdziński and Marcin Woliński. 2010. Towards
a bank of constituent parse trees for Polish. In Text,
Speech and Dialogue: 13th International Conference
(TSD), Lecture Notes in Artificial Intelligence, pages
197—204, Brno, Czech Republic. Springer.

Reut Tsarfaty, Joakim Nivre, and Evelina Anders-
son. 2011. Evaluating dependency parsing: Robust
and heuristics-free cross-annotation evaluation. In
EMNLP, pages 385–396, Edinburgh, Scotland, UK.,
July. Association for Computational Linguistics.

Reut Tsarfaty, Joakim Nivre, and Evelina Andersson.
2012a. Cross-framework evaluation for statistical
parsing. In EACL, pages 44–54.

Reut Tsarfaty, Djamé Seddah, Sandra Kuebler, and
Joakim Nivre. 2012b. Parsing Morphologically Rich
Languages: Introduction to the Special Issue. Compu-
tational Linguistics, November.

Reut Tsarfaty. 2013. A Unified Morpho-Syntactic
Scheme of Stanford Dependencies. Proceedings of
ACL.

Veronika Vincze, Dóra Szauter, Attila Almási, György
Móra, Zoltán Alexin, and János Csirik. 2010. Hun-
garian dependency treebank. In LREC.

Yue Zhang and Joakim Nivre. 2012. Analyzing the effect
of global learning and beam-search on transition-based
dependency parsing. In COLING, pages 1391–1400.

70

