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Preface

Research focusing on natural language processing (NLP) applications for education has continued to
progress using innovative statistical and rule-based NLP methods, or most commonly, a combination
of the two. NLP-based educational applications continue to develop in order to serve the learning and
assessment needs of students, teachers, schools, and testing organizations, often guided by educational
policy and learner needs.

The practical need for language-analysis capabilities has been further motivated by increased
requirements for state and national assessments, and a growing population of foreign and second
language learners. In the United States, the need for applications for language analysis is
emphasized by the Common Core State Standards Initiative (Standards), now adopted by 46 States:
(http://www.corestandards.org/). The Standards describe what K-12 students should be learning with
regard to Reading, Writing, Speaking, Listening, Language, and Media and Technology, and have
clear alignments with NLP research and potential applications. Motivated by the Common Core State
Standards Initiative, the use of NLP in educational contexts took two major steps forward. First, outside
of the computational linguistics community, the Hewlett Foundation reached out to both the public
and private sectors and sponsored two competitions: one on automated essay scoring (Automated
Student Assessment Prize: ASAP, Phase 1), and a second on short-answer scoring (Phase 2). The
motivation driving these competitions was to engage the larger scientific community to harness the
collective knowledge toward the development of new ideas and methods. In April 2013, a New
York Times article by John Markoff discussed automated essay scoring use by EdX, one of the
two competing Massive Online Educational Course (MOOC) companies. Within the computational
linguistics community, a breakthrough for educational applications is a new Shared Task co-located
with the BEA workshop, NLI-2013, in which the task involves identifying the native language (L1) of
a writer based solely on a sample of their writing. Independent of the BEA workshop, there were two
additional shared task competitions: the CoNLL Shared Task on Grammatical Error Correction, and a
SemEval Shared Task on Student Response Analysis. NAACL and ACL each hosted other education-
centered workshops, including the Workshop on Using NLP to Improve Text Accessibility at NAACL,
and the 2nd Workshop on Predicting and Improving Text Readability for Target Reader Populations at
ACL. Further, a new book, The Handbook of Automated Essay Evaluation (2013) (Eds., Mark Shermis
and Jill Burstein) reports on the state-of-the-art in the field, and a Special Issue of the International
Journal of Applied Linguistics, Current research in readability and text simplification (forthcoming)
(Eds. Thomas François and Delphine Bernhard) calls for new work. The competitions, the recent
deployment of automated essay grading in MOOCs, the education-related workshops, and are evidence
of the high visibility of Educational Applications in NLP.

As a community, we continue to improve existing capabilities and to identify and generate innovative
ways to use NLP in applications for writing, reading, speaking, critical thinking, curriculum
development, and assessment. Steady growth in the development of NLP-based applications for
education has prompted an increased number of workshops, typically focusing on one specific subfield.
In this workshop, we present papers from these subfields: tools for automated scoring of text and speech,
dialogue and intelligent tutoring, use of corpora, grammatical error detection, and native language
identification. Consistent with 2012, the workshop made an attempt to focus on contributions that could
be described in core educational problem spaces, including: development of curriculum and assessment
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(e.g., applications that help teachers develop reading materials), delivery of curriculum and assessments
(e.g., applications where the student receives instruction and interacts with the system), and reporting
of assessment outcomes (e.g., automated essay scoring). This workshop is the eighth in a series,
specifically related to “Building NLP Applications for Education”, that began at NAACL/HLT 2003
(Edmonton), and continued at ACL 2005 (Ann Arbor), ACL/HLT 2008 (Columbus), NAACL/HLT
2009 (Boulder), NAACL/HLT 2010 (Los Angeles), ACL/HLT 2011 (Portland), NAACL/HLT 2012
(Montreal), and now, NAACL/HLT 2013 (Atlanta). This year, the workshop is co-located with the NLI-
2013 (Native Language Identification Shared Task) – another indication of how this field is developing.

We received 25 submissions and accepted nine papers as oral presentations and six as poster
presentation plus an oral presentation of the summary report for the NLI Shared Task. All of the papers
appear in these proceedings. Each paper was reviewed by three members of the Program Committee
who were most appropriate for each paper. We continue to have a very strong policy to deal with
conflicts of interest. First, we made a concerted effort to not assign papers to reviewers to evaluate
if the paper had an author from their institution. Second, with respect to the organizing committee,
authors of papers where there was a conflict of interest recused themselves from the discussion.

This workshop offers an opportunity to present and publish work that is highly relevant to NAACL/HLT,
but is also highly specialized, and so this workshop is often a more appropriate venue for such work.
The Poster session offers more breadth in terms of topics related to NLP and education, and maintains
the original concept of a workshop. We believe that the workshop framework designed to introduce
work in progress and new ideas needs to be revived, and we hope that we have achieved this with the
breadth and variety of research accepted for this workshop. The total number of acceptances represents
a 60% acceptance rate across oral and poster presentations.

While the field is growing, we do recognize that there is a core group of institutions and researchers
who work in this area. With a higher acceptance rate, we were able to include papers from a wider
variety of topics and institutions. The papers accepted to this workshop were selected on the basis of
several factors, including the relevance to a core educational problem space, the novelty of the approach
or domain, and the strength of the research. The accepted papers fall under several main themes:

Automatic Writing Assessment Measures: Four papers focus on writing assessment and feedback.
Östling et al. describe work into automatic scoring of Swedish essays and Andersen et al. describe
a system which provides automatic on English learners’ writing. Vajjala and Loo describe work
into proficiency classification of Estonian language learners, and Madnani et al. describe work into
the automatic scoring of a summarization task designed to measure reading comphrension in young
students.

Assessing Speech: Four papers focus on different methods of assessing spoken the language of different
populations of non-native speakers of English (Xie and Chen; Evanini et al.; Zechner and Wang; Chen).

Grammatical Error Correction: Two papers describe work into the creation of an error-annotated
corpus of learner English (Dahlmeier et al.) and the automatic detection of hyphens in learner English
(Cahill et al.).

Other Learning Assistance Research: Finally, we have several papers on other topics which use NLP
to develop educational applications. Topics include intelligent tutoring (Dzikovska et al.), use of
machine translation metrics to rate student translations (Michaud and McCoy), semantic analysis of
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interactive learner sentences (Levi and Dickinson), dependency annotation in learner writing (Ragheb
and Dickinson) and the use of linguistic error codes for identifying neurodevelopmental disorders
(Morley et al.).

This year, we are excited to host the first Shared Task in Native Language Identification
(http://www.nlisharedtask2013.org/). The task involves automatically predicting the native language
of a English language learner based solely on their essay. 29 teams competed and 24 teams submitted
descriptions of their submitted systems. These papers are found in these proceedings and are presented
as posters in conjunction with the BEA7 poster session. A summary report of the shared task (Tetreault
et al.) is also found in the proceedings.

We wish to thank everyone who showed interest and submitted a paper, all of the authors for their
contributions, the members of the Program Committee for their thoughtful reviews, and everyone who
attended this workshop. The eighth edition of the BEA workshop is notable one as this is the first
year that the workshop has sponsors. We would like to thank our four sponsors: Appen Butler-Hill,
CTB/McGraw-Hill, Educational Testing Service, and PacificMetrics, whose contributions allowed us
to subsidize students at the workshop dinner, and make workshop t-shirts! In addition, we would like
to thank Joya Tetreault for creating the t-shirt design.

Joel Tetreault, Nuance Communications, Inc.
Jill Burstein, Educational Testing Service
Claudia Leacock, CTB/McGraw-Hill
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The Utility of Manual and Automatic Linguistic Error Codes
for Identifying Neurodevelopmental Disorders∗

Eric Morley, Brian Roark and Jan van Santen
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Abstract

We investigate the utility of linguistic features
for automatically differentiating between chil-
dren with varying combinations of two po-
tentially comorbid neurodevelopmental disor-
ders: autism spectrum disorder and specific
language impairment. We find that certain
manual codes for linguistic errors are useful
for distinguishing between diagnostic groups.
We investigate the relationship between cod-
ing detail and diagnostic classification perfor-
mance, and find that a simple coding scheme
is of high diagnostic utility. We propose a sim-
ple method to automate the pared down coding
scheme, and find that these automatic codes
are of diagnostic utility.

1 Introduction

In Autism Spectrum Disorders (ASD), language im-
pairments are common, but not universal (American
Psychiatric Association, 2000). Whether these lan-
guage impairments are distinct from those in Spe-
cific Language Impairment (SLI) is an unresolved
issue (Williams et al., 2008; Kjelgaard and Tager-
Flusberg, 2001). Accurate and detailed characteri-
zation of these impairments is important not only for
resolving this issue, but also for diagnostic practice
and remediation.

Language ability is typically assessed with struc-
tured instruments (“tests”) that elicit brief, easy to

∗This research was supported in part by NIH NIDCD award
R01DC012033 and NSF award #0826654. Any opinions, find-
ings, conclusions or recommendations expressed in this publi-
cation are those of the authors and do not reflect the views of
the NIH or NSF. Thanks to Emily Prud’hommeaux for useful
discussion on this topic and help with the data.

score, responses to a sequence of items. For exam-
ple, the CELF-4 includes nineteen multi-item sub-
tests with tasks such as object naming, word defini-
tion, reciting the days of the week, or repeating sen-
tences (Semel et al., 2003). Researchers are begin-
ning to discuss the limits of structured instruments in
terms of which language impairments they tap into
and how well they do so, and are advocating the po-
tential benefits of language sample analysis – an-
alyzing natural language samples – to complement
structured assessment, specifically for language as-
sessment in ASD where pragmatic and social com-
munication issues are paramount yet are hard to
assess in a conventional test format (e.g. Tager-
Flusberg et al. 2009). However, language sample
analysis faces two labor-intensive steps: transcrip-
tion and detailed coding of the transcripts.

To illustrate the latter, consider the Systematic
Analysis of Language Transcripts (SALT) (Miller
and Chapman, 1985; Miller et al., 2011), which is
the de-facto standard choice by clinicians looking
to code elicited language samples. SALT comprises
a scheme for coding transcripts of recorded speech,
together with software that tallies these codes, com-
putes scores describing utterance length and error
counts, and compares these scores with normative
samples. SALT codes indicate bound morphemes,
edits (which are referred to in the clinical literature
as ‘mazes’), and several types of errors in transcripts
of natural language, e.g., omitted or inappropriate
words.

Although this has not been formally documented,
our experience with SALT coding has shown that the
codes vary in terms of: 1) difficulty of manual cod-
ing – e.g., relatively subtle pragmatic errors versus
overgeneralization or marking bound morphemes;
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2) utility for identifying particular disorders; and 3)
difficulty of automating the code. This raises an im-
portant question: Is there a combination of codes
that jointly discriminate well between relevant diag-
nostic groups, and at the same time are either easy
to code manually or can in principle be automated?
This paper explores, first, how well the various man-
ual SALT codes classify certain diagnostic groups;
and, second, whether we can automate manual codes
that are of diagnostic utility. Our goal is limited: it
is not the automation of all SALT codes, but the au-
tomation of those that in combination are of high di-
agnostic utility. Automating all SALT codes is sub-
stantially more challenging; yet, we note that even
when some of these codes do not aid in classify-
ing groups, they nevertheless may be of importance
for developing remediation strategies for individual
children. We are particularly interested in the im-
pact of Autism in addition to language impairments
for the utility of particular SALT codes.

The diagnostic groups are carefully chosen to
be pairwise matched either on language abilities or
on autism symptomatology, thus enabling a pre-
cise, “surgical” determination of the degrees to
which SALT codes reflect language-specific vs.
autism-specific factors. Specifically, the groups in-
clude children with ASD with language impairment
(ALI); ASD with no language impairment (ALN);
SLI alone; and typically developing (TD), which is
strictly defined to exclude any neurodevelopmental
disorder. The TD and ALN groups, as well as the
ALI and SLI groups, are matched on language and
overall cognitive abilities, while the ALN and ALI
groups are matched on autism symptomatology but
not on language and overall cognitive abilities; all
groups are matched on chronological age.

Regarding our algorithmic approach, we note that
automatic detection of relatively subtle errors may
be exceedingly difficult, but perhaps such subtle er-
rors are less critical for diagnosis than more obvi-
ous ones. Most prior work in grammaticality de-
tection in spoken language has focused on special-
ized detectors (e.g., Caines and Buttery 2010; Has-
sanali and Liu 2011), such as mis-use of particular
verb constructions rather than coarser detectors for
the presence of diverse classes of errors. We demon-
strate that these specialized error detectors can break
down when confronted with real world dialogue, and
that in general, the features in these detectors re-
stricts their utility in detecting other sorts of errors.

We implement a detector to automatically extract
coarse SALT codes from an uncoded transcript. This
detector only depends upon part of speech tags, as
opposed to the parse features that are often used in
grammaticality detectors. In most cases, these au-
tomatically extracted codes enable us to distinguish
between diagnostic groups more effectively than do
features that can be extracted trivially from an un-
coded transcript.

As far as we know, researchers have not pre-
viously considered the utility of grammatical er-
ror codes to identify ASD or SLI. Prudhommeaux
and Rouhizadeh (2012), however, found that au-
tomatically extracted pragmatic features are useful
for identifying children with ASD, among children
both with and without SLI. Gabani et al. (2009)
found that features derived from language models
are useful for distinguishing between children with
and without a language impairment, both in mono-
lingual English speakers, and in children who are
bilingual in English and Spanish.

Improving the characterization of a child’s lan-
guage impairments is a prerequisite to developing a
sound plan for language training and education for
that child. This paper presents a step in the direction
of effective automated analysis of linguistic samples
that can provide useful information even in the face
of comorbid disorders such as ASD and SLI.

2 Systematic Analysis of Language
Transcripts

Here we give an overview of what SALT requires of
transcriptions, and of SALT coding. The approach
has been in wide use for nearly 30 years (Miller and
Chapman, 1985), and now also exists as a software
package1 providing transcription and coding support
along with tools for aggregating statistics for man-
ual codes over the annotated corpora and comparing
with age norms. The SALT software is not the focus
of this investigation, so we do not discuss it further.

2.1 Basic Transcription

We apply the automated methods to what will be
called basic transcripts. Key for this concept is that,
first, these transcripts do not require linguistic ex-
pertise and thus can be performed by standard tran-
scription services; and, second, that – as we shall

1http://www.saltsoftware.com/
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see – useful features can be automatically computed
from them.

Following the SALT guidelines, a basic transcript
should indicate: the speaker of each utterance, par-
tial words (or stuttering), overlapping speech, unin-
telligible words, and non-speech sounds. It should
be verbatim, regardless of whether a child’s utter-
ance contains neologisms (novel words) or gram-
matical errors (for example ‘I goed’ should be writ-
ten as such).

A somewhat subtle issue is that SALT prescribes
that the basic transcript be broken into communi-
cation units (which in this paper will be synony-
mous with utterance). Communication units are
defined as “a main clause with all its dependent
clauses” (Miller et al., 2011). One reason for defin-
ing utterance boundaries with communication units,
rather than turns or sentences, is that in addition to
this being standard practice in language sample anal-
ysis, doing so does not reward children for making
long, but rather simple statements, nor does it penal-
ize children for being interrupted. To illustrate the
first point, the utterance “I like apples, and bananas,
and pears, and oranges, and grapes.” is one sen-
tence long, but has five communication units (one at
each comma). If the sentence were used as the ba-
sic unit, the utterance would indicate the same level
complexity as the obviously more intricate “for the
past three years we have lived in an apartment”. In
the basic transcript, each communication unit should
be terminated by one of the following punctuation
marks: ‘?’ if it is a question, ‘∧’ if the speaker was
interrupted, ‘>’ if the speaker abandoned the utter-
ance, and ‘.’ in all other cases. Thus, the above
example would be transcribed as “C: I like apples.
. . . C: and grapes.”

2.2 Markup

There are three broad categories of SALT codes: in-
dicators of 1) certain bound morphemes, 2) edits
(discussed below), and 3) errors.

Morphology The following inflectional suffixes
must be coded according to the SALT guidelines:
plural -s (/S), possessive -’s (/Z), possessive plural
-s’ (/S/Z), past tense -ed (/ED), 3rd person singular
-s (/3S), progressive -ing (/ING). The following cl-
itics must also be delimited with a ’/’, provided the
resulting root is unmodified in the surface form: n’t,
’t, ’d, ’re, ’s, ’ve. Since these morphemes are only in-
dicated if the root is unmodified in the surface form,
“won’t” will remain unsegmented because ‘wo’ is
not the root; “can’t” will be segmented “can/’T” and
“don’t” will be segmented “do/N’T”, so as to pre-
serve their respective roots. Nominal or verbal forms
with any of the preceding suffixes or clitics are writ-
ten as the base form with the code appended, for ex-
ample hitting→ hit/ING, bases→ base/S.

Edits Edits consist of filler words such as ‘like’,
‘um’ and ‘uh’, false starts, and revisions. There may
be multiple edits in a single utterance, as well as
multiple adjacent edits. Edits are indicated by paren-
theses, for example: “(And they like) and she (like)
faint/3S.” Note that in the SALT manual, and the lan-
guage sample analysis literature, edits are referred to
as mazes. We use the term edit here because this is
the more widely used term for this phenomenon in
natural language processing.

Error codes The exact set of error codes used de-
pends upon the clinician’s needs and the errors of
interest. Here we consider several key errors out-
lined in the SALT manual. These error codes and
examples are shown in Table 1. Some of these codes
describe precise classes of errors, for example [EO]
or [OW], but others do not. For example, [EW]
can describe using the wrong verb, tense, preposi-
tion or pronoun (in terms of case, person or gender),
as well as other errors. Note that [EU] (and [EC]) er-
ror codes can occur in grammatical utterances. The
[EU] code marks utterances that are ungrammatical
for reasons not captured by the other error codes, for
example severe problems with word order, or utter-

Table 1: SALT error codes and examples
Code Meaning Example Count in Corpus
[EC] Inappropriate response Did you help yourself stop? Mom[EC]. 9
[EO] Overgeneralization Yeah, cuz I almost saw/ED[EO] one. 229
[EW] Error word I play/ED of[EW] the cat. 1,456
[EU] Utterance-level error You can see it very hard because it/’S under my hair[EU]. 532
[EX] Extraneous word Would you like to be[EX] fall down? 322
[OM] Omitted morpheme The cat eat[OM] fish. 881
[OW] Omitted word He [OW] going now. 770
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ances which are simply nonsensical, as in Table 1.

3 Evaluation of Manual Codes

In this section we use features extracted from SALT-
coded transcripts for classification. We consider two
different types of features: baseline features, which
are easily derived from a basic transcript; and fea-
tures derived from SALT codes. We investigate
these features to determine which SALT codes are
most worth automating for classification.

3.1 Data
Our data is a collection of 144 transcripts of the
Autism Diagnostic Observation Schedule (ADOS),
which is a semi-structured task that includes an
examiner and a child (Lord et al., 2002). Semi-
structured means that the examiner carries out a
sequence of rigorously specified activities, but her
prompts and questions are not scripted verbatim for
all of them. Detailed guidelines exist for scoring
the ADOS, but these are not considered in the cur-
rent paper. All transcripts have been manually coded
with SALT codes, described in Table 1.

Subjects ranged in age between 4 and 8 years and
were required to be intelligible, to have a full-scale
IQ of greater than 70, and to have a mean length of
utterance (MLU) of at least 3. Diagnoses of ASD
and of SLI followed standard procedures, and were
based on clinical consensus in accordance to diag-
nostic criteria outlined in the DSM-IV (American
Psychiatric Association, 2000). Furthermore, ASD
diagnosis required ADOS and Social Communica-
tion Questionnaire scores (SCQ) (Berument et al.,
1999) to meet conventional thresholds. Diagnosis
of SLI required a CELF Core Language Score of at
least 1 standard deviation below the mean, in addi-
tion to exclusion of ASD.

Children were partitioned into pairs of groups
matched on certain key measures. Table 2 shows
these pairs and what they were matched on. The
individuals were selected from the initial pool of
all participants using the algorithm proposed by van
Santen et al. (2010), in which, for a given pair of
groups, children are iteratively removed from each
group until there is no significant difference (at p <
0.02) on any measure on which we want the pair to
be matched. We combined some groups into com-
posite groups: ASD (ALI and ALN), nASD (SLI
and TD), LN (‘language normal’: ALN and TD),
and LI (‘language impaired’: ALI and SLI).

Group 1 Group 2
Group N Group N Matched on
ALI 25 ALN 21 Age, ADOS, SCQ
ALI 24 SLI 19 Age, NVIQ, VIQ
ALN 25 TD 27 Age, NVIQ, VIQ
ASD 48 nASD 61 Age
LN 61 LI 39 Age
SLI 15 TD 38 Age

Table 2: Matched measures for paired groups (ADOS =
ADOS score, NVIQ = non-verbal IQ, VIQ = verbal IQ)

3.2 Features
The term “feature” will be used to refer to instances
of various classes of SALT codes as well as to in-
stances of other events that can be trivially extracted
from the basic transcripts but do not involve SALT
codes (e.g, the ratio of ‘uh’ to ‘um’). We distinguish
between five levels of features, enumerated in Table
3, that vary in the number and complexity of codes
required. This ranges from the baseline features that
require no manual codes to SALT-5 features that re-
quire full SALT coding. We consider two normal-
ized variants of each feature: one normalized by the
number of utterances spoken by the child, and the
other normalized by the number of words spoken
by the child (except for TKCT). The ratios OCRAT
and UMUHRAT are never normalized. Each feature
level includes all features on lower levels. Finally,
to make our investigation into feature combinations
more tractable, we do not consider combining two
different normalizations of the same feature.

3.3 Classification

We perform six classification tasks in our investi-
gation, according to the paired groups in Table 2:
ALI/ALN; ALI/SLI; ALN/TD; ASD/nASD; LN/LI;
and SLI/TD. We extract various features from the
ADOS transcripts, and then classify the children in
a leave-pair-out (LPO) schema (Cortes et al., 2007)
using the scikit logistic regression classifier with de-
fault parameters (Pedregosa et al., 2011). For LPO
analysis, we iterate over all possible pairs that con-
tain one positive and one negative instance (i.e. chil-
dren with different diagnoses), training on all other
instances, and testing on that pair. We count a trial
as a success if the classifier assigns a higher proba-
bility of being positive to the positive instance than
to the negative instance. We then divide the num-
ber of successes by the number of pairs to get an
unbiased estimate of the area under the receiver op-
erating curve (AUC) (Airola et al., 2011). AUC is
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Group Feature Description
Baseline CEOLP # of times examiner speaks while child is talking

ECOLP # of times child speaks while examiner is talking
INCCT Incomplete word count
OCRAT Ratio of open- to closed-class words
TKCT Token count
TPCT Type count
UMUHRAT Ratio of ‘uh’ to ‘um’
UINTCT Unintelligible word count

SALT-1 All baseline features +
MPCT Morpheme count
EDITCT Edit count

SALT-2 All SALT-1 features +
NERRUTT Number of utterances with any SALT error codes

SALT-3 All SALT-2 features +
ERRCT Count of SALT error codes

SALT-4 All SALT-3 features +
UTLERRCT Count of utterance level errors (EC / EU)
WDLERRCT Count of word level errors (all other error codes)

SALT-5 All SALT-4 features +
XCT Count of individual error codes (X=EC, EO, . . . ; see Table 1)

Table 3: Features by Level

the probability that the classifier will assign a higher
score to a randomly chosen positive example than to
a randomly chosen negative example.

3.4 Determining Relevant Features
We use a t-test based criterion as a simple way to de-
termine which features to investigate for each clas-
sification task. For a given classification task, we
perform a t-test for independent samples on each
feature under both normalization schemes (if ap-
propriate). We retain a feature for investigation if
that feature is significantly different between the two
groups at the α = 0.10 level. If a particular feature
varies significantly between groups under both nor-
malization schemes, we retain the version that has
the larger T-statistic. For the sake of brevity, we
do not report all of the features that varied between
groups here, but this data is available upon request
from the authors.

3.5 Initial Feature Ablation
We perform feature ablation to see which features
are most useful for performing each classification
task. Figure 1 shows the maximum performance (in
terms of AUC) over all subsets of features at each
feature level (on the x-axis) on each of the six di-
agnostic classification tasks. Missing values for a
particular level of features for any comparison indi-
cate that no features in that level that passed the t-test
based criterion for the two groups being compared.

Figure 1 illustrates two important points. First,
classification difficulty depends heavily on the pair
that is being compared. For example, the AUC
for ALI/SLI is at most 0.723 (SALT-5), while the
AUC for SLI/TD reaches 0.982 (SALT-5). This is
not surprising, as some pairs, most notably SLI/TD,
differ widely in coarse measures of language abil-
ity (such as non-verbal IQ), while other pairs, in-
cluding ALI/SLI, do not. Second, in many of the
tasks, SALT-derived features are of high utility, but
the biggest gain in classification performance comes
with SALT-2, which is a count of the number of
sentences containing any SALT error code. In fact,
for all but one classification task (ASD/nASD), the
AUC achieved with SALT-2 is at least 96% of the
maximum AUC. Furthermore, the best feature set
using SALT-2 features for most of these tasks is ei-
ther the NERRUTT feature alone, or in the case of
ALI/SLI, NERRUTT and TPCT. These results lead
us to conclude that the most important SALT-derived
feature to code is NERRUTT.

Perhaps surprisingly, Figure 1 also shows that for
ALN/TD and SLI/TD, performance at SALT-1 is
lower than the baseline. There are two reasons for
this, which we explain in turn: 1) the SALT-1 fea-
ture set must include a feature that is less useful than
those in the optimal baseline feature set, and 2) the
classifier will not ignore this feature. MPCT must be
included in SALT-1 for both pairs, because the only
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Figure 1: Maximum classification performance (AUC) at different feature levels (Bln=Baseline, S-N=SALT-N)

other SALT-1 feature, EDITCT, does not vary signif-
icantly between either ALN/TD or SLI/TD. Further-
more, MPCT is highly correlated with TKCT, yet
TKCT is not in the best baseline feature set for ei-
ther of these pairs. Therefore, the SALT-1 feature
set is required to include a feature that is less useful
than the most useful ones in the baseline set, which
results in lower performance. Once MPCT is in-
cluded in the SALT-1 feature set, the logistic regres-
sion classifier will not ignore it by assigning it a zero
coefficient. This is because MPCT distinguishes be-
tween groups, and because the classifier is trained
at each round of LPO classification to maximize the
likelihood of the training data, rather than the AUC
estimate provided by LPO classification.

3.6 Counting Specific Error Codes
The single feature in SALT-2, NERRUTT, counts
how many utterances spoken by the child contain at
least one SALT error code. Some of these heteroge-
nous errors, for example overgeneralization errors
([EO]), should be straightforward to identify auto-
matically. Automatically identifying others, for ex-
ample utterances that are inappropriate in context
([EC]), would be more difficult. Therefore, before
automating the extraction of NERRUTT, we should
see which errors most need to be identified, and
which can safely be ignored. To do this, we repeat
our LPO classification procedure on various tasks
using SALT-2 features.

We perform the following procedure to identify
the most diagnostically informative errors: for each
subset s of SALT error codes, 1) compute the fea-
ture NERRUTTSUBSET by counting the number of
utterances that contain any of the errors in s; then 2)
perform the LPO diagnostic classification task using

NERRUTTSUBSET as the only feature. The results
of this experiment are in Table 4. The ‘% Max’ col-
umn shows classification performance when a par-
ticular subset of error codes were counted, relative
to the maximum performance yielded by any subset
of error codes for that particular task. We exclude
the ALN/TD and ASD/nASD tasks from this exper-
iment because NERRUTT does not improve perfor-
mance on these tasks. This is perhaps unsurprising,
because SALT codes were designed to be diagnostic
of SLI, not ASD.

We find that in all tasks, ignoring certain error
codes raises performance. These results also show
that it is not necessary, and indeed not ideal, to iden-
tify utterances containing any SALT code. Identi-
fying utterances that contain any of the following
three codes is sufficient to achieve at least 97% of
the maximum AUC enabled by counting any sub-
set of SALT codes: [EW], [OM], [OW]. For clarity,
NERRUTTMOD is the count of utterances that con-
tain any of those three SALT codes.

Table 4: AUC from Counting Subsets of Errors
Classification Errors Counted AUC % Max
ALI/ALN EW, OM 0.762 100

EW, OM, OW 0.739 97
all 0.724 93

ALI/SLI EW, OM 0.715 100
EW, OM, OW 0.704 98
all 0.676 95

LN/LI EW, OM, OW 0.901 100
all 0.881 98

SLI/TD OM, OW 0.984 100
EW, OM, OW 0.970 99
all 0.951 97
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3.7 Robustness of NERRUTTMOD feature to
noise: a simulation experiment

We will consider two general ways of automatically
extractingNERRUTTMOD. The first way is to build
a detector to identify utterances that contain at least
one relevant error. The second way is to make de-
tectors for the each relevant error, then combine the
output of these detectors. It is unlikely that any error
detector will perform perfectly. Prior to investiga-
tion of automation strategies, we would like to get an
idea of how much such errors will affect diagnostic
classification performance. To this end, we investi-
gate how well we can perform the diagnostic classi-
fication tasks when noise is deliberately introduced
into the NERRUTTMOD values via simulation.

We consider two scenarios. In the first, we as-
sume a single error detector will be used to extract
NERRUTTMOD. We take each manually coded ut-
terance, then randomly change whether or not that
sentence is counted as having an error to simulate
different precision and recall levels of the automated
NERRUTTMOD extractor. We repeat this procedure
100 times for each classification task, and then ex-
amine the mean AUC over all trials. In the sec-
ond scenario, we assume a detector for each error
code that counts a sentence as having an error any
time one of the detectors fires. We randomly cor-
rupt the detection of each error code considered in
NERRUTTMOD in turn to simulate different preci-
sion and recall levels of each individual error detec-
tor. We assume perfect detection of all errors not
being randomly corrupted. Again, we repeat this
procedure 100 times for each classification task, and
consider the mean AUC over all trials.

In both experiments, and in all classification tasks,
we find that the NERRUTTMOD feature is ex-
tremely robust to noise. For example, finding the
NERRUTTMOD feature with a single detector with
a precision/recall of 0.1/0.3 enables SLI/TD clas-
sification with an average AUC of 0.975, as com-
pared to the maximum AUC of 0.984, enabled by
a perfect detector. When we use a cascaded de-
tector to corrupt each of the two errors counted in
NERRUTTMOD for classifying SLI/TD, so long as
one error is detected perfectly, the other error only
needs to be detected with precision and recall of 0.1
to enable a classification AUC within 0.02 of the
maximum.

The extreme robustness of this feature may appear

surprising, but it is easily explained by the data. The
mean value of NERRUTTMOD for the SLI group
is 7.8 times the mean value of this feature for the
TD group. So long as there is a correlation between
the true value of NERRUTTMOD and the estimated
value, as we have assumed in this experiment, then
the estimated value is bound to be of utility in clas-
sification. This bodes well for the utility of automa-
tion, even for a difficult task of discovering some of
the relatively subtle errors coded in SALT.

4 Automatic Feature Extraction
4.1 Evaluating Hassanali and Liu’s System

Hassanali and Liu developed two grammaticality de-
tectors that they used to identify ungrammatical ut-
terances in transcriptions of speech from children
both with and without language impairments (Has-
sanali and Liu, 2011). They tested their grammati-
cality detectors on the Paradise corpus, which con-
sists of conversations with children elicited during
an investigation of otitis media, a hearing disor-
der. They present both a rule-based and a statis-
tical grammaticality detector. Both detectors con-
sist of sub-detectors for the errors shown in Table
5. The rule-based and statistical detectors perform
well, with the statistical detector outperforming the
rule-based one (F1=0.967 vs. 0.929). The statistical
detector, however, requires each error identified by
any of the sub-detectors to be manually identified in
the training data.

We reimplement both the rule based and statis-
tical detectors proposed by Hassanali and Liu, and
apply it to our data, with three modifications. The
first two are minor: 1) we substitute the Charniak-
Johnson reranking parser (2005) for Charniak’s
original parser (Charniak, 2000), and 2) we use the
scikit multinomial naive bayes classifier (Pedregosa
et al., 2011) instead of the one in WEKA (Hall et al.,
2009). The third difference is that we use these de-
tectors to identify SALT error codes rather than the
errors these classifiers were originally built to detect.
The mapping of the original errors to SALT error
codes is given in Table 5. To clarify, if we are train-
ing the ‘Missing Verb’ detector, then any utterance
with an [OW] code is taken to be a positive exam-
ple. This issue does not present itself with the rule-
based detector because it is not trained. Note that the
two verb agreement features may correspond to ei-
ther [EW] or [OM] SALT codes. For example, ‘you
does’ would be [EW] because of the otiose 3rd per-
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Error SALT code
Misuse of -ing participle [EW]
Missing copulae [OW]
Missing verb [OW]
Subject-auxilliary agreement [EW]
Subject-verb agreement [EW]/[OM]
Missing infinitive ‘to’ [OW]

Table 5: Error detectors proposed by Hassanali and Liu

son singular suffix, while ‘he do’ would be an [OM]
because it is missing that same suffix.

Hassanali and Liu’s error detectors perform
poorly on our data. Table 6 reports the performance
of their detectors detecting utterances with various
error codes. Five of the six statistical error detec-
tors that Hassanali and Liu proposed are unable to
identify any of the errors in our data. The‘misuse
of -ing participle’ detector, however, is an excep-
tion, and its performance detecting the analogous
error code [EW], using 10-fold cross validation is,
shown in Table 6. To detect the two pairs of er-
ror codes, [EW][OM] and [OM][OW], and all three
relevant error codes ([EW][OM][OW]), we use the
appropriate rule based detectors. For example, to
detect utterances with either [EW] or [OM] errors,
we pool the detectors for the analogous error codes:
‘misuse of -ing participle’, ‘subject-auxilliary agree-
ment’, and ‘subject-verb agreement’.

There are three factors that may explain the poor
performance observed with most of Hassanali and
Liu’s error detectors when used with our data. The
first is that the three SALT codes we try to detect
([EW], [OM], and [OW]) capture a wider variety of
errors than the six in Hassanali and Liu’s system.
This could account for the low recall. Second, there
are many utterances in our data that Hassanali and
Liu’s system would label an error, but which are not
marked with any SALT error codes. For example, if
the examiner asks the child what she is doing, ‘eat-
ing spaghetti’ is a faultless response, even though it
is missing both the subject and auxiliary verb. Such
utterances may account for the low precision. Fi-
nally, most of Hassanali and Liu’s sub-detectors de-
pend upon features describing the presence or ab-
sence of specific structures in the parses of the input.
The exception to this is the statistical ‘misuse of -ing
participle’ detector, which uses part of speech (POS)
tag bigrams and skip bigrams as features. It should
come as no surprise then that the ‘misuse of -ing par-
ticiple’ is the most robust of these detectors. Indeed,

Codes
System Detected P R F1
Hassanali [EW]† 0.074 0.218 0.110
& Liu [EW][OM]* 0.049 0.277 0.083

[OM][OW]* 0.028 0.191 0.049
All three* 0.066 0.354 0.111

POS-tag [EW] 0.074 0.218 0.110
feature- [OM] 0.070 0.191 0.103
based [OW] 0.064 0.210 0.099
classifier [EW][OM] 0.102 0.269 0.148

[OM][OW] 0.102 0.269 0.148
All three 0.127 0.308 0.180

Table 6: Performance on automatic detection of utter-
ances with certain error codes using Hassanali and Liu’s
detectors, and general POS-tag-feature-based classifier.
† = ‘misuse of -ing participle’, statistical; * = rule-based

in what follows, we make use of general POS-tag
features (tag n-gram and skip n-grams) as they do in
this detector, for a general purpose detector not tar-
geted specifically at this particular construction, but
rather to detect the presence of arbitrary given sets
of error tags.

4.2 Automatic SALT error code detection

We compare three types of automatic error code de-
tectors: 1) individual error code detectors; 2) pair
detectors, each of which detects a pair of error codes
included in NERRUTTMOD, following Table 4; and
3) a generic detector that identifies any utterance
containing any of the following SALT codes: [EW],
[OM], or [OW]. We investigate four different fea-
tures, all of which are easily derived from the basic
transcript: bigrams and skip bigrams of words, and
POS tags. We use POS tags extracted from the out-
put of the Charniak-Johnson reranking parser (2005)
(also used in our reimplementation of Hassanali and
Liu’s detectors) for simplicity. We use the Bernoulli
Naive Bayes classifier in scikit with the default set-
tings (Pedregosa et al., 2011).

We find that the word features do not aid clas-
sification in any condition, and that using both bi-
grams and skip bigrams of POS tags improves on
using either alone. We report the performance of
the three types of error detectors in Table 6. These
results are from 10-fold cross-validation using POS
tag bigrams and skip bigrams as features. Note that
the general POS-tag-feature-based classifier uses the
same features as Hassanali and Liu’s statistical ‘mis-
use of -ing participle’ detector, which is why the
performance for detecting [EW] error codes alone
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Manual features Automatic extraction
Baseline SALT-2 SALT-2 features

Baseline θ Optimized θ
Diagnoses AUC AUC θ AUC θ AUC
ALI/ALN 0.619† 0.723 0.5 0.611 0.94 0.676
ALI/SLI 0.562 0.686 0.5 0.632 0.99 0.671
LN/LI 0.755 0.881 0.5 0.801 0.50 0.801
SLI/TD 0.840 0.951 0.5 0.805 0.99 0.840

† SALT-1; no significantly different baseline features

Table 7: Diagnostic classification AUC using automatically extracted NERRUTTMOD

is identical between the two systems.
The generic error detector yields higher perfor-

mance than either the individual or pair error detec-
tors. Coding training data for the generic detector is
simpler than doing so for the others because it only
involves a single round of binary coding.

4.3 Diagnostic Classification

We repeat the LPO diagnostic classification tasks
using the automatically extracted NERRUTTMOD
feature. We recompute NERRUTTMOD for each
speaker at each iteration, training on all data except
for the two speakers in the test pair, and the speaker
whose NERRUTTMOD feature we are predicting.
The results from this task are shown in Table 7.

As can be seen in Table 7, diagnostic classifica-
tion performance using the automatically extracted
the NERRUTTMOD feature is markedly lower than
when we extracted this feature from manual codes.
However, raising the probability threshold θ at
which utterances are counted as containing an er-
ror from its default value of 0.5, improves diagnos-
tic classification performance for all but one pair
(LN/LI). This is because increasing the probability
threshold at which we count an utterance as hav-
ing an error improves in NERRUTTMOD detection.
For example, in the ALI/SLI group, using the de-
fault θ = 0.5, and a leave-one-out scenario, we can
automatically extract NERRUTTMOD with a preci-
sion/recall score of 0.19/0.47. When we increase θ
to 0.99, the precision and recall become 0.23/0.24.
Even though there is a massive drop in recall, the
improvement in precision is able to boost diagnostic
classification performance.

In all but one pair (SLI/TD), the automati-
cally extracted NERRUTTMOD feature improves
classification over the baseline, even though the
NERRUTTMOD extractor performs poorly in terms
of intrinsic evaluation, with an F1 score of 0.180.
These results are in line with the experiments per-

forming diagnostic classification with an artificially
noisy NERRUTTMOD feature (see Section 3.7).
These results also demonstrate that the automati-
cally extracted values of NERRUTTMOD are suffi-
ciently correlated with the true values of this feature
to be of some diagnostic utility.

5 Conclusions

We have found that the SALT codes provide use-
ful information for distinguishing between certain
diagnostic groups, but not all of them. Specifi-
cally, and not surprisingly given SALT’s focus on
language disorders and not generally on atypical
language use characteristic of ASD, adding SALT-
derived features to baseline features added little
to ASD/nASD, ALI/SLI, or ALN/TD classifica-
tion accuracy, but added substantially to SLI/TD,
ALI/ALN, and LN/LI classification accuracy. Fur-
thermore, we found that a simplified coding schema
is almost as useful as the complete one for differ-
entiating between these groups. Finally, we have
proposed a simple method to automatically extract
a variant of the most useful SALT-derived feature,
NERRUTTMOD, which is a count of sentences that
contain any of three types of errors (omitted mor-
phemes or words, and generic word-level errors).
Although this feature’s utility degrades when ex-
tracted automatically, it still has considerable dis-
criminative value.

