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Abstract

This paper proposes a boosting algorithm
that uses a semi-Markov perceptron. The
training algorithm repeats the training of a
semi-Markov model and the update of the
weights of training samples. In the boost-
ing, training samples that are incorrectly
segmented or labeled have large weights.
Such training samples are aggressively
learned in the training of the semi-Markov
perceptron because the weights are used
as the learning ratios. We evaluate our
training method with Noun Phrase Chunk-
ing, Text Chunking and Extended Named
Entity Recognition. The experimental re-
sults show that our method achieves better
accuracy than a semi-Markov perceptron
and a semi-Markov Conditional Random
Fields.

1 Introduction

Natural Language Processing (NLP) basic tasks,
such as Noun Phrase Chunking, Text Chunking,
and Named Entity Recognition, are realized by
segmenting words and labeling to the segmented
words. To realize these tasks, supervised learn-
ing algorithms have been applied successfully. In
the early stages, algorithms for training classifiers,
including Maximum Entropy Models (Tsuruoka
and Tsujii, 2005), AdaBoost-based learning algo-
rithms (Carreras et al., 2002), and Support Vector
Machines (SVMs) (Kudo and Matsumoto, 2001)
were widely used. Recently, learning algorithms
for structured prediction, such as linear-chain
structured predictions, and semi-Markov model-
based ones, have been widely used. The examples
of linear-chain structured predictions include Con-
ditional Random Fields (CRFs) (Lafferty et al.,
2001) and structured perceptron (Collins, 2002).
The examples of semi-Markov model-based ones

include semi-Markov model perceptron (Cohen
and Sarawagi, 2004), and semi-Markov CRFs
(Sarawagi and Cohen, 2005). Among these
methods, semi-Markov-based ones have shown
good performance in terms of accuracy (Cohen
and Sarawagi, 2004; Sarawagi and Cohen, 2005;
Okanohara et al., 2006; Iwakura et al., 2011).
One of the reasons is that a semi-Markov learner
trains models that assign labels to hypothesized
segments (i.e., word chunks) instead of labeling
to individual words. This enables use of features
that cannot be easily used in word level processing
such as the beginning word of a segment, the end
word of a segment, and so on.

To obtain higher accuracy, boosting methods
have been applied to learning methods for training
classifiers. Boosting is a method to create a final
hypothesis by repeatedly generating a weak hy-
pothesis and changing the weights of training sam-
ples in each training iteration with a given weak
learner such as a decision stump learner (Schapire
and Singer, 2000) and a decision tree learner (Car-
reras et al., 2002). However, to the best of our
knowledge, there are no approaches that apply
boosting to learning algorithms for structured pre-
diction. In other words, if we can successful apply
boosting to learning algorithms for structured pre-
diction, we expect to obtain higher accuracy.

This paper proposes a boosting algorithm for
a semi-Markov perceptron. Our learning method
uses a semi-Markov perceptron as a weak learner,
and AdaBoost is used as the boosting algorithm.
To apply boosting to the semi-Markov perceptron,
the following methods are proposed; 1) Use the
weights of training samples decided by AdaBoost
as the learning ratios of the semi-Markov percep-
tron, and 2) Training on AdaBoost with the loss
between the correct output of a training sample
and the incorrect output that has the highest score.
By the first method, the semi-Markov perceptron
can aggressively learn training samples that are in-
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correctly classified at previous iteration because
such training samples have large weights. The sec-
ond method is a technique to apply AdaBoost to
learning algorithms for structured prediction that
generate negative samples from N-best outputs
(Cohen and Sarawagi, 2004), or consider all pos-
sible candidates (Sarawagi and Cohen, 2005). We
also prove the convergence of our training method.

This paper is organized as follows: In Section
2, we describe AdaBoost and Semi-Markov per-
ceptron is described in Section 3. Our proposed
method is described in Section 4, and the experi-
mental setting, the experimetal results and related
work are described in Section 5, 6, and 7.

