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Abstract
Most compositional-distributional models
of meaning are based on ambiguous vec-
tor representations, where all the senses
of a word are fused into the same vec-
tor. This paper provides evidence that the
addition of a vector disambiguation step
prior to the actual composition would be
beneficial to the whole process, produc-
ing better composite representations. Fur-
thermore, we relate this issue with the
current evaluation practice, showing that
disambiguation-based tasks cannot reli-
ably assess the quality of composition. Us-
ing a word sense disambiguation scheme
based on the generic procedure of Schütze
(1998), we first provide a proof of con-
cept for the necessity of separating dis-
ambiguation from composition. Then we
demonstrate the benefits of an “unambigu-
ous” system on a composition-only task.

1 Introduction
Compositional and distributional semantic mod-
els seem to provide complementary solutions for
solving the same problem, that of assigning a
proper “meaning” to a text segment. Specifically,
while compositional models deal with the recur-
sive nature of the language, providing a way to
address its inherent ability to create infinite sen-
tences from finite resources (words), they leave
words as unexplained primitives whose meanings
have somehow already been set before the compo-
sitional process. On the other hand, distributional
models have been especially successful in provid-
ing concrete representations for the meaning of
words as vectors in a vector space, created by tak-
ing into account the context in which each word
appears. Despite its success for smaller language
units, the distributional hypothesis does not natu-
rally lend itself to compounds of words. Hence
these models do not canonically scale in tasks re-
quiring the creation of vector representations for

text constituents larger than words, i.e. for phrases
and sentences.

Given the complementary nature of those two
semantic models, it is not surprising that consider-
able research activity has been dedicated on com-
bining them into a single framework that would
benefit from the best of both worlds in a uni-
fied manner: Mitchell and Lapata (2008) exper-
iment with intransitive sentences, applying sim-
ple compositional models based on vector ad-
dition and point-wise multiplication in a disam-
biguation task; Baroni and Zamparelli (2010) and
Guevara (2010) use regression models in order to
build vectors for adjective-noun compounds; Erk
and Padó (2008) work on transitive sentences us-
ing structured vector spaces; Socher et al. (2010,
2011, 2012) use neural networks to combine vec-
tors following the grammatical structure; Grefen-
stette and Sadrzadeh (2011a,b) apply the categori-
cal framework of Coecke et al. (2010) on the dis-
ambiguation task of Mitchell and Lapata (2008);
and Kartsaklis et al. (2012) and Grefenstette et al.
(2013) build upon previous implementations by
adding specific algebraic operations and machine
learning techniques to further improve the con-
crete abilities of the abstract categorical models.

A common strand in all of the above models is
that they are based on “ambiguous” vector rep-
resentations, where a polysemous word is repre-
sented by a single vector regardless of the number
of its actual senses. For example, the word ‘bank’
has at least two meanings (financial institution and
land alongside a river), both of which will be fused
into a single vector representation. And, although
it is generally true that compositional models fol-
lowing the formal semantics view of Montague do
not care about disambiguation (meanings of words
in such models are represented by logical con-
stants explicitly set before the compositional pro-
cess), the story changes when one moves to a vec-
tor space model with ambiguous vector represen-
tations. The main problem is that, when acting on
ambiguous vector spaces, compositional models
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seem to perform two tasks at the same time, com-
position and disambiguation, leaving the resulting
vector hard to interpret: it is not clear if this vector
is a proper meaning representation for the com-
posed compound or just a disambiguated version
of one of the words therein. This problem escapes
the evaluation schemes, especially when disam-
biguation tasks are used as a criterion for evaluat-
ing compositional models—a common practice in
current research for compositional-distributional
semantics. Indeed, Pulman (2013) argues that al-
though disambiguation can emerge as a welcome
side-effect of the compositional process, it is not
clear if compositionality is either a necessary or
sufficient condition for disambiguation to happen.
On the contrary, it seems that the form of most
current vector space models and the compositional
operations used on them (quite often some form of
vector point-wise multiplication) mainly achieve
disambiguation, but not composition.

