
Proceedings of the 11th International Conference on Finite State Methods and Natural Language Processing, pages 18–24,
St Andrews–Sctotland, July 15–17, 2013. c©2013 Association for Computational Linguistics

ZeuScansion: a tool for scansion of English poetry

Manex Agirrezabal, Bertol Arrieta, Aitzol Astigarraga
University of the Basque Country (UPV/EHU)

Dept. of Computer Science
20018 Donostia

manex.aguirrezabal@ehu.es
bertol@ehu.es

aitzol.astigarraga@ehu.es

Mans Hulden
University of Helsinki

Department of modern languages
Helsinki, Finland

mhulden@email.arizona.edu

Abstract

We present a finite state technology based sys-
tem capable of performing metrical scansion
of verse written in English. Scansion is the
traditional task of analyzing the lines of a
poem, marking the stressed and non-stressed
elements, and dividing the line into metrical
feet. The system’s workflow is composed of
several subtasks designed around finite state
machines that analyze verse by performing
tokenization, part of speech tagging, stress
placement, and unknown word stress pattern
guessing. The scanner also classifies its input
according to the predominant type of metrical
foot found. We also present a brief evaluation
of the system using a gold standard corpus of
human-scanned verse, on which a per-syllable
accuracy of 86.78% is reached. The program
uses open-source components and is released
under the GNU GPL license.

1 Introduction

Scansion is a well-established form of poetry anal-
ysis which involves marking the prosodic meter of
lines of verse and possibly also dividing the lines
into feet. The specific technique and scansion nota-
tion may differ from language to language because
of phonological differences. Scansion is tradition-
ally done manually by students and scholars of po-
etry. In the following, we present a finite-state based
software tool—ZeuScansion— for performing this
task with English poetry, and provide a brief evalua-
tion of its performance on a gold standard corpus of
poetry in various meters.

1.1 Scansion

Conventionally, scanning a line of poetry should
yield a representation where every syllable is
marked with a level of stress—typically two or more
levels are used—and groups of syllables are divided
into units of feet. Consider, for example, the follow-
ing line from John Keats’ poem To autumn.

To swell the gourd, and plump the hazel shells

Here, a natural analysis is as follows:

- ’ - ’ - ’ - ’ - ’
To swell |the gourd |and plump |the haz|el shells

We use the symbol ’ to denote marked (ictic) syl-
lables, and - to denote unmarked ones (non-ictic).
That is, we have analyzed the line in question to fol-
low a stress pattern

DE-DUM DE-DUM DE-DUM DE-DUM DE-DUM

and also to consist of five feet of two syllables each
in the order unstressed-stressed. Indeed, this is the
most common meter in English poetry: iambic pen-
tameter.

The above example is rather clear-cut. How a par-
ticular line of verse should be scanned, however, is
often a matter of contention. Consider a line from
the poem Le Monocle de Mon Oncle by Wallace
Stevens:

I wish that I might be a thinking stone

18

Here, matters are much more murky. Regarding
the ambiguity in this line, the poet Alfred Corn notes
that

. . . there is in fact room for disagree-
ment about the scansion of this line. But
Stevens is among the most regular of the
metrists, and he probably heard it as five
iambic feet.1 Still, an alternative scansion
is: one iamb, followed by a pyrrhic foot,2

followed by two strong stresses, followed
by two iambs.

In line with the above commentary, the following
represents several alternative analyses of the line in
question:

Examp.: I wish that I might be a thinking stone

1st: - ’ - ’ - ’ - ’ - ’

2nd: - ’ - - ’ ’ - ’ - ’

3rd: - ’ - ’ ’ ’ - ’ - ’

4th: - ’ - - - ’ - ’ - ’

The first variant is the meter (probably) intended
by the author. The second line is Corn’s alternative
scansion. The third and fourth lines show the out-
put of the software tools Scandroid and ZeuScan-
sion, respectively.

In short, evaluating the output of automatic scan-
sion is somewhat complicated by the possibility of
various good interpretations. As we shall see below,
when evaluating the scansion task, we use a gold
standard that addresses this and accepts several pos-
sible outputs as valid.

2 The output of ZeuScansion

As there exist many different established systems
of scansion, especially as regards minor details, we
have chosen a rather conservative approach, which
also lends itself to a fairly mechanical, linguistic rule
based implementation. In the system, we distinguish
three levels of stress, and mark each line with a stress
pattern, as well as make an attempt to analyze the

1Iambic foot: A weak-stressed syllable followed by a
strong-stressed syllable.