In future work, we will investigate the util-
ity of more sophisticated features for extracting
NERRUTTMOD and other SALT-derived features.
We will also investigate the utility of other linguistic
features, for example parse structure, for the diag-
nostic classification task. Finally, we will also con-
sider whether we can perform the diagnostic classi-
fication task more effectively using cascaded binary
classifiers (for example language impaired vs. lan-
guage normal), as opposed to having a classifier for
every diagnostic pair.
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Abstract

Focusing on applications for analyzing learner
language which evaluate semantic appropri-
ateness and accuracy, we collect data from a
task which models some aspects of interac-
tion, namely a picture description task (PDT).
We parse responses to the PDT into depen-
dency graphs with an an off-the-shelf parser,
then use a decision tree to classify sentences
into syntactic types and extract the logical sub-
ject, verb, and object, finding 92% accuracy in
such extraction. The specific goal in this paper
is to examine the challenges involved in ex-
tracting these simple semantic representations
from interactive learner sentences.

1 Motivation

While there is much current work on analyzing
learner language, it usually focuses on grammati-
cal error detection and correction (e.g., Dale et al.,
2012) and less on semantic analysis. At the
same time, Intelligent Computer-Assisted Language
Learning (ICALL) and Intelligent Language Tutor-
ing (ILT) systems (e.g., Heift and Schulze, 2007;
Meurers, 2012) also tend to focus more on gram-
matical feedback. An exception to this rule is Herr
Komissar, an ILT for German learners that includes
rather robust content analysis and sentence genera-
tion (DeSmedt, 1995), but this involves a great deal
of hand-built tools and does not connect to modern
NLP. Some work addresses content assessment for
short answer tasks (Meurers et al., 2011), but this is
still far from naturalistic, more conversational inter-
actions (though, see Petersen, 2010).

Our overarching goal is to facilitate ILTs and lan-
guage assessment tools that maximize free interac-
tion, building as much as possible from existing
NLP resources. While that goal is in the distant
future, the more immediate goal in this paper is
to pinpoint the precise challenges which interactive
learner sentences present to constructing semantic
analyses, even when greatly constrained. We ap-
proximate this by collecting data from a task which
models some aspects of interaction, namely a picture
description task (PDT), parsing it with an off-the-
shelf parser, extracting semantic forms, and noting
the challenges throughout.

The focus towards interaction is in accord with
contemporary theory and research in Second Lan-
guage Acquisition (SLA) and best practices in sec-
ond language instruction, which emphasize the lim-
iting of explicit grammar instruction and feedback in
favor of an approach that subtly integrates the teach-
ing of form with conversation and task-based learn-
ing (Celce-Murcia, 1991, 2002; Larsen-Freeman,
2002). Indeed, Ellis (2006) states, “a traditional ap-
proach to teaching grammar based on explicit expla-
nations and drill-like practice is unlikely to result in
the acquisition of the implicit knowledge needed for
fluent and accurate communication.” For our pur-
poses, this means shifting the primary task of an
ICALL application from analyzing grammar to eval-
uating semantic appropriateness and accuracy.

The data for error detection work is ideal for de-
veloping systems which provide feedback on essays,
but not necessarily for more interactive communica-
tion. Thus, our first step is to collect data similar to
what we envision processing in something like an
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ILT game, data which—as far as we know—does
not exist. While we desire relatively free produc-
tion, there are still constraints; for games, for exam-
ple, this comes in the form of contextual knowledge
(pictures, rules, previous interactions). To get a han-
dle on variability under a set of known constraints
and to systematically monitor deviations from tar-
get meanings, we select a PDT as a constrained task
that still promotes interactive communication. Col-
lecting and analyzing this data is our first major con-
tribution, as described in section 3.

Once we have the data, we can begin to extract se-
mantic forms, and our second major contribution is
to outline successes and pitfalls in obtaining shal-
low semantic forms in interactive learner data, as
described in section 4, working from existing tools.
Although we observe a lot of grammatical variation,
we will demonstrate in section 5 how careful se-
lection of output representations (e.g., the treatment
of prepositions) from an off-the-shelf parser and a
handful of syntax-to-semantics rules allow us to de-
rive accurate semantic forms for most types of tran-
sitive verb constructions in our data. At the same
time, we will discuss the difficulties in defining a
true gold standard of meanings for such a task. This
work paves the way for increasing the range of con-
structions and further exploring the space between
free and constrained productions (see also the dis-
cussion in Amaral and Meurers, 2011).

2 Related Work

In terms of our overarching goals of developing
an interactive ILT, a number of systems exist (e.g.,
TAGARELA (Amaral et al., 2011), e-Tutor (Heift
and Nicholson, 2001)), but few focus on matching
semantic forms. Herr Komissar (DeSmedt (1995))
is one counter-example; in this game, learners take
on the role of a detective tasked with interviewing
suspects and witnesses. The system relies largely on
a custom-built database of verb classes and related
lexical items. Likewise, Petersen (2010) designed
a system to provide feedback on questions in En-
glish, extracting meanings from the Collins parser
(Collins, 1999). Our work is is in the spirit of his,
though our starting point is to collect data of the type
of task we aim to analyze, thereby pinpointing how
one should begin to build a system.

The basic semantic analysis in this paper paral-
lels work on content assessment (e.g., ETS’s c-rater
system (Leacock and Chodorow, 2003)). Different
from our task, these systems are mostly focused on
essay and short answer scoring, though many fo-
cus on semantic analysis under restricted conditions.
As one example, Meurers et al. (2011) evaluate En-
glish language learners’ short answers to reading
comprehension questions, constrained by the topic
at hand. Their approach performs multiple levels of
annotation on the reading prompt, including depen-
dency parsing and lexical analysis from WordNet
(Fellbaum, 1998), then attempts to align elements of
the sentence with those of the (similarly annotated)
reading prompt, the question, and target answers to
determine whether a response is adequate or what it
might be missing. Our scenario is based on images,
not text, but our future processing will most likely
need to include similar elements, e.g., determining
lexical relations from WordNet.

3 Data Collection

The data involved in this study shares much in com-
mon with other investigations into semantic anal-
ysis of descriptions of images and video, such
as the Microsoft Research Video Description Cor-
pus (MSRvid; Chen and Dolan (2011)) and the
SemEval-2012 Semantic Textual Similarity (STS)
task utilizing MSRvid as training data for assigning
similarity scores to pairs of sentences (Agirre et al.,
2012). However, because our approach requires
both native speaker (NS) and non-native speaker
(NNS) responses and necessitates constraining both
the form and content of responses, we assembled
our own small corpus of NS and NNS responses to
a PDT. Research in SLA often relies on the ability
of task design to induce particular linguistic behav-
ior (Skehan et al., 1998), and the PDT should in-
duce more interactive behavior. Moreover, the use
of the PDT as a reliable language research tool is
well-established in areas of study ranging from SLA
to Alzheimer’s disease (Ellis, 2000; Forbes-McKay
and Venneri, 2005).

The NNSs were intermediate and upper-level
adult English learners in an intensive English as
a Second Language program at Indiana University.
We rely on visual stimuli here for a number of rea-
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sons. Firstly, computer games tend to be highly
visual, so collecting responses to visual prompts is
in keeping with the nature of our desired ILT. Sec-
ondly, by using images, the information the response
should contain is limited to the information con-
tained in the image. Relatedly, particularly simple
images should restrict elicited responses to a tight
range of expected contents. For this initial experi-
ment, we chose or developed each of the visual stim-
uli because it presents an event that we believe to be
transitive in nature and likely to elicit responses with
an unambiguous subject, verb and object, thereby re-
stricting form in addition to content. Finally, this
format allows us to investigate pure interlanguage
without the influence of verbal prompts and shows
learner language in a functional context, modeling
real language use.

Response (L1)
He is droning his wife pitcher. (Arabic)

The artist is drawing a pretty women. (Chinese)
The artist is painting a portrait of a lady. (English)
The painter is painting a woman’s paint. (Spanish)

Figure 1: Example item and responses

The PDT consists of 10 items (8 line drawings
and 2 photographs) intended to elicit a single sen-
tence each; an example is given in Figure 1. Par-
ticipants were asked to view the image and describe
the action, and care was taken to explain to partici-
pants that either past or present tense (and simple or
progressive aspect) was acceptable. Responses were

typed by the participants themselves (without auto-
matic spell checking). To date, we have collected
responses from 53 informants (14 NSs, 39 NNSs),
for a total of 530 sentences. The distribution of first
languages (L1s) is as follows: 14 English, 16 Ara-
bic, 7 Chinese, 2 Japanese, 4 Korean, 1 Kurdish, 1
Polish, 2 Portuguese, and 6 Spanish.

4 Method

We parse a sentence into a dependency representa-
tion (section 4.1) and then extract a simple seman-
tic form from this parse (section 4.2), to compare to
gold standard semantic forms.

4.1 Obtaining a syntactic form

We start analysis with a dependency parse. Because
dependency parsing focuses on labeling dependency
relations, rather than constituents or phrase struc-
ture, it easily finds the subject, verb and object of
a sentence, which can then map to a semantic form
(Kübler et al., 2009). Our approach must eventually
account for other relations, such as negation and ad-
verbial modification, but at this point, since we fo-
cus on transitive verbs, we take an naı̈ve approach in
which subject, verb and object are considered suffi-
cient for deciding whether or not a response accu-
rately describes the visual prompt.

We use the Stanford Parser for this task, trained on
the Penn Treebank (de Marneffe et al., 2006; Klein
and Manning, 2003).1 Using the parser’s options,
we set the output to be Stanford typed dependencies,
a set of labels for dependency relations. The Stan-
ford parser has a variety of options to choose from
for the specific parser ouput, e.g., how one wishes to
treat prepositions (de Marneffe and Manning, 2012).
We use the CCPropagatedDependencies /
CCprocessed option to accomplish two things:2

1) omit prepositions and conjunctions from the sen-
tence text and instead add the word to the depen-
dency label between content words; and 2) propa-
gate relations across any conjunctions. These deci-
sions are important to consider for any semantically-
informed processing of learner language.

1http://nlp.stanford.edu/software/
lex-parser.shtml

2http://nlp.stanford.edu/software/
dependencies_manual.pdf
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To see the impetus for removing prepositions,
consider the learner response (1), where the prepo-
sition with is relatively unimportant to collecting the
meaning. Additionally, learners often omit, insert,
or otherwise use the wrong preposition (Chodorow
et al., 2007). The default parser would present a
prep relation between played and with, obscuring
what the object is; with the options set as above,
however, the dependency representation folds the
preposition into the label (prep with), instead of
keeping it in the parsed string, as shown in Figure 2.

(1) The boy played with a ball.

vroot The boy played with a ball

nsubj

root
prep with

detdet

Figure 2: The dependency parse of (1)

This is a very lenient approach to prepositions,
as prepositions certainly carry semantic meaning—
e.g., the boy played in a ball means something quite
different than what (1) means. However, because
we ultimately compare the meaning to an expected
semantic form (e.g., play(boy,ball)), it is easier to
give the benefit of the doubt. In the future, one may
want to consider using a semantic role labeler (e.g.,
SENNA (Collobert et al., 2011)).

As for propagating relations across conjunctions,
this ensures that each main verb connects to its argu-
ments, as needed for a semantic form. For example,
in (2), the default parser returns the relation between
the first verb of the conjunction structure, setting and
its subject, man, but not between reading and man.
The options we select, however, return an nsubj
relation between setting and man and also between
reading and man (similarly for the object, paper).

(2) The man is setting and reading the paper.

In addition to these options, many dependency re-
lations are irrelevant for the next step of obtaining
a semantic form. For example, we can essentially
ignore determiner (det) relations between a noun
and its determiner, allowing for variability in how a
learner produces or does not produce determiners.

4.2 Obtaining a semantic form

4.2.1 Sentence types
We categorized the sentences in the corpus into

12 types, shown in Table 1. We established these
types because each type corresponds to a basic sen-
tence structure and thus has consistent syntactic fea-
tures, leading to predictable patterns in the depen-
dency parses. We discuss the distribution of sen-
tence types in section 5.1.

4.2.2 Rules for sentence types
A sentence type indicates that the logical (i.e., se-

mantic) subject, verb, and object can be found in a
particular place in the parse, e.g., under a particular
dependency label. For example, for simple transi-
tive sentences of type A, the words labeled nsubj,
root, and dobj exactly pinpoint the information
we require. Thus, the patterns for extracting se-
mantic information—in the form of verb(subj,obj)
triples—reference particular Stanford typed depen-
dency labels, part-of-speech (POS) tags, and inter-
actions with word indices.

More complicated sentences or those containing
common learner errors (e.g., omission of the cop-
ula be) require slightly more complicated extraction
rules, but, since we examine only transitive verbs at
this juncture, these still boil down to identifying the
sentence type and extracting the appropriate triple.
We do this by arranging a small set of binary fea-
tures into a decision tree to determine the sentence
type, as shown in Figure 3.

To illustrate this process, consider (3). We pass
this sentence through the parser to obtain the depen-
dency parse shown in Figure 4. The parsed sentence
then moves to the decision tree shown in Figure 3.
At the top of the tree, the sentence is checked for an
expl (expletive) label; having none, it moves right-
ward to the nsubjpass (noun subject, passive)
node. Because we find an nsubjpass label, the
sentence moves leftward to the agent node. This
label is also found, thereby reaching a terminal node
and being labeled as a type F2 sentence.

(3) A bird is shot by a man.

With the sentence now typed as F2, we apply
specific F2 extraction rules. The logical subject is
taken from under the agent label, the verb from
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Type Description Example NS NNS
A Simple declarative transitive The boy is kicking the ball. 117 286
B Simple + preposition The boy played with a ball. 5 23
C Missing tensed verb Girl driving bicycle. 10 44
D Missing tensed verb + preposition Boy playing with a ball. 0 1
E Intransitive (No object) A woman is cycling. 2 21
F1 Passive An apple is being cut. 4 2
F2 Passive with agent A bird is shot by a man. 0 6
Ax Existential version of A or C There is a boy kicking a ball. 0 0
Bx Existential version of B or D There was a boy playing with a ball. 0 0
Ex Existential version of E There is a woman cycling. 0 0
F1x Existential version of F1 There is an apple being cut. 0 1
F2x Existential version of F2 There is a bird being shot by a man. 0 0
Z All other forms The man is trying to hunt a bird. 2 6

Table 1: Sentence type examples, with distributions of types for native speakers (NS) and non-native speakers (NNS)

expl?

nsubjpass?

dobj?

nsubj?

Dprep ∗?

EB

Y N

Y N

nsubj?

CA

Y N

Y N

agent?

F1F2

Y N

Y N

auxpass?

dobj?

prep ∗?

ExBx

Y N

Ax

Y N

agent?

F1xF2x

Y N

Y N

Y N

Figure 3: Decision tree for determining sentence type and extracting semantic information

vroot A bird is shot by a man

root

det

nsubjpass

auxpass

agent

det

Figure 4: The dependency parse of (3)

root, and the logical object from nsubjpass,
to obtain shot(man,bird), which can be lemmatized
to shoot(man,bird). Very little effort goes into this

process: the parser is pre-built; the decision tree is
small; and the extraction rules are minimal.

We are able to use little effort in part due to the
constraints in the pictures. For figure 1, for exam-
ple, the artist, the man in the beret, and the man are
all acceptable subjects, whereas if there were multi-
ple men in the picture, the man would not be specific
enough. In future work, we expect to relax such con-
straints on image contents by including rules to han-
dle relative clauses, adjectives and other modifiers
in order to distinguish between references to simi-
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lar elements, e.g., a man shooting a bird vs. a man
reading the newspaper.

5 Evaluation

To evaluate this work, we need to address two major
questions. First, how accurately do we extract se-
mantic information from potentially innovative sen-
tences (section 5.2)? Due to the simple structures
of the sentences (section 5.1), we find high accu-
racy with our simple system. Secondly, how many
semantic forms does one need in order to capture
the variability in meaning in learner sentences (sec-
tion 5.3)? We operationalize this second question
by asking how well the set of native speaker seman-
tic forms models a gold standard, with the intuition
that a language is defined by native speaker usage,
so their answers can serve as targets. As we will
see, this is a naı̈ve view.

5.1 Basic distribution of sentences

Before a more thorough analysis, we look at the dis-
tribution of sentence types, shown in Table 1, broken
down between native speakers (NSs) and non-native
speakers (NNSs). A few sentence types clearly dom-
inate here: if one looks only at simple declaratives,
with or without a main verb (types A and C), one
accounts for 90.7% of the NS forms and 84.6% of
the NNS ones, slightly less. Adding prepositional
forms (types B and D) brings the total to 94.3% and
90.8%, respectively. Although there will always be
variability and novel forms (cf. type Z), this shows
that, for situations with basic transitive actions, de-
veloping a system (by hand) for a few sentence types
is manageable. More broadly, we see that clear and
simple images nicely constrain the task to the point
where shallow processing is feasible.

5.2 Semantic extraction

For the purpose of evaluating our extraction system,
we define two major classes of errors. The first are
triple errors, responses for which our system fails to
extract one or more of the desired subject, verb, or
object, based on the sentence at hand and without re-
gard to the target content. Second are content errors,
responses for which our system extracts the desired
subject, verb and object, but the resulting triple does
not accurately describe the image (i.e., is an error of

the participant’s). We are of course concerned with
reducing the triple errors. Examples are in Table 2.

Triple errors are subcategorized as speaker,
parser, or extraction errors, based on the earliest
part of the process that led to the error. Speaker
errors typically involve misspellings in the original
sentence, leading to an incorrect POS tag and parse.
Parser errors involve a correct sentence parsed in-
correctly or in such a way as to indicate a different
meaning from the one intended; an example is given
in Figure 5. Extraction errors involve a failure of the
extraction script to find one or more of the desired
subject, verb or object in a correct sentence. These
typically involve more complex sentence structures
such as conjoined or embedded clauses.

vroot Two boys boat
CD NNS NN

num
root

dep

NONE(boys,NONE)

vroot Two boys boat
CD NNS VBP

num

root

nsubj

boat(boys,NONE)

Figure 5: A parser error leading to a triple error (top), and
the desired parse and triple (bottom).

As shown in table 2, we obtain 92.3% accuracy on
extraction for NNS data and roughly the same for
NS data, 92.9%. However, many of the errors for
NNSs involve misspellings, while for NSs a higher
percentage of the extraction errors stem only from
our hand-written extractor, due to native speakers
using more complex structures. For a system inter-
acting with learners, spelling errors are thus more of
a priority (cf. Hovermale, 2008).

Content errors are subcategorized as spelling or
meaning errors. Spelling errors involve one or more
of the extracted subject, verb or object being mis-
spelled severely enough that the intended spelling
cannot be discerned. A spelling error here is un-
like those included in speaker errors above in that it
does not result in downstream errors and is a well-
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Error Example
type Sentence Triple Count (%)

Tr
ip

le
er

ro
r N
N

S
Speaker A man swipped leaves. leaves(swipped,man) 16 (4.1%)
Parser Two boys boat. NONE(boys,NONE) 5 (1.3%)
Extraction A man is gathering lots of leafs. gathering(man,lots) 9 (2.3%)
Total (390) 30 (7.7%)

N
S

Speaker (None) 0 (0%)
Parser An old man raking leaves on a path. leaves(man,path) 2 (1.4%)
Extraction A man has shot a bird that is falling from the sky. shot(bird,sky) 8 (5.7%)
Total (140) 10 (7.1%)

C
on

te
nt

er
ro

r
N

N
S Spelling The artiest is drawing a portret. drawing(artiest,portret) 36 (9.2%)

Meaning The woman is making her laundry. making(woman,laundry) 23 (5.9%)
Total (390) 59 (15.1%)

N
S

Spelling (None) 0 (0%)
Meaning A picture is being taken of a girl on a bike. taken(NONE,picture) 3 (2.1%)
Total (140) 3 (2.1%)

Table 2: Triple errors and content errors by subcategory, with error rates reported (e.g., 7.7% error = 92.3% accuracy)

formed triple except for a misspelled target word.
Meaning errors involve an inaccurate word within
the triple. This includes misspellings that result in a
real but unintended word (e.g., shout(man,bird) in-
stead of shoot(man,bird)).

The goal of a system is to identify the 15.1% of
NNS sentences which are content errors, in order
to provide feedback. Currently, the 7.7% triple er-
rors would also be grouped into this set, showing
the need for further extraction improvements. Also
notable is that three content errors were encountered
among the NS responses. All three were meaning
errors involving some meta-description of the image
prompt rather than a direct description of the image
contents, e.g., A picture is being taken of a girl on a
bike vs. A girl is riding a bike.

5.3 Semantic coverage

Given a fairly accurate extraction system, as re-
ported above, we now turn to evaluating how well
a gold standard represents unseen data, in terms of
semantic matching. To measure coverage, we take
the intuition that a language is defined by native
speaker usage, so their answers can serve as targets,
and use NS triples as our gold standard. The set
of NS responses was manually arbitrated to remove
any unacceptable triples (both triple and content er-
rors), and the remaining set of lemmatized triples

was taken as a gold standard set for each item.
Similarly, with the focus on coverage, the NNS

triples were amended to remove any triple errors.
From the remaining NNS triples, we call an appro-
priate NNS triple found in the gold standard set a
true positive (TP) (i.e., a correct match), and an
appropriate NNS triple not found in the gold stan-
dard set a false negative (FN) (i.e., an incorrect non-
match), as shown in Table 4. We adopt standard ter-
minology here (TP, FN), but note that we are inves-
tigating what should be in the gold standard, mak-
ing these false negatives and not false positives. To
address the question of how many (NS) sentences
we need to obtain good coverage, we define cover-
age (=recall) as TP/(TP+FN), and report, in Table 3,
23.5% coverage for unique triple types and 50.8%
coverage for triple tokens.

NNS
+ −

NS
Y TP FP
N FN TN

Table 4: Contingency table comparing presence of NS
forms (Y/N) with correctness (+/−) of NNS forms

We define an inappropriate NNS triple (i.e., a con-
tent error) not found in the gold standard set as a true
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Coverage Accuracy
Item NS NNS TP TN FN Ty. Tok. Ty. Tok.

1 5 14 3 2 9 3/12 23/38 5/14 25/39
2 6 14 3 5 6 3/9 15/28 8/14 20/32
3 6 19 5 7 7 5/12 23/30 12/19 30/36
4 4 8 2 2 4 2/6 32/37 4/8 34/39
5 4 24 1 8 15 1/16 3/25 9/24 11/33
6 8 22 3 5 14 3/17 16/31 8/22 21/36
7 7 23 5 4 14 5/19 14/35 9/23 18/39
8 6 23 5 6 11 5/16 10/30 11/22 17/36
9 7 33 3 12 18 3/21 3/23 15/33 15/35

10 5 21 2 13 6 2/8 14/24 15/21 27/35
Total 58 201 32 64 104 32/136 153/301 96/200 218/360

23.5% 50.8% 48.0% 60.6%

Table 3: Matching of semantic triples: NS/NNS: number of unique triples for NSs/NNSs. Comparing NNS types to NS
triples, TP: number of true positives (types); TN: number of true negatives; FN: number of false negatives. Coverage
for Types and Tokens = TP

TP+FN ; Accuracy for Types and Tokens = TP+TN
TP+TN+FN

negative (TN) (i.e., a correct non-match). Accu-
racy based on this gold standard—assuming perfect
extraction—is defined as (TP+TN)/(TP+TN+FN).3

We report 48.0% accuracy for types and 60.6% ac-
curacy for tokens.

The immediate lesson here is: NS data alone may
not make a sufficient gold standard, in that many cor-
rect NNS answers are not counted as correct. How-
ever, there are a couple of issues to consider here.

First, we require exact matching of triples. If
maximizing coverage is desired, extracting indi-
vidual subjects, verbs and objects from NS triples
and recombining them into the various possible
verb(subj,obj) combinations would lead to a sizable
improvement. An example of triples distribution and
coverage for a single item, along with this recombi-
nation approach is presented in Table 5.

It should be noted, however, that automat-
ing this recombination without lexical knowledge
could lead to the presence of unwanted triples
in the gold standard set. Consider, for exam-
ple, do(woman,shirt)—an incorrect triple derived
from the correct NS triples, wash(woman,shirt) and
do(woman,laundry). In addition to handling pro-

3Accuracy is typically defined as
(TP+TN)/(TP+TN+FN+FP), but false positives (FPs) are
cases where an incorrect learner response was in the gold
standard, and we have already removed such cases (i.e., FP=0).

Type NNS NS Coverage
cut(woman,apple) 5 0 (5)
cut(someone,apple) 4 2 4
cut(somebody,apple) 3 0
cut(she,apple) 3 0
slice(someone,apple) 2 5 2
cut(person,apple) 2 1 2
cut(NONE,apple) 2 0 (2)
slice(woman,apple) 1 1 1
slice(person,apple) 1 1 1
slice(man,apple) 1 0
cut(person,fruit) 1 0
cut(people,apple) 1 0
cut(man,apple) 1 0
cut(knife,apple) 1 0
chop(woman,apple) 1 0
chop(person,apple) 1 0
slice(NONE,apple) 0 2
Total 30 12 10 (17)

Table 5: Distribution of valid tokens across types for a
single PDT item. Types in italics do not occur in the NS
sample, but could be inferred to expand coverage by re-
combining elements of NS types that do occur.

nouns (e.g., cut(she,apple)) and lexical relations
(e.g., apple as a type of fruit), one approach might be
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to prompt NSs to give multiple alternative descrip-
tions of each PDT item.

A second issue to consider is that, even when only
examining cases where the meaning is literally cor-
rect, NNSs produce a wider range of forms to de-
scribe the prompts than NSs. For example, for a pic-
ture showing what NSs overwhelmingly described
as a raking action, many NNSs referred to a man
cleaning an area. Literally, this may be true, but it is
not native-like. This behavior is somewhat expected,
given that learners are encouraged to use words they
know to compensate for gaps in their vocabularies
(Agustı́n Llach, 2010). This also parallels the obser-
vation in SLA research that while second language
learners may attain native-like grammar, their abil-
ity to use pragmatically native-like language is often
much lower (Bardovi-Harlig and Dörnyei, 1998).
The answer to what counts as a correct meaning
will most likely lie in the purpose of an application,
reflecting whether one is developing native-ness or
whether the facts of a situation are expressed cor-
rectly. In other words, rather than rejecting all non-
native-like responses, an ILT may need to consider
whether a sentence is native-like or non-native-like
as well as whether it is semantically appropriate.

6 Summary and Outlook

We have begun the process of examining appro-
priate ways to analyze the semantics of language
learner constructions for interactive situations by
describing data collected for a picture description
task. We parsed this data using an off-the-shelf
parser with settings geared towards obtaining appro-
priate semantic forms, wrote a small set of seman-
tic extraction rules, and obtained 92–93% extrac-
tion accuracy. This shows promise at using images
to constrain the syntactic form of a “free” learner
text and thus be able to use pre-built software. At
the same time, we discussed how learners give re-
sponses which are literally correct, but are non-
native-like. These results can help guide the de-
velopment of ILTs which aim to process the mean-
ing of interactive statements: there is much to be
gained with a small amount of computational effort,
but much work needs to go into delineating a proper
set of gold standard forms.

There are several ways to take this work. First,

given the preponderance of spelling errors in NNS
data and its effect on downstream processing, the ef-
fect of automatic spelling correction must be taken
into account. Secondly, we only investigated tran-
sitive verbs, and much needs to be done to investi-
gate interactions with other types of constructions,
including the definition of more elaborate semantic
forms (Hahn and Meurers, 2012). Finally, to bet-
ter model ILTs and the interactions found in activ-
ities and games, one can begin by modeling more
complex visual prompts. By using video description
tasks or story retell tasks, we can elicit more com-
plex narrative responses. This would allow us to
investigate the possibility of extending our current
approach to tasks that involve greater learner inter-
action.
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Abstract

We describe the NUS Corpus of Learner En-
glish (NUCLE), a large, fully annotated cor-
pus of learner English that is freely available
for research purposes. The goal of the cor-
pus is to provide a large data resource for the
development and evaluation of grammatical
error correction systems. Although NUCLE
has been available for almost two years, there
has been no reference paper that describes the
corpus in detail. In this paper, we address
this need. We describe the annotation schema
and the data collection and annotation process
of NUCLE. Most importantly, we report on
an unpublished study of annotator agreement
for grammatical error correction. Finally, we
present statistics on the distribution of gram-
matical errors in the NUCLE corpus.

1 Introduction

Grammatical error correction for language learners
has recently attracted increasing interest in the natu-
ral language processing (NLP) community. Gram-
matical error correction has the potential to cre-
ate commercially viable software tools for the large
number of students around the world who are
studying a foreign language, in particular the large
number of students of English as a Foreign Lan-
guage (EFL).

The success of statistical methods in NLP over
the last two decades can largely be attributed to
advances in machine learning and the availability
of large, annotated corpora that can be used to
train and evaluate statistical models for various NLP

tasks. The biggest obstacle for grammatical error
correction has been that until recently, there was no
large, annotated corpus of learner text that could
have served as a standard resource for empirical ap-
proaches to grammatical error correction (Leacock
et al., 2010). The existing annotated learner corpora
were all either too small or proprietary and not avail-
able to the research community. That is why we
decided to create the NUS Corpus of Learner En-
glish (NUCLE), a large, annotated corpus of learner
texts that is freely available for research purposes.
The corpus was built in collaboration with the Cen-
tre for English Language Communication (CELC)
at NUS. NUCLE consists of about 1,400 student es-
says from undergraduate university students at NUS
with a total of over one million words which are
completely annotated with error tags and correc-
tions. All annotations and corrections have been per-
formed by professional English instructors. To the
best of our knowledge, NUCLE is the first annotated
learner corpus of this size that is freely available for
research purposes. However, although the NUCLE
corpus has been available for almost two years now,
there has been no reference paper that describes the
details of the corpus. That makes it harder for other
researchers to start working with the NUCLE cor-
pus. In this paper, we address this need by giving a
detailed description of the NUCLE corpus, includ-
ing a description of the annotation schema, the data
collection and annotation process, and various statis-
tics on the distribution of grammatical errors in the
corpus. Most importantly, we report on an unpub-
lished study of annotator agreement for grammatical
error correction that was conducted prior to creating
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Figure 1: The WAMP annotation interface

the NUCLE corpus. The study gives some insights
regarding the difficulty of the annotation task.

The remainder of this paper is organized as fol-
lows. The next section explains the annotation
schema that was used for labeling grammatical er-
rors. Section 3 reports the results of the inter-
annotator agreement study. Section 4 describes the
data collection and annotation process. Section 5
contains the error statistics. Section 6 gives the re-
lated work, and Section 7 concludes the paper.

2 Annotation Schema

Before starting the corpus creation, we had to de-
velop a set of annotation guidelines. This was done
in a pilot study before the actual corpus was cre-
ated. Three instructors from CELC participated in
the pilot study. The instructors annotated a small set
of student essays that had been collected by CELC
previously. The annotation was performed using an
in-house, online annotation tool, called Writing, An-
notation, and Marking Platform (WAMP), that was
developed by the NUS NLP group specially for cre-
ating the NUCLE corpus. The annotation tool al-
lows the annotators to work over the Internet using
a web browser. Figure 1 shows a screen shot of the
WAMP interface. Annotators can browse through a
batch of essays that has been assigned to them and
perform the following tasks:

• Select arbitrary, contiguous text spans using the
cursor to identify grammatical errors.

• Classify errors by choosing an error tag from a
drop-down menu.

• Correct errors by typing the correction into a
text box.

• Comment to give additional explanations if
necessary.

We wanted to impose as few constraints as possi-
ble on the annotators and to give them an experience
that would closely resemble their usual marking us-
ing pen and paper. Therefore, the WAMP annotation
tool allows annotators to select arbitrary text spans,
including overlapping text spans.

After some annotation trials, we decided to use
a tag set which had been developed by CELC in
a previous study. Some minor modifications were
made to the original tag set based on the feedback
of the annotators. The result of the pilot study was
a tag set of 27 error categories which are grouped
into 13 categories. The tag set is listed in Table 1.
It is important to note that our annotation schema
not only labels each grammatical error with an error
category, but also requires an annotator to provide a
suitable correction for the error as well. The anno-
tators were asked to provide a correction that would
fix the grammatical error if the selected text span
containing the grammatical error is replaced with the
correction. If multiple alternative text spans could be
selected, the annotators were asked to select the min-
imal text span so that minimal changes were made to
arrive at the corrected text.

We chose to use the tag set in Table 1 since this
tag set was developed and used in a previous study
at CELC and was found to be a suitable tag set. Fur-
thermore, the tag set offers a reasonable compro-
mise in terms of its complexity. With 27 error cate-
gories, it is sufficiently fine-grained to enable mean-
ingful statistics for different error categories, yet not
as complex as other tag sets that are much larger in
size.

3 Annotator Agreement

How reliably can human annotators agree on
whether a word or sentence is grammatically cor-
rect? The pilot annotation project gave us the op-
portunity to investigate this question in a quantita-
tive analysis. Annotator agreement is also a mea-
sure for how difficult a task is and serves as a test of
whether humans can reliable perform the annotation
task with the given tag set. During the pilot study,
we randomly sampled 100 essays for measuring an-
notator agreement. These essays are part of the pilot
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Error Tag Error Category Description / Example
Verbs
Vt Verb Tense A university [had conducted — conducted] the survey

last year.
Vm Verb modal No one [will — would] bother to consider a natural bal-

ance.
V0 Missing verb This [may — may be] due to a traditional notion that

boys would be the main labor force in a farm family.
Vform Verb form Will the child blame the parents after he [growing —

grows] up?
Subject-verb agreement
SVA Subject-verb-agreement The boy [play — plays] soccer.
Articles/determiners
ArtOrDet Article or Determiner From the ethical aspect, sex selection technology should

not be used in [non-medical — a non-medical] situa-
tion.

Nouns
Nn Noun Number Sex selection should therefore be used for medical [rea-

son — reasons] and nothing else.
Npos Noun possessive The education of [mother’s — mothers] is a significant

factor in reducing son preference.
Pronouns
Pform Pronoun form 90% of couples seek treatment for family balancing rea-

sons and 80% of [those — them] want girls.
Pref Pronoun reference Moreover, children may find it hard to communicate with

[his/her — their] parents.
Word choice
Wcip Wrong colloca-

tion/idiom/preposition
Singapore, for example, has invested heavily [on — in]
the establishment of Biopolis

Wa Acronyms Using acronyms without explaining what they stand for.
Wform Word form Sex-selection may also result in [addition — additional]

stress for the family.
Wtone Tone [Isn’t it — Is it not] what you always dreamed for?
Sentence Structure
Srun Runons, comma splice [Do spare some thought and time, we can make a dif-

ference! — Do spare some thought and time. We can
make a difference!] (Should be split into two sentences)

Smod Dangling modifier [Faced — When we are faced ] with the unprecedented
energy crisis, finding an alternative energy resource has
naturally become the top priority issue.

Spar Parallelism The use of sex selection would prevent rather than [con-
tributing — contribute] to a distorted sex ratio.

Sfrag Fragment Although he is a student from the Arts faculty.
Ssub Subordinate clause It is the wrong mindset of people that boys are more su-

perior than girls [should — that should] be corrected.

Table 1: NUCLE error categories. Grammatical errors in the examples are printed in bold face in the form
[<mistake>— <correction>].
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Error Tag Error Category Description / Example
Word Order
WOinc Incorrect sentence form Why can [not we — we not] choose more intelligent and

beautiful babies?
WOadv Adverb/adjective position It is similar to the murder of many valuable lives [only

based — based only] on the couple’s own wish.
Transitions
Trans Link words/phrases In the process of selecting the gender of the child, ethical

problems arise [where — because] many innocent lives
of unborn fetuses are taken away.

Mechanics
Mec Punctuation, capitalization,

spelling, typos
The [affect — effect] of that policy has yet to be felt.

Redundancy
Rloc Local redundancy Currently, abortion is available to end a life only [because

of — because] the fetus or embryo has the wrong sex.
Citation
Cit Citation Poor citation practice.
Others
Others Other errors Any error that does not fit into any other category, but can

still be corrected.
Um Unclear meaning The quality of the passage is so poor that it cannot be

corrected.

Table 1: NUCLE error categories (continued)

data set and are not included in the official NUCLE
corpus. The essays were then annotated by our three
annotators in a way that each essay was annotated
independently by two annotators. Four essays had to
be discarded as they were of very poor quality and
did not allow for any meaningful correction. This
left us with 96 essays with double annotation.

Comparing two sets of annotation is complicated
by the fact that the set of annotations that corrects
an input text to a corrected output text is ambigu-
ous (Dahlmeier and Ng, 2012). In other words, it is
possible that two different sets of annotations pro-
duce the same correction. For example, one anno-
tator could choose to select a whole phrase as one
error, while the other annotator selects each word
individually. Our annotation guidelines ask annota-
tors to select the minimum span that is necessary to
correct the error, but we do not enforce any hard con-
straints and different annotators can have a different
perception of where an error starts or ends.

An especially difficult case is the annotation of
omission errors, for example missing articles. Se-
lecting a range of whitespace characters is difficult
for annotators, especially if the annotation tool is

web-based (as whitespace is variable in web pages).
We asked annotators to select the previous or next
word and include them into the suggested correc-
tion. To change conduct survey to conduct a sur-
vey, the annotator could change conduct to conduct
a, or change survey to a survey. If we only com-
pare the exact text spans selected by the annotators
when measuring agreement, these different ways to
select the context could easily cause us to conclude
that the annotators disagree when they in fact agree
on the corrected phrase. This would lead to an un-
derestimation of annotator agreement. To address
this problem, we perform a simple text span nor-
malization. First, we “grow” the selected context
to align with whitespace boundaries. For example,
if an annotator just selected the last character e of
the word use and provided ed as a correction, we
grow this annotation so that the whole word use is
selected and used is the correction. Second, we to-
kenize the text and “trim” the context by removing
tokens at the start and end that are identical in the
original and the correction. Finally, the annotations
are “projected” onto the individual tokens they span,
i.e., an annotation that spans a phrase of multiple to-
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Source : This phenomenon opposes the real .
Annotator A : This phenomenon opposes (the → ε (ArtOrDet)) (real → reality (Wform)) .
Annotator B : This phenomenon opposes the (real → reality (Wform)) .

Table 2: Example of a sentence from the annotator agreement study with annotations from two different annotators.

kens is broken up into multiple token-level annota-
tions. We align the tokens in the original text span
and the tokenized correction string using minimum
edit distance. Now, we can compare two annotations
in a more meaningful way at the token level. Table 2
shows a tokenized example sentence from the anno-
tator agreement study with annotations from two dif-
ferent annotators. Annotator A and B agree that the
first three words This, phenomenon, and opposes and
the final period are correct and do not need any cor-
rection. The annotators also agree that the word real
is part of a word form (Wform) error and should be
replaced with reality. However, they disagree with
respect to the article the: annotator A believes there
is an article error (ArtOrDet) and that the article has
to be deleted while annotator B believes that the ar-
ticle is acceptable in this position.

The example shows that annotator agreement can
be measured with respect to three different criteria:
whether there is an error, what type of error it is,
and how the error should be corrected. Accordingly,
we analyze annotator agreement under three differ-
ent conditions:

• Identification Agreement of tagged tokens re-
gardless of error category or correction.

• Classification Agreement of error category,
given identification.

• Exact Agreement of error category and correc-
tion, given identification.