The purpose of this paper is to further investi-
gate the potential of a compositional-distributional
model based on disambiguated vector represen-
tations, where each word can have one or more
distinct senses. More specifically, we aim to
show that (a) compositionality is not a neces-
sary condition for disambiguation, so the quite
common practice of using a disambiguation task
as a criterion for evaluating the performance of
compositional-distributional models is question-
able; and (b) the introduction of a separate disam-
biguation step in the compositional process of dis-
tributional models can be indeed beneficial for the
quality of the resulting composed vectors.

We train our models from BNC, a 100-million
words corpus created from samples of written and
spoken English. We perform word sense induc-
tion by following the generic algorithm of Schütze
(1998), in which the senses of a word are repre-
sented by distinct clusters created by taking into
account the various contexts in which this specific
word occur in the corpus. For the actual cluster-
ing step we use a combination of hierarchical ag-
glomerative clustering and the Caliński-Harabasz
index (Caliński and Harabasz, 1974). The param-
eters of the models are fine-tuned on the noun set
of SEMEVAL 2010 Word Sense Induction and Dis-
ambiguation task (Manandhar et al., 2010).

Equipped with a disambiguated vector space,
we use it on a verb disambiguation experiment,
similar in style to that of Mitchell and Lapata
(2008), but applied on a more linguistically mo-
tivated dataset, based on the work of Pickering
and Frisson (2001). We find that the application

of a simple disambiguation algorithm, without any
compositional steps, is proven more effective than
a number of compositional models. We consider
this as an indication for the necessity of separat-
ing disambiguation from composition, since it im-
plies that the latter is not necessary for achiev-
ing the former. Next, we demonstrate that a com-
positional model based on disambiguated vectors
can indeed produce composite vector representa-
tions of better quality, by applying the model on a
phrase similarity task (Mitchell and Lapata, 2010).
The goal here is to evaluate the similarity of short
verb phrases, based on the distance of their com-
posite vectors.

2 Composition in distributional models

The transition from word meaning to sentence
meaning, a task easily done by human subjects
based on the rules of grammar, implies the exis-
tence of a composition operation applied to prim-
itive text units in order to build compound ones.
Various solutions have been proposed with differ-
ent levels of sophistication for this problem in the
context of vector space models of meaning.

At one end of the spectrum the simple models
of Mitchell and Lapata (2008) address composi-
tion as the point-wise multiplication or addition
of the involved word vectors. This bag-of-words
approach has been proven a hard-to-beat baseline
for many of the more sophisticated models. At the
other end, composition in the work of Socher et al.
(2010, 2011, 2012) is served by the advanced ma-
chinery of recurring neural networks, where the
output of the network is used again as input in a
recurring fashion, for composing vectors of larger
constituents. Following a different path, the cat-
egorical framework of Coecke et al. (2010) ex-
ploits a structural homomorphism between gram-
mar and vector spaces in order to treat words with
special meanings, such as verb and adjectives, as
functions (tensors of rank-n) that apply to their ar-
guments. This application has the form of inner
product, generalising the familiar notion of matrix
multiplication to tensors of higher rank.

Regardless of their level of sophistication, most
of the models which aim to apply composition-
ality on word vector representations fail to ad-
dress the problem of handling the polysemous na-
ture of words. Even more importantly, many of
the models are evaluated on their ability to dis-
ambiguate the meaning of specific words, follow-
ing an idea first introduced by Kintsch (2001) and
later adopted by Mitchell and Lapata (2008) and
others. For example, in this latter work the au-
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thors test their multiplicative and additive models
as follows: given an ambiguous intransitive verb,
say ‘run’ (with the two senses to be those of mov-
ing fast and of a liquid dissolving), they examine
to what extent the composition of the verb with
an appropriate subject (e.g. ‘horse’ or ‘colour’)
will disambiguate the intended sense of the verb
within the specific context. Each row in the dataset
consists of a subject (e.g. ‘horse’), a verb (‘run’),
a high-similarity landmark verb (‘gallop’), and a
low-similarity landmark verb (‘dissolve’). The
subject is combined with the main verb to form a
simple intransitive sentence, and the vector of this
sentence is then compared with the vectors of the
landmark verbs. The goal is to evaluate the degree
to which the composed sentence vector is closer
to the high landmark than to the vector of the low
landmark, and this is considered an indication of
successful composition.

