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Abstract

Previous incremental parsers have used
monotonic state transitions. However,
transitions can be made to revise previous
decisions quite naturally, based on further
information.

We show that a simple adjustment to the
Arc-Eager transition system to relax its
monotonicity constraints can improve ac-
curacy, so long as the training data in-
cludes examples of mistakes for the non-
monotonic transitions to repair. We eval-
uate the change in the context of a state-
of-the-art system, and obtain a statistically
significant improvement (p < 0.001) on
the English evaluation and 5/10 of the
CoNLL languages.

1 Introduction

Historically, monotonicity has played an im-
portant role in transition-based parsing systems.
Non-monotonic systems, including the one pre-
sented here, typically redundantly generate multi-
ple derivations for each syntactic analysis, leading
to spurious ambiguity (Steedman, 2000). Early,
pre-statistical work on transition-based parsing
such as Abney and Johnson (1991) implicitly as-
sumed that the parser searches the entire space
of possible derivations. The presence of spuri-
ous ambiguity causes this search space to be a di-
rected graph rather than a tree, which considerably
complicates the search, so spurious ambiguity was
avoided whenever possible.

However, we claim that non-monotonicity and
spurious ambiguity are not disadvantages in a
modern statistical parsing system such as ours.
Modern statistical models have much larger search

spaces because almost all possible analyses are al-
lowed, and a numerical score (say, a probability
distribution) is used to distinguish better analy-
ses from worse ones. These search spaces are so
large that we cannot exhaustively search them, so
instead we use the scores associated with partial
analyses to guide a search that explores only a mi-
nuscule fraction of the space (In our case we use
greedy decoding, but even a beam search only ex-
plores a small fraction of the exponentially-many
possible analyses).

In fact, as we show here the additional redun-
dant pathways between search states that non-
monotonicity generates can be advantageous be-
cause they allow the parser to “correct” an ear-
lier parsing move and provide an opportunity to
recover from formerly “fatal” mistakes. Infor-
mally, non-monotonicity provides “many paths up
the mountain” in the hope of making it easier to
find at least one.

We demonstrate this by modifying the Arc-
Eager transition system (Nivre, 2003; Nivre et al.,
2004) to allow a limited capability for non-
monotonic transitions. The system normally em-
ploys two deterministic constraints that limit the
parser to actions consistent with the previous his-
tory. We remove these, and update the transitions
so that conflicts are resolved in favour of the latest
prediction.

The non-monotonic behaviour provides an im-
provement of up to 0.2% accuracy over the cur-
rent state-of-the-art in greedy parsing. It is pos-
sible to implement the greedy parser we de-
scribe very efficiently: our implementation, which
can be found at http://www.github.com/
syllog1sm/redshift, parses over 500 sen-
tences a second on commodity hardware.
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2 The Arc-Eager Transition System

In transition-based parsing, a parser consists of a
state (or a configuration) which is manipulated by
a set of actions. An action is applied to a state
and results in a new state. The parsing process
concludes when the parser reaches a final state, at
which the parse tree is read from the state. A par-
ticular set of states and actions yield a transition-
system. Our starting point in this paper is the pop-
ular Arc-Eager transition system, described in de-
tail by Nivre (2008).

The state of the arc-eager system is composed
of a stack, a buffer and a set of arcs. The stack and
the buffer hold the words of a sentence, and the set
of arcs represent derived dependency relations.

We use a notation in which the stack items are
indicated by Si, with S0 being the top of the stack,
S1 the item previous to it and so on. Similarly,
buffer items are indicated as Bi, with B0 being
the first item on the buffer. The arcs are of the
form (h, l,m), indicating a dependency in which
the word m modifies the word h with label l.

In the initial configuration the stack is empty,
and the buffer contains the words of the sentence
followed by an artificial ROOT token, as sug-
gested by Ballesteros and Nivre (2013). In the fi-
nal configuration the buffer is empty and the stack
contains the ROOT token.