In the identification task, we are interested to see
how well annotators agree on whether something is
a grammatical error or not. In the example above,
annotators A and B agree on 5 out of 6 tokens and
disagree on one token (the). That results in an identi-
fication agreement of 5/6 = 83%. In the classifica-
tion task, we investigate how well annotators agree
on the type of error, given that both have tagged the
token as an error. In the example, the classification
agreement is 100% as both annotator A and B tagged

the word real as a word form (Wform) error. Finally,
for the exact task, annotators are considered to agree
if they agree on the error category and the correction
given that they both have tagged the token as an er-
ror. In the example, the exact agreement is 100% as
both annotators give the same error category Wform
and the same correction reality for the word real. We
use the popular Cohen’s Kappa coefficient (Cohen,
1960) to measure annotator agreement between an-
notators. Cohen’s Kappa is defined as

κ =
Pr(a)− Pr(e)

1− Pr(e)
(1)

where Pr(a) is the probability of agreement and
Pr(e) is the probability of chance agreement. We
can estimate Pr(a) and Pr(e) from the double an-
notated essays through maximum likelihood estima-
tion. For two annotators A and B, the probability of
agreement is

Pr(a) =
#agreed tokens
#total tokens

(2)

where the number of agreed tokens is counted as de-
scribed above, and the total number of tokens is the
total token count of the subset of jointly annotated
documents. The probability of chance agreement is
computed as

Pr(e) = Pr(A = 1, B = 1) + Pr(A = 0, B = 0)
= Pr(A = 1)× Pr(B = 1)

+Pr(A = 0)× Pr(B = 0)

where Pr(A = 1) and Pr(A = 0) symbolize the
events of annotator A tagging a token as “error” or
“no error” respectively. We make use of the fact
that both annotators perform the task independently.
Pr(A = 1) and Pr(A = 0) can be computed
through maximum likelihood estimation.

Pr(A = 1) =
# annotated tokens of annotator A

# total tokens

Pr(A = 0) =
# unannotated tokens of annotator A

# total tokens
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Annotators Kappa-iden Kappa-class Kappa-exact
A – B 0.4775 0.6206 0.5313
A – C 0.3627 0.5352 0.4956
B – C 0.3230 0.4894 0.4246

Average 0.3877 0.5484 0.4838

Table 3: Cohen’s Kappa for annotator agreement.

The probabilities Pr(B = 1) and Pr(B = 0) are
computed analogously. The chance agreement for
this task is quite high, as the number of un-annotated
tokens is much higher than the number of annotated
tokens. Cohen’s Kappa coefficients for the three an-
notators and the average Kappa coefficient are listed
in Table 3. We observe that the Kappa scores are
relatively low and that there is a substantial amount
of variability in the Kappa coefficients; annotator A
and B show a higher agreement with each other than
they do with annotator C. According to Landis and
Koch (1977), Kappa scores between 0.21 and 0.40
are considered fair, and scores between 0.41 and
0.60 are considered moderate. The average Kappa
score for identification can therefore only be consid-
ered fair and the Kappa scores for classification and
exact agreement are moderate. Thus, an interesting
result of the pilot study was that annotators find it
harder to agree on whether a word is grammatically
correct than agreeing on the type of error or how it
should be corrected. The annotator agreement study
shows that grammatical error correction, especially
grammatical error identification, is a difficult prob-
lem.

Our findings support previous research on an-
notator agreement that has shown that grammati-
cal error correction is a challenging task (Tetreault
and Chodorow, 2008; Lee et al., 2009). Tetreault
and Chodorow (2008) report a Kappa score of 0.63
which in their words “shows the difficulty of this
task and also show how two highly trained raters
can produce very different judgments.” An interest-
ing related work is (Lee et al., 2009) which investi-
gates the annotation of article and noun number er-
rors. The annotation is performed with either a sin-
gle sentence context only or the five preceding sen-
tences. The agreement between annotators increases
when more context is given, from a Kappa score of
0.55 to a Kappa score of 0.60. Madnani et al. (2011)
and Tetreault et al. (2010) propose crowdsourcing to

overcome the problem of annotator variability.

4 Data Collection and Annotation

The main data collection for the NUCLE corpus
took place between August and December 2009. We
collected a total of 2,249 student essays from 6 En-
glish courses at CELC. The courses are designed for
students who need language support for their aca-
demic studies. The essays were written as course
assignments on a wide range of topics, like technol-
ogy innovation or health care. Some example ques-
tion prompts are shown in Table 4. All students are
at a similar academic level, as they are all undergrad-
uate students at NUS. Students would typically have
to write two essay assignments during a course. The
length of each essay was supposed to be around 500
words, although most essays were longer than the re-
quired length. From this data set, a team of 10 CELC
English instructors annotated 1,414 essays with over
1.2 million words between October 2009 and April
2010. Due to budget constraints, we were unfortu-
nately not able to perform double annotations for the
main corpus. Annotators were allowed to label an
error multiple times if the error could be assigned
to more than one error tag, although we observed
that annotators did not make much use of this option.
Minimal post-processing was done after the annota-
tion process. Annotators were asked to review some
corrections that appeared to contain annotation mis-
takes, for example redundancy errors that did not re-
move the annotated word. The final results of the
annotation exercise were a total of 46,597 error tags.
The essays and the annotations were released as the
NUCLE corpus through the NUS Enterprise R2M
portal in June 2011. The link to the corpus can be
found on the NUS NLP group’s website1.

5 NUCLE Corpus Statistics

This section provides basic statistics about the NU-
CLE corpus and the collected annotations. These
statistics already reveal some interesting insights
about the nature of grammatical errors in learner
text. In particular, we are interested in the follow-
ing questions: how frequent are errors in the NU-
CLE corpus and what are the most frequent error

1www.comp.nus.edu.sg/∼nlp/corpora.html
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“Public spending on the aged should be limited so that money can be diverted to other areas of the country’s develop-
ment.” Do you agree?
Surveillance technology such as RFID (radio-frequency identification) should not be used to track people (e.g., human
implants and RFID tags on people or products). Do you agree? Support your argument with concrete examples.
Choose a concept or prototype currently in research and development and not widely available in the market. Present
an argument on how the design can be improved to enhance safety. Remember to consider influential factors such as
cost or performance when you summarize and rebut opposing views. You will need to include very recently published
sources in your references.

Table 4: Example question prompts from the NUCLE corpus.

NUS Corpus of Learner English
Documents 1,414
Sentences 59,871
Word tokens 1,220,257
Word types 30,492
Error annotations 46,597
# of sentences per document 42.34
# of word tokens per document 862.98
# of word tokens per sentence 20.38
# of error annotations per document 32.95
# of error annotations per 100 word tokens 3.82

Table 5: Overview of the NUCLE corpus

categories? The basic statistics of the NUCLE cor-
pus are shown in Table 5. In these statistics, we
treat multiple alternative annotations for the same
error as separate errors, although it could be argued
that these should be merged into a single error with
multiple alternative corrections. Fortunately, only
about 1% of the errors are labeled with more than
one annotation. We can see that grammatical errors
are very sparse, even in learner text. In the NU-
CLE corpus, there are 46,597 annotated errors for
1,220,257 word tokens. That makes an error density
of 3.82 errors per hundred words. In other words,
most of the word tokens in the corpus are grammat-
ically correct. This shows that the students whose
essays were used for the corpus already have a rel-
ative high proficiency of English. When we look
at the distribution of errors across documents, we
can make another interesting observation. Figure 2
shows a histogram of the number of error annota-
tions per document. The distribution appears non-
Gaussian and is heavily skewed to the left with most
documents having less than 30 errors while some
documents have significantly more errors than the
average document. That means that although gram-
matical errors are rare in general, there are also doc-
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Figure 2: Histogram of error annotations per document
in NUCLE.

uments with many error annotations. 32 documents
have more than 100 error annotations and the highest
number of error annotations in a document is 194.
The mode, i.e., the most frequent value in the his-
togram, is 15 which is to the left of the average of
32.95. A similar pattern can be observed when we
look at the distribution of errors per sentence. Fig-
ure 3 shows a histogram of the number of error anno-
tations per sentence in the NUCLE corpus. For this
histogram, only the error annotations which start and
end within sentence boundaries are considered (this
accounts for 98.6% of all error annotations). Sen-
tence boundaries are determined automatically using
the NLTK Punkt sentence splitter2. The histogram
shows that 57.64% of all sentences have zero errors,
20.48% have exactly one error, and 10.66% have ex-
actly two errors, and 11.21% of all sentences have
more than two errors. Although the frequency de-
creases quickly for higher error counts, the highest
observed number of error annotations for a sentence
is 28.

2nltk.org
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Figure 3: Histogram of error annotations per sentence in
NUCLE.

The skewed distribution of errors in the NUCLE
corpus is an interesting observation. A possible ex-
planation for the long tail of the distribution could be
a “rich-get-richer” type of dynamics: if a learner has
made a lot of mistakes in her essay so far, the chance
of her making more errors in the remainder of the
essay increases, for example because she makes sys-
tematic errors which are likely to be repeated. Ex-
plaining the cognitive processes that produce the ob-
served error distribution is beyond the scope of this
paper, but it would certainly be an interesting ques-
tion to investigate.

So far, we have only been concerned with how
many errors learners make overall. But it is also
important to understand what types of errors lan-
guage learners make. Error categories that appear
more frequently should be addressed with higher
priority when creating an automatic error correction
system. Figure 4 shows a histogram of error cate-
gories. Again, we can observe a skewed distribu-
tion with a few error categories being very frequent
and many error categories being comparatively in-
frequent. The top five error categories are wrong
collocation/idiom/preposition (Wcip) with 7,312 in-
stances or 15.69% of all annotations, local redun-
dancies (Rloc) (6,390 instances, 13.71%), article or
determiner (ArtOrDet) (6,004 instances, 12.88%),
noun number (Nn) (3,955 instances, 8.49%), and
mechanics (Mec) (3,290 instances, 7.06%). These
top five error categories account for 57.83% of all er-
ror annotations. The next 5 categories are verb tense
(Vt) (3,288 instances, 7.06%) word form (Wform)
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Figure 4: Error categories histogram for the NUCLE cor-
pus.

(2,241 instances, 4.81%), subject-verb agreement
(SVA) (1,578 instances, 3.38%), other errors that
could not be grouped into any of the error categories
(1,532 instances, 3.29%), and Verb form (Vform)
(1,531, 3.29%). Together, the top 10 error cate-
gories account for 79.66% of all annotated errors.
A manual inspection showed that a large percentage
of the local redundancy errors involve articles that
are deemed redundant by the annotator and should
be deleted. These errors could also be considered
article or determiner errors. For the Wcip errors,
we observed that most Wcip errors are preposition
errors. This confirms that articles and prepositions
are the two most frequent error categories for EFL
learners (Leacock et al., 2010).

6 Related Work

In this section, we compare NUCLE with other
learner corpora. While there were almost no an-
notated learner corpora available for research pur-
poses until recently, non-annotated learner corpora
have been available for a while. Two examples are
the International Corpus of Learner English (ICLE)
(Granger et al., 2002) and the Chinese Learner En-
glish Corpus (Gui and Yang., 2003)3. Rozovskaya
and Roth (2010) annotated a portion of each of these
two learner corpora with error categories and correc-
tions. However, with 63,000 words, the annotated
data is small compared to NUCLE.

3The Chinese Learner English Corpus contains annotations
for error types but does not include corrections for the errors.
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The Cambridge Learner Corpus (CLC) (Nicholls,
2003) is possibly the largest annotated English
learner corpus. Unfortunately, to our knowledge,
the corpus is not freely available for research pur-
poses. A subset of the CLC was released in 2011
by Yannakoudakis et al. (2011). The released data
set contains short essays written by students taking
the First Certificate in English (FCE) examination.
The data set was also used in the recent HOO 2012
shared task on preposition and determiner correction
(Dale et al., 2012). Comparing the essays in the FCE
data set and NUCLE, we observe that the essays in
the FCE data set are shorter than the essays in NU-
CLE and show a higher density of grammatical er-
rors. One reason for the higher number of errors (in
particular spelling errors) is most likely that the FCE
data was not collected from take-home assignments
where students have the chance to spell check their
writing before submission. But it could also mean
that the essays in FCE are from students with a lower
proficiency in English compared to NUCLE. With
regards to the annotation schema, the CLC annota-
tions include both the type of error (missing, unnec-
essary, replacement, form) and the part of speech.
As a result, the CLC tag set is large with 88 differ-
ent error categories, far more than the 27 error cate-
gories in NUCLE.

Finally, the HOO 2011 shared task (Dale and Kil-
garriff, 2011) released an annotated corpus of frag-
ments from academic papers written by non-native
speakers and published in a conference or work-
shop of the Association for Computational Linguis-
tics. The corpus uses the annotation schema from
the CLC. Comparing the data set with NUCLE, the
HOO 2011 data set is much smaller (about 20,000
words for training and testing, respectively) and rep-
resents a specific writing genre (NLP papers). The
NUCLE corpus is much larger and covers a broader
range of topics.

7 Conclusion

We have presented the NUS Corpus of Learner En-
glish (NUCLE), a large, annotated corpus of learner
English. The corpus contains over one million
words which are completely annotated with gram-
matical errors and corrections. The NUCLE corpus
is freely available for research purposes. We have

also reported an inter-annotator agreement study for
grammatical error correction. The study shows that
grammatical error correction is a difficult task, even
for humans. The error statistics from the NUCLE
corpus show that learner errors are generally sparse
and have a long-tail distribution.

Acknowledgments

This research is supported by the Singapore Na-
tional Research Foundation under its International
Research Centre @ Singapore Funding Initiative
and administered by the IDM Programme Office.

References

J. Cohen. 1960. A coefficient of agreement for nominal
scales. Educational and Psychological Measurement,
20(1):37–46.

D. Dahlmeier and H.T. Ng. 2012. Better evaluation for
grammatical error correction. In Proceedings of HLT-
NAACL, pages 568–572.

R. Dale and A. Kilgarriff. 2011. Helping Our Own:
The HOO 2011 pilot shared task. In Proceedings of
the Generation Challenges Session at the 13th Eu-
ropean Workshop on Natural Language Generation,
pages 242–249.

R. Dale, I. Anisimoff, and G. Narroway. 2012. HOO
2012: A report on the preposition and determiner error
correction shared task. In Proceedings of the Seventh
Workshop on Innovative Use of NLP for Building Ed-
ucational Applications, pages 54–62.

S. Granger, F. Dagneaux, E. Meunier, and M. Paquot.
2002. The International Corpus of Learner English.
Presses Universitaires de Louvain, Louvain-la-Neuve,
Belgium.

S. Gui and H. Yang. 2003. Zhongguo Xuexizhe Yingyu
Yuliaohu (Chinese Learner English Corpus). Shang-
hai Waiyu Jiaoyu Chubanshe. In Chinese.

J.R. Landis and G.G Koch. 1977. The measurement of
observer agreement for categorical data. Biometrics,
33(1):159–174.

C. Leacock, M. Chodorow, M. Gamon, and J. Tetreault.
2010. Automated Grammatical Error Detection for
Language Learners. Morgan & Claypool Publishers.

J. Lee, J. Tetreault, and M. Chodorow. 2009. Human
evaluation of article and noun number usage: Influ-
ences of context and construction variability. In Pro-
ceedings of the Linguistic Annotation Workshop III
(LAW3), pages 60–63.

30



N. Madnani, J. Tetreault, M. Chodorow, and R. Ro-
zovskaya. 2011. They can help: using crowdsourc-
ing to improve the evaluation of grammatical error de-
tection systems. In Proceedings of ACL:HLT, pages
508–513.

D. Nicholls. 2003. The Cambridge learner corpus: Error
coding and analysis for lexicography and ELT. In Pro-
ceedings of the Corpus Linguistics 2003 Conference,
pages 572–581.

A. Rozovskaya and D. Roth. 2010. Annotating ESL er-
rors: Challenges and rewards. In Proceedings of the
Fifth Workshop on Innovative Use of NLP for Building
Educational Applications, pages 28–36.

J. Tetreault and M. Chodorow. 2008. Native judgments
of non-native usage: Experiments in preposition error
detection. In Proceedings of the Workshop on Human
Judgements in Computational Linguistics, pages 24–
32.

J. Tetreault, E. Filatova, and M. Chodorow. 2010. Re-
thinking grammatical error annotation and evaluation
with the Amazon Mechanical Turk. In Proceedings
of the Fifth Workshop on Innovative Use of NLP for
Building Educational Applications, pages 45–48.

H. Yannakoudakis, T. Briscoe, and B. Medlock. 2011.
A new dataset and method for automatically grading
ESOL texts. In Proceedings of ACL:HLT, pages 180–
189.

31



Proceedings of the Eighth Workshop on Innovative Use of NLP for Building Educational Applications, pages 32–41,
Atlanta, Georgia, June 13 2013. c©2013 Association for Computational Linguistics

Developing and testing
a self-assessment and tutoring system

Øistein E. Andersen
iLexIR

Streets, 62 Hills Road
Cambridge, CB2 1LA
and@ilexir.co.uk

Helen Yannakoudakis
Cambridge English

1 Hills Road
Cambridge, CB1 2EU
yannakoudakis.h

@cambridgeenglish.org

Fiona Barker
Cambridge English

1 Hills Road
Cambridge, CB1 2EU

barker.f

Tim Parish
iLexIR

Streets, 62 Hills Road
Cambridge, CB2 1LA
tim@ilexir.co.uk

Abstract

Automated feedback on writing may be a use-
ful complement to teacher comments in the
process of learning a foreign language. This
paper presents a self-assessment and tutoring
system which combines an holistic score with
detection and correction of frequent errors and
furthermore provides a qualitative assessment
of each individual sentence, thus making the
language learner aware of potentially prob-
lematic areas rather than providing a panacea.
The system has been tested by learners in
a range of educational institutions, and their
feedback has guided its development.

1 Introduction

Learning to write a foreign language well requires
a considerable amount of practice and appropriate
feedback. Good teachers are essential, but their time
is limited. As recently shown in a study by Wang et
al. (in press) conducted amongst first-year students
of English at a Taiwanese university, automated
writing evaluation can lead to increased learner au-
tonomy and higher writing accuracy. In this pa-
per, we investigate the merits of a self-assessment
and tutoring (SAT) system specifically aimed at in-
termediate learners of English, at around B2 level
in the Common European Framework of Reference
for Languages (CEFR) (Council of Europe, 2001).
There are a large number of students at this level,
and they should have sufficient knowledge of the
language to benefit from the system whilst at the
same time committing errors which can be identified
reliably.

The system provides automated feedback on
learners’ writing at three different levels of gran-
ularity: an overall assessment of their proficiency,
a score for each individual sentence, highlighting
well-written passages as well as ones requiring more
work, and specific comments on local issues includ-
ing spelling and word choice.

Computer-based writing tools have been around
for a long time, with Criterion (Burstein et al., 2003,
which also provides a number of features for teach-
ers) and ESL Assistant (Gamon et al., 2009, not
currently available) aimed specifically at second-
language learners, but the idea of indicating the rel-
ative quality of different parts of a text (sentences in
our case) has, to the best of our knowledge, not been
implemented previously. This kind of non-specific
feedback does not provide a precise diagnosis or im-
mediate cure, but might have the advantage of fos-
tering learning.

In addition to describing the SAT system itself, we
present a series of three trials in which learners of
English in a number of educational contexts used the
system as a tool to work on written responses to spe-
cific tasks and improve their writing skills.

2 System

The SAT system is made available to students learn-
ing English as a Web service to which they can
sign up with a code (‘class key’) provided by their
teacher. Once they have filled in a short demo-
graphic questionnaire, the users can respond to one,
two, three or more writing tasks. The students can
save their work at any time and ask the system to
assess the current version of their text, which will
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Figure 1: SAT system screen where students can see the automated feedback and revise their piece of writing. The
‘score feedback’ and ‘error feedback’ views are shown in Figures 2 and 3.

give feedback as shown in Figure 1 and described
in more detail in the following subsections. Assess-
ment times are currently around 15sec, which facil-
itates incremental and exploratory editing of a text
to improve it, giving the students the ability to try
out different ways of correcting a problematic turn
of phrase. The teacher can see which students have
signed up and look at the last saved version of their
responses. Finally, the students are asked to answer
a few questions about their experience with the sys-
tem.

2.1 Text assessment

The SAT system provides an overall assessment of
someone’s proficiency by automatically analysing
and scoring the text as a whole. There is a large
body of literature with regard to automated text scor-
ing systems (Page, 1968; Rudner and Liang, 2002;

Attali and Burstein, 2006; Briscoe et al., 2010). Ex-
isting systems, overviews of which have been pub-
lished in various studies (Dikli, 2006; Williamson,
2009; Shermis and Hamner, 2012), involve a large
range of techniques, such as discriminative and gen-
erative machine learning, clustering algorithms and
vectorial semantics, as well as syntactic parsers.

We approach automated text assessment as a su-
pervised machine learning problem, which enables
us to take advantage of existing annotated data. We
use the publically-available First Certificate in En-
glish (FCE) dataset of upper-intermediate learner En-
glish (Yannakoudakis et al., 2011) and focus on as-
sessing general linguistic competence. Systems that
measure English competence directly are easier and
faster to deploy, since they are more likely to be re-
usable and generalise better across different genres
than topic-specific ones, which are not immediately
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usable when new tasks are added, since the model
cannot be applied until a substantial amount of man-
ually annotated responses have been collected for a
specific prompt.

Following previous research, we employ discrim-
inative ranking, which has been shown to achieve
state-of-the-art results on the task of assessing
free-text writing competence (Yannakoudakis et al.,
2011). The underlying idea is that high-scoring texts
(or ‘scripts’) should receive a higher rank than low-
scoring ones. We train a linear ranking perceptron
(Bös and Opper, 1998) on features derived from pre-
vious work (namely, lexical and grammatical prop-
erties of text) and compare it to our previous model
(Yannakoudakis et al., 2011), which is trained using
ranking Support Vector Machines (Joachims, 2002).
Our new perceptron model achieves 0.740 and 0.765
Pearson product-moment (r) and Spearman’s rank
correlation coefficient (ρ) respectively between the
gold and predicted scores; this is comparable to
our previous SVM model, which achieves 0.741 and
0.773, and the differences are not significant.

In order to provide scoring feedback1 based on
the predictions of our model, we use visual presen-
tations. Visualisation techniques allow us to go be-
yond the mere display of a number, can stimulate the
learners’ visual perceptions, and, when used appro-
priately, information can be displayed in an intuitive
and easily interpretable way. Furthermore, aesthet-
ics in computer-based interfaces have been shown to
have an effect on the users. For example, Ben-Bassat
et al. (2006) have found an interdependence between
perceived aesthetics and usability in questionnaire-
based assessments, and have shown that users’ pref-
erences are not necessarily based only upon perfor-
mance; aesthetics also play a role.

More specifically, we assign an overall score on
a scale from red for a text that looks like it may be
at intermediate level or below to green for a text that
shows some evidence of being at upper-intermediate
level (the level assessed by the FCE exam) or above
(i.e., advanced). This is illustrated in Figure 1 below
the Overall score section, where an arrow is used to
indicate the level of text quality on a colour gradient
defined by the two extreme points, red and green.

1Note that ranks can be transformed to scores through linear
regression, while correlation remains unaltered as it is invariant
to linear transformations.

A text with the highest score possible would indi-
cate that the learner has potentially shown evidence
of being at a level higher than that assessed by FCE,
the latter, of course, being dependent on the extent
to which higher-order linguistic skills are elicited by
the prompts. On the contrary, a very low score in-
dicates poor linguistic abilities corresponding to a
lower level.

Although exams that encompass the full range of
language proficiency exhibited at different stages of
learning are hard to design, the FCE exam, bench-
marked at the B2 level and reserving some of its
score range for performances beneath and beyond,
allows us to roughly estimate someone’s proficiency
as being far below, just below, around or above an
upper intermediate level. The task of predicting at-
tainment levels has recently started to receive atten-
tion (Dickinson et al., 2012; Hawkins and Filipović,
2012).

2.2 Sentence evaluation

The second component of the SAT system automat-
ically assesses and scores the quality of individual
sentences, independently of their context. The chal-
lenge of assessing intra-sentential quality lies in the
limited linguistic evidence that can be extracted au-
tomatically from relatively short sentences for them
to be assessed reliably, in addition to the difficulty
in acquiring annotated data, since rating a response
sentence by sentence is not something examiners
typically do and would therefore require an addi-
tional and expensive manual annotation effort.

Previous work has primarily focused on automatic
content scoring of short answers, ranging from a few
words to a few sentences (Pulman and Sukkarieh,
2005; Attali et al., 2008; Mohler et al., 2011; Ziai
et al., 2012). On the other hand, scoring of individ-
ual sentences with respect to their linguistic quality,
specifically in learner texts, has received consider-
ably less attention. Higgins et al. (2004) devised
guidelines for the manual annotation of sentences in
learner texts, and evaluated a rule-based approach
that classifies sentences with respect to clarity of ex-
pression based on grammar, mechanics and word us-
age errors; however, their system performs binary
classification, whereas we are focusing on scoring
sentences. Writing instruction tools, such as Crite-
rion (Burstein et al., 2003), give advice on stylistic
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and organisational issues and automatically detect a
variety of errors in the text, though they do not ex-
plicitly allow for an overall evaluation of sentences
with respect to various writing aspects. The latter,
used in combination with an error feedback compo-
nent (see Section 2.3), can be a useful instrument
informing learners about the severity of their mis-
takes; for example, although sentences may contain
some errors, they may still maintain a certain level
of acceptability that does not impede communica-
tion. Moreover, indicating problematic regions may
be better from a pedagogic point of view than detect-
ing and correcting all errors identified in the text.

To date, there is no publically available annotated
dataset consisting of sentences marked with a score
representing their linguistic quality. Manual annota-
tion is typically expensive and time-consuming, and
a certain amount of annotator training is generally
required. Instead, we exploit already available an-
notated data – scores and error annotation in the FCE

dataset – and evaluate various approaches, two of
which are: a) to use the script-level model (see Sec-
tion 2.1) to predict sentence quality scores, and b) to
use the script-level score divided by the total num-
ber of (manually annotated) errors in a sentence as
pseudo-gold labels to train a sentence-level model.

As the models above are expected to contain a cer-
tain amount of noise, it is imperative that we iden-
tify evaluation measures that are indicative of our
application – that is, assign higher scores to high-
quality sentences compared to low-quality ones –
and not only depend on the labels they have been
trained on. More specifically, we use correlation
with pseudo-gold scores (rg and ρg; not applicable
to the script-level model), correlation with the script-
level scores by first averaging predicted sentence-
level scores (rs and ρs), correlation with error counts
(re and ρe), average precision (AP) and pairwise ac-
curacy. AP is a measure used in information retrieval
to evaluate systems that return a ranked list of doc-
uments. Herein, sentences are ranked by their pre-
dicted scores, precision is calculated at each correct
sentence (that is, containing no errors), and aver-
aged over all correct sentences (in other words, we
treat sentences with no errors as the ‘relevant doc-
uments’). Pairwise accuracy is calculated based on
the number of times the corrected sentence (avail-
able through the error annotation in the FCE dataset)

is ranked higher than the original one written by the
candidate, ignoring sentences without errors. Corre-
lation with error counts, average precision and pair-
wise accuracy are particularly important as they re-
flect more directly the extent to which good and bad
sentences are discriminated. Again, in both cases,
we employ a linear ranking perceptron.

We conducted a series of experiments on a sep-
arate development set to evaluate the performance
of features beyond the ones used in the script-level
model. The final results, reported in Table 1, are
calculated on the FCE test set (Yannakoudakis et al.,
2011).

Our best configuration is model b, which achieves
the highest results according to most evaluation
measures with a feature space consisting of 1) er-
ror counts identified through the absence of word
trigrams in a large background corpus, 2) phrase-
structure rules, 3) presence of frequent errors, as
well as the number of words defining an error, as
described in Section 2.3, 4) the presence of main
verbs, nouns, adjectives, subordinating conjuctions
and adverbs, 5) affixes and 6) the presence of clausal
subjects and modifiers. The texts were parsed using
RASP (Briscoe et al., 2006).

Model a, the script-level model, does not work as
well at the sentence level. However, it does perform
better when evaluated against script-level scores (rs
and ρs), and this is expected given that it is trained
directly on gold script-level scores. On the other
hand, this evaluation measure is not as indicative of
good performance in our application as the others,
as it does not take into account the varying quality
of individual sentences within a script.

Training the script-level model with different fea-
ture sets (including those utilised in the sentence-
level model) did not yield an improvement in per-
formance (the results are omitted due to space re-
strictions). Additional experiments were conducted
to investigate the effect of training the sentence-level
model with different pseudo-gold labels (e.g., addi-
tive/subtractive pseudo-gold scores rather than divi-
sive/multiplicative), but the results are not reported
here as the difference in performance was not sub-
stantial.

Table 1 shows that better performance can be
achieved with our pseudo-gold labels, used to train
a model at the sentence level, rather than gold la-
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Model a Model b
rg — 0.550
ρg — 0.646
rs 0.572 0.385
ρs 0.578 0.301
re –0.111 –0.750
ρe –0.078 –0.702
AP 0.393 0.747
Pairwise
Correct 0.608 0.703
Incorrect 0.359 0.204

Table 1: Results on the FCE test set for the script-level
model (a) and our model (b).

bels at the script level. To evaluate this further,
we trained a sentence-level model using the script-
level scores as labels (that is, sentences within the
same script are all assigned the same label/score).
However, this did not improve performance (again,
the results are omitted due to space restrictions).
We also point out that the best-performing feature
space (described above) is based on text properties
that are more likely to be present in relatively short
sentences (e.g., the presence of main verbs), com-
pared to those used for script-level models in previ-
ous work (Yannakoudakis et al., 2011), such as word
and part-of-speech bigrams and trigrams, which may
be too sparse for a sentence-level model.

Analogously to what we did to present the over-
all score, we developed a sentence score feedback
view to indicate the general quality of the sentences,
as given by our best model, by highlighting each of
them with a background colour ranging from green
for a well-written sentence, via yellow and orange
for a sentence which the system thinks is accept-
able, to dark orange and red for a sentence which
may have a few problems. Figure 2 shows how the
SAT system evaluates and colour-codes a few au-
thentic student-written sentences containing errors,
as well as their corrected counterparts based on the
error-coding in the FCE test set. Overall, the system
correctly identifies correct and incorrect versions of
each sentence, attributing a higher score (greener
colour) to the corrected sentence in each pair.

2.3 Word-level feedback

Basic spelling checkers have been around since the
1970s and grammar checkers since the 1980s (Ku-
kich, 1992), but misleading ‘corrections’ may be be-
wildering (Galletta et al., 2005), and the systems do
not always focus on the kinds of error frequently
committed, even less so in the case of learners as
was pointed out early on by Liou (1992), who tested
commercial grammar checkers on and developed a
system for detecting common errors in Taiwanese
learners’ writing.

For word-level feedback within the SAT system,
we have implemented a method similar to one we
have used earlier in the context of pre-annotation of
learner corpora (Andersen, 2011). To ensure high
precision and good coverage of local errors typi-
cally committed by learners, error rules are gen-
erated from the Cambridge Learner Corpus (CLC)
(Nicholls, 2003) to detect word unigrams, bigrams
and trigrams which have been annotated as incorrect
at least five times and at least ninety per cent of the
times they occur. This way, rules can be extracted
from the existing error annotation in the corpus,
obviating the need for manually constructed mal-
rules, although the rules obtained by the two differ-
ent methods may to some extent be complementary.
In addition to corpus-derived rules, many classes of
incorrect but plausible derivational and inflectional
morphology are detected by means of rules derived
from a machine-readable dictionary. Many mistakes
are still not detected, but precision has been found to
be more important in terms of learning effect (Na-
gata and Nakatani, 2010), and errors missed by this
module will often give lower sentence scores.

Figure 3 illustrates some types of error detected
by the system. The feedback text is generated from
a small number of templates corresponding to differ-
ent categories of error marked up in the CLC.

We are currently working on extending this part
of the system with more general rules in addition to
word n-grams, e.g., part-of-speech tags and gram-
matical relations, in order to detect more errors with-
out loss in precision.

3 Trials

After the SAT system had been developed, a series
of trials were set up in order to test the online sys-

36



Figure 2: Examples of correct sentences (top) and incorrect ones (bottom) colour-coded by the SAT system.

Figure 3: The error feedback view identifies specific words that may have been used incorrectly. Explanations and
suggested corrections are provided in a separate column. The system actually proposes two different corrections for
and etc., namely etc. and and so on; the user will have to choose one or the other. The confusion between the verb see
and the noun sea is identified, but the the is not actually unnecessary; in this case, the system has been led astray by
the surrounding errors.

tem and to collect feedback from language learners
and their teachers in a variety of contexts. Three tri-
als were undertaken in November 2012, December
2012 and in March 2013, with changes made to the
system between each pair of trials.

English Profile Network member institutions
were contacted who had access to language learners
and who had previously participated in data collec-
tion for the English Profile Programme2. Teachers at
universities, secondary schools and private language
schools signed up for two or more trials so that their
learners could use and provide feedback on several
iterations of the SAT system. Certificates of partici-

2See www.englishprofile.org

pation were offered to encourage involvement in the
trials.

Ten institutions were involved from nine coun-
tries, namely Belgium, the Czech Republic, France,
Lithuania, Poland, Romania, Russia, Slovakia and
Spain. Eight universities, one secondary school and
one private language school were represented, in-
cluding specialist and generalist institutions of ed-
ucational sciences, agricultural science, veterinary
medicine and foreign languages. Each trial had be-
tween 4 and 8 institutions taking part, and each in-
stitution participated in two or three trials with many
students undertaking more than one trial.

All students who took part in the trials, over 450
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in total, were expected to be at or above the upper-
intermediate (CEFR B2) level as this was the level at
which the SAT system was designed to function.

Three initial sets of tasks were developed for the
planned system trials, each set consisting of three
short written prompts which asked the users to write
on a specified topic for a particular purpose, for ex-
ample:

Daily life

Your English class is going to make a
short video about daily life in your town.
Write a report for your teacher, suggest-
ing which activities should be filmed, and
why.

Tasks were based on retired questions from an in-
ternational proficiency test at B2 level of the CEFR.
Each task was given a short name which was shown
in the SAT system in order for the users to select the
most interesting or relevant task for themselves.

A short set of instructions was produced for both
teachers and students which was emailed to the main
contact in each institution and passed on to their col-
leagues, teachers and students who were interested
in taking part in the trial.

The trials operated as follows:

• The main institutional contact receives an invi-
tation to participate in the trials.

• Interested institutions receive instructions and
confirm the number of class keys required
(sign-up codes for the system).

• Main contact and teachers at each institution
log in and work through the system as if they
are a language learner, by completing a demo-
graphic questionnaire, writing 1–3 tasks which
are assessed by the system, and finally complet-
ing a short user satisfaction questionnaire.

• Students work through the SAT system either
with the support of their teacher in class or re-
motely.

3.1 SAT system usage
During Trial 1, on the busiest day there were 155
submissions and the highest number of users on
a single day was 32. These figures indicate that

Revisions Count
1 292
2 272
3 142
4 78
5 50
6 28
7 15
8 25
9 11

10 14
11–15 21
16–20 6
20– 5

Table 2: Number of revisions per task response.

all users were submitting their work for assessment
more than once, which suggests that the system is
being used in an iterative fashion as envisaged. Dur-
ing Trial 2, the busiest day saw more than twice as
many submissions as during the first trial (442), and
the most people online on any one day almost dou-
bled to 62. Across both trials we collected around
3000 submissions in total, including revisions; the
average number of revisions for a submitted piece
of writing is 3.2 with the highest figure being 54
revisions (see Table 2 for details). This suggests
that some users write their first response, then make
changes to one word or phrase at a time, resulting in
such a large number of revisions. When more than
one revision has been submitted, the score given by
the system to the last revision is higher than that
given to the initial revision in over 80% of the cases.
Current changes to the system allowing system ad-
ministrators to check on intermediate versions of
submitted texts are underway.

3.2 Feedback
In addition to looking at the writing submitted by
users of the system, there was both numerical and
written feedback available to the system developers.
This was used to suggest changes to the system at
subsequent trials.

As can be seen from Table 3, user satisfaction
scores were generally high and increased from Trial
1 to Trial 2. In the first pilot, the written feed-
back from instructors was generally positive whilst

38



Trial 1 Trial 2
Using the SAT system helps me to write better in English. 3.80 3.92
I find the SAT system useful for understanding my mistakes. 3.74 3.96
I think the sentence colouring is useful. 3.74 4.15
I think the word-level information [error feedback] is useful. 3.86 4.12
The SAT system is easy to use. 4.45 4.49
The feedback on my writing is clear. 3.80 3.93
If you have used the SAT system before, has it improved since the last time? 3.86

Table 3: Average feedback scores on a scale from 1 (strongly disagree) to 5 (strongly agree).

the learner feedback was mixed, especially when it
comes to sentence evaluation:

In summary, I liked this system, because
the sentence colouring suggests me to
think about my writing style, mistakes,
what I should improve, change. This sys-
tem is not like a teacher, who checks all
our errors, but makes us develop our crit-
ical thinking, which is the most important
for writing especially. [...]

It’s okay the way of colouring system, the
problem is that it doesn’t tell you specifi-
cally what’s wrong with constructions so
you have think what you failed.

The fact that the system provides almost immediate
feedback has been appreciated:

I like that the paragraphs which I wrote
assesed so quickly. . . . Secondly, I really
like that student can correct his text till it
gets ideal.

Users have also made suggestions for improve-
ments, which have been essential for deciding which
parts of the system should be developed further.

3.3 System changes
As a result of feedback and the team’s extensive use
of the system, after each trial changes were made
both to the on-screen experience and behind the
scenes. After Trial 1, the system was amended to
enable users to see paragraph breaks in the corrected
version (which before had not been shown in the as-
sessed view of the text). There was also a new error
view with permanently visible explanations and ex-
amples and an additional question on the feedback
questionnaire which asked whether users felt the

Words Count
0– 99 540

100–199 1,294
200–299 928
300–399 201
400–499 67
500–999 26

1,000– 36

Table 4: Number of words per submission.

system had improved since the previous time they
used it. Behind the scenes, the server was upgraded
to cope with anticipated demand and code was writ-
ten so that administrators could review statistics on
usage.

At the time of writing the third SAT system trial
was underway. In the first two trials the total number
of words collected was over 600,000 with an average
response length of around 1100 characters or 200
words. Encouragingly, there were many longer re-
sponses including twelve over 1080 words in length
and the longest written to date is 1773 words. These
figures indicate that the system is not restrictive, but
encourages and inspires students to write. Table 4
gives an overview of the script length distribution.

Following two successful trials, the third trial
aimed to involve new and existing users and to pro-
vide more detailed teacher feedback.

4 Conclusions

In this paper, we described a tool that provides feed-
back to learners of English at three different levels
of granularity: an overall assessment of their profi-
ciency, assessment of individual sentences, and di-
agnostic feedback on local issues including spelling
and word choice. We argued that the use of visual-
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isation techniques is important, as they allow us to
go beyond the mere display of a number, can stimu-
late the learners’ visual perceptions, and can display
information in an intuitive and easily interpretable
way. The usefulness and usability of the tool as a
whole, as well as of its components, was confirmed
through questionnaire-based evaluations, where, for
example, the perceived usefulness of the sentence
colouring received an average of 4.15 on a 5-point
scale.

The first component of the SAT system, script-
level assessment, uses a machine learner to predict
a score for a text and roughly estimate someone’s
proficiency level based on lexical and grammatical
features. The second component allows for an auto-
matic evaluation of the linguistic quality of individ-
ual sentences. We proposed a method for generat-
ing sentence-level scores, which we use for training
our model. Using this method, we were able to learn
what features can be used to evaluate linguistic qual-
ity of (relatively short) sentences. Indicating prob-
lematic regions via highlighting of sentences may be
better from a pedagogic point of view than detecting
and correcting all errors identified in the text. The
third component automatically provides diagnostic
feedback on local errors with high precision on the
basis of a few templates, without relying on manu-
ally crafted rules.