However, although it is generally true that mul-
tiplying −−→run with

−−−→
horse will filter out most of the

components of−−→run that are irrelevant to ‘dissolve’
(since the ‘dissolve’-related elements of

−−−→
horse

should have values close to zero) and will pro-
duce a disambiguated version of this verb under
the context of ‘horse’, it is not at all clear if this
vector will also constitute an appropriate repre-
sentation for the meaning of the intransitive sen-
tence ‘horse runs’. In other words, here we have
two tasks taking place at the same time: (a) dis-
ambiguation of the ambiguous word given its con-
text; and (b) composition that produces a mean-
ing vector for the whole sentence. The extent to
which the latter is a necessary condition for the
former remains unclear, and constitutes a factor
that complicates the evaluation and assessment of
such systems. In this paper we argue that as long
as the above distinct tasks are interwoven into a
single step, claims of compositionality in distri-
butional systems cannot be reliably assessed. We
therefore propose the addition of a disambiguation
step in the generic methodology of compositional-
distributional models.

3 Related work
Although in general word sense induction is a
popular topic in the natural language processing
literature, little has been done to address poly-
semy specifically in the context of compositional-
distributional models of meaning. In fact, the only
works relevant to ours we are aware of are that of
Erk and Padó (2008) and Reddy et al. (2011). The
structured vector space of Erk and Padó (2008) is
designed to handle ambiguity in an implicit way,

showing promising results on the Mitchell and
Lapata (2008) task. The work of Reddy et al.
(2011) is closer to our research: the authors eval-
uate two word sense disambiguation approaches
on the noun-noun compound similarity task intro-
duced by Mitchell and Lapata (2010), using sim-
ple multiplicative and additive models for compo-
sition. The reported results are also promising,
where at least one of their models performs bet-
ter than the current practice of using ambiguous
vector representations.

Compared to both of the above works, the
scope of the current paper is broader: it does not
solely aim to demonstrate the positive effect of a
“cleaner” vector space on the compositional pro-
cess, but it also proceeds one step further and re-
lates this issue with the current evaluation prac-
tice, showing that a number of verb disambigua-
tion tasks that have been invariantly used for the
assessment of compositional-distributional mod-
els might be in fact based on a wrong criterion.

4 Disambiguation scheme
Our word sense induction method is based on
the effective procedure first presented by Schütze
(1998). For the ith occurrence of a target word wt

in the corpus with context Ci = {w1, . . . , wn},
we calculate the centroid of the context as −→ci =
1
n(−→w1 + . . . + −→wn), where −→w is the lexical (or
first order) vector of word w as it is created by the
usual distributional practice (more details in Sec-
tion 5). Then, we cluster these centroids in order
to form a number of sense clusters. Each sense
of the word is represented by the centroid of the
corresponding cluster. Following Schütze, we will
refer to these sense vectors as second-order vec-
tors, in order to distinguish them from the lexical
(first-order) vectors. So, in our model each word is
represented by a tuple 〈−→w ,S〉, where−→w is the 1st-
order vector of the word and S the set of 2nd-order
vectors created by the above procedure.

We are now able to disambiguate the sense of a
target word wt given a context C by calculating a
context vector −→c for C as above, and then com-
paring this with every 2nd-order vector of wt; the
word is assigned to the sense that corresponds to
the closest 2nd-order vector. That is,

−−→spref = arg min
−→s ∈S

d(−→s ,−→c ) (1)

where S is the set of 2nd-order vectors for wt and
d(−→u ,−→v ) the vector distance metric we use.

