
Proceedings of the 11th International Conference on Finite State Methods and Natural Language Processing, pages 54–62,
St Andrews–Sctotland, July 15–17, 2013. c©2013 Association for Computational Linguistics

Modeling Graph Languages with Grammars Extracted via Tree
Decompositions

Bevan Keeley Jones∗,†

B.K.Jones@sms.ed.ac.uk
Sharon Goldwater∗

sgwater@inf.ed.ac.uk
Mark Johnson†

mark.johnson@mq.edu.au

∗ School of Informatics
University of Edinburgh

Edinburgh, UK

† Department of Computing
Macquarie University

Sydney, Australia

Abstract

Work on probabilistic models of natu-
ral language tends to focus on strings
and trees, but there is increasing in-
terest in more general graph-shaped
structures since they seem to be bet-
ter suited for representing natural lan-
guage semantics, ontologies, or other
varieties of knowledge structures. How-
ever, while there are relatively sim-
ple approaches to defining generative
models over strings and trees, it has
proven more challenging for more gen-
eral graphs. This paper describes a
natural generalization of the n-gram to
graphs, making use of Hyperedge Re-
placement Grammars to define genera-
tive models of graph languages.

1 Introduction
While most work in natural language process-
ing (NLP), and especially within statistical
NLP, has historically focused on strings and
trees, there is increasing interest in deeper
graph-based analyses which could facilitate
natural language understanding and genera-
tion applications. Graphs have a long tradi-
tion within knowledge representation (Sowa,
1976), natural language semantics (Titov et
al., 2009; Martin and White, 2011; Le and
Zuidema, 2012), and in models of deep syntax
(Oepen et al., 2004; de Marneffe and Manning,
2008). Graphs seem particularly appropriate
for representing semantic structures, since a
single concept could play multiple roles within
a sentence. For instance, in the semantic rep-
resentation at the bottom right of Figure 1
lake is an argument of both rich-in and own
in the sentence, “The lake is said to be rich
in fish but is privately owned.” However, work

on graphs has been hampered, due, in part,
to the absence of a general agreed upon for-
malism for processing and modeling such data
structures. Where string and tree modeling
benefits from the wildly popular Probabilistic
Context Free Grammar (PCFG) and related
formalisms such as Tree Substitution Gram-
mar, Regular Tree Grammar, Hidden Markov
Models, and n-grams, there is nothing of sim-
ilar popularity for graphs. We need a slightly
different formalism, and Hyperedge Replace-
ment Grammar (HRG) (Drewes et al., 1997),
a variety of context-free grammar for graphs,
suggests itself as a reasonable choice given its
close analogy with CFG. Of course, in order
to make use of the formalism we need actual
grammars, and this paper fills that gap by in-
troducing a procedure for automatically ex-
tracting grammars from a corpus of graphs.

Grammars are appealing for the intuitive
and systematic way they capture the compo-
sitionality of language. For instance, just as
a PCFG could be used to parse “the lake” as
a syntactic subject, so could a graph gram-
mar represent lake as a constituent in a parse
of the corresponding semantic graph. In fact,
picking a formalism that is so similar to the
PCFG makes it easy to adapt proven, famil-
iar techniques for training and inference such
as the inside-outside algorithm, and because
HRG is context-free, parses can be represented
by trees, facilitating the use of many more
tools from tree automata (Knight and Graehl,
2005). Furthermore, the operational paral-
lelism with PCFG makes it easy to integrate
graph-based systems with syntactic models in
synchronous grammars (Jones et al., 2012).

Probabilistic versions of deep syntactic
models such as Lexical Functional Grammar
and HPSG (Johnson et al., 1999; Riezler et
al., 2000) are one grammar-based approach to

54

modeling graphs represented in the form of
feature structures. However, these models are
tied to a particular linguistic paradigm, and
they are complex, requiring a great deal of ef-
fort to engineer and annotate the necessary
grammars and corpora. It is also not obvious
how to define generative probabilistic models
with such grammars, limiting their utility in
certain applications.

In contrast, this paper describes a method
of automatically extracting graph grammars
from a corpus of graphs, allowing us to eas-
ily estimate rule probabilities and define gen-
erative models. The class of grammars we
extract generalize the types of regular string
and tree grammars one might use to define
a bigram or similar Markov model for trees.
In fact, the procedure produces regular string
and tree grammars as special cases when the
input graphs themselves are strings or trees.