The trials undertaken so far have improved the
functionality of the system in regard to what is on
offer to teachers and their students, but they have
also provided the basis for further research and de-
velopment to enhance the system’s functionality and
design and move towards wider deployment. We
plan to continue improving the methodologies used
for providing feedback to learners, as well as adding
further functionality, such as L1-specific feedback.
Another logical next step would be to continue to-
wards lower levels of granularity, moving from the
sentence as the unit of assessment to clauses and
phrases, which may be particularly beneficial for
more advanced language users who write longer and
more complex sentences.
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Abstract

We present the first system developed for auto-
mated grading of high school essays written in
Swedish. The system uses standard text qual-
ity indicators and is able to compare vocabu-
lary and grammar to large reference corpora of
blog posts and newspaper articles. The system
is evaluated on a corpus of 1 702 essays, each
graded independently by the student’s own
teacher and also in a blind re-grading process
by another teacher. We show that our system’s
performance is fair, given the low agreement
between the two human graders, and further-
more show how it could improve efficiency in
a practical setting where one seeks to identify
incorrectly graded essays.

1 Introduction

Automated Essay Scoring (AES) is the field of auto-
matically assigning grades to student essays (Sher-
mis and Burstein, 2003; Dikli, 2006).

Previous work on AES has primarily focused on
English texts, and to the best of our knowledge no
AES system for Swedish essays has been published.
We exploit some peculiarities of the Swedish lan-
guage, such as its compounding nature, to design
new features for classification. We also use con-
structions in the shape of hybrid n-grams (Tsao and
Wible, 2009) extracted from large corpora in the
classification.

Earlier results from this work have been presented
in the B.A. thesis of Smolentzov (2013), where fur-
ther details can be found. Source code, a trained
model as well as an on-line version of our tool are

available from the website of the Department of Lin-
guistics.1 Due to legal restrictions, we are currently
unable to publish the corpus of essays used for train-
ing the model and in our evaluation. While this is
very regrettable, there are so far no suitable training
corpora available for Swedish that are publicly avail-
able. We hope in the future to be able to produce an
anonymized version of the corpus, to be shared with
other researchers.

2 Data

We use a corpus of essays from the essay writing
part of the Swedish high school national exams in
Swedish.2 These were collected using random sam-
pling by Hinnerich et al. (2011), who had them dig-
itized, anonymized, and re-graded by high school
teachers experienced with grading the national ex-
ams. The essays were originally graded by the stu-
dent’s own teacher. In total, 1 702 essays have all the
information we require: digitized text and the two
grades. The size of the corpus is 1 116 819 tokens,
or an average of 656 per essay. The essays have
been automatically annotated with lemma and part
of speech (PoS) information using Stagger (Östling,
2012).

There are four grades: IG (fail), G (pass), VG
(pass with distinction) and MVG (excellent). Hin-
nerich et al. (2011) found that the agreement be-
tween the two human graders is rather low, and in
the set of essays used in this study only 780 (45.8%)
of the 1 702 essays received the same grade by both

1http://www.ling.su.se/aes
2Course Svenska B, fall 2005/spring 2006.
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Teacher
IG G VG MVG Sum

B
lin

d
gr

ad
er IG 74 147 50 5 276

G 68 437 293 55 853
VG 12 136 223 75 446
MVG 1 25 55 46 127
Sum 155 745 621 181 1 702

Table 1: Confusion matrix for the grades assigned by the
students’ own teachers, and during the blind re-grading
process. In total, 780 essays (45.8%) are assigned the
same grade. Linear weighted κ = 0.276

graders. In 148 cases (8.7%), the grade difference
was more than one step.

In Table 1, we can clearly see that the blind
graders’ grades are generally lower. The disagree-
ment is also more severe for the grades at the ex-
tremes of the scale.

It is important to note that the grading guide-
lines for the national exams do not focus exclu-
sively on the quality of the language used, but rather
on the ability of the student to produce a coher-
ent and convincing argument, understanding and re-
lating to other texts, or describing personal experi-
ences. Some work has been carried out using high-
level features in automated essay scoring. Milt-
sakaki and Kukich (2004) use some manual anno-
tation to explore the role of coherence, and Attali
and Burstein (2005) automatically analyze the over-
all structure of essays. Others take the contents of
essays into account (Landauer et al., 2003), which
is suitable for essay questions in non-language sub-
jects.

We will, however, focus on form rather than con-
tent. One important reason for this is that our cor-
pus of essays is spread out over 19 different topics
(in several cases with as few as 20–30 essays each),
where the type of text expected can vary consider-
ably between topics.

3 Methods

We use a supervised machine learning approach,
based on a Linear Discriminant Analysis classifier in
the implementation of Pedregosa et al. (2011). Each
essay is represented by a feature vector, whose con-
tents we will describe in some detail in the following
sections.

It is important to note that we are using corre-
lations between grade and different features of the
text, but the relationship between these features and
the qualities of the essay on which the grade should
be based may be complex. As a cautionary tale, we
could mention that vocabulary related to cell phones
was found to correlate strongly with essay grade. It
turned out that poor students showed a strong pref-
erence for one of the given essay topics, which hap-
pened to center around cell phones. In the field of
AES, it is particularly important to keep in mind that
correlation does not imply causation.

3.1 Simple features

We use a number of features that may be directly
measured from the text. These are presented be-
low, roughly in decreasing order of correlation with
essay grade. Most of the features have been dis-
cussed in previous literature on AES (Attali and
Burstein, 2005), and specifically in the context of
Swedish high school essays by Hultman and West-
man (1977). Some further features that did not con-
tribute much to grading accuracy were tried, but will
be omitted from this discussion.

Text length Since the essays are composed in a
classroom setting with a fixed amount of time allot-
ted (five hours), a student’s fluency in writing is di-
rectly mirrored in the length of an essay, which be-
comes the feature that most strongly correlates with
grade. While one might want to exclude the length
from consideration in the grading process, it is im-
portant to keep this correlation in mind since other
measures may correlate with length, and therefore
indirectly correlate with essay grade without con-
tributing any new information.

Average word length The average number of let-
ters per word also correlates with grade but only
weakly with the length (in words). It does however
correlate strongly with the distribution of parts of
speech, primarily pronouns (which tend to be short)
and nouns (which tend to be long, particularly since
Swedish is a compounding language).

OVIX lexical diversity measure OVIX (Hult-
man, 1994) was in fact developed for the very
purpose of analyzing lexical diversity in Swedish
high school essays, and has been found to correlate
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strongly with grade in this setting. At the same time,
the measure is mostly independent of text length.

OVIX = log ntokens/

(
2−

log ntypes

log ntokens

)
Part of speech distribution The relative frequen-
cies of different parts of speech also correlate with
essay grade, although more weakly so than the re-
lated measure of average word length.

3.2 Corpus-induced features

While the size our corpus of graded student essays
is in the order of one million words, much larger
amounts of Swedish text are available from differ-
ent sources, such as opinion pieces, news articles,
and blog posts. Due to the large amounts of text
available, from tens of millions to several billions of
words depending on the source, we can extract re-
liable statistics even about relatively rare language
phenomena.

By comparing student essays to statistics gathered
from different text types, we obtain new variables
that often correlate strongly with essay grades.

PoS tag cross-entropy The average cross-entropy
per token from a PoS trigram model (with simple
additive smoothing) is used to model the similarity
on a syntactic level. This includes both elements of
style (e.g. frequent use of passive constructions) and
mechanics (e.g. agreement errors). We use a corpus
of news texts3 to train the model.

Vocabulary cross-entropy With word frequency
statistics from two different text sources, we com-
pute the average cross-entropy per token given a un-
igram model, and use the difference between these
values for the two models to indicate which type of
text the present essay is most similar to. In our ex-
periments, the two text sources are of equal size and
consist of the news texts mentioned above, and a cor-
pus of blog posts.

Hybrid n-gram cross-entropy We can general-
ize the vocabulary cross-entropy measure described
above by using hybrid n-grams (Tsao and Wible,
2009) rather than single words. This allows for some

3The corpus consists of ca 200 million words, crawled from
the WWW editions of Dagens Nyheter and Svenska Dagbladet.

patterns that are neither entirely grammatical nor en-
tirely lexical to be used, complementing the two pre-
vious approaches. The same news and blog corpora
as above are used.

3.3 Language error features

Spelling errors We implemented a simple spell
checker, using the SALDO lexicon (Borin and Fors-
berg, 2009) and statistics from a corpus of news text.
On average, a misspelling was detected in 0.63% of
all word tokens, or about four misspellings per essay.
Manual inspection showed that the spell checker
made some errors, so it is reasonable to assume that
results could be improved somewhat using a more
accurate tool.

Split compound errors Swedish is a compound-
ing language, with noun compounding particularly
frequent. It is a fairly common error among inexpe-
rienced writers to separate the segments of a com-
pound word. We use word uni- and bigram statistics
from a corpus of news texts to find instances of these
errors in the essays. Only 0.10% of word tokens
are found to be incorrectly split, or less than one
instance per essay on average. As expected, there
is a (weak) negative correlation between split com-
pound frequency and grade, which seems to be due
to a small number of poor essays with many such
errors.

3.4 Evaluation measures

The simplest measure of overlap between two
graders (either among humans, or between human(s)
and machine) is the percentage of essays on which
they agree about the grade. However, in our set-
ting this is not so informative because there is a
high chance of graders assigning the same grade by
chance, and this probability varies between different
pairs of graders.

This makes comparisons difficult, so we instead
use Cohen’s kappa value (Cohen, 1968), linearly
weighted according to the numeric values of grades
used by the Swedish school system: IG corresponds
to 0 points, G to 10, VG to 15, and MVG to 20.
A kappa value of 1 would indicate perfect agree-
ment, while 0 would mean random agreement. The
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Feature Correlation
ntokens

0.25 0.535
ntokens 0.502
hybrid n-gram cross-entropy 0.363
vocabulary cross-entropy 0.361
average word length 0.307
OVIX 0.304
nlong/ntokens 0.284
spelling errors -0.257
PoS cross-entropy 0.216
split compound errors -0.208

Table 2: Correlation between grade (average of two
graders) and features. Interactions between features are
not taken into account. Only features with Pearson coef-
ficient ρ > 0.2 are included, all are highly significant.

weighted kappa value is computed as:

κ = 1−
∑

i,j wijOij∑
i,j wijEij

where Oij is the number of times annotator 1 as-
signed grade i and annotator 2 assigned grade j,
while Eij is the expected number of times for the
same event, given that both annotators randomly as-
sign grades according to a multinomial distribution.
wij is the difference in score between grades i and
j, according to the above.

4 Results

4.1 Feature-grade correlations
First, we look at the correlations between the
human-assigned grades and individual features.
Since a linear machine learning algorithm is used,
we use the Pearson coefficient to measure linear de-
pendence. Spearman’s rank correlation coefficient
gives similar results.

From Table 2 we can see that only ten of the
features show a correlation above 0.2. There were
statistically significant (but weak) correlations be-
low this threshold, e.g. the ratios of different parts
of speech, where the strongest correlations were
ρ = −0.192 (pronouns) and ρ = 0.177 (preposi-
tions).

4.2 Automated grading
Table 3 shows the performance of our system, using
the leave-one-out evaluation method on all 1 702 es-

Computer
IG G VG MVG Sum

H
um

an
av

g. IG 107 176 6 0 289
G 61 752 110 11 934
VG 2 225 189 17 433
MVG 0 9 27 10 46
Sum 170 1 162 332 38 1 702

Table 3: Confusion matrix for the grades assigned by the
system, and the average (rounded down) of the two hu-
man graders. In total, 1 058 essays (62.2%) are assigned
the same grade, κ = 0.399.

says, i.e. evaluating each essay using a model trained
on all the other 1 701 essays. We see that the com-
puter’s grades are biased towards the most com-
mon grade (G, pass), but that overall accuracy is
quite high (62.2%, κ = 0.399) compared to 58.4%
(κ = 0.249) when using only the strongest feature
(4th root of essay length), 54.9% when assigning
the most common grade to all essays, or the 45.8%
(κ = 0.276) agreement between the two human
graders.

It is also encouraging to see that only 28 essays
(1.6%) receive a grade by the computer that differs
more than one step from the human-assigned grade.
The corresponding figure is 148 essays (8.7%) be-
tween the two humans.

When training and evaluating using only the
grades of the blind grader, the agreement between
computer and human was 57.6% (κ = 0.369), and
only 53.6% (κ = 0.345) using the grades of the
student’s teacher. Both these figures are below the
62.2% (κ = 0.399) obtained when using the aver-
age grade, and the explanation closest at hand is that
the features we model (partially) represent or corre-
late with the actual grading criteria of the exam.

Since the teachers are affected by various sources
of bias (Hinnerich et al., 2011), a weaker correla-
tion (mirrored by a lower κ) to any kind of “objec-
tive” measure would be expected. Similarly, using
the average of two graders should decrease the large
individual variance due to the difficult and partially
subjective nature of the task, leading to a stronger
correlation with relevant features of the text.

45



4.3 Re-grading

In 148 cases (8.7%) of our 1 702 essays, the grade
assigned in the blind re-grading process differs by
more than one step from the original grade, and we
performed an experiment to see how efficiently these
highly deviant grades could be identified. This sce-
nario could arise within an organization responsi-
ble for evaluating the consistency in grading a na-
tional exam, where resources are insufficient for re-
grading all essays manually. Given a training corpus
of graded essays, our system could then be used to
select candidates among the larger set of essays for
further manual re-grading.

In other to evaluate the usefulness of this method,
we let the system re-grade all essays based on the
blind grades of all other essays (leave-one-out). In
the cases where the system’s grade differs by more
than one step from the teacher’s grade, we check
whether the difference between the system’s grade
and that of the blind grader is less than between the
two human graders. It turns out that we can correctly
identify 43 (29.1%) of the 148 cases in this way, with
only 91 essays (5.3% of the total) considered.

In a scenario where we have a large amount of
essays but only the resources to manually re-grade
a fraction of them, we can thus increase the ratio of
highly deviant grades found from 8.7% (148/1702,
by randomly choosing essays to re-grade) to 47%
(43/91, by only re-grading those identified by our
system).

5 Conclusions and future work

We have presented a system for automatic grading
of Swedish high school essays. While its accu-
racy is not high enough to be used in grading high-
stakes exams, we have demonstrated its usefulness
in a practical setting of finding instances of incorrect
grading (as identified by humans). Novel aspects in-
clude features based on constructions induced using
unsupervised methods, and on (language-specific)
compounding errors.

It would be interesting to apply some of our meth-
ods to other languages and other data sets, for in-
stance of second language learners. Since our sys-
tem is quite general, all that would be needed to
adapt it to another domain is a training corpus of
graded essays. Adapting to another language would

in addition require a PoS tagger and suitable unla-
beled text corpora.
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Abstract
Native Language Identification, or NLI, is the
task of automatically classifying the L1 of a
writer based solely on his or her essay writ-
ten in another language. This problem area
has seen a spike in interest in recent years
as it can have an impact on educational ap-
plications tailored towards non-native speak-
ers of a language, as well as authorship pro-
filing. While there has been a growing body
of work in NLI, it has been difficult to com-
pare methodologies because of the different
approaches to pre-processing the data, differ-
ent sets of languages identified, and different
splits of the data used. In this shared task, the
first ever for Native Language Identification,
we sought to address the above issues by pro-
viding a large corpus designed specifically for
NLI, in addition to providing an environment
for systems to be directly compared. In this
paper, we report the results of the shared task.
A total of 29 teams from around the world
competed across three different sub-tasks.

1 Introduction

One quickly growing subfield in NLP is the task
of identifying the native language (L1) of a writer
based solely on a sample of their writing in an-
other language. The task is framed as a classifica-
tion problem where the set of L1s is known a priori.
Most work has focused on identifying the native lan-
guage of writers learning English as a second lan-
guage. To date this topic has motivated several pa-
pers and research projects.

Native Language Identification (NLI) can be use-
ful for a number of applications. NLI can be used in

educational settings to provide more targeted feed-
back to language learners about their errors. It
is well known that speakers of different languages
make different kinds of errors when learning a lan-
guage (Swan and Smith, 2001). A writing tutor
system which can detect the native language of the
learner will be able to tailor the feedback about the
error and contrast it with common properties of the
learner’s language. In addition, native language is
often used as a feature that goes into authorship pro-
filing (Estival et al., 2007), which is frequently used
in forensic linguistics.

Despite the growing interest in this field, devel-
opment has been encumbered by two issues. First
is the issue of data. Evaluating an NLI system re-
quires a corpus containing texts in a language other
than the native language of the writer. Because of
a scarcity of such corpora, most work has used the
International Corpus of Learner English (ICLEv2)
(Granger et al., 2009) for training and evaluation
since it contains several hundred essays written by
college-level English language learners. However,
this corpus is quite small for training and testing
statistical systems which makes it difficult to tell
whether the systems that are developed can scale
well to larger data sets or to different domains.

Since the ICLE corpus was not designed with the
task of NLI in mind, the usability of the corpus for
this task is further compromised by idiosyncrasies
in the data such as topic bias (as shown by Brooke
and Hirst (2011)) and the occurrence of characters
which only appear in essays written by speakers of
certain languages (Tetreault et al., 2012). As a result,
it is hard to draw conclusions about which features
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actually perform best. The second issue is that there
has been little consistency in the field in the use of
cross-validation, the number of L1s, and which L1s
are used. As a result, comparing one approach to
another has been extremely difficult.

The first Shared Task in Native Language Identifi-
cation is intended to better unify this community and
help the field progress. The Shared Task addresses
the two deficiencies above by first using a new cor-
pus (TOEF11, discussed in Section 3) that is larger
than the ICLE and designed specifically for the task
of NLI and second, by providing a common set of
L1s and evaluation standards that everyone will use
for this competition, thus facilitating direct compar-
ison of approaches. In this report we describe the
methods most participants used, the data they eval-
uated their systems on, the three sub-tasks involved,
the results achieved by the different teams, and some
suggestions and ideas about what we can do for the
next iteration of the NLI shared task.

In the following section, we provide a summary
of the prior work in Native Language Identification.
Next, in Section 3 we describe the TOEFL11 cor-
pus used for training, development and testing in this
shared task. Section 4 describes the three sub-tasks
of the NLI Shared Task as well as a review of the
timeline. Section 5 lists the 29 teams that partici-
pated in the shared task, and introduce abbreviations
that will be used throughout this paper. Sections 6
and 7 describe the results of the shared task and a
separate post shared task evaluation where we asked
teams to evaluate their system using cross-validation
on a combination of the training and development
data. In Section 8 we provide a high-level view of
the common features and machine learning methods
teams tended to use. Finally, we offer conclusions
and ideas for future instantiations of the shared task
in Section 9.

2 Related Work

In this section, we provide an overview of some of
the common approaches used for NLI prior to this
shared task. While a comprehensive review is out-
side the scope of this paper, we have compiled a
bibliography of related work in the field. It can be

downloaded from the NLI Shared Task website.1

To date, nearly all approaches have treated the
task of NLI as a supervised classification problem
where statistical models are trained on data from the
different L1s. The work of Koppel et al. (2005) was
the first in the field and they explored a multitude
of features, many of which are employed in several
of the systems in the shared tasks. These features
included character and POS n-grams, content and
function words, as well as spelling and grammati-
cal errors (since language learners have tendencies
to make certain errors based on their L1 (Swan and
Smith, 2001)). An SVM model was trained on these
features extracted from a subsection of the ICLE
corpus consisting of 5 L1s.

N-gram features (word, character and POS) have
figured prominently in prior work. Not only are they
easy to compute, but they can be quite predictive.
However, there are many variations on the features.
Past reseach efforts have explored different n-gram
windows (though most tend to focus on unigrams
and bigrams), different thresholds for how many n-
grams to include as well as whether to encode the
feature as binary (presence or absence of the partic-
ular n-gram) or as a normalized count.

The inclusion of syntactic features has been a fo-
cus in recent work. Wong and Dras (2011) explored
the use of production rules from two parsers and
Swanson and Charniak (2012) explored the use of
Tree Substitution Grammars (TSGs). Tetreault et
al. (2012) also investigated the use of TSGs as well
as dependency features extracted from the Stanford
parser.

Other approaches to NLI have included the use of
Latent Dirichlet Analysis to cluster features (Wong
et al., 2011), adaptor grammars (Wong et al., 2012),
and language models (Tetreault et al., 2012). Ad-
ditionally, there has been research into the effects of
training and testing on different corpora (Brooke and
Hirst, 2011).

Much of the aforementioned work takes the per-
spective of optimizing for the task of Native Lan-
guage Identification, that is, what is the best way of
modeling the problem to get the highest system ac-
curacy? The problem of Native Language Identifica-

1http://nlisharedtask2013.org/bibliography-of-related-
work-in-nli
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tion is also of interest to researchers in Second Lan-
guage Acquisition where they seek to explain syn-
tactic transfer in learner language (Jarvis and Cross-
ley, 2012).

3 Data

The dataset for the task was the new TOEFL11
corpus (Blanchard et al., 2013). TOEFL11 con-
sists of essays written during a high-stakes college-
entrance test, the Test of English as a Foreign Lan-
guage (TOEFL R©). The corpus contains 1,100 es-
says per language sampled as evenly as possible
from 8 prompts (i.e., topics) along with score lev-
els (low/medium/high) for each essay. The 11 na-
tive languages covered by our corpus are: Ara-
bic (ARA), Chinese (CHI), French (FRE), German
(GER), Hindi (HIN), Italian (ITA), Japanese (JAP),
Korean (KOR), Spanish (SPA), Telugu (TEL), and
Turkish (TUR).

The TOEFL11 corpus was designed specifically
to support the task of native language identifica-
tion. Because all of the essays were collected
through ETS’s operational test delivery system for
the TOEFL R© test, the encoding and storage of all
texts in the corpus is consistent. Furthermore, the
sampling of essays was designed to ensure approx-
imately equal representation of native languages
across topics, insofar as this was possible.

For the shared task, the corpus was split into
three sets: training (TOEFL11-TRAIN), development
(TOEFL11-DEV), and test (TOEFL11-TEST). The
train corpus consisted of 900 essays per L1, the de-
velopment set consisted of 100 essays per L1, and
the test set consisted of another 100 essays per L1.
Although the overall TOEFL11 corpus was sampled
as evenly as possible with regard to language and
prompts, the distribution for each language is not ex-
actly the same in the training, development and test
sets (see Tables 1a, 1b, and 1c). In fact, the distri-
bution is much closer between the training and test
sets, as there are several languages for which there
are no essays for a given prompt in the development
set, whereas there are none in the training set, and
only one, Italian, for the test set.

It should be noted that in the first instantiation of
the corpus, presented in Tetreault et al. (2012), we
used TOEFL11 to denote the body of data consisting

of TOEFL11-TRAIN and TOEFL11-DEV. However,
in this shared task, we added 1,100 sentences for a
test set and thus use the term TOEFL11 to now de-
note the corpus consisting of the TRAIN, DEV and
TEST sets. We expect the corpus to be released
through the the Linguistic Data Consortium in 2013.

4 NLI Shared Task Description

The shared task consisted of three sub-tasks. For
each task, the test set was TOEFL11-TEST and only
the type of training data varied from task to task.

• Closed-Training: The first and main task
was the 11-way classification task using only
the TOEFL11-TRAIN and optionally TOEFL11-
DEV for training.

• Open-Training-1: The second task allowed
the use of any amount or type of training data
(as is done by Brooke and Hirst (2011)) exclud-
ing any data from the TOEFL11, but still evalu-
ated on TOEFL11-TEST.

• Open-Training-2: The third task allowed the
use of TOEFL11-TRAIN and TOEFL11-DEV

combined with any other additional data. This
most closely reflects a real-world scenario.

Additionally, each team could submit up to 5 dif-
ferent systems per task. This allowed a team to ex-
periment with different variations of their core sys-
tem.

The training data was released on January 14,
with the development data and evaluation script re-
leased almost one month later on February 12. The
train and dev data contained an index file with the L1
for each essay in those sets. The previously unseen
and unlabeled test data was released on March 11
and teams had 8 days to submit their system predic-
tions. The predictions for each system were encoded
in a CSV file, where each line contained the file ID
of a file in TOEFL11-TEST and the corresponding
L1 prediction made by the system. Each CSV file
was emailed to the NLI organizers and then evalu-
ated against the gold standard.

5 Teams

In total, 29 teams competed in the shared task com-
petition, with 24 teams electing to write papers de-
scribing their system(s). The list of participating
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Lang. P1 P2 P3 P4 P5 P6 P7 P8
ARA 113 113 113 112 112 113 112 112
CHI 113 113 113 112 112 113 112 112
FRE 128 128 76 127 127 60 127 127
GER 125 125 125 125 125 26 125 124
HIN 132 132 132 71 132 38 132 131
ITA 142 70 122 141 141 12 141 131
JAP 108 114 113 113 113 113 113 113
KOR 113 113 113 112 112 113 112 112
SPA 124 120 38 124 123 124 124 123
TEL 139 139 139 41 139 26 139 138
TUR 132 132 72 132 132 37 132 131
Total 1369 1299 1156 1210 1368 775 1369 1354

(a) Training Set

Lang. P1 P2 P3 P4 P5 P6 P7 P8
ARA 12 13 13 13 14 7 14 14
CHI 14 14 0 15 15 14 13 15
FRE 17 18 0 14 19 0 13 19
GER 15 15 16 10 13 0 15 16
HIN 16 17 17 0 17 0 16 17
ITA 18 0 0 30 31 0 21 0
JAP 0 14 15 14 15 14 14 14
KOR 15 8 15 2 13 15 16 16
SPA 7 0 0 21 7 21 21 23
TEL 16 17 17 0 17 0 16 17
TUR 22 4 0 22 7 0 22 23
Total 152 120 93 141 168 71 181 174

(b) Dev Set

Lang. P1 P2 P3 P4 P5 P6 P7 P8
ARA 13 11 12 14 10 13 12 15
CHI 13 14 13 13 7 14 14 12
FRE 13 14 11 15 14 8 11 14
GER 15 14 16 16 12 2 12 13
HIN 13 13 14 15 7 15 10 13
ITA 13 19 16 16 15 0 11 10
JAP 8 14 12 11 10 15 14 16
KOR 12 12 8 14 12 14 13 15
SPA 10 13 16 14 4 12 15 16
TEL 10 10 11 14 13 15 11 16
TUR 15 9 18 16 8 6 13 15
Total 135 143 147 158 112 114 136 155

(c) Test Set

Table 1: Number of essays per language per prompt in each data set

teams, along with their abbreviations, can be found
in Table 2.

6 Shared Task Results

This section summarizes the results of the shared
task. For each sub-task, we have tables listing the
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Team Name Abbreviation
Bobicev BOB
Chonger CHO
CMU-Haifa HAI
Cologne-Nijmegen CN
CoRAL Lab @ UAB COR
CUNI (Charles University) CUN
cywu CYW
dartmouth DAR
eurac EUR
HAUTCS HAU
ItaliaNLP ITA
Jarvis JAR
kyle, crossley, dai, mcnamara KYL
LIMSI LIM
LTRC IIIT Hyderabad HYD
Michigan MIC
MITRE “Carnie” CAR
MQ MQ
NAIST NAI
NRC NRC
Oslo NLI OSL
Toronto TOR
Tuebingen TUE
Ualberta UAB
UKP UKP
Unibuc BUC
UNT UNT
UTD UTD
VTEX VTX

Table 2: Participating Teams and Team Abbrevia-
tions

top submission for each team and its performance
by overall accuracy and by L1.2

Table 3 shows results for the Closed sub-task
where teams developed systems that were trained
solely on TOEFL11-TRAIN and TOEFL11-DEV. This
was the most popular sub-task with 29 teams com-
peting and 116 submissions in total for the sub-task.
Most teams opted to submit 4 or 5 runs.

The Open sub-tasks had far fewer submissions.
Table 4 shows results for the Open-1 sub-task where
teams could train systems using any training data ex-
cluding TOEFL11-TRAIN and TOEFL11-DEV. Three
teams competed in this sub-task for a total of 13 sub-

2For those interested in the results of all submissions, please
contact the authors.

missions. Table 5 shows the results for the third sub-
task “Open-2”. Four teams competed in this task for
a total of 15 submissions.

The challenge for those competing in the Open
tasks was finding enough non-TOEFL11 data for
each L1 to train a classifier. External corpora com-
monly used in the competition included the:

• ICLE: which covered all L1s except for Ara-
bic, Hindi and Telugu;

• FCE: First Certificate in English Corpus
(Yannakoudakis et al., 2011): a collection of
essay written for an English assessment exam,
which covered all L1s except for Arabic, Hindi
and Telugu

• ICNALE: International Corpus Network of
Asian Learners of English (Ishikawa, 2011):
a collection of essays written by Chinese,
Japanese and Korean learners of English along
with 7 other L1s with Asian backgrounds.

• Lang8: http://www.lang8.com: a social net-
working service where users write in the lan-
guage they are learning, and get corrections
from users who are native speakers of that lan-
guage. Shared Task participants such as NAI
and TOR scraped the website for all writng
samples from English language learners. All
of the L1s in the shared task are represented on
the site, though the Asian L1s dominate.

The most challenging L1s to find data for seemed
to be Hindi and Telugu. TUE used essays written
by Pakastani students in the ICNALE corpus to sub-
stitute for Hindi. For Telugu, they scraped mate-
rial from bilingual blogs (English-Telugu) as well
as other material for the web. TOR created cor-
pora for Telugu and Hindi by scraping news articles,
tweets which were geolocated in the Hindi and Tel-
ugu speaking areas, and translations of Hindi and
Telugu blogs using Google Translate.

We caution directly comparing the results of the
Closed sub-task to the Open ones. In the Open-1
sub-task most teams had smaller training sets than
used in the Closed competition which automatically
puts them at a disadvantage, and in some cases there
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L1 F-Score
Team
Name

Run Overall
Acc.

ARA CHI FRE GER HIN ITA JPN KOR SPA TEL TUR

JAR 2 0.836 0.785 0.856 0.860 0.893 0.775 0.905 0.854 0.813 0.798 0.802 0.854
OSL 2 0.834 0.816 0.850 0.874 0.912 0.792 0.873 0.828 0.806 0.783 0.792 0.840
BUC 5 0.827 0.840 0.866 0.853 0.931 0.736 0.873 0.851 0.812 0.779 0.760 0.796
CAR 2 0.826 0.859 0.847 0.810 0.921 0.762 0.877 0.825 0.827 0.768 0.802 0.790
TUE 1 0.822 0.810 0.853 0.806 0.897 0.768 0.883 0.842 0.776 0.772 0.824 0.812
NRC 4 0.818 0.804 0.845 0.848 0.916 0.745 0.903 0.818 0.790 0.788 0.755 0.790
HAI 1 0.815 0.804 0.842 0.835 0.903 0.759 0.845 0.825 0.806 0.776 0.789 0.784
CN 2 0.814 0.778 0.845 0.848 0.882 0.744 0.857 0.812 0.779 0.787 0.784 0.827
NAI 1 0.811 0.814 0.829 0.828 0.876 0.755 0.864 0.806 0.789 0.757 0.793 0.802
UTD 2 0.809 0.778 0.846 0.832 0.892 0.731 0.866 0.846 0.819 0.715 0.784 0.784
UAB 3 0.803 0.820 0.804 0.822 0.905 0.724 0.850 0.811 0.736 0.777 0.792 0.786
TOR 1 0.802 0.754 0.827 0.827 0.878 0.722 0.850 0.820 0.808 0.747 0.784 0.798
MQ 4 0.801 0.800 0.828 0.789 0.885 0.738 0.863 0.826 0.780 0.703 0.782 0.802
CYW 1 0.797 0.769 0.839 0.782 0.833 0.755 0.842 0.815 0.770 0.741 0.828 0.788
DAR 2 0.781 0.761 0.806 0.812 0.870 0.706 0.846 0.788 0.776 0.730 0.723 0.767
ITA 1 0.779 0.738 0.775 0.832 0.873 0.711 0.860 0.788 0.742 0.708 0.762 0.780
CHO 1 0.775 0.764 0.835 0.798 0.888 0.721 0.816 0.783 0.670 0.688 0.786 0.758
HAU 1 0.773 0.731 0.820 0.806 0.897 0.686 0.830 0.832 0.763 0.703 0.702 0.736
LIM 4 0.756 0.737 0.760 0.788 0.886 0.654 0.808 0.775 0.756 0.712 0.701 0.745
COR 5 0.748 0.704 0.806 0.783 0.898 0.670 0.738 0.794 0.739 0.616 0.730 0.741
HYD 1 0.744 0.680 0.778 0.748 0.839 0.693 0.788 0.781 0.735 0.613 0.770 0.754
CUN 1 0.725 0.696 0.743 0.737 0.830 0.714 0.838 0.676 0.670 0.680 0.697 0.684
UNT 3 0.645 0.667 0.682 0.635 0.746 0.558 0.687 0.676 0.620 0.539 0.667 0.609
BOB 4 0.625 0.513 0.684 0.638 0.751 0.612 0.706 0.647 0.549 0.495 0.621 0.608
KYL 1 0.590 0.589 0.603 0.643 0.634 0.554 0.663 0.627 0.569 0.450 0.649 0.507
UKP 2 0.583 0.592 0.560 0.624 0.653 0.558 0.616 0.631 0.565 0.456 0.656 0.489
MIC 3 0.430 0.419 0.386 0.411 0.519 0.407 0.488 0.422 0.384 0.400 0.500 0.396
EUR 1 0.386 0.500 0.390 0.277 0.379 0.487 0.522 0.441 0.352 0.281 0.438 0.261
VTX 5 0.319 0.367 0.298 0.179 0.297 0.159 0.435 0.340 0.370 0.201 0.410 0.230

Table 3: Results for closed task

L1 F-Score
Team
Name

Run Overall
Acc.

ARA CHI FRE GER HIN ITA JPN KOR SPA TEL TUR

TOR 5 0.565 0.410 0.776 0.692 0.754 0.277 0.680 0.660 0.650 0.653 0.190 0.468
TUE 2 0.385 0.114 0.502 0.420 0.430 0.167 0.611 0.485 0.348 0.385 0.236 0.314
NAI 2 0.356 0.329 0.450 0.331 0.423 0.066 0.511 0.426 0.481 0.314 0.000 0.207

Table 4: Results for open-1 task

L1 F-Score
Team
Name

Run Overall
Acc.

ARA CHI FRE GER HIN ITA JPN KOR SPA TEL TUR

TUE 1 0.835 0.798 0.876 0.844 0.883 0.777 0.883 0.836 0.794 0.846 0.826 0.818
TOR 4 0.816 0.770 0.861 0.840 0.900 0.704 0.860 0.834 0.800 0.816 0.804 0.790
HYD 1 0.741 0.677 0.782 0.755 0.829 0.693 0.784 0.777 0.728 0.613 0.766 0.744
NAI 3 0.703 0.676 0.695 0.708 0.846 0.618 0.830 0.677 0.610 0.663 0.726 0.688

Table 5: Results for open-2 task
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was a mismatch in the genre of corpora (for exam-
ple, tweets by Telugu speakers are different in com-
position than essays written by Telugu speakers).
TUE and TOR were the only two teams to partic-
ipate in all three sub-tasks, and their Open-2 sys-
tems outperformed their respective best systems in
the Closed and Open-1 sub-tasks. This suggests, un-
surprisingly, that adding more data can benefit NLI,
though quality and genre of data are also important
factors.

7 Cross Validation Results

Upon completion of the competition, we asked the
participants to perform 10-fold cross-validation on a
data set consisting of the union of TOEFL11-TRAIN

and TOEFL11-DEV. This was the same set of data
used in the first work to use any of the TOEFL11
data (Tetreault et al., 2012), and would allow another
point of comparison for future NLI work. For direct
comparison with Tetreault et al. (2012), we provided
the exact folds used in that work.

The results of the 10-fold cross-validation are
shown in Table 6. Two teams had systems that per-
formed at 84.5 or better, which is just slightly higher
than the best team performance on the TOEFL11-
TEST data. In general, systems that performed well
in the main competition also performed similarly
(in terms of performance and ranking) in the cross-
validation experiment. Please note that we report
results as they are reported in the respective papers,
rounding to just one decimal place where possible.

8 Discussion of Approaches

With so many teams competing in the shared task
competition, we investigated whether there were any
commonalities in learning methods or features be-
tween the teams. In this section, we provide a coarse
grained summary of the common machine learning
methods teams employed as well as some of the
common features. Our summary is based on the in-
formation provided in the 24 team reports.

While there are many machine learning algo-
rithms to choose from, the overwhelming majority
of teams used Support Vector Machines. This may
not be surprising given that most prior work has also
used SVMs. Tetreault et al. (2012) showed that one
could achieve even higher performance on the NLI

Team Accuracy
CN 84.6
JAR 84.5
OSL 83.9
BUC 82.6
MQ 82.5
TUE 82.4
CAR 82.2
NAI 82.1
Tetreault et al. (2012) 80.9
HAU 79.9
LIM 75.9
CUN 74.2
UNT 63.8
MIC 63

Table 6: Results for 10-fold cross-validation on
TOEFL11-TRAIN + TOEFL11-DEV

task using ensemble methods for combining classi-
fiers. Four teams also experimented with different
ways of using ensemble methods. Three teams used
Maximum Entropy methods for their modeling. Fi-
nally, there were a few other teams that tried differ-
ent methods such as Discriminant Function Analysis
and K-Nearest Neighbors. Possibly the most distinct
method employed was that of string kernels by the
BUC team (who placed third in the closed compe-
tition). This method only used character level fea-
tures. A summary of the machine learning methods
is shown in Table 7.

A summary of the common features used across
teams is shown in Table 8. It should be noted that
the table does not detail the nuanced differences in
how the features are realized. For example, in the
case of n-grams, some teams used only the top k
most frequently n-grams while others used all of the
n-grams available. If interested in more information
about the particulars of a system and its feature, we
recommend reading the team’s summary report.

The most common features were word, character
and POS n-gram features. Most teams used n-grams
ranging from unigrams to trigrams, in line with prior
literature. However several teams used higher-order
n-grams. In fact, four of the top five teams (JAR,
OSL, CAR, TUE) generally used at least 4-grams,
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Machine Learning Teams
SVM CN, UNT, MQ, JAR, TOR, ITA, CUN, TUE, COR, NRC, HAU, MIC, CAR
MaxEnt / logistic regression LIM, HAI, CAR
Ensemble MQ, ITA, NRC, CAR
Discriminant Function Analysis KYL
String Kernels / LRD BUC
PPM BOB
k-NN VTX

Table 7: Machine Learning algorithms used in Shared Task

and some, such as OSL and JAR, went as high 7 and
9 respectively in terms of character n-grams.

Syntactic features, which were first evaluated in
Wong and Dras (2011) and Swanson and Char-
niak (2012) were used by six teams in the competi-
tion, with most using dependency parses in different
ways. Interestingly, while Wong and Dras (2011)
showed some of the highest performance scores on
the ICLE corpus using parse features, only two of
the six teams which used them placed in the top ten
in the Closed sub-task.

Spelling features were championed by Koppel et
al. (2005) and in subsequent NLI work, however
only three teams in the competition used them.

There were several novel features that teams tried.
For example, several teams tried skip n-grams, as
well as length of words, sentences and documents;
LIM experimented with machine translation; CUN
had different features based on the relative frequen-
cies of the POS and lemma of a word; HAI tried
several new features based on passives and context
function; and the TUE team tried a battery of syn-
tactic features as well as text complexity measures.

9 Summary

We consider the first edition of the shared task a
success as we had 29 teams competing, which we
consider a large number for any shared task. Also
of note is that the task brought together researchers
not only from the Computational Linguistics com-
munity, but also those from other linguistics fields
such as Second Language Acquisition.