There are four parsing actions (Shift, Left-Arc,
Right-Arc and Reduce, abbreviated as S,L,R,D re-
spectively) that manipulate stack and buffer items.
The Shift action pops the first item from the buffer
and pushes it on the stack (the Shift action has a
natural precondition that the buffer is not empty,
as well as a precondition that ROOT can only be
pushed to an empty stack). The Right-Arc action
is similar to the Shift action, but it also adds a
dependency arc (S0, B0), with the current top of
the stack as the head of the newly pushed item
(the Right action has an additional precondition
that the stack is not empty).1 The Left-Arc action
adds a dependency arc (B0, S0) with the first item
in the buffer as the head of the top of the stack,
and pops the stack (with a precondition that the
stack and buffer are not empty, and that S0 is not
assigned a head yet). Finally, the Reduce action
pops the stack, with a precondition that the stack
is not empty and that S0 is already assigned a head.

1For labelled dependency parsing, the Right-Arc and
Left-Arc actions are parameterized by a label L such that the
action RightL adds an arc (S0, L,B0), similarly for LeftL.

2.1 Monotonicty
The preconditions of the Left-Arc and Reduce ac-
tions ensure that every word is assigned exactly
one head, resulting in a well-formed parse tree.
The single head constraint is enforced by ensur-
ing that once an action has been performed, sub-
sequent actions must be consistent with it. We re-
fer to this consistency as the monotonicity of the
system.

Due to monotonicity, there is a natural pair-
ing between the Right-Arc and Reduce actions
and the Shift and Left-Arc actions: a word which
is pushed into the stack by Right-Arc must be
popped using Reduce, and a word which is pushed
by Shift action must be popped using Left-Arc. As
a consequence of this pairing, a Right-Arc move
determines that the head of the pushed token must
be to its left, while a Shift moves determines a
head to its right. Crucially, the decision whether
to Right-Arc or Shift is often taken in a state of
missing information regarding the continuation of
the sentence, forcing an incorrect head assignment
on a subsequent move.

Consider a sentence pair such as (a)“I saw Jack
and Jill” / (b)“I saw Jack and Jill fall”. In (a), “Jack
and Jill” is the NP object of “saw”, while in (b) it is
a subject of the embedded verb “fall”. The mono-
tonic arc-eager parser has to decide on an analysis
as soon as it sees “saw” on the top of the stack and
“Jack” at the front of the buffer, without access to
the disambiguating verb “fall”.

In what follows, we suggest a non-monotonic
variant of the Arc-Eager transition system, allow-
ing the parser to recover from the incorrect head
assignments which are forced by an incorrect res-
olution of a Shift/Right-Arc ambiguity.

3 The Non-Monotonic Arc-Eager System

The Arc-Eager transition system (Nivre et al.,
2004) has four moves. Two of them create depen-
dencies, two push a word from the buffer to the
stack, and two remove an item from the stack:

Push Pop
Adds dependency Right-Arc Left-Arc
No new dependency Shift Reduce
Every word in the sentence is pushed once and

popped once; and every word must have exactly
one head. This creates two pairings, along the di-
agonals: (S, L) and (R, D). Either the push move
adds the head or the pop move does, but not both
and not neither.
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I saw Jack and Jill fall R

S L S R R D R D L R D L
1 2 3 4 5 6 7 8 9 10 11 12
I saw Jack and Jill fall R

2 4 5

7

2 5

7

9

Figure 1: State before and after a non-monotonic Left-
Arc. At move 9, fall is the first word of the buffer (marked
with an arrow), and saw and Jack are on the stack (circled).
The arc created at move 4 was incorrect (in red). Arcs are
labelled with the move that created them. After move 9 (the
lower state), the non-monotonic Left-Arc move has replaced
the incorrect dependency with a correct Left-Arc (in green).

Thus in the Arc-Eager system the first move de-
termines the corresponding second move. In our
non-monotonic system the second move can over-
write an attachment made by the first. This change
makes the transition system non-monotonic, be-
cause if the model decides on an incongruent pair-
ing we will have to either undo or add a depen-
dency, depending on whether we correct a prior
Right-Arc, or a prior Shift.