There is always overhead in learning a new
formalism, so we will endeavor to provide the
necessary background as simply as possible,
according to the following structure. Section
2 introduces Hyperedge Replacement Gram-
mars, which generate graphs, and their prob-
abilistic extension, weighted HRGs. Section 3
explains how each HRG derivation of a graph
induces a tree decomposition of that graph.
Given a tree decomposition of a graph, we use
that mapping “in reverse” to induce an HRG
that generates that graph (section 4). Sec-
tion 4 also introduces four different strategies
for finding tree decompositions of (and hence
inducing HRGs from) a set of graphs. Sec-
tion 5 applies these strategies to the LOGON
corpus (Oepen et al., 2004) and evaluates the
induced weighted HRGs in terms of held-out
perplexity. Section 6 concludes the paper and
discusses possible applications and extensions.

2 Graphs and Hyperedge
Replacement Grammars

Hyperedge Replacement Grammar (HRG) is a
generalization of CFG to graph languages (see
Drewes et al. (1997) for an overview). Where
a CFG builds up strings by replacing symbols
with new substrings, an HRG builds graphs by
replacing edges with subgraphs. As a context-
free formalism, HRG derivations can be de-
scribed by trees, similar to CFG parses. Thus,

in the case of probabilistic HRG, it is possible
to assign rule weights to define easily factoriz-
able probability distributions over graphs, just
as PCFGs do for strings.

We start by defining a hypergraph, a gener-
alization of a graph where edges may link any
finite number of vertices. Formally, a hyper-
graph is a tuple (V, E , α, ℓ, x). V and E are
finite sets of vertices and hyperedges, respec-
tively. The attachment function α : E → V∗

maps each hyperedge e ∈ E to a sequence of
pairwise distinct vertices from V, where we call
the length of α(e) the arity of e. The labeling
function ℓ : E → Σ maps each hyperedge to
a symbol in some ranked alphabet Σ, where
the rank of ℓ(e) is e’s arity. Vertices are un-
labeled, but they can be simulated by treat-
ing unary hyperedges (i.e., hyperedges with a
single vertex) as vertex labels. Finally, each
graph has a set of zero or more external ver-
tices, arranged in a sequence x ∈ V∗ (pairwise
distinct), which plays an important role in the
rewriting mechanism of HRG. Just as hyper-
edges have an arity, so too do hypergraphs,
defined as the length of x.

We are primarily interested in languages
of simple directed graphs, hypergraphs where
each edge is either binary or, for vertex la-
bels, unary. In this case, we can indicate vi-
sually the ordering on a binary edge with ver-
tex sequence v0v1 by an arrow pointing from
vertex v0 to v1. We may make use of hyper-
edges of arbitrary arity, though, for intermedi-
ate rewriting steps during derivations. The se-
mantic dependency graph at the bottom right
of Figure 1, taken from the Redwoods corpus
(Oepen et al., 2004), is an example of a simple
graph. It has both unary edges for expressing
predicates like ‘private’ and ‘own’ and binary
edges for specifying their relations. In princi-
ple, any vertex can have more than one unary
edge, a fact we make use of in HRG rule defi-
nitions, such as in the graph on the right-hand
side of rule r4 in Figure 1 where vertex 2 has
two unary edges labeled ‘rich-in’ and Nrich-in.

A weighted HRG is an edge rewriting sys-
tem for generating hypergraphs, also defined
as a tuple (Σ,N , S,R). Σ is a ranked alpha-
bet of edge labels, N ⊂ Σ a set of nonterminal
symbols, S ∈ N a special start symbol, and
R is a finite set of weighted rules. Each rule

55

in R is of the form [A → h].w, where h is a
hypergraph with edge labels from Σ, A ∈ N
has rank equal to the arity of h, and weight w
is a real number. As with PCFGs, a weighted
HRG is probabilistic if the weights of all rules
with the same ranked symbol A on the left-
hand side sum to one. In the case of proba-
bilistic HRG, the probability of a derivation is
the product of the weights of the rules in the
derivation, just as for PCFG. Figure 1 shows
an example of an HRG and a sample deriva-
tion. The external vertices of the right-hand
side graphs have been shaded, and their se-
quence should be read top to bottom (e.g., 0
to 5 in rule r1). Vertices have been identified
by numbers, but these identifiers are included
only to make it easier to refer to them in our
discussion; strictly speaking, vertices are unla-
beled, and these numbers are irrelevant to the
operation of the grammar. Nonterminal edges
are dashed to make them easier to identify.