2 AdaBoost

Let X be a domain or sample space and Y be
a set of labels {−1, +1}. The goal is to in-
duce a mapping F : X → Y. Let S be
{(x1, y1), ..., (xm, ym)}, which is a set of training
samples, where xi is a sample in X , and each yi

belongs to Y . Each boosting learner learns T types
of weak hypothesis with a given weak learner to
produce a final hypothesis F :

F (x) = sign(
∑T

t=1
αtht(x)).

where sign(x) is 1 if x is positive, otherwise, it
returns -1.

The ht (1 ≤ t ≤ T ) is the t-th weak hypothe-
sis learned by the weak learner. ht(x) is the pre-
diction to x ∈ X with ht, and αt is the confi-
dence value of ht that is calculated by the boosting
learner.

The given weak learner learns a weak hypoth-
esis ht from training samples S = {(xi, yi)}m

i=1

and weights over samples {wt,1, ..., wt,m} at
round t. wt,i is the weight of sample number i
at round t for 1 ≤ i ≤ m. We set w1,i to 1/m.

After obtaining t-th weak hypothesis ht, the
boosting learner calculates the confidence-value
αt for ht. Then, the boosting learner updates the
weight of each sample. We use the AdaBoost
framework (Freund and Schapire, 1997; Schapire
and Singer, 1999). The update of the sample
weights in AdaBoost is defined as follows:

wt+1,i = wt,i
e−yi αtht(xi)

Zt(αt),
(1)

where e is Napier’s constant and

Zt(αt) =

m∑

i=1

wt,ie
−yi αtht(xi) (2)

# Training data: S = {(Xi,Yi)}m
i=1

# The learning rations of S: {ϵi}m
i=1

# The maximum iteration of perceptron: P
SemiMarkovPerceptron(S, P, {ϵi}m

i=1)
w = ⟨0, ..., 0⟩ # Weight vector
a = ⟨0, ..., 0⟩ # For averaged perceptron
c = 1 # The total number of iteration
For p = 1...P
For i = 1...m
Y∗

i = arg max
Y∈Y(Xi)

w · Φ(Xi,Y)

If Y∗
i ̸= Yi

w = w + ϵi(Φ(Xi,Yi) − Φ(Xi,Y
∗
i ))

a = w + cϵi(Φ(Xi,Yi) − Φ(Xi,Y
∗
i ))

endIf
c++

endFor
endFor

return (w - a / c)

Figure 1: A pseudo code of a semi-Markov per-
ceptron.

is the normalization factor for
∑m

i=1 wt+1,i = 1.
Let π be any predicate and [[π]] be 1 if π holds

and 0 otherwise. The following upper bound holds
for the training error of F consisting of T weak
hypotheses (Schapire and Singer, 1999):

1

m

m∑

i=1

[[F (xi) ̸= yi]] ≤
T∏

t=1

Zt(αt). (3)

Eq. (1) and Eq. (3) suggest AdaBoost-based learn-
ing algorithms will converge by repeatedly select-
ing a confidence-value of αt for ht at each round,
that satisfies the following Eq. (4) at each round:

Zt(αt) < 1. (4)

3 Semi-Markov Perceptron

In a semi-Markov learner, instead of labeling indi-
vidual words, hypothesized segments are labeled.
For example, if a training with an input ’I win’
and a label set {NP ,V P } is conducted, consid-
ered segments with their labels are the follow-
ing: “[I](NP ) [win](NP )”, “[I](NP ) [win](V P )”,
“[I](V P ) [win](NP )”, “[I](V P ) [win](V P )”, “[I
win](NP )”, and “[I win](V P )”.

Figure 1 shows a pseudo code of a semi-Markov
perceptron (Semi-PER) (Cohen and Sarawagi,
2004). We used the averaged perceptron (Collins,
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2002) based on the efficient implementation de-
scribed in (Daumé III, 2006). Let S =
{(Xi,Yi)}m

i=1 be a set of m training data, Xi

be i-th training sample represented by a word se-
quence, and Yi be the correct segments and the
correct labeling of Xi. Yi consists of |Yi| seg-
ments. Yi(j) means the j-th segment of Yi, and
l(Yi(j)) means the label of Yi(j).