3.1 Non-monotonic Left-Arc

Figure 1 shows a before-and-after view of a non-
monotonic transition. The sequence below the
words shows the transition history. The words that
are circled in the upper and lower line are on the
stack before and after the transition, respectively.
The arrow shows the start of the buffer, and arcs
are labelled with the move that added them.

The parser began correctly by Shifting I and
Left-Arcing it to saw, which was then also Shifted.
The mistake, made at Move 4, was to Right-Arc
Jack instead of Shifting it.

The difficulty of this kind of a decision for an
incremental parser is fundamental. The leftward
context does not constrain the decision, and an ar-
bitrary amount of text could separate Jack from
fall. Eye-tracking experiments show that humans
often perform a saccade while reading such exam-
ples (Frazier and Rayner, 1982).

In moves 5-8 the parser correctly builds the rest
of the NP, and arrives at fall. The monotonicity
constraints would force an incorrect analysis, hav-
ing fall modify Jack or saw, or having saw modify
fall as an embedded verb with no arguments.

I saw Jack and Jill R

S L S S R D R D R D D L
1 2 3 4 5 6 7 8 9 10 11 12
I saw Jack and Jill R

2 5

7

2 5

7

9

Figure 2: State before and after a non-monotonic Reduce.
After making the wrong push move at 4, at move 11 the parser
has Jack on the stack (circled), with only the dummy ROOT
token left in the buffer. A monotonic parser must determinis-
tically Left-Arc Jack here to preserve the previous decision,
despite the current state. We remove this constraint, and in-
stead assume that when the model selects Reduce for a head-
less item, it is reversing the previous Shift/Right decision. We
add the appropriate arc, assigning the label that scored high-
est when the Shift/Right decision was made.

We allow Left-Arcs to ‘clobber’ edges set by
Right-Arcs if the model recommends it. The pre-
vious edge is deleted, and the Left-Arc proceeds
as normal. The effect of this is exactly as if the
model had correctly chosen Shift at move 4. We
simply give the model a second chance to make
the correct choice.

3.2 Non-monotonic Reduce

The upper arcs in Figure 2 show a state resulting
from the opposite error. The parser has Shifted
Jack instead of Right-Arcing it. After building the
NP the buffer is exhausted, except for the ROOT
token, which is used to wrongly Left-Arc Jack as
the sentence’s head word.

Instead of letting the previous choice lock us in
to the pair (Shift, Left-Arc), we let the later deci-
sion reverse it to (Right-Arc, Reduce), if the parser
has predicted Reduce in spite of the signal from its
previous decision. In the context shown in Figure
2, the correctness of the Reduce move is quite pre-
dictable, once the choice is made available.

When the Shift/Right-Arc decision is reversed,
we add an arc between the top of the stack (S0)
and the word preceding it (S1). This is the arc that
would have been created had the parser chosen to
Right-Arc when it chose to Shift. Since our idea is
to reverse this mistake, we select the Right-Arc la-
bel that the model scored most highly at that time.2

2An alternative approach to label assignment is to parame-
terize the Reduce action with a label, similar to the Right-Arc
and Left-Arc actions, and let that label override the previ-
ously predicted label. This would allow the parser to con-
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To summarize, our Non-Monotnonic Arc-
Eager system differs from the monotonic
Arc-Eager system by:

• Changing the Left-Arc action by removing
the precondition that S0 does not have a head,
and updating the dependency arcs such previ-
ously derived arcs having S0 as a dependent
are removed from the arcs set.

• Changing the Reduce action by removing the
precondition that S0 has a head, and updating
the dependency arcs such that if S0 does not
have a head, S1 is assigned as the head of S0.

4 Why have two push moves?

We have argued above that it is better to trust the
second decision that the model makes, rather than
using the first decision to determine the second.
If this is the case, is the first decision entirely re-
dundant? Instead of defining how pop moves can
correct Shift/Right-Arc mistakes, we could instead
eliminate the ambiguity. There are two possibili-
ties: Shift every token, and create all Right-Arcs
via Reduce; or Right-Arc every token, and replace
them with Left-Arcs where necessary.