Hyperedge replacement, the basic rewriting
mechanism of HRG, is an operation where a
hypergraph is substituted for an edge. If g
is a hypergraph containing edge e, and h is
another hypergraph with the same arity as e,
edge e can be replaced with h by first removing
e from g and then “fusing” h and g together
at the external vertices of h and the vertices of
α(e). So, if α(e) = v0v1...vk and h has external
vertices u0u1...uk, we would fuse each ui to the
corresponding vi.

Much like with CFG, where each step of a
derivation replaces a symbol by a substring,
each step of an HRG derivation replaces an
edge with a certain nonterminal symbol label
by the right-hand side graph of some rule with
the same symbol on its left-hand side. For
instance, in the application of rule r3 in the
fourth step of Figure 1, the edge 1 Nsay→ 5 is
replaced by the graph 1 arg2→ 2 Narg2→ 5 by re-
moving the red Nsay edge and then attaching
the new subgraph. Rule r3 has an external
vertex sequence of 1 to 5, and these are fused
to the incident vertices of the nonterminal edge
1 Nsay→ 5. The edge to be replaced in each step
has been highlighted in red to ease reading.

3 Tree Decompositions
We now introduce one additional piece of
theoretical machinery, the tree decomposition

(Bodlaender, 1993). Tree decompositions play
an important role in graph theory, feature
prominently in the junction tree algorithm
from machine learning (Pearl, 1988), and have
proven valuable for efficient parsing (Gildea,
2011; Chiang et al., 2013). Importantly,
Lautemann (1988) proved that every HRG
parse identifies a particular tree decomposi-
tion, and by restricting ourselves to a certain
type of tree we will draw an even tighter re-
lationship, allowing us to identify parses given
tree decompositions.

A tree decomposition of a graph g is a tree
whose nodes identify subsets of the vertices of
g which satisfy the following three properties:1

• Vertex Cover: Every vertex of g is con-
tained by at least one tree node.
• Edge Cover: For every edge e of the

graph, there is a tree node η such that
each vertex of α(e) is in η.
• Running Intersection: Given any two

tree nodes η0 and η1, both containing ver-
tex v, all tree nodes on the unique path
from η0 to η1 also contain v.

Figure 2 presents four different tree decompo-
sitions of the graph shown at the bottom right
of Figure 1. Consider (d). Vertex cover is sat-
isfied by the fact that every vertex of the graph
appears in at least one tree node. Graph ver-
tex 0, for example, is covered by two nodes
{0, 1, 5} and {0, 3, 5}. Similarly, every edge is
covered by at least one of the nodes. Node
{0, 1, 5} covers one binary edge, 0 arg1→ 1, and
three unary edges:

but
0 ,

say
1 , and

lake
5 .

We focus on a particular class called edge-
mapped tree decompositions, defined by pairs
(t, µ) where t is a tree decomposition of some
graph g and µ is a bijection from the nodes of t
to the edges of g, where a node also covers the
edge it maps to. Every graph has at least one
edge-mapped tree decomposition; Figure 2(a)-
(c) illustrates three such edge-mapped decom-
positions for a particular graph, where the
mapping is shown by the extra labels next to
the tree nodes. The edge mapping simplifies
the rule extraction procedure described in Sec-
tion 4 since traversing the tree and following

1To avoid confusion, we adopt a terminology where
node is always used in respect to tree decompositions
and vertex and edge to graphs.