For the clustering step, we use an iterative
bottom-up approach known as hierarchical ag-
glomerative clustering (HAC). Hierarchical clus-
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Figure 1: Hierarchical agglomerative clustering.

tering has been invariably applied to unsupervised
word sense induction on a variety of languages,
generally showing good performance—see, for
example, the comparative study of Broda and
Mazur (2012) for English and Polish. Compared
to k-means clustering, this approach has the ma-
jor advantage that it does not require us to define
in advance a specific number of clusters. Com-
pared to more advanced probabilistic techniques,
such as Bayesian mixture models, it is much
more straightforward and simple to implement,
yet powerful enough to demonstrate the necessity
of factoring out ambiguity from compositional-
distributional models.

HAC is a bottom-up method of cluster analy-
sis, starting with each data point (context vector in
our case) forming its own cluster; then, in each it-
eration the two closest clusters are merged into a
new cluster, until all points are finally merged un-
der the same cluster. This process produces a den-
drogram (i.e. a tree diagram), which essentially
embeds every possible clustering of the dataset.
As an example, Figure 1 shows a small dataset
produced by three distinct Gaussian distributions,
and the dendrogram derived by the above algo-
rithm. Implementation-wise, the clustering part in
this work is served by the efficient FASTCLUSTER
library (Müllner, 2013).

Choosing a number of senses In HAC, one still
needs to decide where exactly to cut the tree in or-
der to get the best possible partitioning of the data.
Although the right answer to this problem might
depend on many factors, we can safely assume that
the optimal partitioning is the one that provides
the most compact and maximally separated clus-
ters. One way to measure the quality of a cluster-
ing based on this criterion is the Caliński/Harabasz
index (Caliński and Harabasz, 1974), also known
as variance ratio criterion (VRC). Given a set ofN
data points and a partitioning of k disjoint clusters,
VRC is computed as follows:

V RCk =
trace(B)

trace(W )
× N − k

k − 1
(2)

Here, W and B are the intra-cluster and inter-
cluster dispersion matrices, respectively:

W =
k∑

i=1

Ni∑

l=1

(−→xi(l)− x̄i)(−→xi(l)− x̄i)T (3)

B =
k∑

i=1

Ni(x̄i − x̄)(x̄i − x̄)T (4)

where Ni is the number of data points assigned to
cluster i,−→xi(l) is the lth point assigned to this clus-
ter, x̄i is the centroid of ith cluster (the mean), and
x̄ is the data centroid of the overall dataset. Given
the above formulas, the trace of B is the sum of
inter-cluster variances, while the trace of W is the
sum of intra-cluster variances. A good partitioning
should have high values for B (which is an indi-
cation for well-separated clusters) and low values
for W (an indication for compact clusters), so the
higher the quality of the partitioning the greater
the value of this ratio.

Compared to other criteria, VRC has been
found to be one of the most effective approaches
for clustering validity—see the comparative stud-
ies of Milligan and Cooper (1985) and Vendramin
et al. (2009). Furthermore, it has been previously
applied to word sense discrimination successfully,
returning the best results among a number of other
measures (Savova et al., 2006). For this work, we
calculate VRC for a number of different partition-
ings (ranged from 2 to 10 clusters), and we keep
the partitioning that results in the highest VRC
value as the optimal number of senses for the spe-
cific word. Note that since the HAC dendrogram
already embeds all possible clusterings, the cut-
ting of the tree in order to get a different partition-
ing is performed in constant time.

5 Experimental setting
The choice of our 1st-order vector space is based
on empirical tests, where we found out that a basis
with elements of the form 〈word, class〉 presents
the right balance for our purposes among sim-
pler techniques, such as word-based spaces, and
more complex ones, such as dependency-based
approaches. In our vector space, each word has a
distinct vector representation for every word class
under which occurs in the corpus (e.g. ‘suit’ will
have a noun vector and a verb vector). As our ba-
sis elements we use the 2000 most frequent con-
tent words in BNC, with weights being calculated
as the ratio of the probability of the context word
given the target word to the probability of the con-
text word overall. The context here is a 5-word
window on both sides of the target word.