Φ(X,Y) is a mapping to a D-dimensional fea-
ture vector defined as

Φ(X,Y) =

D∑

d=1

|Y|∑

j=1

ϕd(X,Y(j)),

where ϕd is a feature represented by an indicator
function that maps an input X and a segment with
its label Y(j) to a D-dimensional vector. For ex-
ample, ϕ100(X,Y(j)) might be the 100-th dimen-
sion’s value is 1 if the beginning word of Y(j) is
“Mr.” and the label l(Y(j)) is “NP”.

w is a weight vector trained with a semi-
Markov perceptron. w·Φ(X,Y) is the score given
to segments with their labels Y of X, and Y(X)
is the all possible segments with their labels for
X. The learning ratios of the training samples are
{ϵi}m

i=1, and the ratios are set to 1 in a usual semi-
Markov perceptron training.

In the training of the Semi-PER, for a given Xi,
the learner finds Y∗

i with the Viterbi decoding as
described in (Cohen and Sarawagi, 2004):

Y∗
i = arg max

Y∈Y(Xi)
w · Φ(X,Y).

If Y∗
i is not equivalent to Yi (i.e. Y∗

i ̸= Yi), the
weight w is updated as follows:

w = w + ϵi(Φ(Xi,Yi) − Φ(Xi,Y
∗
i )).

The algorithm takes P passes over the training
samples.

4 A Boosted Semi-Markov Perceptron

This section describes how we apply AdaBoost to
a semi-Markov perceptron training.

4.1 Applying Boosting

Figure 2 shows a pseudo code for our boosting-
based Semi-PER. To train the Semi-PER within
an AdaBoost framework, we used the weights of
samples decided by AdaBoost as learning ratios.
The initial weight value of i-th sample at boosting

# Training data: S = {(Xi,Yi)}m
i=1

# A weight vector at boosting round t: Wt

# The weights of S at round t: {wt,i}m
i=1

# The iteration of perceptron training: P
# The iteration of boosting training: T
SemiBoost(S, T , P )
W0 = ⟨0, ..., 0⟩
Set initial value: w1,i = 1/m (for 1 ≤ i ≤ m)
While t ≤ T
wt=SemiMarkovPerceptron(S,P,{wt,i}m

i=1)
Find αt that satisfies Z̃t(αt) < 1.
Update :Wt = Wt−1 + αtwt

For i = 1...m

wt+1,i = wt,i ∗ e− αtdt(Xi)/Z̃t(αt)
t++

endWhile
return WT

Figure 2: A pseudo code of a boosting for a semi-
Markov perceptron.

round 1 is w1,i = 1/m. In the first iteration, Semi-
PER is trained with the initial weights of samples.

Then, we update the weights of training sam-
ples. Our boosting algorithm assigns larger
weights to training samples incorrectly segmented
or labeled. To realize this, we first define a loss for
Xi at boosting round t as follows:

dt(Xi) = st(Xi,Yi) − st(Xi,Y
t
i),

where,

Yt
i = arg max

Y∈Y(Xi)∧Y ̸=Yi

st(Xi,Y),

and
st(X,Y) = wt · Φ(X,Y).

st(X,Y) is a score of a word sequence X that is
segmented and labeled as Y, and wt is a weight
vector trained by Semi-PER at boosting round t.
When a given input is correctly segmented and
labeled, the second best output is generated with
a forward-DP backward-A* N-best search algo-
rithm (Nagata, 1994). Then we find a confidence-
value αt that satisfies Z̃t(αt) < 1:

Z̃t(αt) =

m∑

i=1

wt,ie
− αtdt(Xi). (5)

After obtaining αt, the weight of each sample is
updated as follows:

wt+1,i = wt,i ∗ e− αtdt(Xi)/Z̃t(αt). (6)
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If st(Xi,Yi) is greater than st(Xi,Y
t
i) (i.e., 0 <

dt(Xi)), the weight of Xi is decreased because
Xi is correctly segmented and labeled. Otherwise
(dt(Xi) < 0), Xi has a larger weight value. The
updated weights are used as the learning ratios
in the training of Semi-PER at the next boosting
round. Finally, we update the weight vector Wt

trained with boosting as follows:

Wt = Wt−1 + αtwt

This process is repeated T times, and a model
WT , which consists of T types of Semi-PER-
based models, is obtained.

