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Abstract

This paper describes NaCTeM entries for
the Cancer Genetics (CG) and Pathway
Curation (PC) tasks in the BioNLP Shared
Task 2013. We have applied a state-of-
the-art event extraction system EventMine
to the tasks in two different settings: a
single-corpus setting for the CG task and
a stacking setting for the PC task. Event-
Mine was applicable to the two tasks with
simple task specific configuration, and it
produced a reasonably high performance,
positioning second in the CG task and first
in the PC task.

1 Introduction

With recent progress in biomedical natural lan-
guage processing (BioNLP), automatic extraction
of biomedical events from texts becomes practi-
cal and the extracted events have been success-
fully employed in several applications, such as
EVEX (Björne et al., 2012; Van Landeghem et
al., 2013) and PathText (Miwa et al., 2013a).
The practical applications reveal a problem in that
both event types and structures need to be cov-
ered more widely. The BioNLP Shared Task 2013
(BioNLP-ST 2013) offers several tasks addressing
the problem, and especially in the Cancer Genetics
(CG) (Pyysalo et al., 2013) and Pathway Curation
(PC) (Ohta et al., 2013) tasks, new entity/event
types and biomedical problems are focused.

Among dozens of extraction systems proposed
during and after the two previous BioNLP shared
tasks (Kim et al., 2011; Kim et al., 2012; Pyysalo
et al., 2012b), EventMine (Miwa et al., 2012)1

has been applied to several biomedical event ex-
traction corpora, and it achieved the state-of-the-
art performance in several corpora (Miwa et al.,
2013b). In these tasks, an event associates with

1http://www.nactem.ac.uk/EventMine/

a trigger expression that denotes its occurrence
in text, has zero or more arguments (entities or
other events) that are identified with their roles
(e.g.,Theme, Cause) and may be assigned hedge
attributes (e.g.,Negation).

This paper describes how EventMine was ap-
plied to the CG and PC tasks in the BioNLP-ST
2013. We configured EventMine minimally for
the CG task and submit the results using the mod-
els trained on the training and development data
sets with no external resources. We employed a
stacking method for the PC task; the method ba-
sically trained the models on the training and de-
velopment data sets, but it also employed features
representing prediction scores of models on seven
external corpora.

We will first briefly describe EventMine and its
task specific configuration in the next section, then
show and discuss the results, and finally conclude
the paper with future work.

2 EventMine for CG and PC Tasks

This section briefly introduces EventMine and the
PC and CG tasks, and then explains its task spe-
cific configuration.

2.1 EventMine

EventMine (Miwa et al., 2012) is an SVM-based
pipeline event extraction system. For the de-
tails, we refer the readers to Miwa et al. (2012;
2013b). EventMine consists of four modules: a
trigger/entity detector, an argument detector, a
multi-argument detector and a hedge detector.
The trigger/entity detector finds words that match
the head words (in their surfaces, base forms
by parsers, or stems by a stemmer) of trig-
gers/entities in the training data, and the detector
classifies each word into specific entity types (e.g.,
DNA domainor region), event types (Regulation)
or a negative type that represents the word does
not participate in any events. The argument
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detector enumerates all possible pairs among
triggers and arguments that match the semantic
type combinations of the pairs in the training data,
and classifies each pair into specific role types
(e.g., Binding:Theme-Geneor geneproduct) or
a negative type. Similarly, the multi-argument
detector enumerates all possible combina-
tions of pairs that match the semantic type
structures of the events in the training data,
and classifies each combination into an event
structure type (e.g.,Positiveregulation:Cause-
Geneor geneproduct:Theme-Phosphorylation)
or a negative type. The hedge detector attaches
hedges to the detected events by classifying the
events into specific hedge types (Speculationand
Negation) or a negative type.

All the classifications are performed by one-vs-
rest support vector machines (SVMs). The detec-
tors use the types mentioned above as their clas-
sification labels. Labels with scores larger than
the separating hyper-plane of SVM and the label
with the largest value are selected as the predicted
labels; the classification problems are treated as
multi-class multi-label classification problems and
at least one label (including a negative type) needs
to be selected in the prediction.

Features for the classifications include charac-
ter n-grams, word n-grams, shortest paths among
event participants on parse trees, and word n-
grams and shortest paths between event partici-
pants and triggers/entities outside of the events on
parse trees. The last features are employed to cap-
ture the dependencies between the instances. All
gold entity names are replaced with their types,
the feature space is compressed to220 by hash-
ing to reduce space cost, the positive instances are
weighted to reduce class imbalance problems, the
feature vectors are normalised, and theC parame-
ter for SVM is set to 1.

In the pipeline approach, there is no way to de-
tect instances if the participants are missed by the
preceding modules. EventMine thus aims high
recall in the modules by the multi-label setting
and weighting positive instances. EventMine also
avoids training on instances that cannot be de-
tected by generating the training instances based
on predictions by the preceding modules since the
training and test instances should be similar.