2Pyrrhic foot: Two syllables with weak stress.

Disyllabic feet

- - pyrrhus
- ’ iamb
’ - trochee
’ ’ spondee

Trisyllabic feet

- - - tribrach
’ - - dactyl
- ’ - amphibrach
- - ’ anapest
- ’ ’ bacchius
’ ’ - antibacchius
’ - ’ cretic
’ ’ ’ molossus

Table 1: Metrical feet used in English poetry

predominant format used in a poem. The follow-
ing illustrates the analysis produced by our tool of a
stanza from Lewis Carroll’s poem Jabberwocky:

1 He took his vorpal sword in hand:
2 Long time the manxome foe he sought-
3 So rested he by the Tumtum tree,
4 And stood awhile in thought.

1 - ’ - ‘- ’ - ’
2 ’ ’ - ‘’ ’ - ’
3 ’ ‘- - - - ‘- ’
4 - ’ -’ - ’

In addition to this, the system also analyzes the
different types of feet that make up the line (dis-
cussed in more detail below). ZeuScansion sup-
ports most of the common types of foot found in En-
glish poetry, including iambs, trochees, dactyls, and
anapests. Table 1 shows a more complete listing of
the type of feet supported.

2.1 Metrical patterns
Once we have identified the feet used in a line, we
can analyze for each line the most likely meter used.
This includes common meters such as:

• Iambic pentameter: Lines composed of 5
iambs, used by Shakespeare in his Sonnets.

• Dactylic hexameter:3 Lines composed of 6
3Also known as heroic hexameter

19

dactyls, used by Homer in the Iliad.

• Iambic tetrameter: Lines composed of 4 iambs,
used by Robert Frost in Stopping by Woods on
a Snowy Evening.

For example, if we provide Shakespeare’s Sonnets
as input, ZeuScansion classifies the work as iambic
pentameter in its global analysis (line-by-line output
omitted here):

Syllable stress _’_’_’_’_’
Meter: Iambic pentameter

3 Related work

There exist a number of projects that attempt to au-
tomate the scansion of English verse. In this section,
we present some of them.

Scandroid (2005) is a program that scans En-
glish verse in iambic and anapestic meter, written by
Charles O. Hartman (Hartman, 1996). The source
code is available.4 The program can analyze poems
and check if their stress pattern is iambic or anapes-
tic. But, if the input poem’s meter differs from
those two, the system forces each line into iambic
or anapestic feet, i.e. it is specifically designed to
only scan such poems.

AnalysePoems is another tool for automatic scan-
sion and identification of metrical patterns written
by Marc Plamondon (Plamondon, 2006). In contrast
to Scandroid, AnalysePoems only identifies patterns;
it does not impose them. The program also checks
rhymes found in the input poem. It is reportedly
developed in Visual Basic and the .NET framwork;
however, neither the program nor the code appear to
be available.

Calliope is another similar tool, built on top of
Scandroid by Garrett McAleese (McAleese, 2007).
It is an attempt to use linguistic theories of stress
assignment in scansion. The program seems to be
unavailable.

Of the current efforts, (Greene et al., 2010) ap-
pears to be the only one that uses statistical meth-
ods in the analysis of poetry. For the learning pro-
cess, they used sonnets by Shakespeare, as well as
a number of others works downloaded from the In-
ternet.5 Weighted finite-state transducers were used

4http://oak.conncoll.edu/cohar/Programs.htm
5http://www.sonnets.org

for stress assignment. As with the other documented
projects, we have not found an implementation to re-
view.

4 Method

Our tool is largely built around a number of rules
regarding scansion developed by Peter L. Groves
(Groves, 1998). It consists of two main components:

(a) An implementation of Groves’ rules of
scansion—mainly a collection of POS-based
stress-assignment rules.

(b) A pronunciation lexicon together with an out-
of-vocabulary word guesser.

(a) Groves’ rules
Groves’ rules assign stress as follows:

1. Primary step: Mark the stress of the primarily
stressed syllable in content words.6

2. Secondary step: Mark the stress of (1) the sec-
ondarily stressed syllables of polysyllabic con-
tent words and (2) the most strongly stressed
syllable in polysyllabic function words.7

In section 5 we present a more elaborate example
to illustrate how Groves’ rules are implemented.