56

S

r0→

0

but

5

N
b

u
t

N
b

u
t

r1→
0

but

1

5

ar
g1

N
arg1

N
b

u
t

r2→
0

but

1say

5

ar
g1

N
say

N
b

u
t

r3→ 0

but

1say

2

5

ar
g1

arg2
N

arg2

N
b

u
t

r4→ 0

but

1say

2rich-in
Nrich-in

5

ar
g1

arg2
N

rich-in

N
b

u
t

r5→

0

but

1say

2rich-in

6

Narg2
5

ar
g1

ar
g2

ar
g2

N
rich-in

N
b

u
t

r6←
0

but

1say

2rich-in

6

fish
5

ar
g1

ar
g2

ar
g2

N
rich-in

N
b

u
t

r7←
0

but

1say

2rich-in

6

fish
5

Narg1

ar
g1

ar
g2

ar
g2

arg1

N
b

u
t

r8←
0

but

1say

2rich-in

6

fish
5

lake

ar
g1

ar
g2

ar
g2

arg1

N
b

u
t

r9←
0

but

1say

2rich-in

3

6

fish
5

lake

ar
g1

ar
g2

ar
g2

arg1

arg2

N
ar

g2

r10→

0

but

1say

2rich-in

3 private

6

fish
5

lake

ar
g1

ar
g2

ar
g2 arg1

arg2

N
pr

iv
at

e

r11→
0

but

1say

2rich-in

3 private

4

6

fish
5

lake

ar
g1

ar
g2

ar
g2 arg1

arg2

ar
g1

N
ar

g1

r12→
0

but

1say

2rich-in

3 private

4 own

6

fish
5

lake

ar
g1

ar
g2

ar
g2 arg1

arg2

ar
g1

N
ow

n

r13→
0

but

1say

2rich-in

3 private

4 own

6

fish
5

lake

ar
g1

ar
g2

ar
g2 arg1

arg2

ar
g1

ar
g2

(r0)
S →

0

but

5

N
b

u
t

N
b

u
t

(r1)
Nbut →

0

1

5

ar
g1

N
ar

g1

(r2)
Narg1 →

1

say

5

N
sa

y

(r3)
Nsay →

1

2

5

ar
g2

N
ar

g2

(r4)
Narg2 →

2

rich-in

Nrich-in

5
N

rich
-in

(r5)
Nrich-in →

2

6

Narg2

ar
g2

(r6)
Narg2 → 6

fish

(r7)
Nrich-in →

2

5

Narg1

ar
g1

(r8)
Narg1 → 5

lake

(r9)
Nbut →

0

3

5

ar
g2

N
ar

g2

(r10)
Narg2 →

3

private

5

N
p

ri
va

te

(r11)
Nprivate →

3

4

5

ar
g1

N
ar

g1

(r12)
Narg1 →

4

own

5

N
ow

n

(r13)
Nown →

4

5

ar
g2

Figure 1: An HRG and a derivation of the semantic dependency graph for “the lake is said to
be rich in fish but is privately owned.” External vertices are shaded and ordered top to bottom,
nonterminal edges are dashed, and the one being replaced is highlighted in red.

57

(a) {0} but
0

{0, 1} 0arg1→ 1

{1, 0} say
1

{1, 2, 0} 1arg2→ 2

{2, 0} rich-in
2

{2, 6, 0} 2arg2→ 6

{6, 0, 2} fish
6

{2, 5, 0} 2arg1→ 5

{5, 0} lake
5

{4, 5, 0} 4arg2→ 5

{4, 0} own
4

{3, 4, 0} 3arg1→ 4

{3, 0} private
3

{0, 3} 0arg2→ 3

(b) {0} but
0

{0, 1} 0arg1→ 1

{1, 0} say
1

{1, 2, 0} 1arg2→ 2

{2, 0} rich-in
2

{2, 6}2arg2→ 6

{6}fish
6

{2, 5, 0} 2arg1→ 5

{5, 0} lake
5

{4, 5, 0} 4arg2→ 5

{4, 0} own
4

{3, 4, 0} 3arg1→ 4

{3, 0} private
3

{0, 3} 0arg2→ 3

(c)
{0, 5}

but
0

{0, 1, 5}0arg1→ 1

{1, 5}say
1

{1, 2, 5}1arg2→ 2

{2, 5}rich-in
2

{2, 6}2arg2→ 6

{6}fish
6

{2, 5} 2arg1→ 5

{5} lake
5

{4, 5} 4arg2→ 5

{4, 5} own
4

{3, 4, 5} 3arg1→ 4

{3, 5} private
3

{0, 3, 5} 0arg2→ 3

(d) {0, 1, 5}

{1, 2, 5}

{2, 6}

{0, 3, 5}

{3, 4, 5}

Figure 2: Edge-mapped (a-c) and non-edge-
mapped (d) tree decompositions for the graph
at the bottom right of Figure 1.

this mapping µ guarantees that every graph
edge is visited exactly once.