The parameters of the clustering scheme are op-
timized on the noun set of SEMEVAL 2010 Word
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Sense Induction & Disambiguation Task (Man-
andhar et al., 2010). Specifically, when using HAC
one has to decide how to measure the distance
between the clusters, which is the merging crite-
rion applied in every iteration of the algorithm,
as well as the measure between the data points,
i.e. the individual vectors. Based on empirical
tests we limit our options to two inter-cluster mea-
sures: complete-link and Ward’s methods. In the
complete-link method the distance between two
clustersX and Y is the distance between their two
most remote elements:

D(X,Y ) = max
x∈X,y∈Y

d(x, y) (5)

In Ward’s method, two clusters are selected for
merging if the new partitioning exhibits the mini-
mum increase in the overall intra-cluster variance.
The cluster distance is given by:

D(X,Y ) =
2|X||Y |
|X|+ |Y |‖

−→cX −−→cY ‖2 (6)

where −→cX and −→cY are the centroids of X and Y .
We test these linkage methods in combination

with three vector distance measures: euclidean,
cosine, and Pearson’s correlation (6 models in to-
tal). The metrics were chosen to represent pro-
gressively more relaxed forms of vector compar-
ison, with the strictest form to be the euclidean
distance and correlation as the most relaxed. For
sense detection we use the disambiguation algo-
rithm described in Section 4, considering as con-
text the whole sentence in which a target word
appears. The distance metric used for the dis-
ambiguation process in each model is identical
to the metric used for the clustering process, so
in the Ward/euclidean model the disambiguation
is based on the euclidean distance, in complete-
link/cosine model on the cosine distance, and so
on. We evaluate the models using V-measure,
an entropy-based metric that addresses the so-

Model V-Meas. Avg clust.
Ward/Euclidean 0.05 1.44
Ward/Correlation 0.14 3.14
Ward/Cosine 0.08 1.94
Complete/Euclidean 0.00 1.00
Complete/Correlation 0.11 2.66
Complete/Cosine 0.06 1.74
Most frequent sense 0.00 1.00
1 cluster/instance 0.36 89.15
Gold standard 1.0 4.46

Table 1: Results on the noun set of SEMEVAL
2010 WSI&D task.

keyboard: 1105 contexts, 2 senses
COMPUTER (665 contexts): program dollar disk power

enter port graphic card option select language drive
pen application corp external editor woman price
page design sun cli amstrad lock interface lcd slot
notebook

MUSIC (440 contexts): drummer instrumental singer
german father fantasia english generation wolfgang
wayne cello body join ensemble mike chamber gary
saxophone sax ricercarus apply form son metal guy
clean roll barry orchestra

Table 2: Derived senses for word ‘keyboard’.

called matching problem of F-score (Rosenberg
and Hirschberg, 2007). Table 1 shows the results.

Ward’s method in combination with correla-
tion distance provided the highest V-measure, fol-
lowed by the combination of complete-link with
(again) correlation. Although a direct compari-
son of our models with the models participating
in this task would not be quite sound (since these
models were trained on a special corpus provided
by the organizers, while our model was trained
on the BNC), it is nevertheless enlightening to
mention that the 0.14 V-measure places the Ward-
correlation model at the 4th rank among 28 sys-
tems for the noun set of the task, while at the
same time provides a reasonable average number
of clusters per word (3.14), close to that of the
human-annotated gold standard (4.46). Compare
this, for example, with the best-performing sys-
tem that achieved a V-measure of 0.21, a score
that was largely due to the fact that the model as-
signed the unrealistic number of 11.54 senses per
word on average (since V-measure tends to favour
higher numbers of senses, as the baseline 1 clus-
ter/instance shows in Table 1).1

Table 2 provides an example of the results,
showing the senses for the noun ‘keyboard’ learnt
by the best model of Ward’s method and correla-
tion measure. Each sense is visualized as a list of
the most dominant words in the cluster, ranked by
their TF-ICF values. Furthermore, Figure 2 shows
the dendrograms produced by four linkage meth-
ods for the word ‘keyboard’, demonstrating the su-
periority of Ward’s method.

6 Disambiguation vs composition

A number of models that aim to equip distribu-
tional semantics with compositionality are evalu-
ated on some form of the disambiguation task pre-
sented in Section 2. Versions of this task can be
found, for example, in Mitchell and Lapata (2008),

1The results of SEMEVAL 2010 can be found online at
http://www.cs.york.ac.uk/semeval2010_WSI/task_14
_ranking.html.
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Figure 2: Dendrograms produced for word ‘key-
board’ according to 4 different linkage methods.