EventMine is flexible and applicable to several
event extraction tasks with task specific configura-
tion on entity, role and event types. This configu-

ration is described in a separate file2.

2.2 CG and PC Tasks

The CG task (Pyysalo et al., 2013) aims to extract
information on the biological processes relating to
the development and progression of cancer. The
annotation is built on the Multi-Level Event Ex-
traction (MLEE) corpus (Pyysalo et al., 2012a),
which EventMine was once applied to. The PC
task (Ohta et al., 2013), on the other hand, aims
to support the curation of bio-molecular pathway
models, and the corpus texts are selected to cover
both signalling and metabolic pathways.

Both CG and PC tasks offer more entity, role
and event types than most previous tasks like GE-
NIA (Kim et al., 2012) does, which may make the
classification problems more difficult.

2.3 Configuration for CG and PC Tasks

We train models for the CG and PC tasks in simi-
lar configuration, except for the incorporation of a
stacking method for the PC task. We first explain
the configuration applied to both tasks and then in-
troduce the stacking method for the PC task.

We employ two kinds of type generalisations
for both tasks: one for the classification labels
and features and the other for the generation of in-
stances. After the disambiguation of trigger/entity
types by the trigger/entity detector, we reduce the
number of event role labels and event structure
labels by the former type generalisations. The
generalisations are required to reduce the com-
putational costs that depend on the number of
the classification labels. Unfortunately, we can-
not evaluate the effect of the generalisations on
the performance since there are too many pos-
sible labels in the tasks. The generalisations
may alleviate the data sparseness problem but
they may also induce over-generalised features
for the problems with enough training instances.
For event roles, we generalise regulation types
(e.g.,Positiveregulation, Regulation) into a single
REGULATIONtype and post-transcriptional mod-
ification (PTM) types (e.g.,Acetylation, Phos-
phorylation) into a singlePTM type for trigger
types, numbered role types into a non-numbered
role type (e.g.,Participant2→Participant) for role

2This file is not necessary since the BioNLP ST data for-
mat defines where these semantic types are described, but this
file is separated for the type generalisations explained later
and the specification of gold triggers/entities without repro-
ducing a1/a2 files.
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types, and event types into a singleEVENTtype
and entity types into a singleENTITY type for
argument types. For event structures, we apply
the same generalisations except for the general-
isations of numbered role types since the num-
bered role types are important in differentiating
events. Unlike other types, the numbered role
types in events are not disambiguated by any other
modules. The generalisations are also applied to
the features in all the detectors when applicable.
These generalisations are the combination of the
generalisations for the GENIA, Epigenetics and
Post-translational Modifications (EPI), and Infec-
tious Diseases (ID) (Pyysalo et al., 2012b) of the
BioNLP-ST 2011 (Miwa et al., 2012).

The type generalisations on labels and fea-
tures are not directly applicable to generate pos-
sible instances in the detectors since the gen-
eralisations may introduce illegal or unrealis-
tic event structures. Instead, we employ sep-
arate type generalisations to expand the possi-
ble event role pair and event structure types and
cover types, which do not appear in the training
data. For example, if there areRegulation:Theme-
Geneexpressioninstances but there are noPosi-
tive regulation:Theme-Geneexpressioninstances
in the training data, we allow the creation of the
latter instances by generalising the triggers, i.e.,
REGULATION:Theme-Geneexpression, and we
used all the created instances for classification.
The type generalisations may incorporate noisy in-
stances but they pose the possibility to find unan-
notated event structures. To avoid introducing un-
expected event structures, we apply the generali-
sations only to the regulation trigger types.

We basically follow the setting for EPI in
Miwa et al. (2012). We employ a deep syntactic
parser Enju (Miyao and Tsujii, 2008) and a de-
pendency parser GDep (Sagae and Tsujii, 2007).
We utilise liblinear-java (Fan et al., 2008)3 with
the L2-regularised L2-loss linear SVM setting for
the SVM implementation, and Snowball4 for the
stemmer. We, however, use no external resources
(e.g., dictionaries) or tools (e.g., a coreference
resolver) except for the external corpora in the
stacked models for the PC task.

We train models for the CG task using the con-
figuration described above. For PC, in addition
to the configuration, we incorporated a stacking

3http://liblinear.bwaldvogel.de/
4http://snowball.tartarus.org/

Setting Recall Precision F-score
– 42.87 47.72 45.16

+Exp. 43.37 46.42 44.84
+Exp.+Stack. 43.59 48.77 46.04

Table 1: Effect of the type generalisations for ex-
panding possible instances (+Exp.) and stacking
method (+Stack.) on the PC development data set.

method (Wolpert, 1992) using the models with the
same configuration for seven other available cor-
pora: GENIA, EPI, ID, DNA methylation (Ohta
et al., 2011a), Exhaustive PTM (Pyysalo et al.,
2011), mTOR (Ohta et al., 2011b) and CG. The
prediction scores of all the models are used as ad-
ditional features in the detectors. Although some
corpora may not directly relate to the PC task and
models trained on such corpora can produce noisy
features, we use all the corpora without selection
since the stacking often improve the performance,
e.g., (Pyysalo et al., 2012a; Miwa et al., 2013b).