(b) Pronunciation lexicon
To calculate the basic stress pattern of words nec-
essary for step 1, we primarily use two pronuncia-
tion dictionaries: The CMU Pronouncing Dictionary
(Weide, 1998) and NETtalk (Sejnowski and Rosen-
berg, 1987). Each employs a slightly different nota-
tion, but they are similar in content: they both mark
three levels of stress, and contain pronunciations and
stress assignments:
NETTALK format:
abdication @bdIkeS-xn 2<>0>1>0<<0

CMU format:
INSPIRATION IH2 N S P ER0 EY1 SH AH0 N

The system uses primarily the smaller NETtalk
dictionary (20,000 words) and falls back to use
CMU (125,000 words) in case a word is not found

6Content words are nouns, verbs, adjectives, and adverbs.
7Function words are auxiliaries, conjunctions, pronouns,

and prepositions.

20

English poetry
text

Tokenizer

POS-tagger

1st step

2nd step

RHYTHMI-METRICAL SCANSION
GROVES' RULES

Metrical information

Are the words in
the dictionary?

Y

Closest word
finder

N
Cleanup

Figure 1: Structure of ZeuScansion

in NETtalk. The merged lexicon, where NETtalk
pronunciations are given priority, contains some
133,000 words.

5 ZeuScansion: Technical details

The structure of the system is divided into the sub-
tasks shown in figure 1. We begin with preprocess-
ing and tokenization, after which words are part-of-
speech tagged. Following that, we find the default
stresses for each word, guessing the stress patterns
if words are not found in the dictionary. After these
preliminaries, we apply the steps of Groves’ scan-
sion rules and perform some cleanup of the result.

The toolchain itself is implented as a chain
of finite-state transducers using the foma8 toolkit
(Hulden, 2009), save for the part-of-speech tagger
which is a Hidden Markov Model (HMM) imple-
mentation (Halácsy et al., 2007). We use Perl as a
glue language to communicate between the compo-
nents.

8http://foma.googlecode.com

Preparation of the corpus
After tokenization,9 we obtain the part of speech
tags of the words of the poem. For the POS-tagger,
we trained Hunpos10 (Halácsy et al., 2007) with the
Wall Street Journal English corpus (Marcus et al.,
1993). While other more general corpora might be
more suitable for this task, we only need to distin-
guish between function and non-function words, and
thus performance differences would most likely be
slight.

Once the first process is completed, the system
starts applying Groves’ rules, which we have en-
coded as finite-state transducers. To apply the rules,
however, we must know the stress pattern of each
word. The main problem when assigning patterns
is that the pronunciation of some words will be un-
known, even though the dictionaries used are quite
large. This often occurs because a word is either
misspelled, or because the poem is old and uses ar-
chaic vocabulary or spellings.

The strategy we used to analyze such words was
to find a ‘close’ neighboring word in the dictionary,
relying on an intuition that words that differ very lit-

9https://code.google.com/p/foma/wiki/FAQ
10https://code.google.com/p/hunpos

21

tle in spelling from the sought-after word are also
likely pronounced the same way.

Finding the closest word
In order to find what we call the ‘closest word’

in the dictionary, we construct a finite-state trans-
ducer from the existing dictionaries in such a way
that it will output the most similar word, according
to spelling, using a metric of word distances that we
have devised for the purpose. Among other things,
the metric assigns a higher cost to character changes
toward the end of the word than to those in the be-
ginning (which reflect the onset of the first syllable),
and also a higher cost to vowel changes. Naturally,
fewer changes overall also result in a lower cost. For
example, in the following line from Shakespeare’s
Romeo and Juliet:

And usest none in that true use indeed

we find the word usest, which does not appear in our
lexicon.11 Indeed, for this word, we need to make
quite a few changes in order to find a good ‘close’
match: wisest.