Erk and Padó (2008), Grefenstette and Sadrzadeh
(2011a,b), Kartsaklis et al. (2012) and Grefenstette
et al. (2013). We briefly remind that the goal is to
assess how well a compositional model can disam-
biguate the meaning of an ambiguous verb, given
a specific context. This kind of evaluation involves
two distinct tasks: the composition of sentence
vectors, and the disambiguation of the verbs. And,
although the evaluation of a model against human
judgements provides some indication for the suc-
cess of the latter task, it leaves unclear to what ex-
tent the former has been achieved. In this section
we perform two experiments in order to address
this question. The first of them aims to support the
following argument: that although disambiguation
can emerge as a side-effect of a compositional pro-
cess, compositionality is not a necessary condition
for this to happen. The second experiment is based
on a more appropriate task that requires genuine
compositional abilities, and demonstrates the good
performance of a compositional model based on
the disambiguated vector space of Section 5.

As our compositional method for the follow-
ing tasks we use the multiplicative and additive
models of Mitchell and Lapata (2008). Despite
the simple nature of these models, there is a num-
ber of reasons that make them good candidates for
demonstrating the main ideas of this paper. First,
for better or worse “simple” does not necessar-
ily mean “ineffective”. The comparative study of
Blacoe and Lapata (2012) shows that for certain
tasks these “baselines” perform equally well or
even better than other more sophisticated models.
And second, it is reasonable to expect that better
compositional models would only work in favour
of our arguments, and not the other way around.

6.1 Evaluating disambiguation
One potential problem with the datasets used for
the disambiguation task of Section 2, similar to
the one of Grefenstette and Sadrzadeh (2011a), is
that ambiguous verbs are usually collected from a
corpus based on some automated method. And,
although they do exhibit variations in their senses
(as most verbs do), in many cases these meanings
are actually related—for example, the meanings of
‘write’ in G&S dataset are spell and publish. To
overcome this problem, we used the work of Pick-
ering and Frisson (2001), which provides a list of
genuinely ambiguous verbs obtained from careful
manual selection and ranking from human evalu-
ators. The evaluators assessed the relatedness of
each verb’s different meanings using a scale of
0 (totally unrelated) to 7 (highly related). From
these verbs, we picked 10 with an average mark
< 1. An example is ‘file’, which means ‘smooth’
in ‘file nails’ and ‘register’ as in ‘file an applica-
tion’. For each verb we picked the 10 most oc-
curring subjects and objects from the BNC (5 for
each landmark). In the case of verb ‘file’, for ex-
ample, among these were ‘woman’ and ‘nails’ for
landmark ‘smooth’, and ‘union’ and ‘lawsuit’ for
landmark ‘register’. Each subject and object was
modified by its most occurring adjective in the cor-
pus. This resulted in triples of sentences of the
following form:

(1) main: young woman filed long nails
high: young woman smoothed long nails
low: young woman registered long nails

(2) main: monetary union filed civil lawsuit
high: mon. union registered civil lawsuit
low: mon. union smoothed civil lawsuit

The main sentence was paired with both high
and low landmark sentences, creating a dataset2 of
200 sentence pairs (10 main verbs × 10 contexts
× 2 landmarks)3. These were randomly presented
to 43 human annotators, whose duty was to judge
the similarity between the sentences of each pair.
The human scores were compared with scores pro-
duced by a number of models (Table 3).

The most successful model (M1) does not ap-
ply any form of composition. Instead, the com-
parison of a sentence with a “landmark” sentence
is simply based on disambiguated versions of the

2The dataset will be available at http://www.cs.ox.
ac.uk/activities/compdistmeaning/.