In test phase, the segments and labels of a word
sequence X is decided as follows:

Y∗ = arg max
Y∈Y(X)

WT · Φ(X,Y).

4.2 Learning a Confidence Value

Since our algorithm handles real valued scores
of samples given by Semi-PER on the exponen-
tial loss of AdaBoost, it’s difficult to analyti-
cally determine a confidence-value αt that satisfies
Z̃t(αt) < 1 at boosting round t.

Therefore, we use a bisection search to find a
confidence-value. To detemin the range for the bi-
section search, we use a range between 0 and the
confidence-value for a weak hypothesis ht that re-
turns its prediction as one of {-1,+1}. We define
ht(Xi) as sign(dt(Xi)). Schapire and Singer pro-
posed an algorithm based on AdaBoost, called real
AdaBoost (Schapire and Singer, 1999). The real
AdaBoost analytically calculates the confidence-
value that minimizes Eq. (2). The derivation of
Zt(αt) with αt is

Z
′
t(αt) =

m∑

i=1

−ht(Xi)wt,ie
− αtht(Xi).

By solving Z
′
t(αt) = 0, we obtain

α̃t =
1

2
log(

∑m
i=1 wt,i[[ht(Xi) = 1]]∑m

i=1 wt,i[[ht(Xi) = −1]]
).

Finally, we select the value that minimizes Eq.
(5) from the range between 0 and 2 × α̃t with the
bisection search as the confidence-value αt. This
is because we expect to find a better confidence-
value from a wider range.

4.3 Convergence Analysis
If we repeatedly find a confidence-value (0 < αt)
that satisfies Z̃t(αt) < 1 at each boosting round,
the training of the semi-Markov model will be
converged as in the classification case described
in Section 2.1 The following bound on the train-
ing error can be proved:

1

m

m∑

i=1

[[Y∗
i ̸= Yi]] ≤

T∏

t=1

Z̃t(αt)

where

Y∗
i = arg max

Y∈Y(Xi)
WT · Φ(Xi,Y).

By unraveling Eq. (6), we have that

wT+1,i = wT,i ∗ e− αtdt(Xi)/Z̃t(αt)

=
e− ∑T

t=1 αtdt(Xi)

m
∏T

t=1 Z̃t(αt)

=
e− ∑T

t=1 αtwt·(Φ(Xi,Yi)−Φ(Xi,Y
t
i))

m
∏T

t=1 Z̃t(αt)
.

Therefore, if Y∗
i ̸= Yi,

e− ∑T
t=1 αtwt·(Φ(Xi,Yi)−Φ(Xi,Y

∗
i ))

m
∏T

t=1 Z̃t(αt)
≤ wT+1,i,

since, for 1 ≤ t ≤ T ,

wt · Φ(Xi,Y
∗
i ) ≤ wt · Φ(Xi,Y

t
i).

Moreover, when Y∗
i ̸= Yi, the following is satis-

fied.

1 ≤ e− ∑T
t=1 αtwt·(Φ(Xi,Yi)−Φ(Xi,Y

∗
i ))

≤ e− ∑T
t=1 αtwt·(Φ(Xi,Yi)−Φ(Xi,Y

t
i))

= e− ∑T
t=1 αtdt(Xi).

Therefore,

[[Y∗
i ̸= Yi]] ≤ e− ∑T

t=1 αtdt(Xi).

These give the stated bound on training error;

1

m

m∑

i=1

[[Y∗
i ̸= Yi]] ≤

∑m
i=1 e− ∑T

t=1 αtdt(Xi)

m

=

m∑

i=1

(

T∏

t=1

Z̃t(αt))wT+1,i

=

T∏

t=1

Z̃t(αt).