We were also delighted to see many teams build
on prior work but also try novel approaches. It is
our hope that finally having an evaluation on a com-
mon data set will allow researchers to learn from

each other on what works well and what does not,
and thus the field can progress more rapidly. The
evaluation scripts are publicly available and we ex-
pect that the data will become available through the
Linguistic Data Consortium in 2013.

For future editions of the NLI shared task, we
think it would be interesting to expand the scope of
NLI from identifying the L1 of student essays to be
able to identify the L1 of any piece of writing. The
ICLE and TOEFL11 corpora are both collections of
academic writing and thus it may be the case that
certain features or methodologies generalize better
to other writing genres and domains. For those in-
terested in robust NLI approaches, please refer to the
TOR team shared task report as well as Brooke and
Hirst (2012).

In addition, since the TOEFL11 data contains pro-
ficiency level one could include an evaluation by
proficiency level as language learners make differ-
ent types of errors and may even have stylistic differ-
ences in their writing as their proficiency progresses.

Finally, while this may be in the periphery of the
scope of an NLI shared task, one interesting evalua-
tion is to see how well human raters can fare on this
task. This would of course involve knowledgeable
language instructors who have years of experience
in teaching students from different L1s. Our think-
ing is that NLI might be one task where computers
would outperform human annotators.
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Feature Type Teams
Word N-Grams 1 CN, UNT, JAR, TOR, KYL, ITA, CUN, BOB, OSL, TUE, UAB,

CYW, NAI, NRC, MIC, CAR
2 CN, UNT, JAR, TOR, KYL, ITA, CUN, BOB, OSL, TUE, COR,

UAB, CYW, NAI, NRC, HAU, MIC, CAR
3 UNT, MQ, JAR, KYL, CUN, COR, HAU, MIC, CAR
4 JAR, KYL, CAR
5 CAR

POS N-grams 1 CN, UNT, JAR, TOR, ITA, LIM, CUN, BOB, TUE, HAI, CAR
2 CN, UNT, JAR, TOR, ITA, LIM, CUN, BOB, TUE, COR, HAI,

NAI, NRC, MIC, CAR
3 CN, UNT, JAR, TOR, LIM, CUN, TUE, COR, HAI, NAI, NRC,

CAR
4 CN, JAR, TUE, HAI, NRC, CAR
5 TUE, CAR

Character N-Grams 1 CN, UNT, MQ, JAR, TOR, LIM, BOB, OSL, HAI, CAR
2 CN, UNT, MQ, JAR, TOR, ITA, LIM, BOB, OSL, COR, HAI, NAI,

HAU, MIC, CAR
3 CN, UNT, MQ, JAR, TOR, LIM, BOB, OSL, VTX, COR, HAI,

NAI, NRC, HAU, MIC, CAR
4 CN, JAR, LIM, BOB, OSL, HAI, HAU, MIC, CAR
5 CN, JAR, BOB, OSL, HAU, CAR
6 CN, JAR, OSL,
7 JAR, OSL
8-9 JAR

Function N-Grams MQ, UAB
Syntactic Features Dependencies MQ, TOR, ITA, TUE, NAI, NRC

TSG MQ, TOR, NAI,
CF Productions TOR,
Adaptor Grammars MQ

Spelling Features LIM,CN, HAI

Table 8: Common Features used in Shared Task

In addition, thanks goes to the BEA8 Organizers
(Joel Tetreault, Jill Burstein and Claudia Leacock)
for hosting the shared task with their workshop. Fi-
nally, we would like to thank all the teams for partic-
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Abstract

Vector Space Models (VSM) have been
widely used in the language assessment field
to provide measurements of students’ vocab-
ulary choices and content relevancy. How-
ever, training reference vectors (RV) in a VSM
requires a time-consuming and costly human
scoring process. To address this limitation, we
applied unsupervised learning methods to re-
duce or even eliminate the human scoring step
required for training RVs. Our experiments
conducted on data from a non-native English
speaking test suggest that the unsupervised
topic clustering is better at selecting responses
to train RVs than random selection. In addi-
tion, we conducted an experiment to totally
eliminate the need of human scoring. Instead
of using human rated scores to train RVs, we
used used the machine-predicted scores from
an automated speaking assessment system for
training RVs. We obtained VSM-derived fea-
tures that show promisingly high correlations
to human-holistic scores, indicating that the
costly human scoring process can be elimi-
nated.

Index Terms: Vector Space Model (VSM), speech
assessment, unsupervised learning, document clus-
tering

1 Introduction

A Vector Space Model (VSM) is a simple, yet effec-
tive, method to measure similarities between doc-
uments or utterances, which has been utilized in
the educational testing field. For example, VSM

has been applied to detect students’ off-topic es-
says (Higgins et al., 2006) and to automatically
score essays (Attali and Burstein, 2004).

The following three steps are required to use
VSM for automated assessment: (1) a collection
of responses are selected from each score category
to construct reference vectors (RV); (2) for an in-
put response under scoring, the same vectorization
method used for constructing RVs is applied to com-
pute an input vector (IV); (3) similarities between
this IV and the RVs for all score categories are com-
puted as features reflecting vocabulary usage and
content relevancy, including a widely used feature,
the cosine similarity between the IV and the RV for
the highest score category.

Clearly, the quality of VSM-derived features de-
pends on the proper training of RVs. In language
assessment, we tend to use a large number of man-
ually scored responses to build RVs for each testing
question (called item in the assessment field). How-
ever, this raises an issue: the requirement of manual
scoring of these responses by human raters. Also,
for large-scale assessments administrated globally,
a high number of items are typically administered
to both ensure the assessment security and support
the large volume of test-takers. To address this chal-
lenge of application of VSM, we will describe our
solutions based on applying unsupervised learning
methods in this paper.

The rest of the paper is organized as follows: Sec-
tion 2 reviews the related previous research; Sec-
tion 3 describes the English assessment, the data
used in our experiments, and the Automatic Speech
Recognition (ASR) system used; Section 4 reports
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the three experiments we conducted; and Section 5
discusses our findings and plans for future research.

2 Previous Work

Attali and Burstein (2004) used the VSM method
to measure non-native English writers’ vocabulary
choices when scoring their essays by comparing
the words contained in an student’s response to the
words found in a sample of essays from each score
category. One belief behind this methodology is that
good essays will resemble each other in terms of the
word choice. In particular, two VSM-derived fea-
tures were used, including the maximum cosine sim-
ilarity and cosine similarity to the top score category.
Higgins et al. (2006) applied the VSM technology to
detect students’ off-topic essays whereby the word-
based IV from a student’s essay was compared to an
RV built from a collection of on-topic essays. When
the difference was larger than a pre-defined thresh-
old, the essay was marked as off-topic. Zechner and
Xi (2008) applied VSM as a content relevancy mea-
surement to score non-native English speaking re-
sponses. Recently, Xie et al. (2012) explored the
VSM technology on automated speech scoring. Us-
ing a superior ASR to the one used in (Zechner and
Xi, 2008), they found that the VSM-derived features
had moderately high correlations with human profi-
ciency scores.

Dimension reduction, a critical step in apply-
ing VSM, removes the noises and minor details in
word-based vectors and keeps a concise semantic
structure. Latent Semantic Analysis (LSA) (Deer-
wester et al., 1990) and Latent Dirichlet Alloca-
tion (LDA) (Blei et al., 2003) are two widely used
dimension-reduction methods. Kakkonen et al.
(2005) systematically investigated the dimension re-
duction methods used in the VSM methods for es-
say grading. Their experiments showed that LSA
slightly out-performs LDA.

Compared to supervised learning, unsupervised
learning can skip the time-consuming and costly
manual labeling process and has been widely used
in many machine-learning tasks. Both LSA and
LDA have been utilized in unsupervised document
clustering (Hofmann, 2001) to automatically sep-
arate a collection of documents into several sets
without any human intervention. Co-training is a
type of semi-supervised learning method (Blum and

Mitchell, 1998), consisting of two classifiers trained
from independent sets of features to predict the same
labels. It uses automatically predicted labels from
one classifier to train the other classifier.

3 Data

The data used in our experiments were collected
from the speaking section of Test Of English as a
Foreign Language (TOEFL R©), an English speak-
ing test used to evaluate students’ basic English-
speaking skills for use in academic institutions that
use English as their primary teaching language. Our
data contains the speech responses for a total of 24
test items. For each item, both the stimulus mate-
rial and question were presented to test-takers fol-
lowed by a short amount of preparation time. The
test-takers were then given up to 60 seconds to pro-
vide their spoken responses. These responses were
scored by using carefully developed rating rubrics
by a group of experienced human raters. The scor-
ing rubrics covered a comprehensive list of differ-
ent aspects of speaking ability, such as pronuncia-
tion, prosody, vocabulary, content organization, etc.
A 4-point holistic scoring scale was used where the
score of 4 marks the most advanced English speak-
ers in the TOEFL R© test. Table 1 summarizes the re-
sponses across these 24 items, including mean, sd,
and sample size (n) of the total number of responses
and the number of responses per each score level.

Overall SC1 SC2 SC3 SC4
mean 1969.63 81.88 701.96 963.46 222.33
sd 12.92 30.02 62.36 67.24 37.79
n 47271 1965 16847 23123 5336

Table 1: Summary statistics of the number of total re-
sponses and the number of responses per each score level
measured in mean, sd, and sample size n across 24 items

The transcriptions of these spoken responses were
obtained by running a state-of-the-art non-native
ASR system. This ASR system uses a cross-word
tri-phone acoustic model (AM) and n-gram lan-
guage models (LMs) that were trained on approx-
imately 800 hours of spoken data and the corre-
sponding transcriptions. When being evaluated on
an held-out data set transcribed by humans from the
same test, a 33.0% word error rate was obtained.
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4 Experiments

The three experiments described below shared the
same procedure: (1) for each item, available re-
sponses were divided into two sets - a set for train-
ing RVs and a set for evaluating the VSM-derived
features; (2) RVs were trained by using different re-
sponse selection methods investigated in this paper;
(3) the trained RVs were used to compute the VSM-
derived features; and (4) Pearson correlation coeffi-
cients (rs) between the VSM-derived features and
human-holistic scores were computed to measure
these features’ predictive abilities in speech scoring.
This experimental procedure was conducted on all
24 items and was repeated in 10 iterations by using
varied training/evaluation-splitting plans and the av-
erages of these results across the items and iterations
are reported. Note that we removed some common
function words, such as a, the, etc., and some noise
words from ASR outputs, such as uh and um, when
applying the VSM method and always used LSA di-
mension reduction. We used the Gensim (Řehůřek
and Sojka, 2010) Python package to implement the
VSM-related computations in this paper. Also, in
this paper, we focused on one VSM-derived fea-
ture cos4, the cosine distance between an IV to the
RV representing the highest-score category (4) for
TOEFL R© test.

4.1 Data size for training RVs

In previous studies, researchers typically used a
large number of responses to construct RVs. For ex-
ample, Zechner and Xi (2008) used 1, 000 responses
while Xie et al. (2012) increased the RV training
data to 2, 000 responses for each item. We ask, is
it possible to use fewer responses so that we would
not be forced to manually score so many responses?
To answer this question, we have investigated the re-
lationship between the size of the RV training data
and cos4’s predictive ability.

For each item, we first randomly selected 1, 800
responses as the RV training data and used the re-
maining responses as the evaluation set. We then
gradually reduced the RV training set to 1, 000, 500,
200, and even 50 responses and trained a series of
RVs. On the evaluation set, using these trained RVs,
we extracted cos4 VSM feature and calculated the
rcos4 for human-holistic scores. Table 2 reports the

average rcos4, which will de denoted as rcos4 there-
after, for the different-sized RV training sets. Table 2
shows that rcos4 continuously increases with the in-
crease of the dataset size for training RVs. However,
it is worth noting that using just 50 responses to train
RVs still provides a reasonably high rcos4 (0.383).
Between the two sizeRV conditions: 200 vs. 1800,
rcos4 did not show a statistically significant increase
based on a t-test (p = 0.314).

sizeRV 50 200 500 1000 1800

rcos4 0.383 0.428 0.435 0.439 0.440

Table 2: rcos4, a measurement of VSM features’ scoring
performance, from different RV training data sizes

4.2 Using document clustering for training RVs

In the experiment described in section 4.1, we found
that using even a limited number of human-scored
responses can provide useful VSM features with a
reasonably high r to human-holistic scores. If we
can intelligently select such a small-sized dataset,
we think that the VSM-derived features will show
further improved predicting power. Armed with
this idea, we proposed a solution to use unsuper-
vised document clustering technology to find the re-
sponses for training RVs.

In particular, for each item, of the 1, 800 re-
sponses used for training the RVs, we run an LDA
document-clustering process to split all of responses
into K clusters. Then, for each cluster, we ran-
domly selected M responses. Therefore, we se-
lected K ×M responses for human scoring and for
training the RVs. Note that K × M can be much
smaller than the original dataset size (n = 1800).
We believed that comprehensive coverage of all of
the latent topics would produce a better VSM that,
in turn, would provide more effective VSM-derived
features for scoring.

In our experiment, based upon a pilot study, we
decided to use K = 10 and M = 5 to control
the total scoring demand to be 50 responses per
item. Compared to the rcos4 value obtained from
randomly selecting 50 responses for training RVs
(0.383 in Table 2), the response selection based on
the document clustering improved the rcos4 to be
0.411. Furthermore, a t-test showed that such an in-
crease in rcos4 is statistically significant (p < 0.05).
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4.3 Using machine predicted scores for
training RVs

Many of the previous automated speaking scoring
systems focused on the features measuring fluency,
pronunciation, and prosody (Witt, 1999; Franco et
al., 2010; Bernstein et al., 2010; Chen et al., 2009).
The scores predicted by these systems show promis-
ingly high correlations with human rated scores. In
order to eliminate the time-consuming and costly
human scoring step required by applications of
VSM, we considered using the scores automatically
scored by algorithms (AS) instead of the scores rated
by humans (HS).

In our experiment, we used a set of speech fea-
tures following (Chen et al., 2009) for automated
speech scoring. To estimate AS, a five-fold cross-
validation was applied on the entire dataset. For
each fold, a linear regression model was trained
from 80% of responses by using their HS and was
used to predict regression results on the remaining
20% of responses. The continuous scores produced
by the regression model were rounded to the four
discrete score levels (1 to 4) to serve as AS. Between
the obtained AS and HS, a Pearson r 0.56 was ob-
served.

Using the predicted scores, we re-ran our VSM
feature experiment by using the 1, 800 responses to
train the RVs. When the dataset sizes for training the
RVs was at 1, 800, we found that the rcos4 was 0.410
when using machine-predicted scores. Although it
was lower than the rcos4 value obtained by using
human-rated scores (0.440), a feature with such cor-
relational magnitude is still useful for building an
automatic scoring model.
4.4 A summary of experiments

HS1800 HS50 HScluster50 AS1800

rcos4 0.440 0.383 0.411 0.410

Table 3: A summary of rcos4 using different RV training
sizes, unsupervised-response clustering, and automated-
predicted scores

Table 3 summarizes the three experiments de-
scribed above. HS1800 refers to using 1, 800 re-
sponses with human scores (HS) to train RVs for
each item. HS50 refers to using only 50 responses
with human rated scores. HScluster50 refers to us-

ing 50 responses that were selected to cover 10 la-
tent topics detected by using an LDA unsupervised
topic clustering method. Compared to HS50, we
find that the unsupervised topic clustering method
helped to improve rcos4. AS1800 refers to using
1, 800 responses with automatically predicted scores
(AS) to train RVs for each item. Compared to
HS1800, AS1800 that avoids using a time-consuming
and costly human scoring process, shows a reason-
ably high rcos4.

5 Conclusions and Future Work

Vector Space Models (VSMs) have been widely
used in essay and speech assessment tasks to provide
vocabulary usage and content relevance measure-
ments. However, applying VSM on the assessments
with many items requires a lot of work by human
raters. To make the application of VSM in assess-
ments more economical and efficient, we propose
the use of unsupervised learning methods to reduce
and even eliminate the time-consuming and costly
human-scoring process. First, we found that it was
possible to just use hundreds rather than thousands
of responses to train RVs when applying VSM. In
our experiments with TOEFL R© data, we found that
using a minimum 200 responses to train RVs for
each item, was not statistically significantly different
from using 1, 800 responses. Next, we used an LDA
document-clustering method to identify latent top-
ics from all of the items and used the topic informa-
tion to select responses for training RVs. Our exper-
iments clearly suggest that such a method of selec-
tion provides more effective VSM features than ran-
dom selection. Finally, we used the scores predicted
by an automated speech scoring system that mostly
uses fluency and pronunciation features to replace
human-rated scores in building the VSM. Our exper-
iments suggest that the features derived from such a
VSM that can be constructed without the need of hu-
man scoring show promisingly high correlations to
human-holistic scores.

This research can be extended in several new di-
rections. First, we will apply the proposed methods
on other language assessment tasks, such as on long
(written) essays, to fully test that the proposed meth-
ods are universally helpful. Second, we are consid-
ering doing the third experiment in more iterations
– adding the VSM-derived features into the auto-
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mated scoring model so that more accurate machine-
predicted scores can be used for building further im-
proved VSM.
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Abstract

We developed an approach to predict the pro-
ficiency level of Estonian language learners
based on the CEFR guidelines. We performed
learner classification by studying morpho-
syntactic variation and lexical richness in texts
produced by learners of Estonian as a sec-
ond language. We show that our features
which exploit the rich morphology of Esto-
nian by focusing on the nominal case and ver-
bal mood are useful predictors for this task.
We also show that re-formulating the classifi-
cation problem as a multi-stage cascaded clas-
sification improves the classification accuracy.
Finally, we also studied the effect of training
data size on classification accuracy and found
that more training data is beneficial in only
some of the cases.

1 Introduction and Motivation

Every year, language learners across the world learn
various languages and take tests that measure their
proficiency level. The Estonian language profi-
ciency examination1 in particular is usually taken
by the immigrant population for citizenship and/or
employment needs in Estonia. Assessing learner
texts to classify them into relevant proficiency lev-
els is usually done by human evaluators and is of-
ten a time consuming process. An approach to au-
tomate this process would complement the human
annotators and reduce the overall effort in evaluat-
ing learner texts for their proficiency. Investigat-
ing features that follow any sort of trend across the

1http://www.ekk.edu.ee/

various proficiency levels among learners is a first
step in building such automatic proficiency classifi-
cation systems. This is the main motivation for our
research.

Several factors might play a role in determining a
learner’s proficiency in a given language. Since we
study the learner corpus of Estonian, a morphologi-
cally complex language with an elaborate declension
and conjugation system, we hypothesized that study-
ing the role of morpho-syntactic features would be a
good starting point to perform proficiency classifi-
cation. We used the Estonian Interlanguage Corpus
(EIC)2, a publicly accessible corpus of written texts
produced by learners of Estonian as a second lan-
guage, for this purpose. All the texts were annotated
with a proficiency level that is based on the Com-
mon European Framework of Reference for Lan-
guages Council of Europe (CEFR). We constructed
various proficiency classification models based on
this corpus by using features motivated primarily by
the morphological complexity of Estonian and found
that true to our hypothesis, they turn out to be good
predictors of the proficiency level.

We also studied the effect of breaking up the
main classification task into sub-tasks and cascad-
ing them. We show that this approach increases the
overall accuracy of proficiency classification. In ad-
dition, we studied the effect of training data size and
found that it does not have a significant impact in
most of the classification tasks we performed. To
summarize, we studied the task of proficiency clas-
sification for Estonian by studying both the aspects
feature engineering and model construction.

2http://evkk.tlu.ee/wwwdata/what_is_evk
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The rest of this paper is organized as follows: Sec-
tion 2 briefly surveys related work and explains the
context of our research. Section 3 describes our cor-
pus and the experimental setup. Section 4 describes
our feature set. Section 5 describes our experiments
and results. Section 6 concludes the paper with a
discussion on results and directions for future work.

2 Related Work

With the availability of computer based learner cor-
pora, research focusing on studying the criterial fea-
tures that correlate with proficiency levels began to
emerge. A wide body of research exists on studying
the syntactic complexity of texts produced by learn-
ers across different proficiency levels, their lexical
richness and the errors they make (e.g., Lu, 2012;
Vyatkina, 2012; Tono, 2000) . Learner data from
both longitudinal and cross sectional studies was an-
alyzed to understand the linguistic patterns among
learners of different proficiency levels, in Second
Language Acquisition (SLA) research.

Automatic proficiency assessment of learner texts
is another active area of related research, which
plays an important role in language testing. Auto-
mated systems are now being used both for evalua-
tion of language learners and for offering feedback
on their language proficiency (e.g., Williamson,
2009; Burstein et al., 2003 ). Forms of text used for
assessment include mathematical responses, short
answers, essays and spoken responses among oth-
ers (Williamson et al., 2010). Standardized tests like
GRE and GMAT too use such systems to comple-
ment human scorers while evaluating student essays
automatically (Burstein, 2003; Rudner et al., 2005).
Zhang (2008) discusses proficiency classification for
the Examination for the Certificate of Proficiency
in English (ECPE) in detail, by comparing proce-
dures based on four types of measurement models.
The problem of automatic student classification i.e.,
making inferences about a student’s skill level by us-
ing some form of data about them is an active area
of research in Educational data mining (e.g., Des-
marais and Baker, 2012; Baker 2010).

But, automatic approaches for classifying lan-
guage learners into standardized proficiency levels
(e.g., the European CEFR levels3, Common Core

3http://www.coe.int/t/dg4/linguistic/

Standards4) is a relatively new area of interest.
Supnithi et al. (2003) used a dataset consisting of

audio transcripts by Japanese learners of English to
build a proficiency classification model with a fea-
ture set that modeled vocabulary, grammatical accu-
racy and fluency. This dataset had 10 levels of pro-
ficiency. Hasan and Khaing (2008) performed profi-
ciency classification with the same dataset using er-
ror rate and fluency features. Dickinson et al. (2012)
developed a system for classifying Hebrew learners
into five proficiency levels, using features that focus
on the nature of errors in a corpus of scrambled sen-
tence exercise questions.

Proficiency Classification so far has been predom-
inantly focused on the correlation of error-rate with
proficiency. Although error-rate is a strong indicator
of a learner’s proficiency in a language, consider-
ing other factors like lexical indices or syntactic and
morphological complexity would help in providing
multiple views about the same data. Providing a
non-error driven model, Crossley et al. (2011) stud-
ied the impact of various lexical indices in predicting
the learner proficiency level. Using a corpus of 100
writing samples by L2 learners of English classified
in to three levels (beginner, intermediate, advanced),
they built a classification system that analyses lan-
guage proficiency using the Coh-metrix5 lexical in-
dices.

Most of the research about the distinguishing fac-
tors among learners of various proficiency levels has
focused on English. However, issues like morpho-
logical variation, which may not be strong predic-
tors of learner proficiency in English, could be use-
ful in proficiency classification of other languages.
Hence, in this paper, we study the texts produced by
the learners of a morphologically rich and complex
language, Estonian and show that morphology can
be a good predictor for learner proficiency classifi-
cation.

We build our classification models using the Es-
tonian Interlanguage Corpus (EIC), which contains
texts produced by learners of Estonian as a second
language. We modeled our approach based on the
features motivated by the morphological complex-
ity of Estonian. To our knowledge, this is the first

Cadre1_en.asp
4http://www.corestandards.org/
5http://cohmetrix.memphis.edu
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work that studies the role of morphology based fea-
tures for proficiency classification in general and in
Estonian in particular.

3 Corpus and Experimental Setup

3.1 Corpus

The Estonian Interlanguage Corpus (EIC)6 was cre-
ated by the Talinn University. It is a collection of
written texts produced by learners of Estonian as a
second language. Most of the learners were native
speakers of Russian. The corpus consists mainly of
short essays, answers to questions, translations and
personal letters. The texts are annotated with error
types and incorrect forms. The corpus also provides
information about the learner’s age, gender, educa-
tion and about other languages known to the learner.
Descriptive statistics about the corpus are available
on their website7. The corpus contains around 8000
documents (two million words), most of which are
texts from the Estonian language proficiency exam-
ination. The length of the texts varies in general be-
tween 50 and 1000 words (Eslon, 2007).

Information about the learner’s level of compe-
tence is based on the CEFR guidelines8 and is de-
cided by human annotator judgement. Until late
2008, Estonian language proficiency was tested by
conducting proficiency exams at three levels - the
lowest level A, the medium level B and the highest
level C. Later, the CEFR standards were adapted, di-
viding the development of language proficiency into
six levels (A1, A2, B1, B2, C1, C2). A1 indicates a
basic proficiency and C2 indicates a mastery.

For our current work, we use a sub-corpus con-
sisting of 2000 texts that can be accessibly through
the EIC. These texts are spread across three broad
levels A, B, C instead of the more fine grained six
levels and contain all kinds of texts including short
answers. Although these texts also have an an-
notated version containing information about error-
types and corrections, since our aim in this paper is
to study the effect of morpho-syntactic features, we
considered the raw texts produced by the learners as

6http://evkk.tlu.ee/
7http://evkk.tlu.ee/statistics.html
8http://en.wikipedia.org/wiki/Common_

European_Framework_of_Reference_for_
Languages

they were, without looking at the error annotations.
Table 1 shows a summary of the entire corpus that
was made available.

We prepared a test set consisting of 50 documents
from each category, picked randomly. This test set
was not used to train any of the classifiers we used
in this paper. Further, to avoid a training bias to-
wards any class, we used equal number of instances
from all classes during all our binary and three-class
training processes.

Proficiency Level #Docs Avg. #tokens
A-level 807 182.9
B-level 876 260.3
C-level 307 431.8

Table 1: The EIC Corpus

3.2 Pre-processing

All the texts in our corpus were POS-tagged with the
TreeTagger9 and the tagged output was then used
to extract the required features. The TreeTagger
(Schmid, 1994) is a probabilistic part of speech tag-
ger, which contains parameter files to tag Estonian
data. The tag set was derived from the Tartu Mor-
phologically Disambiguated Corpus tag set10. As
mentioned earlier, we do not use the error annotation
information for these learner texts, in this paper.

4 Features

Our choice of features were primarily motivated by
the nature of the morphology of Estonian.

4.1 The Estonian Language

The Estonian language has about one million native
speakers. It belongs to the Finnic branch of Uralic
languages and is known for it’s complex morphol-
ogy. It is both an agglutinative and a flectional (fu-
sional) language. Some of the prominent features of
Estonian language include:

• 14 productive nominal cases

9http://www.ims.uni-stuttgart.de/
projekte/corplex/TreeTagger/

10http://www.cl.ut.ee/korpused/
morfkorpus/
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• no grammatical gender (either of nouns or per-
sonal pronouns) and no articles (either definite
or indefinite)

• the verbal system lacks a morphological future
tense (the present tense is used instead)

• relatively free word order (relations between
words are expressed by case endings)

• extensive compound word formation

• impersonal voice (specific to the Finnic lan-
guages and similar to passive voice. The verb
is conjugated in ”fourth person”, who is never
mentioned)

• Most of the inflected words in Estonian have
two distinctive parts: the stem and the forma-
tive. For example, raamatutele (book, plural,
allative) consists of the stem raamatu and the
formative tele, which in turn consists of plural
marker te and allative case marker le (Erelt et
al., 2007, p. 203).

• Unlike most of other Finnic languages, Esto-
nian also has flective features, i.e., the same
morpheme may have different shapes in differ-
ent word forms. For example, the stem jalg
(”foot”, singular, nominative) may appear as
jala (singular, genitive) or jalga (singular, par-
titive) and plural marker may appear as d, de,
te or i or merged with the stem as in jalad
(plural, nominative), jalgade (plural, genitive)
and jalgu (plural, partitive) (Erelt et al., 2007,
p. 203).

As many of these characteristics are morpholog-
ical in nature, we hypothesized that this morpho-
logical complexity of Estonian may play a role in
the process of language learning and hence may
be a useful predictor for proficiency classification.
Hence, we built our feature set primarily focusing
on the morphological properties of the learner texts.
Apart from these features, we also included other
features based on the Parts of Speech and lexical
variation.

4.2 Morphological Features

In Estonian, as in other Finnic languages, nomi-
nals (nouns, adjectives, numerals and pronouns) and
verbs are inflected for number and case. Estonian

nominals are inflected in 14 different cases. Three of
the nominal cases are grammatical cases, i.e., nom-
inative, genitive and partitive. They fulfill mainly
a syntactic purpose and have a very general gram-
matical meaning. All the other cases are semantic
cases, and they have a more concrete meaning than
grammatical cases, which often can be explained by
means of adverbs or adpositions (Erelt et al., 2007,
p. 241). We considered the proportion of nouns and
adjectives tagged with various cases per document
and included them as our declension features. The
cases we considered in this paper are: nominative,
genitive, partitive, illative, inessive, elative, allative,
adessive, ablative, translative, terminative, essive,
abessive, comitative and short singular illative, i.e.,
aditive case.

The verb in Estonian has finite forms that occur
as predicates and auxiliary components of complex
predicates and non-finite forms. Finite forms are in-
flected for mood, tense, voice, aspect, person and
number. The verb has altogether five moods: the in-
dicative, conditional, imperative, quotative and jus-
sive. It has two simple tenses: the present and the
past, two voices: personal and impersonal, affirma-
tion and negation. Non-finite forms behave differ-
ently. Participles are inflected for voice and tense,
present participles also for case and number, and
supines for voice and case. There is one infinitive
and one gerund, which can be explained as the ines-
sive case form of the infinitve (Erelt, 2003, p. 52). In
this paper, we considered the proportion of verbs be-
longing to various tense, mood, voice, number and
person categories as our features.11.

4.3 POS features

We included the various degrees of comparison of
adjectives and the proportion of words belonging to
various parts of speech among our features. This
group of features also included the proportion of ad-
positions (=prepositions+postpositions) along with
the proportion of prepositions and postpositions sep-
arately. We also included the proportion of co-
ordinating conjunctions and subordinating conjunc-
tions along with that of all conjunctions.

11Examples of various forms of declension and conjugation
can be found in the Estonian morphology guide at: http://
lpcs.math.msu.su/˜pentus/etmorf.htm
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4.4 Lexical Variation features

Lexical variation, also called lexical range indicates
the range of vocabulary displayed in a learner’s lan-
guage use. We implemented the measures of lexical
variation that are used in the English SLA research
to measure the lexical richness of the learners of En-
glish as a second language (Lu, 2012). These in-
cluded the noun variation, verb variation, adjective
variation and verb variation which indicated the ra-
tio of the words with the respective parts of speech
to the total number of lexical words (instead of all
words).

4.5 Text Length Feature

Since text length is one of the most commonly used
measures of learner proficiency and also because of
the variation in average text length across the pro-
ficiency levels (Table1), we included the number of
word tokens per document as a feature.

4.6 Most Predictive Features

Apart from these individual feature groups, we also
performed a feature selection, to identify the most
predictive ones among all our features. We used the
Correlation based Feature Subset (CFS) selection
method in WEKA for this purpose. CFS chooses
a feature subset considering the correlation and the
degree of redundancy between the features. Table 2
consists of a list of the most predictive and non-
redundant features after ranking all the selected fea-
tures based on their Information Gain. This list con-
sisted of five verb morphology based features fol-
lowed by three nominal declension features.

Feature Group
Nominative case NounMorph
Impersonal VerbMorph
Personal VerbMorph
Num. words TextLength
Present tense VerbMorph
2nd person verbs VerbMorph
Prepositions POS
Allative case NounMorph
Imperatives VerbMorph
Translative case NounMorph

Table 2: 10 Most Predictive, Non-redundant Features

It is interesting to note that several characteris-
tics that are prominent in Estonian (cf. Section 4.1)
figured among this list of most predictive features.
Nominative being the top predictor can be explained
due to the difference in (the number of) cases be-
tween Estonian and other languages. For example
(Eslon, 2011) found in her corpus study based on the
same corpus that the learners frequently use nom-
inative case instead of genitive and partitive case.
So, it is to be expected that the usage of the nom-
inative case changes as the proficiency increases.
Impersonal and personal voice are distinctive fea-
tures in Estonian and other Finnic languages, as
they are different from the active and passive voice
that typically exist in other languages (Erelt, 2003).
This may make them difficult to master for language
learners, making them one of the top predictors for
proficiency. Further, Estonian has more postposi-
tions than prepositions. Hence, one could that the
use of prepositions will be replaced by postposi-
tions as the language acquisition progresses (Ehala,
1994).

5 Experiments and Results

We first studied the effect of the individual feature
groups as well as their combination for a three class
classification of Estonian learners into A, B and C
classes. We also studied the impact of a stacking
ensemble on the overall classification accuracy and
found out that it did not result in a significant im-
provement on the test set. Hence, we further investi-
gated the problem as a collection of multi-stage two-
class cascades instead of a single stage three class
classification. For all our classification experiments,
we used the WEKA (Hall et al., 2009) toolkit. We
report the overall classification accuracy as our eval-
uation metric.

5.1 Three Class-Classification

We first considered the learner classification as a sin-
gle step, three class classification problem. Since
50 documents from each category were separated as
a held-out test set (cf. Section 3.1), we built our
three-class models with 250 texts per category as our
training set to ensure that there is a balanced distri-
bution between classes. We trained multiple clas-
sification models considering the individual feature
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groups and the most predictive feature group. Ta-
ble 3 shows the classification accuracy of various
feature groups, reported using the Sequential Mini-
mal Optimization (SMO) implementation in WEKA
(Platt, 1998).

Features 10-Fold CV Test set
Random baseline 33.33% 33.33%
Noun Morph. 56.64% 52%
Verb Morph 57.55% 58%
POS 52.99% 47.33%
Lex. Variation 43.36% 47.33%
Text Length 33.72% 34%
All Features 62.45% 59.33%
Noun+Verb Morph 61.45% 58%
Top10 features (Table 2) 57.34% 56.58%

Table 3: Estonian Learner Proficiency Classification with
various Feature groups

Although the classification accuracies overall are
not very high, it can be seen from the results that the
morphological variation does play a key role in pro-
ficiency classification of Estonian. While the verbal
morphology features performed best as an individ-
ual feature sub group, the addition of lexical varia-
tion and POS features to the morphological features
added very little to the overall classification accu-
racy.

Text length turned out to be the most predictive
single feature among the top features. It can be seen
from Table 3 that this feature alone resulted in a clas-
sification accuracy of 34%, which is just above the
random baseline (33.33%). But the fact that the C
level in general contained a higher number of es-
says and translations compared to other categories
of text like letters and short answers (than the A and
B levels), thereby resulting in longer texts in gen-
eral, may have resulted text length being the single
most predictive feature. The Top-10 features also
performed on par with the individual morphological
feature subgroups.

5.1.1 Ensemble Model
Since ensemble models are known to obtain a bet-

ter performance than their constituent models, we
compared the performance of a stacking ensemble
against its individual constituent models. We trained

three classification models on the entire feature set,
using the same train-test sets as explained before and
trained an ensemble model with three classifiers. We
used the StackingC implementation of WEKA (See-
wald, 2002) to combine the models, with a linear re-
gression model as our meta classifier. Table 4 shows
the classification accuracies for the individual clas-
sifiers as well as the ensemble on a 10-fold CV of
the training set and on the held out test set. The
ensemble did not result in any significant improve-
ment (<1%) compared to the best model amongst
the three of its individual components (SMO). The
ensemble’s performance on the test set was poor
compared to the best classification model.

Classifier 10-Fold CV Test set
SMO 62.45% 59.33%
Logistic Regression 59.37% 52%
Decision Tree 57.29% 52.33%
Stacked Ensemble 63.28% 57.33%

Table 4: Proficiency Classification With an Ensemble

5.2 Classification Through Two-Class Cascades

Since combining the classifiers as a stacking ensem-
ble did not work, we turned to reformulating our
problem as a cascade of two-class classifiers. Cas-
cade generalization is the process of sequentially
using a set of small classifiers to perform an over-
all classification task. Gama and Brazdil (2000)
showed that a cascade can outperform other ensem-
ble methods like stacking or boosting. Kaynak and
Alpaydin (2000) proposed a method to sequentially
cascade classifiers and showed that this improves the
accuracy without increasing the computational com-
plexity and cost. Although the creation of our clas-
sifier cascades in this paper is not the same as any
of the above mentioned research, their conclusion
that cascading subsets of classifiers to build an over-
all classifier can possibly result in a better accuracy
was the main motivation for this experiment.

The SMO implementation in WEKA also con-
siders multi-class classification as a combination of
pairwise binary classifications. But, in our subse-
quent experiments, we combine our two-class clas-
sifiers as a multi-stage cascade rather than a multi-
expert stacking ensemble. For these experiments,

68



we first built the various binary classifiers that were
later used to construct the cascades. We chose our
combinations both by using a One vs All (OvA) as
well as a One vs One (OvO) strategy. Thus, six bi-
nary classifiers were created, namely:

• (A, B) classifier

• (B, C) classifier

• (C, A) classifier

• (A and Not A) classifier

• (B and Not B) classifier

• (C and Not C) classifier

In all the cases, our training data consisted of
equal number of instances per class. In the cases of
the last three classifiers, the training data for NotA,
NotB and NotC categories consisted of instances
from both the classes that were included in the re-
spective ”Not-” classes. The data from the held-
out test set was not included in any of these binary
classification experiments. The training data size for
each classifier has a different size depending on the
classes involved. In all cases, the number of train-
ing samples per category is equal to the number of
documents belonging to the category with the least
number of documents. Hence, in cases involving
the C-class (ABC, AC, BC, CnotC), we trained the
classifiers with 250 documents per category. In all
the other cases (AB, AnotA, BnotB), we trained the
classifiers with 750 documents per category. Table 5
summarizes the training data size and the classifica-
tion accuracies using 10-fold cross validation. All
the models were trained using the SMO algorithm.

Classifer Training data size Accuracy
A,B 750 per cat 70.8%
B,C 250 per cat 74.59%
A,C 250 per cat 85.93%
A,NotA 750 per cat 74.20%
B,NotB 750 per cat 60.04%
C,NotC 250 per cat 79.69%

Table 5: Binary Classifications of Estonian Learners

This binary classification shows that there is a
clear trend among the features across the proficiency

levels. In the case of a pair-wise classification be-
tween classes, the highest classification accuracy
was achieved for the binary classifier that considered
the A and C classes. Although the classification ac-
curacies of the binary classifiers (A,B) and (B,C) are
considerably higher than the overall three class clas-
sification accuracy (Table 3), they are very low com-
pared to that of the binary classifier (A,C). The con-
fusion between the three classes is the highest when
it involves the middle class, B. This confirmed the
ordinal nature of proficiency classification. In the
second set of binary classifiers, again, the classifier
with a poor performance turned out to be (B,NotB).

To take advantage of the fact that the two-class
classification is much more accurate than the three-
class classification, we studied three class classifica-
tion by building multi-stage classifier cascades us-
ing the above binary classifiers. Based on the output
of the first stage (which is the most accurate classi-
fier), we feed the test instance to one of the remain-
ing classifiers to get the final prediction.

5.2.1 Cascade-1
For the first cascade, we considered the pairwise

binary classifiers that used a One vs One (OvO)
strategy from Table 5. We constructed a classifier
cascade as follows: For each test instance,

• Classify the instance using the classifier (A,C).

• If A, re-classify the instance using the classifier
(A,B).

• if C, re-classify the instance using the classifier
(B,C).

5.2.2 Cascade-2
For the second cascade, we considered the sec-

ond set of binary classifiers from Table 5, which use
a One vs All (OvA) strategy. The cascade is con-
structed as follows: For each test instance,

• Classify the instance using the classifier
(C,NotC).

• If C, classify the instance as C.

• Else, re-classify the instance using the classifier
(A,notA).
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The choice of these particular combinations of
cascades was motivated by two factors:

• To understand the performance of OvO and
OvA binary classifier cascades independently

• To start with the classifier that has the highest
accuracy as the first stage.