3As a comparison, the Mitchell and Lapata (2008) dataset
consists of 15 main verbs× 4 contexts× 2 landmarks = 120
sentence pairs, while the Grefenstette and Sadrzadeh (2011a)
dataset has the same configuration and size with ours.
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verbs alone. Specifically, the main verb and the
landmark verb are disambiguated given the con-
text (subjects, objects, and adjectives that mod-
ify them) according to Equation 1; this produces
two 2nd-order vectors, one for the main verb and
one for the landmark. The degree of similarity be-
tween the two sentences is then calculated by mea-
suring the similarity between the two sense vec-
tors of the verbs, without any compositional step.
The score of 0.28 achieved by this model is im-
pressive, given that the inter-annotator agreement
(which serves as an upper-bound) is 0.38.

A number of interesting observations can be
made based on the results of Table 3. First of
all, the ‘verbs-only’ model outperforms the two
baselines (which use composition but not disam-
biguation) by a large margin, and indeed also the
other compositional models. This is an indica-
tion that this kind of disambiguation task might
not be the best way to evaluate a compositional
model. The fact that the most important condi-
tion for success is the proper disambiguation of
the verb, means that the good performance of a
compositional model demonstrates only this: how
well the model is able to disambiguate an am-
biguous verb. This is different from how well the
composed representation reflects the meaning of
the larger constituent; that is, it has very little to
say about the extent to which an operation like
−−−−−→woman�−−→file�−−−→nails (� denotes point-wise mul-
tiplication) results in a faithful representation of
the meaning of sentence ‘woman filed nails’.

M2 to M5 represent different versions of the
compositional models that use disambiguation in
a distinct step. All these models compose both the
main verb and the landmark with a given context,
and then perform the comparison at sentence level.
In M2 and M3 all words are first disambiguated
prior to composition, while in M4 and M5 the 2nd-

Disambig. Composition ρ

M1 Only verbs No 0.282 ∗

M2 All words Multiplicative 0.118
M3 All words Additive 0.210
M4 Only verbs Multiplicative 0.110
M5 Only verbs Additive 0.234 ∗

B1 No Multiplicative 0.143
B2 No Additive 0.042

Inter-annotator agreement 0.383
∗ The difference between M1 and M5 is highly

statistically significant with p < 0.0001

Table 3: Spearman’s ρ for the Pickering and Fris-
son dataset.

order vector of the verb is composed with the 1st-
order vectors of the other words. The most im-
pressive observation here is that the separation of
disambiguation results in a tremendous improve-
ment for the additive model, from 0.04 to 0.21.
This is not surprising since, when using magni-
tude invariant measures between vectors (such as
cosine distance), the resulting vector is nothing
more than the average of the involved word vec-
tors. The introduction of the disambiguation step
before the composition, therefore, makes a great
difference since it provides much more accurate
starting points to be averaged.

On the other hand, the disambiguated version
of multiplicative model (M2) presents inferior per-
formance compared to the “ambiguous” version
(B1). We argue that the reason behind this is that
the two models perform different jobs: the result
of B1 is a “mixing” of composition and disam-
biguation of the most ambiguous word (i.e. the
verb), since this is the natural effect of the point-
wise multiplication operation (see discussion in
Section 2); on the other hand, M2 is designed to
construct an appropriate composite meaning for
the whole sentence. We will try to support this
argument by the experiment of the next section.

6.2 A better test of compositionality

Although there might not exists such a thing
as the best evaluation method for compositional-
distributional semantics, it is safe to assume that
a phrase similarity task avoids many of the pitfalls
of tasks such as the one of Section 6.1. Given pairs
of short phrases, the goal is to assess the similar-
ity of the phrases by constructing composite vec-
tors for them and computing their distance. No as-
sumptions about disambiguation abilities regard-
ing a specific word (e.g. the verb) are made here;
the only criterion is to what extent the composite
vector representing the meaning of a phrase is sim-
ilar or dissimilar to the vector of another phrase.
From this perspective, this task seems the ideal
choice for evaluating a model aiming to provide
appropriate phrasal semantics. The scores given
by the models are compared to those of human
evaluators using Spearman’s ρ.