Groves’ rules
Once we have obtained the stress pattern for each

word, we begin to apply Groves’ rules: to stress the
primarily stressed syllable in content words. This is
implemented with a finite state transducer built from
replacement rules (Beesley and Karttunen, 2003)
that encode the steps in the rules. In our Hamlet
example, for instance, our input to this stage looks
like this:

to+-+TO be+’+VB or+-+CC not+’+RB to+-+TO ...
that+-+IN is+-+VBZ the+-+DT question+’-+NN

the+-+DT uncertain+-’-+JJ sickly+‘-+JJ
appetite+’--+NN to+-+TO please+’+VB

Next, we apply the second rule—that is, we mark
the secondarily stressed syllables of polysyllabic
content words and the most strongly stressed sylla-
ble in polysyllabic function words:
to+-+TO be+’+VB or+-+CC not+’+RB to+-+TO ...
that+-+IN is+-+VBZ the+-+DT question+’-+NN

the+-+DT uncertain+‘’-+JJ sickly+‘-+JJ
appetite+’-‘+NN to+-+TO please+’+VB

11The archaic second-person singular simple present form of
the verb use.

The last step is to remove all the material not
needed to work with stress patterns. In this part, we
get as input a sequence of tokens with a specified
structure:

inspiration+‘-’-+NN

For the cleanup process, we use a transducer that
removes everything before the first + character and
everything after the second + character. It next re-
moves all the + characters, so that the only result we
get is the stress structure of the input word.

Global analysis
After the stress rules are applied, we attempt to

divide lines into feet in order to produce a global
analysis of the poem. Since foot-division can be am-
biguous, this is somewhat non-trivial. Consider, for
instance, the meter:

-’--’--’--’-

which could be analyzed as consisting mainly of (1)
amphibrachs [-’-], (2) trochees [’-] and (3) iambs [-
’]. All three patterns appear four times in the line.
For such cases, we have elaborated a scoring sys-
tem for selecting the appropriate pattern: we give
a weight of 1.0 for hypothetical disyllabic patterns,
and a weight of 1.5 for trisyllabic ones. In this exam-
ple, this would produce the judgement that the struc-
ture is amphibrachic tetrameter (1.5 × 4 matches =
6).

Foot Pattern No matches Score

Amphibrach -’- 4 6
Iamb -’ 4 4
Trochee ’- 4 4
Anapest ’– 3 4.5
Dactyl ’– 3 4.5
Pyrrhus - - 3 3

6 Evaluation

As the gold standard material for evaluation, we
used a corpus of scanned poetry, For Better For
Verse, from the University of Virginia.12 We ex-
tracted the reference analyses from this website,
which originally was built as an interactive on-line
tutorial to train people in the scansion of English po-
etry in traditional meter. Sometimes several analyses

12http://prosody.lib.virginia.edu

22

Scanned lines Correctly scanned

No CWF 759 173
With CWF 759 199
No CWF Accuracy: 22.79%
With CWF Accuracy: 26.21%

Scanned sylls. Correctly scanned

No CWF 7076 5802
With CWF 7076 5999
No CWF Accuracy: 81.995%
With CWF Accuracy: 86.78%

Table 2: ZeuScansion evaluation results against the For
better or Verse corpus. The CWF label indicates whether
the closest word finder was used for assigning stress to
unknown words.

are given as correct. The results of the evaluation
are given in table 2. As seen, 86.78% of syllables
are scanned correctly in the best configuration. We
include scores produced without the word guesser
component to show its significance in the process.

For checking the number of correctly scanned syl-
lables on each line, we use Levenshtein distance in
comparing against the gold standard. We do this
in order not to penalize a missing or superfluous
syllable—which are sometimes present—with more
than 1 count. For example, the two readings of
Stevens’ poem mentioned in the introduction would
be encoded in the corpus as

-+-+-+-+-+|-+--++-+-+

while our tool marks the line in question as

-+---+-+-+

after conversion to using only two levels of stress
from the original three-level marking. Here, the
minimum Levenshtein distance between the analy-
sis and the reference is one, since changing one -
to a + in the analysis would equal the first ‘correct’
possibility in the gold standard.

Closest word finder

Since the closest word finder has some impact on the
overall quality of the system, we have evaluated that

component separately. Figure 2 shows a graph illus-
trating the increasing coverage of words depending
on distance to the neighboring word used as a pro-
nunciation guide for out-of-vocabulary items. The
first column of the graph (NC) represents the per-
centage of the corpus that could be read using only
the dictionaries, while in the following ones, we
show the improvements we get in terms of cover-
age using various substitutions. The codes that ap-
pear in the lower part of figure 2 refer to the allowed
changes. The first letter can be either B or E. If it is
B, the changes will be made in the beginning of the
word. The character following the hyphen describes
the changes we allow subsequently: for example, VC
corresponds to the change of one vowel and one con-
sonant.