Preliminary experiments on the development
data revealed a problem with these approaches. In
many cases the decision whether to Shift or Right-
Arc is quite clear, and its result provides useful
conditioning context to later decisions. The in-
formation that determined those decisions is never
lost, but saving all of the difficulty for later is not
a very good structured prediction strategy.

As an example of the problem, if the Shift move
is eliminated, about half of the Right-Arcs created
will be spurious. All of these arcs will be assigned
labels making important features uselessly noisy.
In the other approach, we avoid creating spurious
arcs, but the model does not predict whether S0 is
attached to S1, or what the label would be, and we
miss useful features.

The non-monotonic transition system we pro-
pose does not have these problems. The model
learns to make Shift vs. Right-Arc decisions as
normal, and conditions on them — but without
committing to them.

dition its label decision on the new context, which was suf-
ficiently surprising to change its move prediction. For effi-
ciency and simplicity reasons, we chose instead to trust the
label the model proposed when the reduced token was ini-
tially pushed into the stack. This requires an extra vector of
labels to be stored during parsing.

5 Dynamic Oracles

An essential component when training a
transition-based parser is an oracle which,
given a gold-standard tree, dictates the sequence
of moves a parser should make in order to derive
it. Traditionally, these oracles are defined as func-
tions from trees to sequences, mapping a gold tree
to a single sequence of actions deriving it, even
if more than one sequence of actions derives the
gold tree. We call such oracles static. Recently,
Goldberg and Nivre (2012) introduced the concept
of a dynamic oracle, and presented a concrete ora-
cle for the arc-eager system. Instead of mapping
a gold tree to a sequence of actions, the dynamic
oracle maps a 〈configuration, gold tree〉 pair to a
set of optimal transitions. More concretely, the
dynamic oracle presented in Goldberg and Nivre
(2012) maps 〈action, configuration, tree〉 tuples
to an integer, indicating the number of gold arcs
in tree that can be derived from configuration
by some sequence of actions, but could not be
derived after applying action to the configuration.

There are two advantages to this. First, the
ability to label any configuration, rather than only
those along a single path to the gold-standard
derivation, allows much better training data to be
generated. States come with realistic histories, in-
cluding errors — a critical point for the current
work. Second, the oracle accounts for spurious
ambiguity correctly, as it will label multiple ac-
tions as correct if the optimal parses resulting from
them are equally accurate.

In preliminary experiments in which we trained
the parser using the static oracle but allowed the
non-monotonic repair operations during parsing,
we found that the the repair moves yielded no im-
provement. This is because the static oracle does
not generate any examples of the repair moves dur-
ing training, causing the parser to rarely predict
them in test time. We will first describe the Arc-
Eager dynamic oracle, and then define dynamic
oracles for the non-monotonic transition systems
we present.

5.1 Monotonic Arc-Eager Dynamic Oracle

We now briefly describe the dynamic oracle for the
arc-eager system. For more details, see Goldberg
and Nivre (2012). The oracle is computed by rea-
soning about the arcs which are reachable from a
given state, and counting the number of gold arcs
which will no longer be reachable after applying a

166



given transition at a given state. 3

The reasoning is based on the observations that
in the arc-eager system, new arcs (h, l,m) can be
derived iff the following conditions hold:
(a) There is no existing arc (h′, l′,m) such that
h′ 6= h, and (b) Either both h and m are on the
buffer, or one of them is on the buffer and the other
is on the stack. In other words:
(a) once a word acquires a head (in a Left-Arc or
Right-Arc transition) it loses the ability to acquire
any other head.
(b) once a word is moved from the buffer to the
stack (Shift or Right-Arc) it loses the ability to ac-
quire heads that are currently on the stack, as well
as dependents that are currently on the stack and
are not yet assigned a head.4

(c) once a word is removed from the stack (Left-
Arc or Reduce) it loses the ability to acquire any
dependents on the buffer.
Based on these observations, Goldberg and Nivre
(2012) present an oracle C(a, c, t) for the mono-
tonic arc-eager system, computing the number of
arcs in the gold tree t that are reachable from a
parser’s configuration c and are no longer reach-
able from the configuration a(c) resulting from the
application of action a to configuration c.