For this experiment, we use the “verb-object”
part of the dataset presented in the work of
Mitchell and Lapata (2010), which consists of 108
pairs of short verb phrases exhibiting three de-
grees of similarity. A high similarity pair for ex-
ample, is produce effect/achieve result, a medium
one is pour tea/join party, and a low one is close
eye/achieve end. The original dataset also con-
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Disambig. Composition ρ

M1 Only verbs No 0.318
M2 All words Multiplicative 0.412 ∗

M3 All words Additive 0.414 †

M4 Only verbs Multiplicative 0.352
M5 Only verbs Additive 0.324
B1 No Multiplicative 0.379 ∗†

B2 No Additive 0.334
Inter-annotator agreement 0.550

∗ Difference between M2/B1 is stat. sign. with p ≤ 0.07

† Difference between M3/B1 is stat. sign. with p ≤ 0.06

Table 4: Phrase similarity results.

tains noun-noun and adjective-noun compounds.
However, the verb-object part serves the pur-
poses of this paper much better, for two reasons.
First, since by definition the proposed methodol-
ogy suits better circumstances involving at least
some level of word ambiguity, a dataset based on
the most ambiguous part of speech (verbs) seems a
reasonable choice. Second, this part of the dataset
allows us to do some meaningful comparisons
with the task of Section 6.1, which is again around
verb structures. The results are shown in Table 4.

This time, the disambiguation step provides
solid benefits for both multiplicative (M2) and
additive (M3) models, with differences that are
statistically significant from the best baseline B1
(with p ≤ 0.07 and p ≤ 0.06, respectively).
Note that the ‘verbs-only’ model (M1), which was
by a large margin the most successful for the
task of Section 6.1, now shows the worst perfor-
mance. For comparison, the best result reported by
Mitchell and Lapata (2010) on a 1st-order space
similar to ours (regarding dimensions and weights)
was 0.38 (“dilation” model).

7 Discussion

This paper is based on the observation that any
compositional operation between two vectors is
essentially a hybrid process consisting of two
“components” that, depending on the form of the
underlying vector space, can have different “mag-
nitudes”. One of the components results in a cer-
tain amount of disambiguation for the most am-
biguous original word, while the other one works
towards a composite representation for the mean-
ing of the whole phrase or sentence. The tasks of
Section 6 are designed so that each one of them as-
sesses a different aspect of this hybrid process: the
task of Section 6.1 is focused on the disambigua-
tion aspect, while the task of Section 6.2 addresses
the compositionality part. One of our main argu-

ments is the observation that, in order the get bet-
ter compositional representations, it is essential to
first eliminate (or at least reduce as much as pos-
sible the magnitude of) the disambiguation “com-
ponent” that might show up as a by-product of the
compositional process, so that the result is mainly
a product of pure composition—this is what the
“unambiguous” models do achieve in the task of
Section 6.2. Based on the experimental work con-
ducted in this paper, our first concluding remark is
that the elimination of the ambiguity factor can be
essential for the quality of the composed vectors.

But, if Table 4 provides a proof that the sep-
aration of disambiguation and composition can
indeed produce better compositional representa-
tions, what is the meaning of the inferior perfor-
mance of all “unambiguous” models (M2 to M5)
compared to verbs-only version (M1) in the task
of Section 6.1? Why disambiguation is not always
effective (as in the case of multiplicative model)
for that task? These are strong indications that the
quality of composition is not crucial for disam-
biguation tasks of this sort, whose only achieve-
ment is that they measure the disambiguation side-
effects generated by the compositional process. In
other words, the practice of evaluating the qual-
ity of composition by using disambiguation tasks
is problematic. As the topic of compositionality
in distributional models of meaning increasingly
gains popularity in the recent years, this second
concluding remark is equally important since it
can contribute towards better evaluation schemes
of such models.

8 Future work

A next step to take in the future is the appli-
cation of these ideas on more complex spaces,
such as those based on the categorical framework
of Coecke et al. (2010). The challenge here is
the effective generalization of a disambiguation
scheme on tensors of rank greater than 1. Ad-
ditionally, we would expect this method to bene-
fit from more robust probabilistic clustering tech-
niques. An appealing option is the use of a non-
parametric method, such as a hierarchical Dirich-
let process (Yao and Van Durme, 2011).
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