3 Evaluation

We first evaluate the type generalisations for ex-
panding possible event structures and the stack-
ing method in Table 1. The scores were calcu-
lated using the evaluation script provided by the
organisers with the official evaluation metrics (soft
boundary and partial recursive matching). The
generalisations improved recall with the loss of
precision, and they slightly degraded the F-score
in total. The generalisations were applied to the
test set in the submission since this result was ex-
pected as explained in Section 2.3 and the slightly
high recall is favourable for the practical applica-
tions like semantic search engines (Miwa et al.,
2013a). Although the improvement by the stack-
ing method (+Exp.+Stack. compared to +Exp.) is
not statistically significant (p=0.14) using the ap-
proximate randomisation method (Noreen, 1989;
Kim et al., 2011), this slight improvement indi-
cates that the corpus in the PC task shares some
information with the other corpora.

Tables 2 and 3 show the official scores of our
entries on the test data sets for the CG and PC
tasks5. EventMine ranked second in the CG task
and first in the PC task. The scores of the best sys-
tem among the other systems (TEES-2.1 (Björne
and Salakoski, 2013)) are shown for reference.

5We refer to the websites of the tasks for the details of the
event categories.
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Task System Rec. Prec. F-Score
CG EventMine 48.83 55.82 52.09

TEES-2.1 48.76 64.17 55.41
PC EventMine 52.23 53.48 52.84

TEES-2.1 47.15 55.78 51.10

Table 2: Official best and second best scores on
the CG and PC tasks. Higher scores are shown in
bold.

Task Category EventMine TEES-2.1
CG ANATOMY 71.31 77.20

PATHOL 59.78 67.51
MOLECUL 72.77 72.60
GENERAL 53.08 52.20
REGULAT 39.79 43.08
PLANNED 40.51 39.43
MOD 29.95 34.66

PC SIMPLE 65.60 63.92
NON-REG 65.72 63.37
REGULAT 40.10 39.39
MOD 28.05 28.73

Table 3: F-scores on the CG and PC tasks for event
categories. Higher scores are shown in bold.

EventMine achieved the highest recall for both
tasks, and this is favourable as mentioned above.
This high recall is reasonable since EventMine
solved the problems as multi-label classification
tasks, corrected the class imbalance problem as
explained in Section 2.1 and incorporated the type
generalisations for expanding possible event struc-
tures. The performance (in F-score) on both CG
and PC tasks is slightly lower than the perfor-
mance on the GENIA and ID tasks in the BioNLP-
ST 2011 (Miwa et al., 2012), and close to the per-
formance on the EPI task. This may be partly be-
cause the GENIA and ID tasks deal with a fewer
number of event types than the other tasks.

EventMine performed worse than the best sys-
tem in the CG task, but this result is promis-
ing considering that we did not incorporate any
other resources and tune the parameters (e.g.,C
in SVM). The detailed comparison with TEES-
2.1 shows that EventMine performed much worse
than TEES-2.1 in anatomical and pathological
event categories, which contained relatively new
event types. This indicates EventMine missed
some of the new structures in the new event types.

The range of the scores is similar to the

scores on the MLEE corpus (52.34–53.43% in F-
Score (Pyysalo et al., 2012a)) although we can-
not directly compare the results. The ranges of
the scores are around 60% to 70% for non-nested
events (e.g.,SIMPLE), 40% for nested events
(e.g.,REGULAT) and 30% for modifications (e.g.,
MOD). This large spread of the scores may be
caused by a multiplication of errors in predicting
their participants, since similar spread was seen
in the previous tasks (e.g., (Miwa et al., 2012)).
These results indicate that we may not be able
to improve the performance just by increasing the
training instances.

These results show that EventMine performed
well on the PC task that is a completely novel task
for EventMine, and the stacking would also work
effectively on the test set.

4 Conclusions

This paper explained how EventMine was ap-
plied to the CG and PC tasks in the BioNLP-
ST 2013. EventMine performed well on these
tasks and achieved the second best performance
in the CG task and the best performance in the
PC task. We show the usefulness of incorporat-
ing other existing corpora in the PC task. The
success of this application shows that the Event-
Mine implementation is flexible enough to treat
the new tasks. The performance ranges, however,
shows that we may need to incorporate other novel
techniques/linguistic information to produce the
higher performance.

As future work, we will investigate the cause
of the missed events. We also would like to ex-
tend and apply other functions in EventMine, such
as co-reference resolution, and seek a general ap-
proach that can improve the event extraction per-
formance on all the existing corpora, using the
training data along with external resources.
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