5.2 Non-monotonic Dynamic Oracles
Given the oracle C(a, c, t) for the monotonic sys-
tem, we adapt it to a non-monotonic variant by
considering the changes from the monotonic to the
non-monotonic system, and adding ∆ terms ac-
cordingly. We define three novel oracles: CNML,
CNMD and CNML+D for systems with a non-
monotonic Left-Arc, Reduce or both.

CNML(a, c, t) = C(a, c, t) +∆NML(a, c, t)
CNMD(a, c, t) = C(a, c, t) +∆NMD(a, c, t)
CNML+D(a, c, t) = C(a, c, t) +∆NML(a, c, t)

+∆NMD(a, c, t)

The terms ∆NML and ∆NMD reflect the score
adjustments that need to be done to the arc-eager
oracle due to the changes of the Left-Arc and Re-
duce actions, respectively, and are detailed below.

3The correctness of the oracle is based on a property of
the arc-eager system, stating that if a set of arcs which can be
extended to a projective tree can be individually derived from
a given configuration, then a projective tree containing all of
the arcs in the set is also derivable from the same configura-
tion. This same property holds also for the non-monotonic
variants we propose.

4The condition that the words on the stack are not yet as-
signed a head is missing from (Goldberg and Nivre, 2012)

Changes due to non-monotonic Left-Arc:

• ∆NML(RIGHTARC, c, t): The cost of Right-
Arc is decreased by 1 if the gold head of B0 is
on the buffer (because B0 can still acquire its
correct head later with a Left-Arc action). It
is increased by 1 for any word w on the stack
such that B0 is the gold parent of w and w
is assigned a head already (in the monotonic
oracle, this cost was taken care of when the
word was assigned an incorrect head. In the
non-monotonic variant, this cost is delayed).

• ∆NML(REDUCE, c, t): The cost of Reduce is
increased by 1 if the gold head of S0 is on the
buffer, because removing S0 from the stack
precludes it from acquiring its correct head
later on with a Left-Arc action. (This cost is
paid for in the monotonic version when S0

acquired its incorrect head).

• ∆NML(LEFTARC, c, t): The cost of Left-
Arc is increased by 1 if S0 is already assigned
to its gold parent. (This situation is blocked
by a precondition in the monotonic case).
The cost is also increased if S0 is assigned
to a non-gold parent, and the gold parent is
in the buffer, but not B0. (As a future non-
monotonic Left-Arc is prevented from setting
the correct head.)

• ∆NML(SHIFT, c, gold): The cost of Shift is
increased by 1 for any word w on the stack
such that B0 is the gold parent of w and w is
assigned a head already. (As in Right-Arc, in
the monotonic oracle, this cost was taken care
of when w was assigned an incorrect head.)

Changes due to non-monotonic Reduce:

• ∆NMD(SHIFT, c, gold): The cost of Shift is
decreased by 1 if the gold head of B0 is S0

(Because this arc can be added later on with
a non-monotonic Reduce action).

• ∆NMD(LEFTARC, c, gold): The cost of
Left-Arc is increased by 1 if S0 is not as-
signed a head, and the gold head of S0 is
S1 (Because this precludes adding the correct
arc with a Reduce of S0 later).

• ∆NMD(REDUCE, c, gold) = 0. While it may
seem that a change to the cost of a Reduce ac-
tion is required, in fact the costs of the mono-
tonic system hold here, as the head of S0 is
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predetermined to be S1. The needed adjust-
ments are taken care of in Left-Arc and Shift
actions.5

• ∆NMD(RIGHTARC, c, gold) = 0

6 Applying the Oracles in Training

Once the dynamic-oracles for the non-monotonic
system are defined, we could in principle just plug
them in the perceptron-based training procedure
described in Goldberg and Nivre (2012). How-
ever, a tacit assumption of the dynamic-oracles is
that all paths to recovering a given arc are treated
equally. This assumption may be sub-optimal
for the purpose of training a parser for a non-
monotonic system.