Running intersection will also prove impor-
tant for rule extraction, since it tracks the tree
violations of the graph by passing down the
end points of edges that link edges in differ-
ent branches of the decomposition. This same
information must be passed down the respec-
tive paths of the HRG derivation tree via the
external vertices of rule-right hand sides. Fig-
ure 2 uses bold face and vertex order to high-
light the vertices that must be added to each
node beyond those needed to cover its corre-
sponding edge. In the decomposition shown
in (b), vertex 0 must be passed from the node
mapping to

but
0 down to the node mapping to

0 arg2→ 3 because the two edges share that ver-
tex. Any HRG derivation will need to pass
down vertices in a similar manner to specify
which edges get attached to which vertices.

As suggested by the four trees of Figure 2,
there are always many possible decompositions

Algorithm 1: Extract HRG rule A → h
from tree decomposition node η.

function Extract(η)
A← label(parent(η), |parent(η) ∩ η|)
h.x← order(η, parent(η) ∩ η)
add terminal edge µ(η) to h
for all ηi ∈ children(η) do

add nonterminal edge ui to h
α(ui)← order(ηi, η ∩ ηi)
ℓ(ui)← label(η, |η ∩ ηi|)

return [A→ h]

for any given graph. In the next section we de-
scribe three methods of producing tree decom-
positions, each leading to distinct grammars
with different language modeling properties.

4 HRG Extraction

Rule extraction proceeds by first selecting a
particular tree decomposition for a graph and
then walking this tree to extract grammar
rules in much the same way as one extracts n-
grams or Regular Tree Grammars (RTG) from
a corpus of strings or trees. The procedure
(Algorithm 1) extracts a single rule for each
node of the decomposition to generate the as-
sociated terminal edge plus a set of nontermi-
nals which can be subsequently expanded to

58

generate the subgraphs corresponding to each
subtree of the decomposition node. In par-
ticular, given the tree decomposition in Fig-
ure 2(c), the procedure produces the grammar
in Figure 1. Rule extraction works for any con-
nected simple graph and can be easily adapted
for arbitrary hypergraphs.

Start by assigning the left-hand side nonter-
minal symbol according to

label(parent(η), r),

which returns a symbol determined by η’s par-
ent with rank r, the number of vertices in com-
mon between η and its parent. The external
vertices of h are assigned by sorting the ver-
tices that η shares with its parent. Any order-
ing policy will work so long as it produces the
same ordering with respect to a given decom-
position node. What is important is that the
order of the external vertices of a rule match
that of the vertices of the nonterminal edge it
expands.2 The algorithm then constructs the
rest of h by including terminal edge µ(η), and
adding a nonterminal edge for each child ηi of
η, with vertices assigned according to an or-
dering of the vertices that η shares with ηi,
again labeled according to label.

The function label just returns a nontermi-
nal symbol of a given rank, chosen to match
the number of external vertices of the right-
hand side. There are many possible choices of
label; it can even be a function that always re-
turns the same symbol for a given rank. For
purposes of language modeling, it is useful to
condition rule probabilities on the label of the
edge associated with the parent node in the
decomposition (analogous to conditioning on
the preceding word in a bigram setting). It is
also useful to distinguish the direction of that
preceding edge. For instance, we would expect
‘rich-in’ to have a different probability based
on whether it is being generated as the argu-
ment of predicate ‘say’ vs. as a descendant of
its own argument ‘lake’. Thus, each nonter-
minal encodes (1) the label of the preceding
edge and (2) its direction with respect to the
current edge as defined according to the head-
to-tail relation, where we say edge ej is head-
to-tail with preceding edge ei iff the last vertex

2We experimented with various orderings, from pre-
order traversals of the tree decomposition to simply
sorting by vertex identity, all with similar results.

of α(ei) is the first of α(ej). For instance,
lake
5

is in head-to-tail relation with 2 arg1→ 5, while
2 arg1→ 5 is not head-to-tail with 4 arg2→ 5.