10 < αt means the weighted error of the current Semi-
PER,

∑m
i=1[[Y

t
i ̸= Yi]]wi,t, is less than 0.5 on the training

data. Fortunately, this condition was always satisfied with the
training of Semi-PER in our experiments.

50



5 Experimental Settings

5.1 Noun Phrase Chunking

The Noun Phrase (NP) chunking task was cho-
sen because it is a popular benchmark for test-
ing a structured prediction. In this task, noun
phrases called base NPs are identified. “[He] (NP)
reckons [the current account deficit] (NP)...” is
an example. The training set consists of 8,936
sentences, and the test set consists of 2,012 sen-
tences.2 To tune parameters for each algorithm,
we used the 90% of the train data for the training
of parameter tuning, and the 10% of the training
data was used as a development data for measur-
ing accuracy at parameter tuning. A final model
was trained from all the training data with the pa-
rameters that showed the highest accuracy on the
development data.

5.2 Text Chunking

We used a standard data set prepared for CoNLL-
2000 shared task.3 This task aims to identify
10 types of chunks, such as, NP, VP, PP, ADJP,
ADVP, CONJP, INITJ, LST, PTR, and SBAR.
“[He] (NP) [reckons] (VP) [the current account
deficit] (NP)...” is an example of text chunk-
ing. The data consists of subsets of Penn Wall
Street Journal treebank; training (sections 15-18)
and test (section 20). To tune parameters for each
algorithm, we used the same approach of the NP
chunking one.

5.3 Japanese Extended NE Recognition

To evaluate our algorithm on tasks that include
large number of classes, we used an extended NE
recognition (ENER) task (Sekine et al., 2002).
This Japanese corpus for ENER (Hashimoto et al.,
2008) consists of about 8,500 articles from 2005
Mainichi newspaper. The corpus includes 240,337
tags for 191 types of NEs. To segment words from
Japanese sentences, we used ChaSen.4 Words may
include partial NEs because words segmented with
ChaSen do not always correspond with NE bound-
aries. If such problems occur when we segment
the training data, we annotated a word chunk with
the type of the NE included in the word chunk.
The evaluations are performed based on the gold

2We used the data obtained from ftp://ftp.cis.upenn.edu/
pub/chunker/ .

3http://lcg-www.uia.ac.be/conll2000/chunking/
4We used ChaSen-2.4.2 with Ipadic-2.7.0. ChaSen’s web

page is http://chasen-legacy.sourceforge.jp/.

Table 1: Features.
[tj , CLj ], [tj , WBj ], [tj , PBj ],
[tj , wbp], [tj , pbp],
[tj , wep], [tj , pep], [tj , wip],[tj , pip] ,
[tj , wbp, wep], [tj , pbp, pep],
[tj , wbp, pep], [tj , pbp, wep],
[tj , wbp−1], [tj , pbp−1], [tj , wbp−2], [tj , pbp−2],
[tj , wep+1], [tj , pep+1], [tj , wep+2], [tj , pep+2],
[tj , pbp−2, pbp−1], [tj , pep+1, pep+2],
[tj , pbp−2, pbp−1, pbp], [tj , pep, pep+1, pep+2]

% Features used for only Text Chunking and NP Chunking

[tj , wbp, wip], [tj , wbp, pip],
[tj , wbp, pip], [tj , pbp, pip],
[tj , wep, wip], [tj , wep, pip],
[tj , wep, pip], [tj , pep, pip],
[tj , wbp, wep, wip], [tj , wbp, wep, pip],
[tj , wbp, wep, pip], [tj , wbp, pep, pip]

standard data for the test. We created the follow-
ing sets for this experiment. Training data is news
articles from January to October 2005 in the cor-
pus, which includes 205,876 NEs. Development
data is news articles in November 2005 in the cor-
pus, which includes 15,405 NEs. Test data is news
articles in December 2005 in the corpus, which in-
cludes 19,056 NEs.

5.4 Evaluation Metrics

Our evaluation metrics are recall (RE), precision
(PR), and F-measure (FM ) defined as follows:

RE = Cok/Call, PR = Cok/Crec

and

FM = 2 × RE × PR/(RE + PR),

where Cok is the number of correctly recognized
chunks with their correct labels, Call is the number
of all chunks in a gold standard data, and Crec is
the number of all recognized chunks.