In Section 4, we explained why removing the
ambiguity between Shift and Right-Arcs alto-
gether was an inferior strategy. Failing to discrim-
inate between arcs reachable by monotonic and
non-monotonic paths does just that, so this oracle
did not perform well in preliminary experiments
on the development data.

Instead, we want to learn a model that will offer
its best prediction of Shift vs. Right-Arc, which
we expect to usually be correct. However, in those
cases where the model does make the wrong de-
cision, it should have the ability to later over-turn
that decision, by having an unconstrained choice
of Reduce vs. Left-Arc.

In order to correct for that, we don’t use the
non-monotonic oracles directly when training the
parser, but instead train the parser using both the
monotonic and non-monotonic oracles simultane-
ously by combining their judgements: while we
always prefer zero-cost non-monotonic actions to
monotonic-actions with non-zero cost, if the non-
monotonic oracle assigns several actions a zero-
cost, we prefer to follow those actions that are also
assigned a zero-cost by the monotonic oracle, as
these actions lead to the best outcome without re-
lying on a non-monotonic (repair) operation down
the road.

7 Experiments

We base our experiments on the parser described
by Goldberg and Nivre (2012). We began by im-
plementing their baseline system, a standard Arc-
Eager parser using an averaged Perceptron learner
and the extended feature set described by Zhang

5If using a labeled reduce transition, the label assignment
costs should be handled here.

Stanford MALT
W S W S

Unlabelled Attachment
Baseline (G&N-12) 91.2 42.0 90.9 39.7
NM L 91.4 43.1 91.0 40.1
NM D 91.4 42.8 91.1 41.2
NM L+D 91.6 43.3 91.3 41.5

Labelled Attachment
Baseline (G&N-12) 88.7 31.8 89.7 36.6
NM L 89.0 32.5 89.8 36.9
NM D 88.9 32.3 89.9 37.7
NM L+D 89.1 32.7 90.0 37.9

Table 1: Development results on WSJ 22. Both non-
monotonic transitions bring small improvements in per-token
(W) and whole sentence (S) accuracy, and the improvements
are additive.

and Nivre (2011). We follow Goldberg and Nivre
(2012) in training all models for 15 iterations, and
shuffling the sentences before each iteration.

Because the sentence ordering affects the
model’s accuracy, all results are averaged from
scores produced using 20 different random seeds.
The seed determines how the sentences are shuf-
fled before each iteration, as well as when to fol-
low an optimal action and when to follow a non-
optimal action during training. The Wilcoxon
signed-rank test was used for significance testing.

A train/dev/test split of 02-21/22/23 of the Penn
Treebank WSJ (Marcus et al., 1993) was used for
all models. The data was converted into Stan-
ford dependencies (de Marneffe et al., 2006) with
copula-as-head and the original PTB noun-phrase
bracketing. We also evaluate our models on de-
pendencies created by the PENN2MALT tool, to
assist comparison with previous results. Automat-
ically assigned POS tags were used during training,
to match the test data more closely. 6 We also eval-
uate the non-monotonic transitions on the CoNLL
2007 multi-lingual data.

8 Results and analysis

Table 1 shows the effect of the non-monotonic
transitions on labelled and unlabelled attachment
score on the development data. All results are av-
erages from 20 models trained with different ran-
dom seeds, as the ordering of the sentences at each
iteration of the Perceptron algorithm has an effect
on the system’s accuracy. The two non-monotonic
transitions each bring small but statistically signif-
icant improvements that are additive when com-
bined in the NM L+D system. The result is stable

6We thank Yue Zhang for supplying the POS-tagged files
used in the Zhang and Nivre (2011) experiments.
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across both dependency encoding schemes.
Frequency analysis. Recall that there are two pop
moves available: Left-Arc and Reduce. The Left-
Arc is considered non-monotonic if the top of the
stack has a head specified, and the Reduce move
is considered non-monotonic if it does not. How
often does the parser select monotonic and non-
monotonic pop moves, and how often is its deci-
sion correct?