The grammar in Figure 1 is extracted ac-
cording to the tree decomposition in Fig-
ure 2(c). Consider how rule r4 is constructed
while visiting the node η = {2, 5} which maps
to unary edge

rich-in
2 . The left-hand side symbol

Narg2 comes from the label of the edge 1 arg2→ 2
associated with η’s parent node {1, 2, 5} and
has a rank of |{2, 5} ∩ {1, 2, 5}| = 2. The rule
right-hand side is constructed so that it con-
tains

rich-in
2 and two nonterminal edges. The

first nonterminal edge comes from the intersec-
tion of η with left child {2, 6}, yielding unary
sequence 2 and edge

Nrich-in
2 . The second non-

terminal edge is constructed similarly by or-
dering the vertices in the intersection of η with
its right child {2, 5} to get the binary sequence
2 to 5, producing 2 Nrich-in→ 5. Finally, the exter-
nal vertex sequence comes from ordering the
members of {2, 5} ∩ {1, 2, 5}.

The particular edge-mapped tree decompo-
sition plays a key role in the form of the ex-
tracted rules. In particular, each branching
of the tree specifies the number of nontermi-
nals in the corresponding rule. For example,
decompositions such as Figure 2(a) result in
linear grammars, where every rule right-hand
side contains at most one nonterminal.

We experiment with three different strate-
gies for producing edge-mapped tree decom-
positions. In each case, we start by building
a node-to-edge map by introducing a new tree
node to cover each edge of the graph, simul-
taneously ensuring the vertex and edge cover
properties. The strategies differ in how the
nodes are arranged into a tree. One simple
approach (linear) is to construct a linearized
sequence of edges by performing a depth first
search of the graph and adding edges when
we visit incident vertices. This produces non-
branching trees such as Figure 2(a). Alter-
natively, we can construct the decomposition
according to the actual depth first search tree
(dfs), producing decompositions like (b). Fi-
nally, we construct what we call a topological
sort tree (top), where we add children to each
node so as to maximize the number of head-

59

to-tail transitions, producing trees such as (c).
For rooted DAGs, this is easy; just construct a
directed breadth first search tree of the graph
starting from the root vertex. It is more
involved for other graphs but still straight-
forward, accomplished by finding a minimum
spanning tree of a newly constructed weighted
directed graph representing head-to-tail tran-
sitions as arcs with weight 0 and all other con-
tiguous transitions as arcs of weight 1. Once
the edge-mapped nodes are arranged in a tree
all that is left is to add vertices to each to sat-
isfy running intersection.

One attractive feature of top is that, for cer-
tain types of input graphs, it produces gram-
mars of well-known classes. In particular, if
the graph is a string (a directed path), the
grammar will be a right-linear CFG, i.e., a
regular string grammar (a bigram grammar,
in fact), and if it is a rooted tree, the unique
topological sort tree leads to a grammar that
closely resembles an RTG (where trees are
edge-labeled and siblings are un-ordered). The
other decomposition strategies do not con-
strain the tree as much, and their grammars
are not necessarily regular.

Another nice feature of top is that subtrees
of a parse tend to correspond to intuitive mod-
ules of the graph. For instance, the grammar
first generates a predicate like ‘rich-in’ and
then it proceeds to generate the subgraphs cor-
responding to its arguments ‘fish’ and ‘lake’,
much as one would expect a syntactic depen-
dency grammar to generate a head followed by
its dependents. The linear grammar derived
from Figure 2(a), on the other hand, would
generate ‘lake’ as a descendant of ‘fish’.

We also explore an augmentation of top
called the rooted topological sort tree (r-top).
Any graph can be converted to a rooted graph
by simply adding an extra vertex and mak-
ing it the parent of every vertex of in-degree
zero (or if there are none, picking a member
of each connected component at random). We
exploit this fact to produce a version of top
that generates all graphs as though they were
rooted by starting off each derivation with a
rule that generates every vertex with in-degree
zero. We expect rooted graphs to produce sim-
pler grammars in general because they reduce
the number of edges that must be generated

in non-topological order, requiring fewer rules
that differ primarily in whether they generate
an edge in head-to-tail order or not. In par-
ticular, if a graph is acyclic, all edges will be
generated in head-to-tail relation and the cor-
responding grammar will contain fewer non-
terminals.