5.5 Features

Table 1 lists features used in our experiments. For
NP Chunking and Text Chunking, we added fea-
tures derived from segments in addition to ENER
features.5

wk is the k-th word, and pk is the Part-Of-
Speech (POS) tag of k-th word. bp is the position
of the first word of the current segment in a given

5We did not use the additional features for ENER because
the features did not contribute to accuracy.
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word sequence. ep indicates the position of the last
word of the current segment. ip is the position of
words inside the current segment (bp < ip < ep).
If the length of the current segment is 2, we use
features that indicate there is no inside word as the
features of ip-th words. tj is the NE class label
of j-th segment. CLj is the length of the current
segment, whether it be 1, 2, 3, 4, or longer than 4.
WBj indicates word bigrams, and PBj indicates
POS bigrams inside the current segment.

5.6 Algorithms to be Compared

The following algorithms are compared with our
method.

• Semi-Markov perceptron (Semi-PER)
(Cohen and Sarawagi, 2004): We used one-
best output for training. This Semi-PER is
also used as the weak learner of our boosting
algorithm.

• Semi-Markov CRF (Semi-CRF) (Sarawagi
and Cohen, 2005): To train Semi-CRF, a
stochastic gradient descent (SGD) training
for L1-regularized with cumulative penalty
(Tsuruoka et al., 2009) was used. The batch
size of SGD was set to 1.

These algorithms are based on sequentially
classifying segments of several adjacent words,
rather than single words. Ideally, all the possi-
ble word segments of each input should be con-
sidered for this algorithm. However, the training
of these algorithms requires a great deal of mem-
ory. Therefore, we limit the maximum size of the
word-segments. We use word segments consisting
of up to ten words due to the memory limitation.

We set the maximum iteration for Semi-PER
to 100, and the iteration number for Semi-CRF
trained with SGD to 100 × m, where m is the
number of training samples. The regularization
parameter C of Semi-CRF and the number of it-
eration for Semi-PER are tuned on development
data.6 For our boosting algorithm, the number of
boosting iteration is tuned on development data
with the number of iteration for Semi-PER tuned
on development data. We set the maximum itera-
tion number for boosting to 50.

6For C of Semi-CRF,
{1, 10−1, 10−2, 10−3, 10−4, 10−5, 10−6, 10−7, 10−8, 10−9}
were examined.

Table 2: Results of NP Chunking.

Learner F-measure Recall Precision
Semi-PER 94.32 94.53 94.11
Semi-CRF 94.32 94.52 94.13

Semi-Boost 94.60 94.85 94.35

Table 3: Results of Text Chunking.

Learner F-measure Recall Precision
Semi-PER 94.10 94.15 94.05
Semi-CRF 93.79 93.96 93.62

Semi-Boost 94.15 94.27 94.03

6 Experimental Results

We used a machine with Intel(R) Xeon(R) CPU
X5680 @ 3.33GHz and 72 GB memory. In the fol-
lowing, our proposed method is referred as Semi-
Boost.

6.1 NP Chunking

Table 2 shows the experimental results on NP
Chunking. Semi-Boost showed the best accuracy.
Semi-Boost showed 0.28 higher F-measure than
Semi-PER and Semi-CRF. To compare the results,
we employed a McNemar paired test on the label-
ing disagreements as was done in (Sha and Pereira,
2003). All the results indicate that there is a sig-
nificant difference (p < 0.01). This result shows
that Semi-Boost showed high accuracy.

6.2 Text Chunking

Table 3 shows the experimental results on Text
Chunking. Semi-Boost showed 0.36 higher F-
measure than Semi-CRF, and 0.05 higher F-
measure than Semi-PER. The result of McNemar
test indicates that there is a significant difference
(p < 0.01) between Semi-Boost and Semi-CRF.
However, there is no significant difference be-
tween Semi-Boost and Semi-PER.