Table 6 compares the performance on the test set
of the cascaded classifiers against the normal 3-class
classifier and a classifier ensemble. Compared to a
normal three-class classifier, the cascaded approach
showed more than 5% improvement in the classifica-
tion accuracy using both the cascades. Compared to
Cascade-1, Cascade-2 performed even better with a
66.66% classification accuracy on the test set. Since
binary classification for certain pairs seemed to be
possible with higher accuracy than the three-class
classification, reformulating three class classifica-
tion as a cascade of binary classifications may result
in a better classification accuracy. This was the ini-
tial motivation for the choice of cascade classifica-
tion. Our results clearly showed that it was a fruitful
experiment.

Classifer Accuracy
Cascade-1 64.66%
Cascade-2 66.66%
3-class,without cascade 59.33%
3-class ensemble 57.33%

Table 6: Comparison of Cascade classification

The cascades need more exploration though.
Also, although the morphological features turned
out to be useful predictors of proficiency classifica-
tion, the classification accuracies are still not very
high. Two possible explanations could be that our
features are good but not sufficient or that the train-
ing data was insufficient.

It is clear from our various classification experi-
ments that the morphological features are good pre-
dictors of proficiency levels. But, surely, there is
much more to language proficiency than morpholog-
ical complexity. So, exploring more features will be
the natural next step to improve the overall classi-
fication accuracy. However, to gain some more in-
sights at this level, we studied the effect of training

data sizes on the various classification tasks we per-
formed.

5.3 Effect of Training Sample Size

We took all the seven different classification mod-
els we used in the earlier experiments and studied
the impact of gradually increasing the training data
size on classification accuracy. For this purpose,we
trained all the classifiers with the complete feature
set using the SMO algorithm. The classifiers studied
include the three class ABC classifier and the binary
classifiers AB, BC, AC, AnotA, BnotB and CnotC.
Table 7 summarizes the effect of splitting the respec-
tive training sets into various train-test splits, on the
classification accuracies.

classifier 50-50 60-40 70-30 80-20
ABC 56.73% 60.05% 61.76% 62.76%
AB 71.07% 71.3% 71.2% 72.04%
BC 71.33% 72.35% 71.73% 74.86%
AC 86.31% 84.95% 84.15% 85.55%
AnotA 75.39% 75.20% 76.65% 75.82%
BnotB 59.05% 57.95% 56.91% 58.08%
CnotC 77.34% 77.56% 77.27% 76.52%

Table 7: Effect of training size on classification accuracy

As the table shows, training data size had an im-
pact only on some of the classification tasks. For
the three class classification, training set size had a
clear effect. Although our corpus had a large num-
ber of texts from A and B compared to C (Table
1), since we used balanced training sets to train all
models, the three-class model had relatively fewer
number of documents per category (250) compared
to, say, the AB classifier (750 per category). Re-
duction of this small training set further by 50% de-
creased the three class classification accuracy from
62.76% (when 80% of the data was used for train-
ing) to 56.73%. So, in this case, training data size
had an effect.

However, an interesting observation is that this
small training sample size (250 documents per cat-
egory) did not have any impact on the classification
performance of the classifier (A,C). This classifier
consistently performed at a higher level compared to
all the other classifiers even when the training data
was only 50% (125 documents per category). Al-
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though it is possible that the length of the document
played a role here, there was little difference in the
performance (< 1%) even after removing the text
length feature. This indicates a strong differentiation
between the texts of the language learners of levels
A and C, in terms of the features we used.

In case of the other classification tasks, only the
(B,C) classifier showed some effect of the training
data on its overall classification accuracy. While
there might be other reasons that we did not no-
tice yet, it is possible that the inter class overlap
between (A,B) is more compared to the overlap be-
tween (B,C) at least in terms of the features we con-
sidered. Also, the fact that the B-level lies in be-
tween A and C could also have contributed to the
fact that more training data has little effect on clas-
sifiers involving data from all the three classes (An-
otA, BnotB, CnotC).

6 Conclusion and Discussion

In this paper, we discussed the task of classify-
ing learner texts into standardized proficiency lev-
els based on the texts produced by learners of Es-
tonian as a second language. We used the publicly
accessible Estonian Interlanguage Corpus (EIC) and
modeled our classifiers by considering the morpho-
syntactic variation as our primary feature group. We
hypothesized that the morphology may play an im-
portant role in detecting the proficiency levels as Es-
tonian is a morphologically rich and complex lan-
guage.

For building our classifiers, we experimented with
various methods such as three class classifiers, an
ensemble model and multi-stage cascades. Our ex-
periments showed that the multi-stage cascades im-
proved the classification accuracy compared to the
other approaches. Our experiments also showed a
clear trend across the proficiency levels. There was
little classification overlap between the beginner (A)
and the advanced (C) level texts but a strong overlap
of both these levels with the intermediate (B) level.

We can conclude from our experiments that the
morphological features can indeed play an impor-
tant role in the proficiency classification of Estonian.
Although the classification accuracies we achieved
(60-65%) have a long way to go in terms of a real-
world grading application, we believe that this is a

good starting point to explore the role of morphol-
ogy in proficiency classification of Estonian in par-
ticular and other morphologically rich languages in
general.

As a part of our future work, we intend to investi-
gate the role of morphology in Estonian proficiency
classification further. We also want to compare the
proficiency levels across various genres of texts in
the corpus (e.g, essays, personal and official letters,
translations etc.). Another interesting dimension we
want to explore further is the distribution of specific
kinds of morphological phenomena (e.g., case mark-
ers) that exist in Estonian but not in the learner’s na-
tive language, across the different proficiency levels.
It would also be interesting to apply insights from
the theories of second language acquisition research
and study their utility for proficiency classification.
Apart from morphology, we also intend to study the
impact of other features such as lexical sophistica-
tion, error rate, syntactic complexity and discourse
coherence. Finally, on the model construction side,
we plan to investigate and understand the working
of cascaded classifiers better in this context.
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Abstract 

This paper presents and evaluates approaches 
to automatically score the content correctness 
of spoken responses in a new language test for 
teachers of English as a foreign language who 
are non-native speakers of English. Most ex-
isting tests of English spoken proficiency elic-
it responses that are either very constrained 
(e.g., reading a passage aloud) or are of a pre-
dominantly spontaneous nature (e.g., stating 
an opinion on an issue). However, the assess-
ment discussed in this paper focuses on essen-
tial speaking skills that English teachers need 
in order to be effective communicators in their 
classrooms and elicits mostly responses that 
fall in between these extremes and are moder-
ately predictable. In order to automatically 
score the content accuracy of these spoken re-
sponses, we propose three categories of robust 
features, inspired from flexible text matching, 
n-grams, as well as string edit distance met-
rics. The experimental results indicate that 
even based on speech recognizer output, most 
of the feature correlations with human expert 
rater scores are in the range of r = 0.4 to r = 
0.5, and further, that a scoring model for pre-
dicting human rater proficiency scores that in-
cludes our content features can significantly 
outperform a baseline without these features 
(r = 0.56 vs. r = 0.33).  

1 Introduction 

With the increased need for instruction of interna-
tional learners of English as a foreign language 
(EFL), there is a concomitant rise in demand to 
assess the language competence of English teach-
ers who are non-native speakers of English. This 

situation arises because it is neither possible nor 
affordable for countries where English is not spo-
ken as a native language to employ only or even 
mostly native speakers of English as EFL teachers. 
Moreover, as the language of instruction increas-
ingly becomes English in most classrooms, teach-
ers’ competence in the productive language 
modality of speaking becomes substantially more 
important than in the past. In order to meet this 
demand for assessing the English language profi-
ciency of teachers of English, a new test, English 
Teachers Language Assessment (ETLA), was de-
veloped recently and piloted in 2012. The test 
comprises items for all four main language modali-
ties: reading, listening, writing and speaking. 

While reading and listening items use a multi-
ple-choice paradigm, test items for speaking and 
writing elicit open responses. For cost and effi-
ciency reasons, we aim to employ automated scor-
ing of written and spoken responses in this test. 
This paper is concerned in particular with the con-
ceptualization, implementation and evaluation of 
features that can assess one aspect of English 
speaking proficiency: the content correctness of a 
test taker’s response. Our automated speech scor-
ing system, SpeechRaterSM

The speaking items in ETLA range in complexi-
ty from reading a text passage aloud to more chal-
lenging tasks requiring multi-sentence responses 
related to typical teaching situations. The items, 
therefore, elicit speech in which predictability 
ranges from high (e.g., reading aloud) to medium 
(e.g., open responses based on teaching material). 

 (Zechner et al., 2009), 
also has features addressing other aspects of speak-
ing proficiency, such as fluency or pronunciation, 
but the details of these features will not be dis-
cussed as part of this paper. 
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While approaches to capture the content of mostly 
predictable speech have been widely used in the 
past (see, e.g., Alwan et al., 2007; Franco et al., 
2010), this is not the case for responses that exhibit 
considerable variation but are still much shorter 
and more constrained than spontaneous items from 
other language tests, such as TOEFL iBT®

Therefore, the goal of the study reported in this 
paper is to conceptualize, implement and evaluate 
features that can address the subset of ETLA 
speaking items where responses are not strongly 
predictable but are still fairly short and constrained 
by the context of the item stimulus and prompt.

. 

1

To illustrate what an ETLA speaking item may 
look like, we provide a relatively simple example 
here. Suppose the test taker (i.e., an English lan-
guage teacher) is asked to request that the class 
open their textbooks on page 55. We could see a 
range of responses, from “perfect” (score level 3, 
e.g., “Please open your textbooks on page 55.” or 
“Please open your textbooks and turn to page 
55.”), to “good” (score level 2, e.g., “Please open 
the books on the page 55.”) and to “poor” (score 
level 1, e.g., “Open book page 55.”). Again, note 
that for this paper we are not interested in potential 
issues with fluency, such as long pauses or speak-
ing rate, nor with pronunciation or prosody. We 
just look at the content of the test takers’ respons-
es, either in idealized form by means of a human 
transcription of what a test taker actually said, or in 
a realistic operational scenario, where we look at 
the output of an ASR system. In both cases, we 
consider the sequence of words only (i.e., a textual 
representation of the test takers’ spoken respons-
es). 

 
One important aspect of any features used for con-
tent scoring is that they have to be robust with re-
spect to speech recognition errors. Robustness is 
necessary because we are using an automatic 
speech recognition (ASR) system as a front end, 
and the average word error rate of the system is 
around 27% for moderately predictable item re-
sponses. 

In order to investigate the effectiveness of can-
didate content features in a short-term development 
cycle before a larger amount of pilot data would be 
available, we first conducted a small scale in-house 

                                                           
1 A test item is a basic element of a test, consisting of stimulus 
material, such as text and/or visuals, and a prompt (test ques-
tion) that elicits a response from the test taker. 

data collection effort focusing on the moderately 
predictable spoken items in ETLA. Based on the 
analysis of this mini-corpus, several different cate-
gories of promising features were selected for po-
tential operational use and then evaluated on the 
pilot data. 

The paper is organized as follows: Section 2 
provides an overview on related work; Section 3 
describes the in-house data set, the pilot data and 
the ASR system; the developed features are pre-
sented in Section 4; Section 5 presents our experi-
ments; we then discuss our findings in Section 6 
and we conclude the paper in Section 7. 

2 Related Work  

Related to the automated assessment of writing 
free-text, research to date has concentrated mainly 
on two tasks: (1) scoring of short answers (Mitch-
ell et al., 2002; Leacock and Chodorow, 2003; 
Mohler and Mihalcea, 2009) and (2) scoring of 
essays (Foltz et al., 1999; Kanejiya et al., 2003; 
Attali and Burstein, 2006). For example, Leacock 
and Chodorow (2003) built an automated scoring 
system, c-rater™, to evaluate the short constructed 
or free-text responses, where the concepts given in 
test items were modeled, and the presence of these 
expected concepts in students’ answers would be 
detected.  

As for the evaluation of free-text essays, Attali 
and Burstein (2006) used a selected set of mean-
ingful features to measure different constructed 
aspects of writing essays, such as grammar, usage, 
mechanics, style, organization, development, lexi-
cal complexity and prompt-specific vocabulary 
usage. In addition, the Intelligent Essay Assessor 
(Foltz et al., 1999) used Latent Semantic Analysis 
(LSA) to score students’ answers by comparing 
them to domain-representative texts. Since LSA is 
based on the bag-of-words model, researchers have 
also tried to expand it by introducing additional 
information, such as part-of-speech (POS) tags 
(Kanejiya et al., 2003).  

In addition, research efforts have also been 
made to evaluate the content relatedness and cor-
rectness for spoken responses. For example, Xie et 
al. (2012) used LSA and Pairwise Mutual Infor-
mation approaches to evaluate the content correct-
ness of unrestricted spontaneous spoken responses. 
Moreover, Chen and Zechner (2011) explored fea-
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tures related to grammatical complexity in an au-
tomated speech scoring system.  

In order to address the moderately predictable 
speaking test items in the new ETLA, this paper 
presents several different types of features to score 
the content correctness of the elicited spoken re-
sponses. Following a series of experiments and 
comparisons, seven features from three content 
feature categories are selected and evaluated. 

3 Data Sets and ASR System 

This study conducts experiments and evaluations 
based on two different data sets: (1) a small scale 
in-house data collection effort, which was used for 
the design and development of content features; 
and (2) a larger-scale pilot data collection, which 
was used to further evaluate the features selected 
according to the in-house data and to build scoring 
models for the prediction of human proficiency 
scores. 

3.1 In-house Data Collection 

Twenty-two items from ETLA with moderately 
predictable responses were selected for the in-
house data collection.2

                                                           
2 We decided to focus our efforts only on the moderately pre-
dictable items since scoring of highly predictable item types 
has been extensively studied in previous research already. 

 Firstly, 1,053 text responses 
in total for all three score levels (3 = high profi-
ciency, 2 = medium proficiency, 1 = low profi-
ciency) were drafted and collected by human 
experts. In order to simulate the operational scenar-
io with an ASR system in place, a subset of re-
sponses was recorded by a small set of 
predominantly non-native speakers of English. For 
each test item, four responses were randomly se-
lected from each score level, which resulted in 22 
× 3 × 4 = 264 responses for voice recording. The 
remainder of 789 text responses comprised the set 
for feature development and training. In addition, 
about two thirds of the 264 text responses were 
randomly double-recorded by a second speaker, 
resulting in a speech corpus with 444 spoken re-
sponses in total, used as the evaluation set. Fur-
thermore, all these spoken responses were 
manually transcribed to accommodate the errors 
introduced by reading, such as insertions of various 
speech disfluencies.  

3.2 Pilot Data Collection 

This study uses data from a 2012 pilot administra-
tion of the ETLA assessment. In particular, we fo-
cus on 14 moderately predictable items from the 
pilot, covering 2,308 test takers. In order to build 
the automatic speech recognizer and the scoring 
models, the pilot data were partitioned into five 
different subsets without any speaker and response 
overlaps. The first three data partitions were used 
for training, development and evaluation of the 
speech recognition system (hereafter, “asrTrain”, 
“asrDev” and “asrEval”), which included spoken 
responses from both the moderately and highly 
predictable items. The asrTrain partition was fur-
ther used to develop and train the content features 
described below. The remaining two partitions 
were used for training and evaluation of scoring 
models that predicted item scores based on a set of 
features (hereafter, “smTrain” and “smEval”), 
where only the spoken responses from 14 moder-
ately predictable items from one pilot form were 
included.   

The detailed partition information is listed in 
Table 1. All these spoken responses have been 
manually transcribed and scored with holistic 
scores from 1 to 3 by trained human expert raters. 
For the smTrain and smEval partitions, there were 
6,367 responses receiving double annotation, and 
the inter-rater correlation was 0.73. Furthermore, 
the average length of responses from smTrain and 
smEval sets was 10.5 words, and the correspond-
ing vocabulary size was 855 (not including partial 
words).  

 
Partitions # Speakers # Responses 
asrTrain 1,658 27,604 
asrDev 25  700 
asrEval 25  700 
smTrain 300  3,452 
smEval 300  3,466 

Table 1. Number of speakers and number of responses 
included within each data partition. 

3.3 System Architecture 

Our automated speech scoring system, 
SpeechRater (Zechner et al., 2009), consists of an 
ASR system described below which generates a 
word hypothesis for every response by a test taker, 
including information about timing, energy and 
pitch, and other information from the input audio 
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file. Next, the feature computation modules take 
the outputs of the ASR system and compute a set 
of features, related to fluency, pronunciation, pros-
ody, as well as content, the focus of this paper. Fi-
nally, a scoring model (linear regression model) is 
trained based on the smTrain set to predict scores 
and then evaluated on unseen data (smEval set). 

3.4 ASR System 

In this study, a state-of-the-art gender-independent 
Hidden Markov Model speech recognition system 
trained on about 800 hours of non-native speech is 
taken as the baseline recognizer, and its language 
model (LM) is then further adapted using the tran-
scriptions from the asrTrain data partition. The 
language model adaptation weights are tuned on 
the asrDev set, and the resulting word error rate 
(WER) on the asrEval set (with both moderately 
and highly predictable responses) is 11.7%, and its 
WER on the subset of 264 moderately predictable 
responses is 19.7%. This speech recognizer is fur-
ther evaluated on both smTrain and smEval sets as 
shown in Table 2, only including moderately pre-
dictable responses.  

 
Partition WER (%) 
smTrain 26.7 
smEval 26.9 

Table 2. Word error rates (WER) of the speech recog-
nizer on smTrain and smEval3

4 Content Features 

 data sets.  

Following a careful inspection and analysis of the 
collected in-house data (described in Section 3.1 
above), several different categories of content fea-
tures were designed and developed. The initial data 
analysis showed that features need to be able to 
capture very narrow ranges of expressions with 
minor variations, but also should be able to capture 
something like the “overall accuracy” of expres-
sion, where local word sequences or phrases 
should conform to the expectations of the item de-
sign without requiring that a response follows a 
confined pattern in its entirety. For the former situ-
ation, features like regular expression matches 
                                                           
3 The calculation of WER is based on only the recognized 
outputs with more than one word. Thus, the number of actual-
ly recognized responses is less than that in Table 1, i.e., 3,264 
responses for smTrain and 3,255 responses for smEval. 
 

seem appropriate to be a good match, whereas for 
the latter, more flexible approaches such as n-gram 
models or string edit distance metrics may be more 
appropriate. We list and describe our proposed 
content features in the following section. 

A. Flexible String Matching Metrics 

AI. Regular Expressions 
Since many responses in ETLA are expected to 
follow certain patterns, it is intuitive to construct 
limited regular expressions (RegEx) to match gold 
standard responses for candidates with high profi-
ciency score levels. Accordingly, one type of regu-
lar expression related features, re_match, can be 
extracted to detect whether the test response can be 
matched by any of the pre-built regular expres-
sions. This feature can obtain the values of 0 (does 
not match), 1 (partially matches) and 2 (exactly 
matches). Here, a partial match indicates that a 
RegEx can be matched within a test response that 
also has other spoken material, which is useful 
when the speaker repeats or corrects the answer 
multiple times in a single item response, and the 
compiled RegEx can still be used to match parts of 
the test response. 

This content feature has the advantage of high 
precision, as it can precisely examine the content 
correctness of the test responses. Thus, the RegEx 
should be compiled to match all the example re-
sponses at the highest score level 3 from the train-
ing set. For some test items with relatively short 
and fixed answer patterns, this feature is quite use-
ful; however, it is very time-consuming and diffi-
cult to manually build regular expressions for 
items with longer and more flexible expressions. 
Meanwhile, the mechanism of exact matching can 
make this feature fail in very small variations of 
expression. Especially when applying this feature 
on ASR output, it is difficult to successfully match 
some content-correct responses that have 
disfluencies or recognition errors. 

Therefore, in order to improve the robustness of 
RegEx, another regular expression related feature 
is proposed. In general, for each item in ETLA, 
some pieces of specific expressions are required in 
a test response to represent its content correctness. 
Accordingly, we can segment the reference re-
sponses into several fragments and identify some 
pieces as key fragments. For example, when look-
ing at the reference response “Please open your 
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text books and turn to page 55.” two key fragments 
can be extracted with “Please open your text 
books” and “turn to page 55.” We group versions 
of these key fragments from the training corpus 
together and construct regular expressions to match 
each group. Afterwards, a feature can be defined to 
count how many key fragments can be matched by 
a test response, namely num_fragments.  
 
AII. Keyword Detection 
For moderately predictable items on ETLA, key-
word lists can be extracted from the stimulus mate-
rial and the item prompt, containing the words that 
need to be included in a test response by test tak-
ers. Then a feature, num_keywords, can be used to 
examine how many keywords appear in a test re-
sponse, which can be further normalized by the 
number of predefined keywords for each item, i.e., 
percent_keywords. In addition, as some keywords 
may be a phrase with multiple words, such as 
“page 55,” we can split all the keywords into sin-
gle words and get another sub-keywords list. Then 
two corresponding features can be extracted as 
num_sub_keywords and percent_sub_keywords. 

B. N-grams 

BI. Word N-grams 
The word n-gram model is introduced here to cap-
ture the similarity of word usage between the test 
and the reference responses. Based on the collected 
training samples, trigrams are trained using the text 
responses from the highest score level 3. Then, the 
LM can be used to score a test response, and the 
resulting probability can be taken as feature, called 
lm_3.  
 
BII. POS Similarity 
This feature measures the syntactic complexity of 
test responses based on the distribution of POS 
tags. First, all the responses from the training data 
set are assigned with POS tag sequences via an 
automatic POS tagger. Then, a POS vector accord-
ing to each score level can be obtained by gather-
ing the POS unigram, bigram or trigram statistics 
from the same score level. 

Given a test response, its corresponding POS 
sequence can be determined by the same POS tag-
ger, and the cosine similarities between the test 
POS n-gram vector and the POS vectors from three 
different score levels can be calculated as pos_1, 

pos_2 and pos_3, where pos_3 is used as a feature 
in our experiments below. Furthermore, by com-
paring these three cosine similarities, the score cat-
egory with the highest similarity can be extracted 
as another feature, i.e., pos_score. 
 
BIII. Machine Translation Evaluation Metric 
(BLEU) 
BLEU (Papineni et al., 2002) is one of the most 
popular metrics for automatic evaluation of ma-
chine translation, where the score is calculated 
based on the modified n-gram precision. In this 
study, the BLEU score is introduced to evaluate 
the content quality of a test response, where three 
different gold standard reference corpora are ex-
tracted from the training set according to each 
score level. Similar to the edit distance and WER 
features described below, three BLEU scores are 
calculated by comparing them with reference re-
sponses from each score level (i.e., bleu_1, bleu_2 
and bleu_3). We decide to use the following two 
features for our experiments below: bleu_3 and 
bleu_score, the score level which receives the 
maximum BLEU score.  

C. String Edit Distance Metrics 

CI. String Edit Distance 
As the edit distance is an effective string metric for 
measuring the amount of difference between two 
word sequences, including insertions, deletions and 
substitutions, we use it to capture the sequence dis-
tance between the test and reference responses.  

Given a test response, we can separately calcu-
late the edit distance by comparing it with training 
responses from each score level. Afterwards, the 
minimum edit distance from each score level can 
be extracted as ed_1, ed_2 and ed_3, where ed_3 is 
selected as feature for our experiments. Further-
more, by comparing these three edit distances, the 
score category with the minimum value is taken as 
another feature, ed_score.  
 
CII. Word Error Rate (WER) 
By dividing the edit distance by the length of the 
reference response, we obtain the word error rate 
(WER) metrics, commonly used in speech recogni-
tion, and two additional features, wer_3 and 
wer_score, similarly as above, can be calculated.  

Compared to the above category of n-gram re-
lated features, which capture the n-gram fragment 
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matching between the test and reference samples, 
the category of edit distance features try to find the 
most similar reference sample to the test sample at 
the whole-response level.  

Finally, all the proposed features are implement-
ed and then examined based on both the ideal hu-
man transcription and the realistic ASR output. 
The speech recognizer used with the small in-
house data is the same as the ASR system de-
scribed in Section 3.4, but its language model is 
adapted with the much smaller set of 789 training 
text responses. The WER of this system is 17.8%, 
evaluated on 444 spoken responses. 

In addition, in order to increase the robustness of 
the extracted features, a preprocessing stage is in-
troduced to remove all the disfluencies from the 
ASR output, such as filler words, recognized par-
tial words and repeated words. Afterwards, each 
feature is evaluated on both the transcription and 
the ASR output of the 444 collected spoken re-
sponses, and its corresponding Pearson correlation 
coefficient with human scores is presented in Table 
3.  

Based on overall correlation, inter-correlation 
analyses, as well as on construct4

5 Experiments and Results 

 considerations, 
seven content features from three categories are 
selected and will be evaluated on a larger scale on 
ETLA pilot data in the next section: re_match 
(A1), num_fragments (A2), percent_sub_keywords 
(A3), bleu_3 (B1), ed_score (C1), wer_3 (C2) and 
wer_score (C3). 

This section first describes experiments related to 
the performance of the seven selected content fea-
tures on a larger corpus from an ETLA pilot ad-
ministration (described above in Section 3.2). 
Then, a similar analysis is conducted based on hu-
man rater analytic content scores on a subset of 
this data. Finally, the selected content features are 
combined with other features related to pronuncia-
tion, prosody and fluency to build a scoring model 
for the prediction of human scores. 

 
 

                                                           
4 A construct is the set of knowledge, skills and abilities 
measured by a test. The term “construct considerations” in the 
context of feature selection refers to the process of ensuring 
that the selected feature set obtains a high coverage of all as-
pects of the relevant construct. 

 Feature Trans ASR  

A 

re_match 0.789 0.537 
num_fragments 0.629 0.523 
num_keywords 0.269 0.254 
percent_keywords 0.419 0.375 
num_sub_keywords 0.249 0.239 
percent_sub_keywords 0.482 0.417 

B 

lm_3 0.482 0.461 
pos_3 0.270 0.270 
pos_score 0.315 0.339 
bleu_3 0.531 0.458 
bleu_score 0.144 0.194 

C 

ed_3 -0.362 -0.337 
ed_score 0.642 0.614 
wer_3 -0.573 -0.513 
wer_score 0.585 0.557 

Table 3. Pearson correlation coefficients (r) of content 
features with human holistic scores. 

5.1 Feature Evaluation on Pilot Data 

In the following experiments, we use the asrTrain 
set to train the content features. Then these features 
are examined on the smTrain and smEval data sets. 
In order to extract the edit distance, WER- and 
BLEU-related features for each item, three text 
reference corpora according to different score lev-
els, are needed. Duplicate reference responses with 
the same content are removed within each score 
level.  

Furthermore, we improve two RegEx features 
using the reference responses from the highest 
score level 3 in the asrTrain set. (1) Since the pre-
viously obtained re_match feature based on the in-
house data may not be able to match multiple con-
tent-correct responses in the pilot data, we need to 
augment the set of RegEx for this feature based on 
correct responses from score level 3 in the asrTrain 
set. (2) Since the maximum number of candidate 
fragments varies across different ETLA items, the 
num_fragments feature values are not comparable 
across items. Therefore, we redesign this feature 
by assigning a list of manually selected keywords 
for each fragment. During feature extraction, we 
count the number of distinct keywords associated 
with all the matched fragments and divide this 
number by the number of predefined keywords for 
each item (as in AII. Keyword Detection), which 
results in another feature: perc_fragment_kw (A2).  

Based on the ASR output of smTrain and 
smEval data sets, seven content features are ex-
tracted and their Pearson correlation coefficients 
with the holistic human scores are calculated and 
shown in Table 4. 
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Feature smTrain (r) smEval (r) 
Trans ASR Trans ASR 

A1 0.53 0.415 0.534 0.441 
A2 0.576 0.458 0.583 0.48 
A3 0.42 0.286 0.419 0.297 
B1 0.597 0.478 0.564 0.452 
C1 0.535 0.412 0.52 0.39 
C2 -0.588 -0.469 -0.564 -0.446 
C3 0.554 0.433 0.51 0.428 

Table 4. Pearson correlation coefficients between con-
tent features and human holistic scores, based on both 
the transcription and the ASR output of smTrain and 
smEval.5

5.2 Evaluations Using Human Rater Analyt-
ic Content Scores 

 Features include A1 (re_match), A2 
(perc_fragment_kw), A3 (percent_sub_keywords), B1 
(bleu_3), C1 (ed_score), C2 (wer_3) and C3 
(wer_score) 

In addition to the human rating of all spoken re-
sponses of the ETLA pilot data set with holistic 
scores that take into account both the dimensions 
of “delivery” (fluency, pronunciation, prosody) 
and “content,” a subset of the data was further 
scored by human expert raters in these two dimen-
sions separately, resulting in so-called analytic 
scores for delivery and content. The inter-
correlation for content analytic scores was 0.79. 

1,410 responses from the smTrain set and 1,402 
responses from the smEval set received such ana-
lytic content scores. On this subset, table 5 shows 
the Pearson correlation coefficients between the 
content features and the analytic content scores, as 
well as the holistic scores, for comparison. 

5.3 Scoring Model Comparison 

We further examine these content features by in-
troducing them in a scoring model to predict hu-
man rater holistic proficiency scores, using 
smTrain for training of the models and smEval for 
their evaluation. The baseline system employs 14 
features related to the construct dimension of de-
livery, such as pronunciation, prosody and fluency.  
                                                           
5 The evaluation is conducted on recognition output with more 
than one word. In addition, due to technical problems, such as 
high background noise, some responses are non-scorable for 
human raters, and these responses are removed from the eval-
uation sets. Finally, there are 3176 responses included in 
smTrain, and 3084 responses in smEval.  

 

Feature 
smTrain (r) 

Holistic Content 
Trans ASR Trans ASR 

A1 0.529 0.415 0.563 0.434 
A2 0.564 0.46 0.646 0.525 
A3 0.422 0.283 0.452 0.277 
B1 0.6 0.499 0.654 0.504 
C1 0.527 0.43 0.555 0.46 
C2 -0.588 -0.473 -0.627 -0.488 
C3 0.542 0.434 0.563 0.462 

Feature 
smEval (r) 

Holistic Content 
Trans ASR Trans ASR 

A1 0.525 0.424 0.538 0.436 
A2 0.579 0.472 0.621 0.512 
A3 0.423 0.308 0.454 0.321 
B1 0.563 0.442 0.606 0.471 
C1 0.521 0.4 0.539 0.422 
C2 -0.543 -0.42 -0.584 -0.457 
C3 0.514 0.417 0.529 0.439 

Table 5. Pearson correlation coefficients between con-
tent features and human analytic content scores as well 
as human holistic scores.  
 
Furthermore, an extended scoring model is built by 
adding the selected seven content features to the 
model. Table 6 provides the comparison between 
these two scoring models, reporting both quadratic 
weighted kappa and Pearson correlation coeffi-
cients between automatically predicted scores and 
human holistic scores on the smEval data set. 
 

Scoring Model Kappa r 
Baseline (Delivery only) 0.30 0.33 

Extended (Delivery+Content) 0.53 0.56 

Table 6. Scoring model comparison: quadratic weighted 
kappa and Pearson correlation coefficients between pre-
dicted scores (unrounded) and human holistic scores.  

6 Discussion 

The goal of this paper was to conceptualize, im-
plement and evaluate features that can determine 
the content correctness of spoken item responses in 
an English language test for teachers of English 
who are not native speakers of English. 

Based on observations from a small in-house da-
ta collection, where human test developers and 
content experts created example responses to 22 
test items for three different score levels, we de-
cided to implement a range of features that can 
capture the content correctness of test takers’ re-
sponses in varying degree of precision. Our fea-
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tures belong to three classes: features related to 
fixed expressions, with potential small variations, 
such as regular expressions or keywords; features 
based on n-grams of words or POS tags, including 
the BLEU metrics frequently used for evaluations 
of machine translation output; and features related 
to measures of string edit distance, including the 
WER metrics commonly used in speech recogni-
tion evaluations.  

It should be noted that we use the term “content” 
in a fairly broad way in this paper, namely, every-
thing in a spoken response that is not related to 
lower-level aspects of speech production such as 
fluency or pronunciation. Since the scoring rubrics 
for ETLA place a high emphasis both on the 
grammatical accuracy, as well as on the correct 
content (in a more narrow sense), this situation is 
reflected by our choice of features that focus both 
on elements traditionally associated with content 
(such as matching of keywords), as well as on ele-
ments more related to correct grammatical expres-
sions (e.g., sequences of POS tags). 

Our initial evaluations on the small in-house da-
ta collection showed that most of these features 
correlate well with human expert scores, both 
when using transcribed speech as well as when 
using ASR output. The absolute correlations for 
human transcriptions of speech range from r = 
0.144 (bleu_score) to r = 0.789 (re_match), and for 
ASR output from r = 0.194 (bleu_score) to r = 
0.614 (ed_score). The relative drop in correlation 
between these two conditions varies across fea-
tures, but is generally around 5%-15%, with 
re_match having a much larger performance drop 
from r = 0.789 for transcribed speech to r = 0.537 
for ASR output (32% relative decrease in perfor-
mance). 6

From this initial set of 15 features, we selected 
seven features based on feature performance, inter-
correlation analyses (i.e., avoiding features that 
have a high inter-correlation and measure a similar 
aspect of content), and considerations of construct, 
i.e., which features are representing content in a 
way that is consistent with what human experts 
would consider important in determining the con-
tent correctness of a response. This subset of seven 

 

                                                           
6 The correlation of one feature, pos_3, remained unchanged 
between the two conditions, and two features, pos_score and 
bleu_score, showed higher correlations for ASR output than 
for human transcriptions. 

features includes three features each from the clas-
ses of flexible string matching and string edit dis-
tance, and one feature (bleu_3) from the n-gram 
class. 

When evaluating these seven features on a larger 
data set, the smTrain and smEval sets of the 2012 
ETLA pilot data, we find absolute correlations be-
tween features and human holistic scores ranging 
from r = 0.286 to r = 0.480 for ASR output, and 
from r = 0.419 to r = 0.597 for transcriptions. The 
relative decrease in correlation between transcrip-
tions and ASR outputs ranges from 16% to 32% in 
these data sets (smTrain and smEval). The magni-
tude of content feature correlations observed in this 
study is similar to that of features related to fluen-
cy and pronunciation computed on spontaneous 
speech, as reported in Zechner et al. (2009). In 
fact, due to the brevity of the moderately predicta-
ble responses in ETLA, features related to fluency 
and pronunciation achieve correlations of less than 
0.3 on this data set, making content features crucial 
for the assessment of speech here. 

When comparing the six content features that 
are identical between the original feature set of 15 
features (in-house data collection) and the final 
feature set, we observe a relative drop in feature 
correlation between the in-house data set and the 
smEval pilot data set between 1% (blue_3) and 
36% (ed_score), with an average decrease of 20%. 
This performance decrease can be explained by (1) 
the more challenging data set of the pilot, as indi-
cated, e.g., by a much higher word error rate of the 
ASR system (27% vs. 18%); and (2) the fact that 
the in-house data collection was much more con-
strained in terms of test taker response variation 
compared to the real-world pilot data. 

Since a subset of the ETLA responses was also 
scored analytically by human raters, we could fur-
ther compare the feature correlations between ho-
listic vs. analytic content scores (Section 5.2). We 
find that on smEval, for all features, absolute cor-
relations increase on human analytic content scores 
compared to human holistic scores. Although these 
differences are rather small (0.01 to 0.04), this is 
an indicator that our features are measuring what 
they are supposed to measure, since the holistic 
scores also take other dimensions of speech, such 
as fluency and pronunciation, into account. 
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7 Conclusion and Future Work 

This paper presented a study whose aim was to 
conceptualize, implement and evaluate features to 
measure the content correctness of test takers’ re-
sponses in a new assessment for EFL teachers 
whose native language is not English. 

We implemented and evaluated an initial set of 
15 content features from three feature classes: flex-
ible string matching, n-grams and string edit dis-
tance metrics. A subset of these features was then 
evaluated on a 2012 ETLA pilot administration, 
and we found correlations between features and 
human holistic scores in the range of r = 0.29 to r 
= 0.48 on ASR output. Correlations increased 
when comparing features with human analytic con-
tent scores. 

Finally, we compared a baseline regression scor-
ing model for prediction of human holistic scores 
without any content features to an extended model 
using seven content features and found that the 
model correlation substantially improved from r = 
0.33 (baseline) to r = 0.56 (extended model). 

Future work will include devising strategies on 
how to obtain RegEx features more quickly in a 
semi-automated way in order to reduce human la-
bor. Further, we plan more in-depth analysis of the 
feature performance across different test items and 
item types which potentially could lead to further 
improvements and refinements of our content fea-
tures. 
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Abstract

We present a system for automatically iden-
tifying the native language of a writer. We
experiment with a large set of features and
train them on a corpus of 9,900 essays writ-
ten in English by speakers of 11 different lan-
guages. our system achieved an accuracy of
43% on the test data, improved to 63% with
improved feature normalization. In this paper,
we present the features used in our system, de-
scribe our experiments and provide an analysis
of our results.

1 Introduction

The task of Native Language Identification (NLI)
is the task of identifying the native language of a
writer or a speaker by analyzing their writing in
English. Previous work in this area shows that
there are several linguistic cues that can be used
to do such identification. Based on their native
language, different speakers tend to make different
kinds of errors pertaining to spelling, punctuation,
and grammar (Garfield, 1964; Wong and Dras, 2009;
Kochmar, 2011). We describe the complete set of
features we considered in Section 4. We evaluate
different combinations of these features, and differ-
ent ways of normalizing them in Section 5.

There are many possible applications for an NLI
system, as noted by Kochmar (2011): finding the

origins of anonymous text; error correction in var-
ious tasks including speech recognition, part-of-
speech tagging, and parsing; and in the field of sec-
ond language acquisition for identifying learner dif-
ficulties. We are most interested in statistical ap-
proaches to this problem because it may point to-
wards fruitful avenues of research in language and
sound transfer, which are how people apply knowl-
edge of their native language, and its phonology
and orthography, respectively, to a second language.
For example, Tsur and Rappoport (2007) found that
character bigrams are quite useful for NLI, which
led them to suggest that second language learners’
word choice may in part be driven by their native
languages. Analysis of such language and sound
translation patterns might be useful in understand-
ing the process of language acquisition in humans.

2 Previous Work

The work presented in this paper was done as part
of the NLI shared task (Tetreault et al., 2013), which
is the first time this problem has been the subject
of a shared task. However, several researchers have
investigated NLI and similar problems. Authorship
attribution, a related problem, has been well stud-
ied in the literature, starting from the seminal work
on disputed Federalist Papers by Mosteller and Wal-
lace (1964). The goal of authorship attribution is
to assign a text to one author from a candidate set
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of authors. This technique has many applications,
and has recently been used to investigate terrorist
communication (Abbasi and Chen, 2005) and dig-
ital crime (Chaski, 2005). The goal of NLI some-
what similar to authorship attribution, in that NLI
attempts to distinguish between candidate commu-
nities of people who share a common cultural and
linguistic background, while authorship attribution
distinguishes between candidate individuals.

In the earliest treatment of this problem, Koppel
et al. (2005) used stylistic text features to identify
the native language of an author. They used features
based on function words, character n-grams and er-
rors and idiosyncrasies such as spelling errors and
non-standard syntactic constructions. They exper-
imented on a dataset with essays written by non-
native English speakers from five countries, Russia,
Czech Republic, Bulgaria, France and Spain, with
258 instances from each dataset. They trained a
multi-class SVM model using the above features and
reported 10-fold cross validation accuracy of 80.2%.

Tsur and Rappoport (2007) studied the problem
of NLI with a focus on language transfer, i.e. how
a seaker’s native language affects the way in which
they acquire a second language, an important area in
Second Language Acquisition research. Their fea-
ture analysis showed that character bigrams alone
can lead to a classification accuracy of about 66%
in a 5-class task. They concluded that the choice of
words people make when writing in a second lan-
guage is highly influenced by the phonology of their
native language.