5 Evaluation

We experiment using 5564 elementary seman-
tic dependency graphs taken from the LOGON
portion of the Redwoods corpus (Oepen et al.,
2004). From Table 1, we can see that, while
there are a few tree-shaped graphs, the ma-
jority are more general DAGs. Nevertheless,
edge density is low; the average graph contains
about 15.4 binary edges and 14.9 vertices. We
set aside every 10th graph for the test set, and
estimate the models from the remaining 5,008,
replacing terminals occurring ≤ 1 times in the
training set with special symbol UNK.

Model parameters are calculated from the
frequency of extracted rules using a mean-
field Variational Bayesian approximation of a
symmetric Dirichlet prior with parameter β
(Bishop, 2006). This amounts to counting the
number of times each rule r with left-hand side
symbol A is extracted and then computing its
weight θr according to

θr = exp
(

Ψ(nr + β)−Ψ(
∑

r′:r′=A→h

nr′ + β)
)

,

where nr is the frequency of r and Ψ is the
standard digamma function. This approxima-
tion of a Dirichlet prior offers a simple yet prin-
cipled way of simultaneously smoothing rule
weights and incorporating a soft assumption
of sparsity (i.e., only a few rules should re-
ceive very high probability). Specifically, we
somewhat arbitrarily selected a value of 0.2 for
β, which should result in a moderately sparse
distribution.

We evaluate each model by computing per-
plexity: 2−

∑N

i=1
1
N

ln2 p(gi), where N is the
number of graphs in the test set, gi is the ith

graph, and p(gi) is its probability according
to the model, computed as the product of the
weights of the rules in the extracted derivation.
Better models should assign higher probability
to gi, thereby achieving lower perplexity.

60

(a) Graphs
strings 0
r-trees 682
r-dags 51
dags 4831
total 5564

(b) Edges
unary binary

types 5626 10
tokens 83061 85737

Table 1: LOGON corpus. (a) Graph types (r
stands for rooted). (b) Edge types and tokens.

model perplexity size
linear 505,061 59,980
dfs 341,336 14,443
top 22,484 20,985
r-top 40,504 19,052

Table 2: Model perplexity and grammar size.

Table 2 lists the perplexities of the language
models defined according to our four different
tree decomposition strategies. Linear is rela-
tively poor since it makes little distinction be-
tween local and more distant relations between
edges. For instance, the tree in Figure 2(a) re-
sults in a grammar where 2 arg2→ 5 is generated
as the child of distantly related

fish
6 but as a

remote descendant of neighboring edge
rich-in

2 .
Dfs is better, but suffers from similar prob-
lems. Both top and r-top perform markedly
better, but r-top less so because the initial
rule required for generating all vertices of in-
degree zero is often very improbable. There
are 1562 different such rules required for de-
scribing the training data, many of which ap-
pear only once. We believe there are ways of
factorizing these rules to mitigate this sparsity
effect, but this is left to future work.

Grammar sizes are also somewhat telling.
The linear grammar is quite large, due to
the extra rules required for handling the long-
distance relations. The other grammars are of
a similar, much smaller size, but dfs is small-
est since it tends to produce trees of much
smaller branching factor, allowing for greater
rule reuse. As predicted, the r-top grammar is
somewhat smaller than the vanilla top gram-
mar, but, as previously noted, the potential
reduction in sparsity is counteracted by the
introduction of the extra initial rules.

6 Conclusion & Discussion
Graph grammars are an appealing formalism
for modeling the kinds of structures required

for representing natural language semantics,
but there is little work in actually defining
grammars for doing so. We have introduced
a simple framework for automatically extract-
ing HRGs, based upon first defining a tree de-
composition and then walking this tree to ex-
tract rules in a manner very similar to how
one extracts RTG rules from a corpus of trees.
By varying the kinds of tree decomposition
used, the procedure produces different types of
grammars. While restricting consideration to
a broad class of tree decompositions where vis-
iting tree nodes corresponds to visiting edges
of the graph, we explored four special cases,
demonstrating that one case, where parent-to-
child node relations in the tree maximize head-
to-tail transitions between graph edges, per-
forms best in terms of perplexity on a corpus
of semantic graphs. This topological ordering
heuristic seems reasonable for the corpus we
experimented on since such parent-child tran-
sitions are equivalent to predicate-argument
transitions in the semantic representations.

Interesting questions remain as to which
particular combinations of graph and decom-
position types lead to useful classes of graph
grammars. In our case we found that our topo-
logical sort tree decomposition leads to regular
grammars when the graphs describe strings or
particular kinds of trees, making them useful
for defining simple Markov models and also
making it possible to perform other opera-
tions like language intersection (Gecseg and
Steinby, 1984). We have presented only an
initial study and there are potentially many
interesting combinations.