6.3 Extended Named Entity Recognition

Table 4 shows the experimental results on ENER.
We could not train Semi-CRF because of the lack
of memory for this task. Semi-Boost showed 0.24
higher F-measure than that of Semi-PER. The re-
sults indicate there is a significant difference (p <
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Table 4: Experimental results for ENER.

Learner F-measure Recall Precision
Semi-PER 81.86 79.06 84.87
Semi-CRF N/A

Semi-Boost 82.10 79.36 85.03

Table 5: Training time of each learner (second)
for NP Chunking (NP), Text Chunking (TC) and
ENER. The number of Semi-Boost iteration is
only one time. The +20 cores means training of
Semi-Boost with 20 cores.

Learner NP TC ENER
Semi-PER 475 559 13,559
Semi-CRF 2,120 8,228 N/A
Semi-Boost 499 619 32,370
+20 cores 487 650 19,598

0.01).7

6.4 Training Speed

We compared training speed under the following
condition; The iteration for Semi-PER is 100, the
iteration number for Semi-CRF trained with SGD
is 100×m, where m is the number of training sam-
ples, and the one time iteration of boosting with
the perceptron iteration 100. Therefore, all train-
ing methods attempted 100 × m times estimation.

Table 5 shows the training time of each learner.
In NP Chunking, the training time of Semi-PER,
Semi-CRF, and Semi-Boost were 475 seconds,
2,120 seconds, and 499 seconds. In Text Chunk-
ing, the training time of Semi-PER, Semi-CRF,
and our method were 559 seconds, 8,228 seconds,
and 619 seconds. Semi-Boost shows competitive
training speed with Semi-PER and 4 to 13 times
faster training speed in terms of the total number
of parameter estimations The difference of time
between Semi-PER and our method is the time for
calculating confidence-value of boosting.

When Semi-Boost trained a model for ENER,
the training speed was degraded. The training time
of Semi-Boost was 32,370 and the training time
of Semi-PER was 13,559. One of the reasons is
the generation of an incorrect output of each train-

7The results on the test data were compared by character
units as in Japanese morphological analysis (Iwakura et al.,
2011). This is because the ends or beginnings of Japanese
NEs do not always correspond with word boundaries.

Table 6: The best results for NP Chunking (FM ).

(Kudo and Matsumoto, 2001) 94.22
(Sun et al., 2009) 94.37
This paper 94.60

ing sample. In our observation, when the num-
ber of classes is increased, the generation speed of
incorrect outputs with N-best search is degraded.
To improve training speed, we used 20 cores for
generating incorrect outputs. When the training
with 20 cores was conducted, the training data was
split to 20 portions, and each portion was pro-
cessed with one of each core. The training time
with the 20 cores was 19,598 for ENER. However,
the training time of NP Chunking was marginally
improved and that of Text Chunking was slightly
increased. This result implies that multi-core pro-
cessing is effective for the training of large classes
like ENER in Semi-Boost.

In fact, since Semi-Boost requires additional
boosting iterations, the training time of Semi-
Boost increases. However, the training time in-
creases linearly by the number of boosting itera-
tion. Therefore, Semi-Boost learned models from
the large training data of ENER.

6.5 Memory Usage

Semi-Boost consumed more memory than Semi-
PER. This is because our learning method main-
tains a weight vector for boosting in addition to
the weight vector of Semi-PER. Compared with
Semi-CRF, Semi-Boost showed lower memory
consumption. On the training data for Text Chunk-
ing, the memory size of Semi-Boost, Semi-PER,
and Semi-CRF are 4.4 GB, 4.1 GB, and 18.0 GB.
When we trained models for ENER, Semi-PER
consumed 32 GB and Semi-Boost consumed 33
GB. However, Semi-CRF could not train mod-
els because of the lack of memory. This is be-
cause Semi-CRF maintains a weight vector and a
parameter vector for L1-norm regularization and
Semi-CRF considers all possible patterns gener-
ated from given sequences in training. In contrast,
Semi-PER and Semi-Boost only consider features
that appeared in correct ones and incorrectly rec-
ognized ones. These results indicate that Semi-
Boost can learn models from large training data.
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Table 7: The best results for Text Chunking (FM ).