In Table 2, the True Positive column shows how
often non-monotonic transitions were used to add
gold standard dependencies. The False Positive
column shows how often they were used incor-
rectly. The False Negative column shows how
often the parser missed a correct non-monotonic
transition, and the True Negative column shows
how often the monotonic alternative was correctly
preferred (e.g. the parser correctly chose mono-
tonic Reduce in place of non-monotonic Left-
Arc). Punctuation dependencies were excluded.

The current system has high precision but low
recall for repair operations, as they are relatively
rare in the gold-standard. While we already
see improvements in accuracy, the upper bound
achievable by the non-monotonic operations is
higher, and we hope to approach it in the future
using improved learning techniques.
Linguistic analysis. To examine what construc-
tions were being corrected, we looked at the fre-
quencies of the labels being introduced by the
non-monotonic moves. We found that there were
two constructions being commonly repaired, and
a long-tail of miscellaneous cases.

The most frequent repair involved the mark la-
bel. This is assigned to conjunctions introducing
subordinate clauses. For instance, in the sentence
Results were released after the market closed, the
Stanford scheme attaches after to closed. The
parser is misled into greedily attaching after to re-
leased here, as that would be correct if after were a
preposition, as in Results were released after mid-
night. This construction was repaired 33 times, 13
where the initial decision was mark, and 21 times
the other way around. The other commonly re-
paired construction involved greedily attaching an
object that was actually the subject of a comple-
ment clause, e.g. NCNB corp. reported net income
doubled. These were repaired 19 times.
WSJ evaluation. Table 3 shows the final test
results. While still lagging behind search based
parsers, we push the boundaries of what can be

TP FP TN FN
Left-Arc 60 14 18,466 285
Reduce 52 26 14,066 250
Total 112 40 32,532 535

Table 2: True/False positive/negative rates for the predic-
tion of the non-monotonic transitions. The non-monotonic
transitions add correct dependencies 112 times, and produce
worse parses 40 times. 535 opportunities for non-monotonic
transitions were missed.

System O Stanford Penn2Malt
LAS UAS LAS UAS

K&C 10 n3 — — — 93.00
Z&N 11 nk 91.9 93.5 91.8 92.9
G&N 12 n 88.72 90.96 — —
Baseline(G&N-12) n 88.7 90.9 88.7 90.6
NM L+D n 88.9 91.1 88.9 91.0

Table 3: WSJ 23 test results, with comparison against the
state-of-the-art systems from the literature of different run-
times. K&C 10=Koo and Collins (2010); Z&N 11=Zhang
and Nivre (2011); G&N 12=Goldberg and Nivre (2012).

achieved with a purely greedy system, with a sta-
tistically significant improvement over G&N 12.
CoNLL 2007 evaluation. Table 4 shows the ef-
fect of the non-monotonic transitions across the
ten languages in the CoNLL 2007 data sets. Statis-
tically significant improvements in accuracy were
observed for five of the ten languages. The accu-
racy improvement on Hungarian and Arabic did
not meet our significance threshold. The non-
monotonic transitions did not decrease accuracy
significantly on any of the languages.

9 Related Work

One can view our non-monotonic parsing system
as adding “repair” operations to a greedy, deter-
ministic parser, allowing it to undo previous de-
cisions and thus mitigating the effect of incorrect
parsing decisions due to uncertain future, which
is inherent in greedy left-to-right transition-based
parsers. Several approaches have been taken to ad-
dress this problem, including:
Post-processing Repairs (Attardi and Ciaramita,
2007; Hall and Novák, 2005; Inokuchi and Ya-
maoka, 2012) Closely related to stacking, this line
of work attempts to train classifiers to repair at-
tachment mistakes after a parse is proposed by
a parser by changing head attachment decisions.
The present work differs from these by incorporat-
ing the repair process into the transition system.
Stacking (Nivre and McDonald, 2008; Martins
et al., 2008), in which a second-stage parser runs
over the sentence using the predictions of the first
parser as features. In contrast our parser works in
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System AR BASQ CAT CHI CZ ENG GR HUN ITA TUR