Figure 2: Evaluation of the closest word finder

7 Discussion and future work

In this work, we have presented a basic system for
scansion of English poetry. The evaluation results
are promising: a qualitative analysis of the remain-
ing errors reveals that the system, while still con-
taining errors vis-à-vis human expert judgements,
makes very few egregious errors. The assignment
of global meter to entire poems is also very robust.
We expect to develop the system in several respects.
Of primary concern is to add statistical information
about the global properties of poems to resolve un-
certain cases in a manner consistent with the over-
all structure of a given poem. Such additions could
resolve ambiguous lines and try to make them fit
the global pattern of a poem. Secondly, there is

23

still room for improvement in unknown word per-
formance. Also, the part-of-speech tagging process
may be profitably replaced by a deterministic FST-
based tagger such as Brill’s tagger, as presented in
Roche and Schabes (1995). This would allow the
representation of the entire tool as a single FST.

We believe that the availability of a gold-standard
corpus of expert scansion offers a valuable improve-
ment in the quantitative assessment of the perfor-
mance of future systems and modifications.

Acknowledgments

We must refer to Herbert Tucker, author of the “For
Better for Verse” project, which has been funda-
mental to evaluate our system. We also must men-
tion the Scholar’s Lab, an arm of the University of
Virginia Library, without whose aid in development
and ongoing maintenance support the cited project
would be impossible. Joseph Gilbert and Bethany
Nowviskie have been most steadily helpful there.

References

Beesley, K. R. and Karttunen, L. (2003). Finite-state
morphology: Xerox tools and techniques. CSLI,
Stanford.

Carroll, L. (2003). Alice’s adventures in wonderland
and through the looking glass. Penguin.

Fussell, P. (1965). Poetic Meter and Poetic Form.
McGraw Hill.

Greene, E., Bodrumlu, T., and Knight, K. (2010).
Automatic analysis of rhythmic poetry with appli-
cations to generation and translation. In Proceed-
ings of the 2010 Conference on Empirical Meth-
ods in Natural Language Processing, pages 524–
533. Association for Computational Linguistics.

Groves, P. L. (1998). Strange music: the metre of the
English heroic line, volume 74. English Literary
Studies.

Halácsy, P., Kornai, A., and Oravecz, C. (2007).
Hunpos: an open source trigram tagger. In Pro-
ceedings of the 45th Annual Meeting of the ACL
on Interactive Poster and Demonstration Ses-
sions, pages 209–212. Association for Computa-
tional Linguistics.

Hartman, C. O. (1996). Virtual muse: experiments
in computer poetry. Wesleyan University Press.

Hulden, M. (2009). Foma: a finite-state compiler
and library. In Proceedings of the 12th Confer-
ence of the European Chapter of the Association
for Computational Linguistics: Demonstrations
Session, pages 29–32. Association for Computa-
tional Linguistics.

Keats, J. (2007). Poems published in 1820. Project
Gutenberg.

Marcus, M. P., Marcinkiewicz, M. A., and Santorini,
B. (1993). Building a large annotated corpus of
english: The penn treebank. Computational lin-
guistics, 19(2):313–330.

McAleese, G. (2007). Improving scansion with syn-
tax: an investigation into the effectiveness of a
syntactic analysis of poetry by computer using
phonological scansion theory. -.

Plamondon, M. R. (2006). Virtual verse analysis:
Analysing patterns in poetry. Literary and Lin-
guistic Computing, 21(suppl 1):127–141.

Roche, E. and Schabes, Y. (1995). Deterministic
part-of-speech tagging with finite-state transduc-
ers. Computational linguistics, 21(2):227–253.

Sejnowski, T. J. and Rosenberg, C. R. (1987). Paral-
lel networks that learn to pronounce English text.
Complex systems, 1(1):145–168.

Shakespeare, W. (1609). Shakespeare’s sonnets.
Thomas Thorpe.

Shakespeare, W. (1997). Romeo and Juliet. Project
Gutenberg.

Shakespeare, W. (2000). The tragedy of Hamlet, vol-
ume 1122. Project Gutenberg.

Stevens, W. (1923). Harmonium. Academy of
American Poets.

Weide, R. (1998). The CMU pronunciation dictio-
nary, release 0.6.

24