Semi-supervised learning
(Ando and Zhang, 2005) 94.39
(Iwakura and Okamoto, 2008) 94.32
(Suzuki and Isozaki, 2008) 95.15

With additional resources
(Zhang et al., 2001) 94.17
(Daumé III and Marcu, 2005) 94.4

Without lexical resources
(Kudo and Matsumoto, 2001) 93.91
(Kudo et al., 2005) 94.12
(Tsuruoka and Tsujii, 2005) 93.70
(Tsuruoka et al., 2009) 93.68
This paper 94.15

7 Related Work

7.1 NP Chunking

Table 6 shows the previous best results for NP
Chunking. The F-measure of Semi-Boost is 94.60
that is 0.23 higher than that of (Sun et al., 2009)
and 0.38 higher than that of (Kudo and Mat-
sumoto, 2001).

7.2 Text Chunking

Table 7 shows the previous best results for Text
Chunking. We see that our method attained
a higher accuracy than the previous best re-
sults obtained without any additional lexical re-
sources such as chunking methods based on SVM
(Kudo and Matsumoto, 2001), CRF with rerank-
ing (Kudo et al., 2005), Maximum Entropy (Tsu-
ruoka and Tsujii, 2005), and CRF (Tsuruoka et al.,
2009). This result indicates that our method per-
forms well in terms of accuracy.

The previous results with lexical resources or
semi-supervised ones showed higher accuracy
than that of our method. For example, lexical re-
sources such as lists of names, locations, abbrevi-
ations and stop words were used (Daumé III and
Marcu, 2005), and a full parser output was used
in (Zhang et al., 2001). Semi-supervised ones
used a generative model trained from automati-
cally labeled data (Suzuki and Isozaki, 2008), the
candidate tags of words collected from automati-
cally labeled data (Iwakura and Okamoto, 2008),
or automatically created classifiers by learning
from thousands of automatically generated aux-
iliary classification problems from unlabeled data

(Ando and Zhang, 2005). Our algorithm can also
incorporate the lexical resources and the semi-
supervised approaches. Future work should evalu-
ate the effectiveness of the incorporation of them.

7.3 Extended Named Entity Recognition

For ENER, the best result was the Semi-PER one
(Iwakura et al., 2011). The F-measure of Semi-
PER was 81.95, and the result was higher than NE
chunker based on structured perceptron (Collins,
2002), and NE chunkers based on shift-reduce-
parsers (Iwakura et al., 2011). Our method showed
0.15 higher F-measure than that of the Semi-PER
one. This result is also evidence that our method
performs well in terms of accuracy.

7.4 Training Methods

There have been methods proposed to improve the
training speed for semi-Markov-based learners.
With regard to reducing the space of lattices built
into the semi-Markov-based algorithms, a method
was proposed to filter nodes in the lattices with a
naive Bayes classifier (Okanohara et al., 2006). To
improve training speed of Semi-CRF, a succinct
representation of potentials common across over-
lapping segments of semi-Markov model was pro-
posed (Sarawagi, 2006). These methods can also
be applied to Semi-PER. Therefore, we can expect
improved training speed with these methods.

Recent online learners update both parameters
and the estimate of their confidence (Dredze and
Crammer, 2008; Crammer et al., 2009; Mejer
and Crammer, 2010; Wang et al., 2012). In
these algorithms, less confident parameters are up-
dated more aggressively than more confident ones.
These algorithms maintain the confidences of fea-
tures. In contrast, our boosting approach main-
tains the weights of training samples. In future
work, we’d like to consider the use of these algo-
rithms in boosting of semi-Markov learners.

8 Conclusion

This paper has proposed a boosting algorithm with
a semi-Markov perceptron. The experimental re-
sults on Noun Phrase Chunking, Text Chunking
and Japanese Extended Named Entity Recognition
have shown that our method achieved better accu-
racy than a semi-Markov perceptron and a semi-
Markov CRF. In future work, we’d like to evaluate
the boosting algorithm with structured prediction
tasks such as POS tagging and parsing.
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