Wong and Dras (2009) studied syntactic errors de-
rived from contrastive analysis as features for NLI.
They used the five languages from Koppel et al.
(2008) along with Chinese and Japanese, but did not
find an improvement in classification accuracy by
adding error features based on contrastive analysis.
Later, Wong and Dras (2011) studied a more gen-
eral set of syntactic features and showed that adding
these features improved the accuracy significantly.
They also investigated classification models based
on LDA (Wong et al., 2011), but did not find them

to be useful overall. They did, however, notice that
some of the topics were capturing information that
would be useful for identifying particular native lan-
guages. They also proposed the use of adaptor gram-
mars (Johnson et al., 2007), which are a generaliza-
tion of probabilistic context-free grammars, to cap-
ture collocational pairings. In a later paper, Wong
et al. explored the use of adapter grammars in de-
tail (Wong et al., 2012) and showed that an exten-
sion of adaptor grammars to discover collocations
beyond lexical words can produce features useful for
the NLI task.

3 Dataset

The experiments for this paper were performed us-
ing the TOEFL11 dataset (Blanchard et al., 2013)
provided as part of the shared task. The dataset con-
tains essays written in English from native speakers
of 11 languages (Arabic, Chinese, French, German,
Hindi, Italian, Japanese, Korean, Spanish, Telugu,
and Turkish). The corpus contains 12,099 essays per
language sampled evenly from 8 prompts or topics.
This dataset was designed specifically to support the
task of NLI and addresses some of the shortcom-
ings of earlier datasets used for research in this area.
Specifically, the dataset has been carefully selected
in order to maintain consistency in topic distribu-
tions, character encodings and annotations across
the essays from different native languages. The data
was split into three data sets: a training set com-
prising 9,900 essays, a development set comprising
1,100 essays, and a test set comprising 1,100 essays.

4 Approach

We addressed the problem as a supervised, multi-
class classification task. We trained a Support Vector
Machine (SVM) classifier on a set of lexical, syntac-
tic and dependency features extracted from the train-
ing data. We computed the minimum and maximum
values for each of the features and normalized the
values by the range (max - min). Here we describe
the features in turn.
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Character and Word N-grams Tsur and Rap-
poport (2007) found that character bigrams were
useful for NLI, and they suggested that this may be
due to the writer’s native language influencing their
choice of words. To reflect this, we compute features
using both characters and word N-grams. For char-
acters, we consider 2,3 and 4-grams, with padding
characters at the beginning and end of each sentence.
The features are generated over the entire training
data, i.e., every n-gram occurring in the training data
is used as a feature. Similarly, we create features
with 1,2 and 3-grams of words. Each word n-gram
is used as a separate feature. We explore both binary
features for each character or word n-gram, as well
as normalized count features.

Part-Of-Speech N-grams Several investigations,
for example those conducted by Kochmar (2011)
and Wong and Dras (2011), have found that part-of-
speech tags can be useful for NLI. Therefore we in-
clude part-of-speech (POS) n-grams as features. We
parse the sentences with the Stanford Parser (Klein
and Manning, 2003) and extract the POS tags. We
use binary features describing the presence or ab-
sence of POS bigrams in a document, as well as nu-
merical features describing their relative frequency
in a document.

Function Words Koppel et al. (2005) found that
function words can help identify someone’s native
language. To this end, we include a categorical fea-
ture for the presence of function words that are in-
cluded in list of 321 function words.

Use of punctuation Based on our experience
with speakers of native languages, as well as
Kochmar’s (2011) observations of written English
produced by Germanic and Romance language
speakers, we suspect that speakers of different native
languages use punctuation in different ways, pre-
sumably based on the punctuation patterns in their
native language. For example, comma placement
differs between German and English, and neither
Chinese nor Japanese requires a full stop at the end
of every sentence. To capture these kinds of patterns,

we create two features for each essay: the number of
punctuation marks used per sentence, and the num-
ber of punctuation marks used per word.

Number of Unique Stems Speakers of different
native languages might differ in the amount of vo-
cabulary they use when communicating in English.
We capture this by counting the number of unique
stems in each essay and using this as an additional
feature. The hypothesis here is that depending on the
similarity of the native language with English, the
presence of common words, and other cultural cues,
people with different native language might have ac-
cess to different amounts of vocabulary.

Misuse of Articles We count instances in which
the number of an article is inconsistent with the as-
sociated noun. To do so, we fist identify all the det
dependency relations in the essay. We then com-
pute the ratio of det relations between ‘a’ or ‘an’
and a plural noun (NNS), to all det relations. We
also count the ratio of det relations between ‘a’ or
‘an’ and an uncountable noun, to all det relations.
We do this using a list of 288 uncountable nouns.1

Capitalization The writing systems of some lan-
guages in the data set, for example Telugu, do not
include capitalization. Furthermore, other languages
may use capitalization quite differently from En-
glish, for example German, in which all nouns are
capitalized, and French, in which nationalities are
not. Character capitalization mistakes may be com-
mon in the text written by the speakers of such lan-
guages. We compute the ratio of words with at least
two letters that are written in all caps to identify ex-
cessive capitalization. We also count the relative fre-
quency of capitalized words that appear in the mid-
dle of a sentence that are not tagged as proper nouns
by the part of speech tagger.

Tense and Aspect Frequency Verbal tense and
aspect systems vary widely between languages. En-
glish has obligatory tense (past, present, future) and

1http://www.englishclub.com/vocabulary/nouns-
uncountable-list.htm
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aspect (imperfect, perfect, progressive) marking on
verbs. Other languages, for example French, may
require verbs to be marked for tense, but not as-
pect. Still other languages, for example Chinese,
may use adverbials and temporal phrases to com-
municate temporal and aspectual information. To
attempt to capture some of the ways learners of En-
glish may be influenced by their native language’s
system of tense and aspect, we compute two fea-
tures. First, we compute the relative frequency of
each tense and aspect in the article from the counts
of each verb POS tags (ex. VB, VBD, VBG). We
also compute the percentage of sentences that con-
tain verbs of different tenses or aspect, again using
the verb POS tags.

Missing Punctuation We compute the relative
frequency of sentences that include an introductory
phrase (e.g. however, furthermore, moreover) that is
not followed by a comma. We also count the relative
frequency of sentences that start with a subordinat-
ing conjunction (e.g. sentences starting with if, after,
before, when, even though, etc.), but do not contain
a comma.

Average Number of Syllables We count the num-
ber of syllables per word and the ratio of words with
three or more syllables. To count the number of syl-
lables in a word, we used a perl module that esti-
mates the number of syllables by applying a set of
hand-crafted rules.2.

Arc Length We calculate several features pertain-
ing to dependency arc length and direction. We
parse each sentence separately, using the Stanford
Dependency Parser, and then compute a single value
for each of these features for each document. First,
we simply compute the percentage of arcs that point
left or right (PCTARCL, PCTARCR). We also com-
pute the minumum, maximum, and mean depen-
dency arc length, ignoring arc direction. We also
compute similar features for typed dependencies:
the minimum, maximum, and mean dependency arc

2http://search.cpan.org/dist/Lingua-EN-
Syllable/Syllable.pm

length for each typed dependency; and the percent-
age of arcs for each typed dependency that go to the
left or right.

Downtoners and Intensifiers We compute three
features to describe the use of downtoners, and three
for intensifiers in each document. First, we count the
number of downtoners or intensifiers in a given doc-
ument.3 We normalize this count by the number of
tokens, types, and sentences in the document to yield
the three features capturing the use of downtoners or
intensifiers.

Production Rules We compute a set of features to
describe the relative frequency of production rules
in a given document. First, we parse each sentence
using the Stanford Parser, using the default English
PCFG (Klein and Manning, 2003). We then count
all non-terminal production rules in a given docu-
ment, and report the relative frequency of each pro-
duction rule in that document.

Subject Agreement We count the number of sen-
tences in which there appears to be a mistake in sub-
ject agreement. To do this, we first identify nsubj
and nsubjpass dependency relationships. Of these
dependencies, we count ones meeting the following
criteria as mistakes: a third person singular present
tense verb with a nominal that is not third person
singular, and a third person singular subject with a
present tense verb not marked as third person sin-
gular. We then normalize the count of errors by the
total number of nsubj and nsubj pass dependencies
in the document, and the number of sentences in the
document to produce two features.

Words per Sentence We compute both the num-
ber of tokens per line and the number of types per

3The words we count as downtoners are: ‘almost’, ‘alot’,
‘a lot’, ‘barely’, ‘a bit’, ‘fairly’, ‘hardly’, ‘just’, ‘kind of’,
‘least’, ‘less’, ‘merely’, ‘mildly’, ‘nearly’, ‘only’, ‘partially’,
‘partly’, ‘practically’, ‘rather’, ‘scarcely’, ‘sort of’, ‘slightly’,
and ‘somewhat’. The intensifiers are: ‘a good deal’, ‘a great
deal’, ‘absolutely’, ’altogether’, ‘completely’,‘enormously’,
‘entirely’, ‘extremely’, ‘fully’, ‘greatly’, ‘highly’, ‘intensely’,
‘more’, ‘most’, ‘perfectly’, ‘quite’, ‘really’, ‘so’, ‘strongly’,
‘super’, ‘thoroughly’, ‘too’, ‘totally’, ‘utterly’, and ‘very’.
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line.

Topic Scores We construct an unsupervised topic
model for all of the documents using Mallet (Mc-
Callum, 2002) with 100 topics, dirichlet hyperpa-
rameter reestimation every 10 rounds, and all other
options set to default values. We then use the topic
weights as features.

Passive Constructions We count the number of
times an author uses passive constructions by count-
ing the number of nsubjpass dependencies in each
document. We normalize this count in two ways to
produce two different features: dividing by the num-
ber of sentences, and dividing by the total number of
nsubj and nsubjpass dependencies.

5 Experiments and Results

We used weka (Hall et al., 2009) and libsvm (Chang
and Lin, 2011) to run the experiments. The classi-
fication was done using an SVM classifier. We ex-
perimented with different SVM kernels and different
values for the cost parameter. The best performance
was achieved with a linear kernel and cost = 0.001.
We trained the model using the combination of the
training and the development sets. We submitted the
output of the system to the NLI shared task work-
shop. Our system achieved 43.3% accuracy. Table 1
shows the confusion matrix and the precision, recall,
and F-measure for each language. After the NLI
submission deadline, we noticed that we our system
was not handling the normalization of the features
properly which resulted in the poor performance.
After fixing the problem, our system achieved 63%
accuracy on both test data and 10-fold cross valida-
tion on the entire data.

6 Analysis

We did feature analysis on the training and devel-
opment data sets using the Chi-squared test. Our
feature analysis shows that the most important fea-
tures for the classifier were topic models, charac-
ter n-grams of all orders, word unigrams and bi-
grams, POS bigrams, capitalization features, func-

tion words, production rules, and arc length. These
results are consistent with those presented in previ-
ous work done on this task.

Looking at the confusion matrix in Figure 1, we
see that Korean and Japanese were the most com-
monly confused pair of languages. Hindi and Tel-
ugu, two languages from the Indian subcontinent,
were also often confused. To analyze this further,
we did another experiment by training just a binary
classifier on Korean and Japanese using the exact
same feature set as earlier. We achieved a 10-fold
cross validation accuracy of 83.3% on this classifi-
cation task. Thus, given just these two languages,
we were able to obtain high classification accuracy.
This suggests that a potentially fruitful strategy for
NLI systems might be to fuse often-confused pairs,
such as Korean/Japanese and Hindi/Telugu, into sin-
gleton classes for the initial run, and then run a sec-
ond classifier to do a more fine grained classification
within these higher level classes.

When doing feature analysis for these two lan-
guages, we found that the character bigrams rep-
resenting the country names were some of the top
features used for classification. For example “Kor”
occurred as a trigram frequently in essays from na-
tive language speakers of Korean. Based on this, we
designed a small experiment where we created fea-
tures corresponding to the country name associated
with each native language, e.g., “Korea”, “China”,
“India”, “France”, etc. For Arabic, we used a list of
22 countries where Arabic is spoken. Just using this
feature, we obtained a 10-fold cross validation accu-
racy of 21.3% on the development set. This suggests
that in certain genres, one may be able to leverage in-
formation conveying geographical and demographic
attributes for NLI.

7 Conclusion

In this paper, we presented a supervised system for
the task of Native Language Identification. We de-
scribe and motivate several features for this task
and report results of supervised classification using
these features on a test data set consisting of 11 lan-
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ARA CHI FRE GER HIN ITA JPN KOR SPA TEL TUR Precision Recall F-measure
ARA 41 7 8 3 6 2 3 5 10 7 8 44.6% 41.0% 42.7%
CHI 6 38 5 2 2 8 15 8 3 3 10 40.0% 38.0% 39.0%
FRE 8 6 43 8 1 14 2 4 6 1 7 39.1% 43.0% 41.0%
GER 3 3 10 49 4 9 1 7 6 0 8 54.4% 49.0% 51.6%
HIN 5 2 6 9 34 0 3 1 3 32 5 47.9% 34.0% 39.8%
ITA 5 3 10 5 1 52 2 1 17 0 4 46.0% 52.0% 48.8%
JPN 3 11 0 1 1 3 49 26 1 1 4 37.4% 49.0% 42.4%
KOR 2 6 6 1 1 2 35 40 1 1 5 38.1% 40.0% 39.0%
SPA 4 6 14 1 1 17 6 2 38 0 11 40.9% 38.0% 39.4%
TEL 9 7 3 4 18 2 2 2 2 48 3 51.1% 48.0% 49.5%
TUR 6 6 5 7 2 4 13 9 6 1 41 38.7% 41.0% 39.8%
Accuracy = 43.0%

Table 1: The results of our original submission to the NLI shared task on the test set. These results reflect the
performance of the system that does not normalize the features properly

guages provided as part of the NLI shared task. We
found that our classifier often confused two pairs
of languages that are spoken near one another, but
are linguistically unrelated: Hindi/Telugu and Ko-
rean/Japanese. We found that we could obtain high
classification accuracy on these two pairs of lan-
guages using a binary classifier trained on just these
pairs. During our feature analysis, we also found
that certain features that happened to convey geo-
graphical and demographic information were also
informative for this task.
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VTEX

Akademijos 2a
Vilnius, Lithuania

vidas.daudaravicius@vtex.lt

Abstract

This paper describes the system developed
for the NLI 2013 Shared Task, requiring
to identify a writer’s native language by
some text written in English. I explore the
given manually annotated data using word
features such as the length, endings and
character trigrams. Furthermore, I em-
ploy k-NN classification. Modified TFIDF
is used to generate a stop-word list auto-
matically. The distance between two docu-
ments is calculated combining n-grams of
word lengths and endings, and character
trigrams.

1 Introduction

Native Language Identification (NLI) is the task
of identifying the first spoken language (L1) of
a person based on the person’s written text
in another language. As a natural language
processing (NLP) task, it is properly catego-
rized as text classification, and standard ap-
proaches like support vector machines (SVM)
are successufully applied to it. Koppel et al.
(2005) trained SVM models with a set of stylis-
tic features, including Part of Speech (POS) and
character n-grams (sequences), function words,
and spelling error types, achieving 80% accu-
racy in a 5-language task. Tsur and Rappoport
(2007) focused on character n-grams. Wong and
Dras (2011) showed that syntactic patterns, de-
rived by a parser, are more effective than other
stylistic features. The Cambridge Learner Cor-
pus has been used recently by Kochmar (2011),

who concluded that character n-grams are the
most promising features. Brooke and Hirst
(2012) investigated function words, character n-
grams, POS n-grams, POS/function n-grams,
CFG productions, dependencies, word n-grams.

A notable problem in the recent NLI research
is a clear interaction between native languages
and topics in the corpora. The solution in the
mentioned work was to avoid lexical features
that might carry topical information.

2 Data

The NLI 2013 Shared Task uses the TOEFL11
corpus (Blanchard et al., 2013) which was de-
signed specifically for the task of native language
identification. The corpus contains 12 100 En-
glish essays from the TOEFL (Test of English
as a Foreign Language) that were collected
through ETS (Educational Testing Service) op-
erational test delivery system. TOEFL11 con-
tains eleven native languages: Arabic, Chinese,
French, German, Hindi, Italian, Japanese, Ko-
rean, Spanish, Telugu, and Turkish. The sam-
pling of essays ensures approximately equal rep-
resentation of native languages across eight top-
ics, labeled as prompts. The corpus contains
more than 1000 essays for each L1 language.
Each essay is labelled with an English language
proficiency level – high, medium, or low – given
by human assessment specialists. The essays are
usually 300 to 400 words long. The corpus is
split into training, development and test data
(9900, 1100 and 1100, respectively). The corpus
contains plain text files and the index for these
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File name Prompt Native
language

Language
proficiency

1000025.txt P2 CHI high
100021.txt P1 ARA low

1000235.txt P8 TEL medium
1000276.txt P4 TEL high
1000392.txt P3 JPN medium
1000599.txt P6 CHI medium
1000617.txt P4 GER high
1000719.txt P1 HIN high
100082.txt P2 TUR medium

Table 1: The sample of the training data index.

files. Sample of this index is shown in Table 1.

3 Nend transformation

The training and the development corpora con-
tain a lot of spelling errors and no POS tagging
is provided. For instance, a sentence from the
training corpus “Acachely I write abawet may
communitie and who the people support youg
people”. Therefore I needed to find features
which encode the information about native lan-
guage of a writer in a more generalized way.
Also, my primary interest was to build a sys-
tem which does not utilize any language pro-
cessing tool, such as part of speech or syntactic
trees, and topic-related information, such as full
words. The reason for that is to have the possi-
bility to apply the same techniques for the texts
written in other languages than English in the
future. Thus, I choose to use the word length as
the number of characters together with the last
n characters of that word. Words in the essays
were transformed into tokens using five kinds of
transformations:

0end – takes the pure length of a word (for ex-
ample, make 7→ 4 );

1end – adds to the length of a word the last
character (make 7→ 4e);

2end – adds to the length of a word the last
two characters (make 7→ 4ke);

3end – adds to the length of a word the last
three characters (make 7→ 4ake);

4end – adds to the length of a word the last

four characters (make 7→ 4make).
For instance, the sentence “Difference makes

a lot of opportunities .” is translated to:
0end: 10 5 1 3 2 13 1
1end: 10e 5s 1a 3t 2f 13s 1.
2end: 10ce 5es 1a 3ot 2of 13es 1.
3end: 10nce 5kes 1a 3lot 2of 13ies 1.
4end: 10ence 5akes 1a 3lot 2of 13ties 1.

4 N-gram features

The VTEX NLI 2013 system is based on n-
gram features. There are no strict rules for
how long n-grams should be. Frequently used n-
grams are unigrams, bigrams and trigrams as in
Brooke and Hirst (2012; Wong and Dras (2011).
The training NLI 2013 corpus is large enough
to build higher-order n-grams of nend tokens.
I use unigrams, bigrams, trigrams, quad-grams
and five-grams based on nend tokens. Some ex-
amples of these n-grams are shown below:

0end
1-gram: 3
2-gram: 1 3
3-gram: 1 10 6
4-gram: 1 5 3 3
5-gram: 1 3 3 3 7
3end
1-gram: 7ess
2-gram: 2to 7ess
3-gram: 4est 2to 7ess
4-gram: 3but 3not 3for 7ess
5-gram: 3try 5eir 4est 2to 7ess

Beside n-grams of nends, the character n-
grams are of interest also. Kochmar (2011)
noted that character n-grams provide promiss-
ing features for NLI task. Therefore, I tried to
use character trigrams also. For instance, from
the sentence “Difference makes a lot of opportu-
nities .” the following trigrams were generated:

Dif iff ffe fer ere ren enc nce ce e m
ma mak ake kes es s a a a l lo lot

ot t o of of f o op opp ppo por ort
rtu tun uni nit iti tie ies es s .

Whitespace is included in character trigrams
and denotes the beginning or the end of a word.
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5 CTFIDF for weigthing features

The most widely used technique for weight-
ing items in a list is Term-Frequency–Inverse-
Document-Frequency, known as TF–IDF. Dau-
daravicius (2012) shows that the small change of
TF–IDF allows to the generation of stop-word
lists automatically. For the NLI 2013 Shared
Task I use Conditional TF–IDF :

CTFIDF(x) = TF(x) · ln Dmax − d(x) + 1
4 · d(x) + 1 ,

where TF(x) is the frequency of the item x in
the training corpus, d(x) is the number of doc-
uments in the training corpus where the item
x appears, known as document frequency, Dmax
is the maximum of document frequency of any
item in the training corpus.

The idea of my Conditional TF–IDF is as fol-
lows: if a term occures in less than Dmax/4 doc-
uments then this term is considered a normal
term, and the term is considered as stop-word if
it occures in more than Dmax/4 documents. The
range of TF-IDF is between 0 and positive infin-
ity. The range of CTFIDF is from minus infinity
to zero for items that are considered stop-words.
And the range of CTFIDF is from zero to infin-
ity for the rest of the items.

For instance, the Dmax for the different n-
gram length and different Nend transformations
is presented in Table 2. The example list of 4end
ungrams with positive and negative CTFIDFs
are shown in Tables 4 and 3, respectively.

It is important to note that I count Dmax and
d(x) for each training language separately; i.e.,
when I measure the distance between a docu-
ment and the document in the training data,

The number of n-grams
1 2 3 4 5

0end 900 899 834 444 168
1end 900 759 358 320 148
2end 899 581 354 319 148
3end 899 572 320 303 148
4end 899 572 320 303 148

Table 2: The maximum of the document frequency
in the training corpus.

I use Dmax and d(x) of the language which the
training document denotes.

token ctfidf token ctfidf token ctfidf
5earn 0.00 4Most 1.16 10ents 2.51
7ally 0.04 7lity 1.20 4your 2.59
10sion 0.10 2Of 1.22 7arly 2.59
7ieve 0.10 6ance 1.22 6eple 2.64
5hing 0.12 6mous 1.22 7tory 2.71
10ence 0.12 5hier 1.24 8tics 2.94
9tion 0.15 3Now 1.25 9gers 3.00
2us 0.22 5eing 1.27 4cool 3.07
6rson 0.23 12tion 1.30 3Let 3.13
7hout 0.29 2He 1.30 4rule 3.29
3may 0.30 4ways 1.41 5imes 3.52
3say 0.31 6hers 1.43 3job 3.53
3see 0.34 5reat 1.45 13ties 3.60
3try 0.35 9rent 1.53 8cial 3.68
3did 0.36 3him 1.55 5eals 3.81
2” 0.42 5ower 1.61 6lent 3.81
2“ 0.44 12ties 1.65 4lose 3.95
2he 0.46 3You 1.68 8naly 4.13
4hard 0.52 11lity 1.74 6skes 4.34
7pany 0.58 4cost 1.76 7cted 4.34
5akes 0.60 5ince 1.78 7test 4.34
4kind 0.68 6ills 1.82 6alth 4.36
7blem 0.70 5isks 1.82 5eall 4.60
5ever 0.71 5oney 1.89 9dent 4.73
4been 0.74 6rget 2.07 7cess 4.75
4same 0.81 5ired 2.10 7kers 5.36
8king 0.86 9nies 2.11 9ters 5.46
6king 0.93 4ever 2.15 2D. 5.52
5ften 0.96 6ates 2.15 5neof 5.52
6urse 0.97 3his 2.22 8idnt 5.52
7ling 0.97 10ered 2.24 8klin 5.52
4Even 0.98 4love 2.24 9velt 5.52
8ible 0.99 6ited 2.24 10sful 6.62
4used 1.02 9ties 2.27 4four 7.62
10tely 1.07 4earn 2.30 3oil 8.05
4best 1.09 6llow 2.30 9cans 8.26
7ught 1.10 9ated 2.37 4jobs 8.96
4easy 1.12 3got 2.42 3FDR 11.04
4Then 1.12 8ngly 1.13

Table 3: The list of 4end unigrams with positive CT-
FIDFs of one document from the training corpus.
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token ctfidf token ctfidf token ctfidf
1. -224.19 3but -3.48 3lot -0.92
1, -127.63 5bout -2.58 2we -0.88
2to -69.62 3get -2.57 5hich -0.85
2of -56.92 7mple -2.54 9ment -0.84
3the -45.09 2by -2.39 3who -0.84
3and -27.25 4from -2.26 3The -0.81
2is -24.79 4they -2.18 4them -0.79
1a -23.19 3can -2.12 3one -0.77
6ople -22.78 4will -2.11 4only -0.75
3not -22.31 3all -1.83 4much -0.70
3are -18.11 2If -1.72 4what -0.68
3for -15.82 2at -1.63 4also -0.64
4that -14.39 2In -1.50 4want -0.57
2do -13.16 6ings -1.38 6cond -0.56
2it -12.50 5irst -1.35 9tant -0.43
4have -11.53 3For -1.33 3how -0.35
4with -9.39 5gree -1.33 3new -0.31
1I -8.72 3you -1.31 6ould -0.31
7ause -7.73 2so -1.30 4need -0.20
2in -6.40 4time -1.15 5oing -0.15
5heir -6.23 3was -1.08 4take -0.11
2be -5.44 7ever -0.98 2So -0.10
4many -5.40 5ther -0.95 6ally -0.09
2as -5.06 4make -0.93 3But -0.08
5here -3.92 5hink -3.64

Table 4: The list of 4end unigrams with negative
CTFIDFs of the same document as in Fig. 3.

6 Distance between documents

Cosine distance is a widely used technique to
measure the distance between two feature vec-
tors. It is calculated as follows:

cos(X, Y ) =
∑

i(XiYi)√∑
i X2

i +
√∑

i Y 2
i

.

CTFIDF allows the splitting of feature vectors
into the list of “informative” items and the list
of functional items. For the NLI 2013 Shared
task, I combine two cosine distances of negative
and positive CTFIDFs as follows:

cos′(X, Y ) = 2 cos(X ′, Y ′) + cos(X ′′, Y ′′)
3 ,

where

X ′ = filter≥0 X, Y ′ = filter≥0 Y,

X ′′ = abs(filter<0 X), Y ′′ = abs(filter<0 Y ),

so X ′ and Y ′ contain features with positive CT-
FIDF, while X ′′ and Y ′′ contain features with
negative CTFIDF.

The cos′ combines two cosine distances giving
the weight for cosine of positive CTFIDFs equal
to 2 and for the negative CTFIDFs equal to 1.
I have also tested combinations of 1 to 0, 0 to
1, 1 to 1, and 1 to 2. But these combinations
did not achieve better results. Therefore, for all
submitted system results I used the same com-
bination of 2 to 1.

I utilize 26 feature vectors and obtain 26 com-
bined cosine distances for each document: one
for character trigrams and other 25 for token
n-grams of diverse word transformations. Each
combined cosine distance has an assigned weight
to get the final distance between two documents.
The distance between two documents X and Y
is calculated as follows:

dist(X, Y ) =
∑

i wi cos′(Xi, Yi)∑
i wi

∈ [0, 1],

where wi is the weight of ith feature vector.
The most difficult task was to find the best

combination of these 26 weights. For the NLI
2013 Shared Task I have used the combinations
shown in Table 5. The n-gram weights in most
cases are diagonal with the highest value at the
0end unigram and the lowest at the 4end five-
gram. In the beggining I tested the opposite
combination, but this led to worse results. Also,
the influence of character trigrams on the results
was high. The first and second combinations in
Table 5 differ in the use of five-grams and 4end
transformations, while the leverage of charac-
ter trigrams were kept the same. The final of-
ficial results show that richer features improve
results. Also, I found that the higher leverage
is for character trigrams over n-grams the bet-
ter the results are. But, the results of character
trigrams only resulted in lower performance. It
is a long way to find the optimal combination of
the weights.
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Token n-gram
1 2 3 4 5

1-closed
Character trigrams 64

0end 7 6 5 4 0
1end 6 5 4 3 0
2end 5 4 3 2 0
3end 4 3 2 1 0
4end 0 0 0 0 0

2-closed
Character trigrams 125

0end 9 8 7 6 5
1end 8 7 6 5 4
2end 7 6 5 4 3
3end 6 5 4 3 2
4end 5 4 3 2 1

3-closed
Character trigrams 25

0end 1 1 1 1 1
1end 1 1 1 1 1
2end 1 1 1 1 1
3end 1 1 1 1 1
4end 1 1 1 1 1

4-closed
Character trigrams 225

0end 17 15 13 11 9
1end 15 13 11 9 7
2end 13 11 9 7 5
3end 11 9 7 5 3
4end 9 7 5 3 1

5-closed
Character trigrams 550

0end 17 15 13 11 9
1end 15 13 11 9 7
2end 13 11 9 7 5
3end 11 9 7 5 3
4end 9 7 5 3 1

Table 5: Weights of the NLI 2013 different submis-
sions.

7 Assigning native language to a text

I used the k-NN technique to assign native lan-
guage to a text. I counted the distances between
the test document and all training documents,
and take some amount of closest documents for
each language. To reduce the influnce of out-

liers, I dropped off the n closest documents and
only then take some amount from the rest. At
first, I remove the 10 top documents from each
language, and then kept the 20 closest docu-
ments for each language. In total, I obtained 220
documents and ranked them by distance. Then,
I employed voting for the closest 20 documents.
A winner language is assigned to a document as
the native language. This technique was used for
VTEX-closed-(1, 2 and 3) system submitions.
For the VTEX-closed-(4 and 5) I used another
number for outliers and the top closest ones:
the 50 closest documents for each language were
dropped off, the remianing 25 for each language
were kept, and, finally, the closest 25 documents
are used for the voting of native language.

8 Results
My primary interest in participating in the NLI
2013 Shared Task was to investigate new fea-
tures that were not used earlier, and what the
value of each feature in the identification of a
writer’s native language is. The results of five
submitted systems are shown in Tables 6 and
7. The best submitted system had 31.9 percent
accuracy. This result was the worst of all par-
ticipating teams. At the time of writing this re-
port, I tested new combinations of outliers and
tops, “stop-words” and significant items, nend
n-grams and character trigram weights. New
settings improved my best submitted system ac-
curacy from 31.9 to 63.9 percent. This result
was achieved with the following settings. I took
the last 50 percent of closest documents for each
language. I set to use only stop-words and to
exclude significant items, i.e., items with only
negative CTFIDF. Finaly, I set n-gram weights
accordingly: 84 for character trigrams, and
for nend 1,1,1,1,1, 1,3,3,3,1, 1,3,5,3,1, 1,3,3,3,1,
1,1,1,1,1. This result shows that 2end and 3end
transformation trigrams have the highest impact
on the results. Nevertheless, all tested transfor-
mations help to improve the results. In con-
clusion, I investigated the influence of features,
such as character trigrams and Nend n-grams,
to the identification of writer’s native language
and found them very informative.
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Results for VTEX-closed-1
ARA CHI FRE GER HIN ITA JPN KOR SPA TEL TUR Precision Recall F-measure

ARA 30 5 2 5 5 11 12 6 10 13 1 26.3% 30.0% 28.0%
CHI 4 20 2 5 5 6 21 20 5 9 3 24.1% 20.0% 21.9%
FRE 6 8 9 13 3 14 14 9 8 10 6 28.1% 9.0% 13.6%
GER 6 4 5 30 7 13 4 1 7 20 3 35.3% 30.0% 32.4%
HIN 15 5 0 7 17 5 6 5 3 31 6 23.0% 17.0% 19.5%
ITA 7 2 4 3 4 47 9 3 4 15 2 34.8% 47.0% 40.0%
JPN 4 5 1 4 5 7 44 12 4 14 0 25.3% 44.0% 32.1%
KOR 2 8 1 3 2 9 35 27 3 9 1 26.0% 27.0% 26.5%
SPA 13 10 4 3 5 15 13 8 12 13 4 19.0% 12.0% 14.7%
TEL 13 8 0 1 13 4 2 1 4 52 2 26.3% 52.0% 34.9%
TUR 14 8 4 11 8 4 14 12 3 12 10 26.3% 10.0% 14.5%
Accuracy = 27.1%

Results for VTEX-closed-2
ARA CHI FRE GER HIN ITA JPN KOR SPA TEL TUR Precision Recall F-measure

ARA 31 5 1 3 5 11 13 6 8 15 2 26.5% 31.0% 28.6%
CHI 6 23 1 4 6 5 21 15 6 10 3 27.7% 23.0% 25.1%
FRE 5 8 7 12 7 15 12 10 6 10 8 25.9% 7.0% 11.0%
GER 7 4 4 28 9 12 6 1 6 20 3 35.0% 28.0% 31.1%
HIN 13 5 2 6 17 4 6 5 4 30 8 20.2% 17.0% 18.5%
ITA 7 2 4 3 4 47 9 3 4 15 2 35.1% 47.0% 40.2%
JPN 4 7 0 5 6 7 36 16 3 15 1 22.0% 36.0% 27.3%
KOR 3 7 1 3 2 9 34 26 4 9 2 25.7% 26.0% 25.9%
SPA 15 7 3 5 6 17 10 7 10 15 5 16.4% 10.0% 12.4%
TEL 13 6 1 0 15 2 2 1 6 52 2 25.5% 52.0% 34.2%
TUR 13 9 3 11 7 5 15 11 4 13 9 20.0% 9.0% 12.4%
Accuracy = 26.0%

Results for VTEX-closed-3
ARA CHI FRE GER HIN ITA JPN KOR SPA TEL TUR Precision Recall F-measure

ARA 27 6 1 5 6 11 11 7 11 13 2 25.2% 27.0% 26.1%
CHI 6 22 2 6 8 2 21 14 5 12 2 27.2% 22.0% 24.3%
FRE 6 8 6 12 8 14 15 7 5 10 9 17.1% 6.0% 8.9%
GER 7 4 6 24 9 13 1 2 7 22 5 27.3% 24.0% 25.5%
HIN 15 4 2 7 17 4 6 3 5 30 7 19.5% 17.0% 18.2%
ITA 7 0 6 3 4 45 8 5 4 16 2 34.1% 45.0% 38.8%
JPN 4 9 0 5 6 8 32 15 4 16 1 21.2% 32.0% 25.5%
KOR 2 6 1 5 2 9 31 26 4 12 2 27.7% 26.0% 26.8%
SPA 15 7 4 6 8 16 7 6 11 14 6 15.3% 11.0% 12.8%
TEL 10 6 2 0 13 5 2 1 10 50 1 23.9% 50.0% 32.4%
TUR 8 9 5 15 6 5 17 8 6 14 7 15.9% 7.0% 9.7%
Accuracy = 24.3%

Table 6: The results for closed-task VTEX systems.
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Results for VTEX-closed-4
ARA CHI FRE GER HIN ITA JPN KOR SPA TEL TUR Precision Recall F-measure

ARA 21 5 1 6 4 14 15 6 14 12 2 30.4% 21.0% 24.9%
CHI 2 22 2 5 5 5 24 18 7 7 3 26.2% 22.0% 23.9%
FRE 4 9 8 13 3 14 16 9 6 12 6 22.2% 8.0% 11.8%
GER 5 4 8 25 8 13 5 2 6 19 5 28.7% 25.0% 26.7%
HIN 7 7 1 7 15 5 7 7 4 31 9 22.1% 15.0% 17.9%
ITA 2 3 3 4 2 48 12 3 4 16 3 33.8% 48.0% 39.7%
JPN 1 5 1 5 4 8 42 17 4 13 0 21.8% 42.0% 28.7%
KOR 1 6 1 2 1 7 36 33 2 10 1 30.0% 33.0% 31.4%
SPA 9 11 5 6 4 18 14 5 10 14 4 15.9% 10.0% 12.3%
TEL 8 5 3 1 15 5 2 1 4 53 3 27.0% 53.0% 35.8%
TUR 9 7 3 13 7 5 20 9 2 9 16 30.8% 16.0% 21.1%
Accuracy = 26.6%

Results for VTEX-closed-5
ARA CHI FRE GER HIN ITA JPN KOR SPA TEL TUR Precision Recall F-measure

ARA 40 7 0 2 2 14 10 4 7 11 3 33.9% 40.0% 36.7%
CHI 6 32 4 0 4 4 21 16 4 8 1 27.8% 32.0% 29.8%
FRE 5 13 13 9 2 15 14 8 6 12 3 28.9% 13.0% 17.9%
GER 10 5 8 22 2 13 7 3 8 16 6 45.8% 22.0% 29.7%
HIN 12 9 4 5 11 5 6 6 4 30 8 28.9% 11.0% 15.9%
ITA 3 5 6 2 1 54 7 4 5 11 2 36.5% 54.0% 43.5%
JPN 2 6 0 3 1 8 48 16 3 12 1 26.4% 48.0% 34.0%
KOR 1 12 1 0 2 6 29 39 2 7 1 35.1% 39.0% 37.0%
SPA 12 9 5 1 3 20 14 5 16 12 3 27.1% 16.0% 20.1%
TEL 14 6 0 0 8 5 2 0 3 59 3 31.4% 59.0% 41.0%
TUR 13 11 4 4 2 4 24 10 1 10 17 35.4% 17.0% 23.0%
Accuracy = 31.9%

Table 7: The results for closed-task VTEX systems.
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Abstract

We decribe the submissions made by the Na-
tional Research Council Canada to the Native
Language Identification (NLI) shared task.
Our submissions rely on a Support Vector Ma-
chine classifier, various feature spaces using
a variety of lexical, spelling, and syntactic
features, and on a simple model combination
strategy relying on a majority vote between
classifiers. Somewhat surprisingly, a clas-
sifier relying on purely lexical features per-
formed very well and proved difficult to out-
perform significantly using various combina-
tions of feature spaces. However, the com-
bination of multiple predictors allowed to ex-
ploit their different strengths and provided a
significant boost in performance.

1 Introduction

We describe the National Research Council
Canada’s submissions to the Native Language Iden-
tification 2013 shared task (Tetreault et al., 2013).
Our submissions rely on fairly straightforward
statistical modelling techniques, applied to various
feature spaces representing lexical and syntactic
information. Our most successful submission was
actually a combination of models trained on differ-
ent sets of feature spaces using a simple majority
vote.

Much of the work on Natural Language Process-
ing is motivated by the desire to have machines
that can help or replace humans on language-related
tasks. Many tasks such as topic or genre classifi-
cation, entity extraction, disambiguation, are fairly

straightforward for humans to complete. Machines
typically trade-off some performance for ease of ap-
plication and reduced cost. Equally fascinating are
tasks that seem non-trivial to humans, but on which
machines, through appropriate statistical analysis,
discover regularities and dependencies that are far
from obvious to humans. Examples may include cat-
egorizing text by author gender (Koppel et al., 2003)
or detecting whether a text is an original or a trans-
lation (Baroni and Bernardini, 2006). This is one
motivation for addressing the problem of identify-
ing the native language of an author in this shared
task.

In the following section, we describe various as-
pects of the models and features we used on this
task. In section 3, we describe our experimental set-
tings and summarize the results we obtained. We
discuss and conclude in section 4.

2 Modelling

Our submissions rely on straightforward statistical
classifiers trained on various combinations of fea-
tures and feature spaces. We first describe the clas-
sifier we used, then give the list of features that we
have been combining. Our best performing submis-
sion used a combination of the three systems we sub-
mitted in a majority vote, which we also describe at
the end of this section.

2.1 Classification Model

We decided to use a straightforward and state-of-
the-art statistical classifier, in order to focus our at-
tention on the combination of features and models
rather than on the design of the classifier.
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We used freely available implementations of Sup-
port Vector Machines (SVM) provided in SVM-light
(Joachims, 1999) and SVM-perf (Joachims, 2006).
SVM performance may be influenced by at least two
important factors: the choice of the kernel and the
trade-off parameter “C”. In our experiments, we did
not observe any gain from using either polynomial
or RBF kernels. All results below are therefore ob-
tained with linear models. Similarly, we investigated
the optimization of parameter “C” on a held-out val-
idation set, but found out that the resulting perfor-
mance was not consistently significantly better than
that provided by the default value. As a consequence
our results were obtained using the SVM-light de-
fault.