Acknowledgments

We thank Mark-Jan Nederhof for his com-
ments on an early draft and the anonymous
reviewers for their helpful feedback. This re-
search was supported in part by a prize stu-
dentship from the Scottish Informatics and
Computer Science Alliance, the Australian
Research Council’s Discovery Projects fund-
ing scheme (project numbers DP110102506
and DP110102593) and the US Defense Ad-
vanced Research Projects Agency under con-
tract FA8650-11-1-7151.

61

References
Christopher M. Bishop. 2006. Pattern Recognition and

Machine Learning. Springer.
Hans L. Bodlaender. 1993. A tourist guide through

treewidth. Acta Cybernetica, 11(1-2):1–21.
David Chiang, Jacob Andreas, Daniel Bauer,

Karl Moritz Hermann, Bevan Jones, and Kevin
Knight. 2013. Parsing graphs with hyperedge re-
placement grammars. In Proceedings of the 51st
Meeting of the ACL.

Marie-Catherine de Marneffe and Christopher D. Man-
ning. 2008. The stanford typed dependencies repre-
sentation. In Proceedings of COLING Workshop on
Cross-framework and Cross-domain Parser Evalua-
tion.

Frank Drewes, Annegret Habel, and Hans-Jorg Kre-
owski. 1997. Hyperedge replacement graph gram-
mars. Handbook of Graph Grammars and Comput-
ing by Graph Transformation, pages 95–1626.

Ferenc Gecseg and Magnus Steinby. 1984. Tree Au-
tomata. Akademiai Kiado, Budapest.

Daniel Gildea. 2011. Grammar factorization by
tree decomposition. Computational Linguistics,
37(1):231–248.

Mark Johnson, Stuart Geman, Stephen Canon, Zhiyi
Chi, and Stefan Riezler. 1999. Estimators for
stochastic ‘unification-based’ grammars. In Proceed-
ings of the 37th Meeting of the ACL, pages 535–541.

Bevan Jones, Jacob Andreas, Daniel Bauer, Karl-
Moritz Hermann, and Kevin Knight. 2012.
Semantics-based machine translation with hyper-
edge replacement grammars. In Proceedings of
COLING.

Kevin Knight and Jonathon Graehl. 2005. An
overview of probabilistic tree transducers for natural
language processing. In Proceedings of the 6th Inter-
national Conference on Intelligent Text Processing
and Computational Linguistics.

Clemens Lautemann. 1988. Decomposition trees:
Structured graph representation and efficient algo-
rithms. In M. Dauchet and M. Nivat, editors, CAAP
’88, volume 299 of Lecture Notes in Computer Sci-
ence, pages 28–39. Springer Berlin Heidelberg.

Phong Le and Willem Zuidema. 2012. Learning com-
positional semantics for open domain semantic pars-
ing. In Proceedings of COLING.

Scott Martin and Michael White. 2011. Creating
disjunctive logical forms from aligned sentences for
grammar-based paraphrase generation. In Proceed-
ings of the Workshop on Monolingual Text-To-Text
Generation (MTTG), pages 74–83.

Stephan Oepen, Dan Flickinger, Kristina Toutanova,
and Christopher D. Manning. 2004. Lingo red-
woods. Research on Language and Computation,
2(4):575–596.

Judea Pearl. 1988. Probabilistic Reasoning in Intelli-
gent Systems: Networks of Plausible Inference. Mor-
gan Kaufmann, San Francisco, CA, 2 edition.

Stefan Riezler, Detlef Prescher, Jonas Kuhn, and Mark
Johnson. 2000. Lexicalized stochastic modeling
of constraint-based grammars using log-linear mea-
sures and em. In Proceedings of the 38th Meeting of
the ACL.

John F. Sowa. 1976. Conceptual graphs for a data
base interface. IBM Journal of Research and Devel-
opment, 20(4):336–357.

Ivan Titov, James Henderson, Paola Merlo, and
Gabriele Musillo. 2009. Online graph planarisation
for synchronous parsing of semantic and syntactic
dependencies. In Proceedings of IJCAI, pages 1562–
1567.

62