Baseline 83.4 76.2 91.5 82.3 78.8 87.9 81.2 77.6 83.8 78.0
NM L+D 83.6 76.1 91.5 82.7 80.1 88.4 81.8 77.9 84.1 78.0

Table 4: Multi-lingual evaluation. Accuracy improved on Chinese, Czech, English, Greek and Italian (p < 0.001), trended
upward on Arabic and Hungarian (p < 0.005), and was unchanged on Basque, Catalan and Turkish (p > 0.4).

a single, left-to-right pass over the sentence.
Non-directional Parsing The EasyFirst parser
of Goldberg and Elhadad (2010) tackles similar
forms of ambiguities by dropping the Shift action
altogether, and processing the sentence in an easy-
to-hard bottom-up order instead of left-to-right,
resulting in a greedy but non-directional parser.
The indeterminate processing order increases the
parser’s runtime from O(n) to O(n log n). In con-
trast, our parser processes the sentence incremen-
tally, and runs in a linear time.
Beam Search An obvious approach to tackling
ambiguities is to forgo the greedy nature of the
parser and instead to adopt a beam search (Zhang
and Clark, 2008; Zhang and Nivre, 2011) or a
dynamic programming (Huang and Sagae, 2010;
Kuhlmann et al., 2011) approach. While these ap-
proaches are very successful in producing high-
accuracy parsers, we here explore what can be
achieved in a strictly deterministic system, which
results in much faster and incremental parsing al-
gorithms. The use of non-monotonic transitions in
beam-search parser is an interesting topic for fu-
ture work.

10 Conclusion and future work

We began this paper with the observation that
because the Arc-Eager transition system (Nivre
et al., 2004) attaches a word to its governor ei-
ther when the word is pushed onto the stack or
when it is popped off the stack, monotonicity (plus
the “tree constraint” that a word has exactly one
governor) implies that a word’s push-move de-
termines its associated pop-move. In this paper
we suggest relaxing the monotonicity constraint
to permit the pop-move to alter existing attach-
ments if appropriate, thus breaking the 1-to-1 cor-
respondence between push-moves and pop-moves.
This permits the parser to correct some early in-
correct attachment decisions later in the parsing
process. Adding additional transitions means that
in general there are multiple transition sequences
that generate any given syntactic analysis, i.e., our
non-monotonic transition system generates spuri-
ous ambiguities (note that the Arc-Eager transition
system on its own generates spurious ambiguities).

As we explained in the paper, with the greedy de-
coding used here additional spurious ambiguity is
not necessarily a draw-back.

The conventional training procedure for
transition-based parsers uses a “static” oracle
based on “gold” parses that never predicts a
non-monotonic transition, so it is clearly not
appropriate here. Instead, we use the incremental
error-based training procedure involving a “dy-
namic” oracle proposed by Goldberg and Nivre
(2012), where the parser is trained to predict the
transition that will produce the best-possible anal-
ysis from its current configuration. We explained
how to modify the Goldberg and Nivre oracle so
it predicts the optimal moves, either monotonic or
non-monotonic, from any configuration, and use
this to train an averaged perceptron model.

When evaluated on the standard WSJ training
and test sets we obtained a UAS of 91.1%, which
is a 0.2% improvement over the already state-of-
the-art baseline of 90.9% that is obtained with the
error-based training procedure of Goldberg and
Nivre (2012). On the CoNLL 2007 datasets, ac-
curacy improved significantly on 5/10 languages,
and did not decline significantly on any of them.

Looking to the future, we believe that it would
be interesting to investigate whether adding non-
monotonic transitions is beneficial in other parsing
systems as well, including systems that target for-
malisms other than dependency grammars. As we
observed in the paper, the spurious ambiguity that
non-monotonic moves introduce may well be an
advantage in a statistical parser with an enormous
state-space because it provides multiple pathways
to the correct analysis (of which we hope at least
one is navigable).

We investigated a very simple kind of non-
monotonic transition here, but of course it’s pos-
sible to design transition systems with many more
transitions, including transitions that are explicitly
designed to “repair” characteristic parser errors. It
might even be possible to automatically identify
the most useful repair transitions and incorporate
them into the parser.
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