One important issue in this shared task was to
handle multiple classes (the 11 languages). There
are essentially two easy approaches to handle sin-
gle label, multiclass classification with binary SVM:
one-versus-all and one-versus-one. We adopted the
one-versus-all setting, combined with a calibration
step. We first trained 11 classifiers using the docu-
ments for each language in turn as “positive” exam-
ples, and the documents for the remaining 10 lan-
guages as negative examples. The output score for
each class-specific SVM model was then mapped
into a probability using isotonic regression with the
pair-adjacent violators (PAV) algorithm (Zadrozny
and Elkan, 2002). A test document is then assigned
to the class with the highest probability.

2.2 Feature Space Extraction
We extracted the following features from the docu-
ments provided for the shared task.

Character ngrams: We index trigrams of charac-
ters within each word (Koppel et al., 2005). The
beginning and end of a word are treated as special
character. For example, the word “at” will produce
two trigrams: “ at” and “at “. These features allow us
to capture for example typical spelling variants. In
a language with weak morphology such as English,
they may also be able to capture patterns of usage
of, e.g. suffixes, which provides a low-cost proxy
for syntactic information.

Word ngrams: We index unigrams and bigrams
of words within each sentence. For bigrams, the be-
ginning and end of a sentence are treated as special

tokens. Note that we do not apply any stoplist fil-
tering. As a consequence, function words, an often-
used feature (Koppel et al., 2005; Brooke and Hirst,
2012), are naturally included in the unigram feature
space.

Spelling features: Misspelled words are identified
using GNU Aspell V0.60.41 and indexed with their
counts. Some parser artifacts such as “n’t” are re-
moved from the final mispelled word index. Al-
though misspellings may seem to provide clues as
to the author’s native language, we did not find these
features to be useful in any of our experiments. Note
however, that misspelled words will also appear in
the unigram feature space.

Part-of-speech ngrams: The texts were tagged
with the Stanford tagger v. 3.02 using the largest
and best (bidirectional) model. Note that the lan-
guage in a couple of documents was so poor that the
tagger was unable to complete, and we reverted to a
slightly weaker (left three words) model for those.
After tagging, we indexed all ngrams of part-of-
speech tags, with n = 2, 3, 4, 5. We experimented
with the choice of n and found out that n > 2 did
not bring any significant difference in performance.

Syntactic dependencies: We ran the Stanford
Parser v2.0.0 on all essays, and use the typed
dependency output to generate features. Our
goal is to capture phenomena such as preposi-
tion selection which might be influenced by the
native language of the writer. In order to reduce
sparsity, each observed dependency is used to
generate three features: one feature for the full
lexicalized dependency relation; one feature for
the head (which generalizes over all observed
modifiers); one feature for the modifier (which
generalizes over all possible heads). For instance,
in the sentence ”they participate to one ’s appear-
ance”, the parser extracts the following depen-
dency: ”prepto(participate,appearance)”. It yields
three features ”prepto(participate,appearance)”,
”prepto(participate,X)” and
”prepto(X,appearance)”. We experimented with all
three feature types, but the systems used for the

1http://aspell.net
2http://nlp.stanford.edu/software/

tagger.shtml
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official evaluation results only used the last two
(head and modifier features.) Note that while these
features can capture long distance dependencies in
theory, they significantly overlap with word ngram
features in practice.

For each feature space, we used a choice of two
weighting schemes inspired by SMART (Manning
et al., 2008):

ltc: log of the feature count, combined with the log
inverse document frequency (idf), with a cosine
normalization;

nnc: straight feature count, no idf, with cosine nor-
malization.

Normalization is important with SVM classifiers as
they are not scale invariant and tend to be sensitive
to large variations in the scale of features.

2.3 Voting Combination
Investigating the differences in predictions made
by different models, it became apparent that there
were significant differences between systems that
displayed similar performance. For example, our
first two submissions, which perform within 0.2% of
each other on the test data, disagree on almost 20%
of the examples.

This suggests that there is potentially a lot of in-
formation to gain by combining systems trained on
different feature spaces. An attempt to directly com-
bine the predictions of different systems into a new
predictive score proved unsuccessful and failed to
provide a significant gain over the systems used in
the combination.

A more successful combination was obtained us-
ing a simple majority vote. Our method relies on
simply looking at the classes predicted by an en-
semble of classifier for a given document. The pre-
diction for the ensemble will be the most predicted
class, breaking possible ties according to the overall
scores of the component models: for example, for an
ensemble of only 2 models, the decision in the case
of a tie will be that of the best model.

3 Experiments

We describe the experimental setting that we used
to prepare our submissions, and the final perfor-

mance we obtained on the shared task (Tetreault et
al., 2013).

3.1 Experimental Setting

In order to test the performance of various choices
of feature spaces and their combination, we set up a
cross-validation experimental setting. We originally
sampled 9 equal sized disjoint folds of 1100 docu-
ments each from the training data. We used strati-
fied sampling across the languages and the prompts.
This made sure that the folds respected the uniform
distribution across languages, as well as the distri-
bution across prompts, which was slightly uneven
for some languages. These 9 folds were later aug-
mented with a 10th fold containing the development
data released during the evaluation.

All systems were evaluated by computing the ac-
curacy (or equivalently the micro-averaged F-score)
on the cross-validated predictions.

3.2 Experimental Results

We submitted four systems to the shared task evalu-
ation:

1. BOW2ltc+CHAR3ltc: Uses counts of word bi-
grams and character trigrams, both weighted
independently with the ltc weighting scheme
(tf-idf with cosine normalization);

2. BOW2ltc+DEPltc: Uses counts of word
bigrams and syntactic dependencies, both
weighted independently with the ltc weighting
scheme;

3. BOW2ltc+CHAR3ltc+POS2nnc: Same as sys-
tem #1, adding counts of bigrams of part-of-
speech tags, independently cosine-normalized;

4. 3-system vote: Combination of the three sub-
missions using majority vote.

The purpose of submission #1 was to check the
performance that we could get using only surface
form information (words and spelling). As shown
on Table 1, it reached an average test accuracy of
79.5%, which places it in the middle of the pack over
all submissions. For us, it establishes a baseline of
what is achievable without any additional syntactic
information provided by either taggers or parsers.
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Model # Acc(%)
BOW2ltc+CHAR3ltc 1 79.27
BOW2ltc+DEPltc 2 79.55
BOW2ltc+CHAR3ltc+POS2nnc 3 78.82
3-system vote 4 81.82
10-system vote - 84.00

Table 1: The four systems submitted by NRC, plus a
more extensive voting combination. System 1 uses only
surface information. Systems 2 and 3 use two types of
syntactic information and system #4 uses a majority vote
among the three previous submissions. The last (unsub-
mitted) uses a majority vote among ten systems.

Our submissions #2 and #3 were meant to check
the effect of adding syntactic features to basic lexi-
cal information. We evaluated various combinations
of feature spaces using cross-validation performance
and found out that these two combinations seemed to
bring a small boost in performance. Unfortunately,
as shown on Table 1, this did not reflect on the actual
test results. The test performance of submission #2
was a mere 0.2% higher than our baseline, when we
expected +0.6% from the cross-validation estimate.
The test performance for submission #3 was 0.5%
below that of the baseline, whereas we expected a
small increase.

Submission #4 was our majority voting submis-
sion. Due to lack of time, we could not generate
test predictions for all the systems that we wanted to
include in the combination. As a consequence, we
performed a majority voting over just the 3 previ-
ous submissions. Despite this, the majority voting
proved remarkaby effective, yielding a 2.5% perfor-
mance boost over our baseline, and a 2.3% increase
over our best single system.

In order to further test the potential of the major-
ity vote, we later applied it to the 10 best systems in
a pool generated from various combinations of fea-
ture spaces (10-system vote in Table 1). That (unsub-
mitted) combination outperformed our official sub-
missions by another 2.2% accuracy, and in fact out-
performed the best system in the official evaluation
results by a small (and very likely not significant)
margin.

In comparison with submissions from other
groups, our top submission was 1.8% below the top
performing system (Table 2). According to the re-

Model Accuracy(%) p-value
Jarvis 83.6 0.082
Oslo NLI 83.4 0.1
Unibuc 82.7 0.361
MITRE-Carnie 82.6 0.448
Tuebingen 82.2 0.715
NRC 81.8
CMU-Haifa 81.5 0.807
Cologne-Nijmegen 81.4 0.665
NAIST 81.1 0.472
UTD 80.9 0.401
UAlberta 80.3 0.194
Toronto 80.2 0.167
MQ 80.1 0.097

Table 2: Resulting accuracy scores and significance vs.
NRC top submission (3-system vote).

sults of significance tests released by the organizers,
the difference is slightly below the traditional thresh-
old of statistical significance (0.05).

4 Discussion and Conclusion

Our results suggest that on the shared task, a combi-
nation of features relying only on word and character
ngrams provided a strong baseline. Our best system
ended up being a combination of models trained on
various sets of lexical and syntactic features, using a
simple majority vote. Our submission #4 combined
only our three other submissions, but we later exper-
imented with a larger pool of models. Table 3 shows
that the best performance is obtained using the top
10 models, and many of the combinations are com-
petitive with the best performance achieved during
the evaluation. Our cross-validation estimate was
also maximized for 10 models, with as estimated ac-
curacy of 83.23%. It is interesting that adding some
of the weaker models does not seem to hurt the vot-
ing combination very much.

One obvious limitation of this study is that it was
applied to a well defined and circumscribed setting.
There is definitely no guarantee on the performance
that may be obtained on a different corpus of docu-
ments.

Another limitation is that although the resulting
performance of our models seems encouraging, it
is not obvious that we have learned particularly
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Model Vote
Rank score score Feature set

1 79.55 79.55 BOW2+DEP
2 79.36 79.55 BOW1+DEP
3 79.27 82.18 BOW2+CHAR3
4 79.00 82.27 BOW1+DEPL
5 78.91 82.91 BOW2+CHAR3+POS3
6 78.82 83.18 BOW2+CHAR3+POS2
7 78.73 83.45 BOW2+DEPL
8 78.36 83.55 BOW2
9 77.09 83.82 BOW1+POS3
10 76.82 84.00 BOW2+POS2
11 76.55 83.64 BOW2+POS3
12 76.55 83.82 BOW1+POS2
13 75.27 83.55 BOW1
14 74.36 83.73 BOW1+CHAR3
15 74.27 83.73 DEP
16 66.91 83.91 DEPL
17 64.18 83.82 CHAR3
18 51.64 83.82 POS3
19 49.64 83.36 POS2

Table 3: Majority vote among the top-N mod-
els. BOWn=word ngrams; CHAR3=char trigrams;
POSn=POS ngrams; DEP/DEPL=syntactic dependecies.

useful clues about what differentiates the English
written by authors with different native languages.
This is of course a side effect of a format where
systems compete on a specific performance met-
ric, which encourages using large, well-regularized
models which optimize the relevant metric, at the ex-
pense of sparser models focusing on a few markers
that may be more easily understandable.

During the workshop, we plan to show more com-
plete results using the majority vote strategy, involv-
ing a wider array of base models.
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Abstract

This paper describes MITRE’s participation in
the native language identification (NLI) task
at BEA-8. Our best effort performed at an ac-
curacy of 82.6% in the eleven-way NLI task,
placing it in a statistical tie with the best per-
forming systems. We describe the variety
of machine learning approaches that we ex-
plored, including Winnow, language model-
ing, logistic regression and maximum-entropy
models. Our primary features were word and
character n-grams. We also describe several
ensemble methods that we employed for com-
bining these base systems.

1 Introduction

Investigations into the effect of authors’ latent at-
tributes on language use have a long history in lin-
guistics (Labov, 1972; Biber and Finegan, 1993).
The rapid growth of social media has sparked in-
creased interest in automatically identifying author
attributes such as gender and age (Schler et al., 2006;
Burger and Henderson, 2006; Argamon et al., 2007;
Mukherjee and Liu, 2010; Rao et al., 2010). There
is also a long history of computational aids for lan-
guage pedagogy, both for first- and second-language
acquisition. In particular, automated native language
identification (NLI) is a useful aid to second lan-
guage learning. This is our first foray into NLI,
although we have recently described experiments
aimed at identifying the gender of unknown Twit-
ter authors (Burger et al., 2011). We performed well
using only character and word n-grams as evidence.
In the present work, we apply that same approach

to NLI, and combine it with several other baseline
classifiers.

In the remainder of this paper, we describe our
high-performing system for identifying the native
language of English writers. We explore a varied
set of learning algorithms and present two ensem-
ble methods used to produce a better system than
any of the individuals. In Section 2 we describe the
data and task in detail as well as the evaluation met-
ric. In Section 3 we discuss details of the particular
system configuration that scored best for us. We de-
scribe our experiments in Section 4, including our
exploration of several different classifier types and
parametrizations. In Section 5 we present and an-
alyze performance results, and inspect some of the
features that were useful in discrimination. Finally
in Section 6 we summarize our findings, and de-
scribe possible extensions to the work.

2 Task, data and evaluation

Native Language Identification was a shared task or-
ganized as part of the Eighth Workshop on Innova-
tive Use of NLP for Building Educational Applica-
tions, 2013. The task was to identify an author’s
native language based on an English essay.

The data provided consisted of a set of 12,100
Test of English as a Foreign Language (TOEFL) ex-
aminations contributed by the Educational Testing
Service (Blanchard et al., to appear). These were
English essays written by native speakers of Arabic,
Chinese, French, German, Hindi, Italian, Japanese,
Korean, Spanish, Telugu, and Turkish. A set of 1000
essays for each language was identified as training
data, along with 100 per language for development,

101



and another 100 per language for a final test set. The
mean length of an essay is 348 words.

The primary evaluation metric for shared task
submissions was simple accuracy: the fraction of the
test essays for which the correct native language was
identified. A baseline accuracy would thus be about
9% (one out of eleven). Results were also reported
in terms of F-measure on a per-language basis. F-
measure is a harmonic mean of precision and recall:
F = 2PR

P+R . For the evaluation, the precision de-
nominator was the number of items labeled with a
particular language by the system and the recall de-
nominator was the number of items marked with a
particular language in the reference set.

The training, development, and test sets all had
balanced distributions across the native languages,
so error rates and accuracy did not favor any partic-
ular language in any set.

3 System overview

The systems we used to generate results for the NLI
competition were all machine-learning-based, with
no handwritten rules or features. The final submitted
systems were ensembles built from the outputs and
confidence scores of independent eleven-way multi-
nomial classifiers.

3.1 Features

The features used to build these systems were
language-independent and were generated using the
same infrastructure designed for the experiments de-
scribed in Burger et al. (2011).

We incorporated a variety of binary features into
our systems, each of which was hashed into a 64-bit
numeric representation using MurmurHash3 (Ap-
pleby, 2011). The bulk of our features were case-
sensitive word- and character-based n-grams, in
which a feature was turned “on” if its sequence of
words or characters appeared at least once in the text
of an essay. We also added binary features describ-
ing surface characteristics of the text such as average
word length and word count. Features were sepa-
rated into tracks such that the word unigram “i” and
the character unigram “i” would each generate a dis-
tinct feature.

Part of speech tag n-grams were added to the
feature set after reviewing performance results in

Brooke and Hirst (2012). We used the Stan-
ford log-linear part of speech tagger described in
Toutanova et al. (2003), with the english-left3words-
distsim.tagger pretrained model and the Penn Tree-
bank tagset. The tagger was run on each essay and
outputs were incorporated as sequence features with
n-grams up to length 5.

3.2 Classifiers

Carnie1 is a MITRE-developed linear classifier
that implements the Winnow2 algorithm of Carvalho
and Cohen (2006), generalized for multinomial clas-
sification. Carnie was developed to perform clas-
sification of short, noisy texts with many training
examples. It maintains one weight per feature per
output class, and performs multiplicative updates
that reinforce weights corresponding to the correct
class while penalizing weights associated with the
top-scoring incorrect class. The learner is mistake-
driven and performs an update of size ε after an error
or when the ratio of weight masses of the correct and
top incorrect classes is below 1 + δ. It iterates over
the training data, cooling its updates after each itera-
tion. For the purposes of these experiments, an input
to Carnie was the text of a single TOEFL essay, and
the output was the highest scoring class and several
related scores.

SRI’s Language Modeling Toolkit (SRILM) is
a toolkit for sequence modeling that continues to
be relevant after more than a decade of develop-
ment (Stolcke, 2002). It can be used to both build
models of sequence likelihoods and to evaluate like-
lihoods of previously unseen sequences. Building
a multinomial text classifier with a language model
toolkit involves building one model for each target
class and choosing the label whose model gives the
highest probability.

Many smoothing methods are implemented by
SRILM, along with a variety of n-gram filter-
ing techniques. The out-of-the-box default con-
figuration produces trigram models with Good-
Turing smoothing. It worked well for this com-
petition. Using open vocabulary models (-unk),
turning off sentence boundary insertion (-no-sos
-no-eos) and treating each essay as one sentence

1It is named for entertainers who guess personal character-
istics of carnival goers.
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worked best in our development environment.

LIBLINEAR is a popular open source library for
classification of large, sparse data. We experimented
with several of their standard Support Vector Ma-
chine and logistic regression configurations (Fan et
al., 2008). We selected multiclass `2-regularized
logistic regression with the dual-form solver and
default parameters. Inputs to the model were bi-
nary features generated from a single TOEFL essay.
Features for this model were generated by Carnie.
The model provided probability estimates for each
candidate output class (L1) for each essay, which
were then combined with the outputs of Carnie and
SRILM in an ensemble to produce a single predic-
tion.

3.3 Ensembles
The classifiers described above were selected for in-
clusion as components in a larger ensemble on the
basis of their performance and the observation that
errors committed by these systems were not highly
correlated. We used the entirety of our training data
for construction of each component system, leaving
scant data available for estimating parameters of en-
sembles. This scenario led us to choose naive Bayes
to combine the outputs of the original components.

Given h1, . . . , hk hypothesis labels from k differ-
ent systems, one approximates the conditional like-
lihood of the reference label P (R|H1 . . . Hk) using
the Bayes transform and the development set esti-
mates of P (Hi|R). One investigates all possible la-
bels to decode r∗ = argmaxr P (r)

∏
i P (hi|r). The

class balance in every set we operated on made the
prior P (r) irrelevant for maximization and simpli-
fied many of the denominators along the way. This
is a typical formulation of naive Bayes.

Confidence All of our component systems pro-
duce scores as well as a predicted label. Carnie pro-
duces (non-probability) scores for all of the candi-
date labels, SRILM produces log-probabilities and
perplexities, and LIBLINEAR produces P (h|r), the
likelihood of each of the possible labels. We ex-
perimented with several transformations of those
scores to best use them to predict correctness of
their hypothesis. There were several graphical mod-
els we could use for folding these scores into the
Bayes ensemble, and we chose a simple, discretized

P (H,S|R). We evenly partitioned and relabeled our
system outputs according to their scores (S), and
used those partition labels in the Bayes ensemble.
Thus when a particular reference label was scored
in the ensemble during decoding, both its prediction
and score contributed to the label in the naive Bayes
table lookup.

3.4 Best configuration

We submitted five systems with a variety of con-
figurations. One of our systems was our individual
Carnie system on its own for calibration. The other
four were ensembles.

The best system we submitted was a Bayes en-
semble of the Carnie, SRILM, and LIBLINEAR
components each trained on the train+development
sets. Carnie was trained for twelve iterations with
ε = 0.03, δ = 0.05, and a cooling rate of 0.1.
SRILM models were trained for open vocabulary
and the default trigram, Good-Turing setting. Lo-
gistic regression from LIBLINEAR was run with `2
regularization and using the dual form solver.

Parameters for the Bayes model were collected
from the development set when the components
were trained only on the training set. A grid search
was performed over likely candidates for λ, the
Dirichlet parameter, and ρ, the number of score-
based partitions, resulting in λ = 0.03125 and ρ =
2. The grid search was performed with the compo-
nent models trained only on the training set and us-
ing 10-fold cross validation on the development set.

4 Experiments

In all experiments described below, systems were
trained initially on the 9900 training examples alone,
with the 1100 item development set held back to al-
low for hyperparameter estimation. When prepar-
ing our final test set submissions, the development
set was folded into the training data, and all models
were re-trained on this new dataset containing 11000
items.

4.1 Baselines

How hard is the NLI task? Simple baselines of-
ten give us a quick glimpse into what matters in a
NLP task. In Figure 1, we give accuracy results
on ten different baselines we trained on the training
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Baseline Accuracy(%)
random 9.1
char length 9.6
SRILM(letter unigram) 10.8
word length 12.0
proficiency 14.9
SRILM(letter bigram) 15.1
JS(vowels) 20.6
JS(consonants) 33.8
JS(vowels+consonants) 34.1
JS(bag-of-words) 52.5

Figure 1: Simple baseline development set scores.

set and evaluated on the development set. Predic-
tions based on simple character and word lengths
show only slight gains over random. Using the
high/medium/low proficiency score that accompa-
nied the data similarly gives a tiny amount of infor-
mation over baseline (14.9%). We ignored those rat-
ings elsewhere in our work, to focus on the core task
of prediction based on essay content.

We collected some simple distributions of vowel
and consonant clusters and used them for predic-
tion, scoring with Jensen-Shannon divergence. JS
divergence is a symmetrized form of KL divergence
to alleviate the mathematical problem involved with
missing observations. It has behaved well in the
context of language processing applications (Lee,
1999). The score progression from consonant clus-
ters, to vowel clusters, to words suggests that there
is NLI information scattered at various levels of sur-
face features.

4.2 Varied Carnie configurations
Carnie’s out-of-the-box configuration is one that has
been optimized for application to micro-blogs and
other ungrammatical short texts. While our hypoth-
esis was that this configuration would be well suited
to analysis of English TOEFL essays, we investi-
gated a number of possible techniques to help Carnie
adapt to the new domain.

We began by performing a grid search to select
model hyperparameters that enabled our standard
configuration to generalize well from the training
dataset to the development dataset. These values of
ε, δ, and cooling rate were then applied to various
new feature configurations.

The standard configuration included binary fea-
tures for word unigrams and bigrams, character n-
grams of sizes 1 to 5, and surface features. We
experimented here with word trigrams, character 6-
grams, and lowercased character n-grams of sizes 1
to 6. We also added skip bigrams, which were or-
dered word pairs in which 1 to 6 intervening words
were omitted. We incorporated part of speech tags in
a number of ways, including POS n-grams of lengths
1 to 5, POS k-skip bigrams with k ranging from 1 to
6, and POS n-grams in which closed-class POS tags
were replaced with the actual content word used.
We also measured the impact of using frequency-
weighted features.

Our standard approach with Carnie is to perform
multinomial classification using one model trained
on all the data simultaneously. We experimented
with other ways of framing the NLI problem, such
as building eleven binary classifiers, each of which
was trained on all of the data but with the sole task
of accepting or rejecting a single candidate L1. We
also partitioned the training data to build 55 binary
classifiers for all possible pairs of L1s. These bi-
nary classifiers were then combined via a voting
mechanism to select a single winner. This allowed
us to apply focused efforts to improve discrimina-
tion in language pairs which Carnie found challeng-
ing, such as Hindi-Telugu or Japanese-Korean. To
this end, we collected a substantial amount of ad-
ditional out-of-domain training data from the web-
sites lang8.com (70,000 entries) and gohackers.com
(40,000 entries). Although we did not use this
data in our final submission, we performed experi-
ments to measure the value of this new data in the
TOEFL11 domain with no adaptation, with feature
filtering to limit training features to items observed
in the test sets, and with “frustratingly easy” do-
main adaptation, EasyAdapt, described in Daumé
and Marcu (2007).

4.3 Varied SRILM configurations

SRILM offers a number of parameters for ex-
perimentation. We hill-climbed on the train-
ing/development split to select a good configura-
tion. We experimented with n-gram lengths from
1-5 (bag of words through word 5-grams), using the
tokenization given by the NLI organizers. We tried
the lighter weight smoothing techniques offered by
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System Confidence MRD
Carnie s(h1)/s(h2) 343

s(h1)/
∑

i s(hi) 268
s(h1)− s(h2) 72

SRILM log p(h1)/ log p(h2) 315.7
log p(h1)− log p(h2) 315.3
ppl1(h1)/ppl1(h2) 315.12
ppl1(h1)− ppl1(h2) 260
ppl1 77
log p(h1) 40

MaxEnt
∑

i p(hi) log p(hi) 385.7
(JCarafe) p(h1) 383.15

log p(h1) 383.15
p(h1)/p(h2) 373.75
log p(h1)/ log p(h2) 379.8

LIBLINEAR
∑

i p(hi) log p(hi) 379.8

Figure 2: Confidence candidates measured in Mean Rank
Difference between correct and incorrect labels.

SRILM including Good-Turing, Witten-Bell, Ris-
tad’s natural discounting, both modified and original
Kneser-Ney. We built both closed vocabulary and
open vocabulary language models and with special
symbols added for sentence boundaries.

4.4 Component confidence experiments

Our components generate scores, but those scores
were not always scaled in the same way. Winnow
(in Carnie) is a margin-based, mistake-driven learner
generating scores which are interpretable only as
sums of weights. SRILM produces log p(dj |hi),
but renormalizing those (with priors) into estimates
of p(hi|dj) is unreliable because the different sub-
models are not connected with smoothing. Logistic
regression produces a distribution for p(hi|dj). We
aimed to express these notions of confidence in a
way that was common to all systems. We did this by
relabeling system hypotheses after sorting by confi-
dence, but not all metrics were equally good at this
sorting.

We performed an ad hoc assessment of several
candidate scoring functions. Our goal was to find
functions that best separated correct answers from
incorrect answers in a sorted ranking. We ran several
candidates on our development set and measured the
difference between the mean rank of correct answers
and the mean rank of incorrect answers. Figure 2

displays the results. In each case h1 was the best hy-
pothesis generated by the system and h2 is second
best. p(·) indicates probabilities, s(·) indicates non-
probability scores. We chose those functions with
the highest values.

4.5 Simple models for combination

In this work, we focused our ensembles only on the
output of our individual components, ignoring the
features from the original data that they attempt to
model. The base systems are all trained to minimize
errors, and did not appear to have any particular
preferential capabilities. Thus we rely on them en-
tirely for the primary processing and focus on their
outputs.

In our naive Bayes formulation, the random vari-
ables produced by the component systems (H) need
not take on values directly comparable with the ref-
erence labels to be predicted (R). We experimented
with folding in several one-shot systems that pro-
duced labels in {L, L̄}, for particular native lan-
guage groups, but none of these proved to be good
complements for the components described above.

To cope with decode-time configurations of H
that hadn’t been seen during estimation, we used
a Dirichlet prior on R in this ensemble. A sin-
gle parameter, λ, was introduced. Thus our esti-
mates for P (hi|r) were based on smoothed counts:
c(hi,r)+λ
c(r)+λ|R| . The search for λ was performed using
cross-validation on the development set.

Assignment In many prediction settings, we know
that our evaluation data consists of examples drawn
from a particular allocation of candidate classes.
One can take advantage of this in a probabilistic
setting by doing a global search for the maximum
likelihood assignment of the test documents to the
L1 languages under the constraint that each L1 lan-
guage must have a particular occupancy by the doc-
uments – in this case, an even split. More generally,
once we have p(hi|dj) for each candidate language
hi and document dj , we can find an assignmentA =
{(i, j) : αi,j = 1} that maximizes the likelihood
P (H|D) =

∏
(i,j)∈A p(hi|dj) =

∏
i,j p(hi|dj)αi,j

under the constraints that
∑

i αi,j = |D|/|H| and∑
j αi,j = 1. The first constraint says that each lan-

guage should get an even allocation of documents
assigned to it and the second constraint says that
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each document should be assigned to only one lan-
guage. This reduces to a maximum weight match-
ing on

∑
i,j αi,j log p(hi|dj). This problem is di-

rectly convertible into a max flow problem or a lin-
ear program. It can be solved with methods such
as the Hungarian algorithm, Ford-Fulkerson, or lin-
ear programming. In our case, we used LPSOLVE2

to find this global maximum. This looks at first
glance like an integer programming problem, but
one can relax the constraints into inequalities and
still be guaranteed that the solution will end up with
all αi,j landing on either zero or one in the right
amounts. We applied this assignment combination
as a post-processing step to the probabilities gener-
ated in the naive Bayes ensemble and also to the raw
LIBLINEAR outputs. The hope in doing this is that
the optimizer will move the less likely assignments
around appropriately while preserving the assign-
ments where it has more confidence. We observed
mixed results on our development set and submitted
two systems using this ensemble technique.

4.6 Other components explored

LIBLINEAR provides an implementation of a linear
SVM as well as a logistic regression package. We
experimented with various combinations of `1- and
`2 -loss SVMs, with both `1 and `2-regularization,
but in the end opted to use the `2-regularized logistic
regression due to slightly superior performance and
the ease with which we could extract eleven values
of P (H) for inclusion in our ensemble.

Another component that was tested in develop-
ment of our ensemble systems was a maximum en-
tropy classifier. This particular effort used the imple-
mentation from JCarafe,3 which uses L-BFGS for
optimization.

We approached the NLI task as document classi-
fication, following a typical JCarafe recipe (Gibson
et al., 2007). The class of the document is the native
language of the author. Each document was treated
as a bag of words, and several classes of features
were extracted: token n-gram frequency, character
n-gram frequency, part of speech n-gram frequency.
The feature mix that produced the best score was
token bigrams and trigrams, character trigrams and

2http://lpsolve.sourceforge.net
3https://github.com/wellner/jcarafe

L1 Mean F Our Best F
GER 1 0.776 1 0.921
ITA 2 0.757 2 0.88
CHI 3 0.723 4 0.85
JPN 4 0.708 5 0.837
FRE 5 0.701 7 0.818
TEL 6 0.667 3 0.802
KOR 7 0.665 6 0.827
TUR 8 0.656 8 0.81
ARA 9 0.65 3 0.872
SPA 10 0.631 10 0.768
HIN 11 0.606 11 0.762

Figure 3: L1s by empirical prediction difficulty. Mean F
incorporates all submissions by all competition teams.

POS trigrams. A feature frequency threshold of 5
was used to curb the number of features.

5 Results

Our best performing ensemble was 82.6% accurate
when scored on the competition test set, and was
composed of Carnie, SRILM, and logistic regres-
sion, using naive Bayes to combine the subsystem
outputs and confidence scores into a single predic-
tion. The best performing subsystem during system
development scored 79.3% on the test set in isola-
tion, demonstrating once again the value of combin-
ing systems that make independent errors.

Certain L1s gave our systems more difficulty than
others. Our best submitted F-measure scores ranged
from 0.921 for German to 0.762 for Hindi. Fig-
ure 3 demonstrates that our systems’ scores were
highly correlated with average scores from all sub-
missions by all teams (R2 = 0.84). From this we
infer that our performance differences between L1s
may be explained by inherent difficulties in certain
languages or by the selection of similar L1s as a part
of the competition task, rather than quirks of our ap-
proach. Our submissions do appear to have a partic-
ular advantage on Arabic and Korean, relative to the
field.

Figure 4 shows the overall performance of our
submissions and subsystems on the development
and test evaluation sets.

Our scores dropped 4 to 5% between development
and test evaluations, representing significant overfit-
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Configuration dev % test %
Components
base Carnie 82.6
+ trigrams 83.1
+ POS tags 83.6 79.3
1v1 voted Carnie 79.4
SRILM 77.1
MaxEnt 77.7
Linear SVM 81.9
Logistic Regression 83.4
assignment(LR) 82.4

Ensembles
bayes(Carnie,SRILM,LR) 87.3 82.6
assign(Carnie,SRILM,LR) 86.5 82.0
assign(Carnie,SRILM,MaxEnt) 86.4 82.3
bayes(Carnie,SRILM) 86.9 81.7

Figure 4: Results.

ting to the development set. The development set
was used for model selection, ensemble parameteri-
zation, and eventually as additional training data for
final submissions. Later tests showed that this fi-
nal retraining actually reduced the Carnie score by
0.9%.

Figure 4 also shows the effect of various efforts to
improve our baseline Carnie system. Adding part-
of-speech n-grams and word trigrams as features
improved the score on the development set by 1%
in total. Meanwhile many of our experiments with
new types of features yielded no gains. Lowercased
character n-grams, skip bigrams and all non-vanilla
formulations of part-of-speech tags provided no im-
provement and were discarded.

It was observed that all of our systems showed
a strong preference for binary features over
frequency-weighted inputs. In the case of the
JCarafe classifier, switching to binary features
yielded a 10% accuracy gain. Although JCarafe
didn’t provide a gain over the ensemble of Carnie,
SRILM, and LIBLINEAR logistic regression, de-
velopment set results indicated that JCarafe served
capably as a replacement for LIBLINEAR in some
ensembles.

We also measured the impact of using out-of-
domain Japanese and Korean L1 data to train a pair-
wise JPN/KOR system. Only 78.5% of JPN and
KOR texts were correctly identified in our eleven-

Rank L1 Score Feature
14 GER 21.05 (for,example)
40 GER 15.95 (have,to)
55 HIN 14.80 (as,compared,to)
57 ITA 14.60 (I,think,that)
58 TEL 14.18 (and,also)
60 HIN 13.97 (as,compared)
79 TEL 12.82 (the,people)
96 TEL 12.14 (for,a)

101 ITA 11.83 (that,in)
116 ITA 10.94 (think,that)
119 GER 10.93 (has,to)
120 TEL 10.89 (with,the,statement)

Figure 5: Word n-gram features predicting particular L1.

way baseline system. We restricted train and evalu-
ation data to only those two L1s and found our base-
line technique was 86.5% accurate. When we added
our out-of-domain data with no domain adaptation
technique, that score dropped to 82.0%. Removing
features that didn’t appear in our test set only raised
the score to 82.5%. However, the EasyAdapt tech-
nique (Daumé and Marcu, 2007) showed promise.
By making an additional source-specific copy of
each feature, we were able to raise the score to
88.5%. While this result was of limited applicabil-
ity in our final submission, and was therefore not
submitted to the open data competition task, we be-
lieve that this technique may prove useful in en-
abling cross-domain NLI system transfer.

Figure 5 provides a small sample of word-level
features discovered by the Winnow classifier. The
table shows the rank of each n-gram relative to all
features, and the native language that the feature
predicts. The weight assigned by the Winnow2 al-
gorithm is not readily interpretable, although higher
weights indicate a stronger association.

Similarly, the top character n-grams can be seen in
Figure 7, along with manually selected examples of
each. These features can be seen to mainly fall into
several broad categories. There are mentions of the
authors’ home countries as in Korean, Italian and
Turkey. There are also characteristic misspellings
and infelicities such as personnaly, perhaps incor-
rectly modeled from the French personnellement.

It is worth noting that the weights (and thus the
ranks) for the top character n-gram features are
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System Accuracy (%) Errors
Carnie 80.4 2153
SRILM 74.5 2800
LIBLINEAR 80.8 2116
ensemble-assign 81.9 1990
ensemble-Bayes 82.2 1961

Figure 6: Training set cross-validation results.

higher than for the top word features, indicating that
Winnow found the former to be more informative.

Finally, the top part-of-speech n-gram features are
shown in Figure 8, again with manually selected
examples. These features have similar weights
to the character n-gram features and for the most
part seem to represent ungrammatical constructions
(e.g., the first feature indicates that a personal pro-
noun followed by an uninflected verb predicts Chi-
nese). However, there are some perfectly grammat-
ical items that are indicative of a particular native
language (e.g., as compared to for Hindi). One pos-
sible explanation might be a dominant L2 pedagogy
for that language.

5.1 Cross-validation results
The task organizers requested that the participants
run a ten-fold cross validation on a particular split of
the union of the training and development sets after
the evaluation was over. Results of our leading com-
ponent systems and ensemble systems are presented
in Table 6. These are comparable with the TOEFL-
11 column of Figure 3 in Tetreault et al. (2012).

6 Conclusion

In this paper, we have presented MITRE’s partici-
pation in the native language identification task at
BEA-8. Our best system was a naive Bayes ensem-
ble combining component systems that used Win-
now, language modeling and logistic regression ap-
proaches, all using relatively simple character and
word n-gram features. This ensemble performed at
an accuracy of 82.6% in the eleven-way NLI task,
placing it in a statistical tie with the winning systems
submitted by 29 teams. For individual native lan-
guages, our submission performed best among the
participants on Arabic, as ranked by F-measure.

In addition to the three base systems in our best
ensemble, we experimented with a maximum en-

tropy classifier and an assignment-based ensemble
method. We described a variety of experiments we
performed to determine the best configurations and
settings for the various systems. We also covered
experiments aimed at using out-of-domain data for
several native languages. In future work we will ex-
pand upon these, with the goal of applying domain
adaptation approaches.

One concern with NLI as framed in this evalua-
tion is the interaction between native language and
essay topic. The distribution of topics was very sim-
ilar in the various subcorpora, but in more natural
settings this is unlikely to be the case, and there is
a danger of overtraining on topic, to the detriment
of language identification performance. This is es-
pecially problematic for a highly lexical approach
such as ours. In future work, we intend to explore
the extent of this effect, using topic-based splits of
the corpus. Our initial experiments to remedy this
problem are likely to involve domain adaptation ap-
proaches, such as Daumé and Marcu (2007).

As described above, we have had success using
the Winnow-based system Carnie for other latent au-
thor attributes, such as gender. We would like to ex-
plore ensembles similar to those described here for
these attributes as well.

The techniques described in this paper success-
fully identified an author’s native language 82.6% of
the time using a sample of text averaging less than
350 words in length. Future work could study the
interaction of text length and NLI performance, in-
cluding texts shorter than 140 characters in length.
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Abstract 

This paper reports our contribution to the 
2013 NLI Shared Task. The purpose of the 
task was to train a machine-learning system to 
identify the native-language affiliations of 
1,100 texts written in English by nonnative 
speakers as part of a high-stakes test of gen-
eral academic English proficiency. We trained 
our system on the new TOEFL11 corpus, 
which includes 11,000 essays written by 
nonnative speakers from 11 native-language 
backgrounds. Our final system used an SVM 
classifier with over 400,000 unique features 
consisting of lexical and POS n-grams occur-
ring in at least two texts in the training set. 
Our system identified the correct native-
language affiliations of 83.6% of the texts in 
the test set. This was the highest classification 
accuracy achieved in the 2013 NLI Shared 
Task. 

1 Introduction 

The problem of automatically identifying a writer’s 
or speaker’s first language on the basis of features 
found in that person’s language production is a 
relatively new but quickly expanding line of in-
quiry. It seems to have begun in 2001, but most of 
the studies published in this area have appeared in 
just the past two years. Although the practical ap-
plications of native-language identification (NLI) 
are numerous, most of the existing research seems 
to be motivated by one or the other of two types of 
questions: (1) questions about the nature and extent 
of native-language influence in nonnative speak-
ers’ speech or writing, and (2) questions about the 

maximum levels of NLI classification accuracy 
that are achievable, which includes questions about 
the technical details of the systems that achieve the 
best results. Our previous work in this area has 
been motivated primarily by the former (see the 
multiple studies in Jarvis and Crossley, 2012), but 
in the present study we conform to the goals of the 
2013 NLI Shared Task (Tetreault et al., 2013) in a 
pursuit of the latter. 

2 Related Work 

The first published study to have performed an 
NLI analysis appears to have been Mayfield 
Tomokiyo and Jones (2001). The main goal of the 
study was to train a Naïve Bayes system to identify 
native versus nonnative speakers of English on the 
basis of the lexical and part-of-speech (POS) n-
grams found in their speech. The nonnative speak-
ers in the study included six Chinese speakers and 
31 Japanese speakers, and as a secondary goal, the 
researchers trained the system to identify the 
nonnative speakers by their native language (L1) 
backgrounds. The highest NLI accuracy they 
achieved was 100%. They achieved this result us-
ing a model made up of a combination of lexical 1-
grams and 2-grams in which nouns (and only 
nouns) were replaced with a POS identifier (=N). 

As far as we are aware, an NLI accuracy of 
100% has not been achieved since Mayfield 
Tomokiyo and Jones (2001), but the NLI tasks that 
researchers have engaged in since then have been a 
great deal more challenging than theirs. This is true 
primarily in the sense that no other NLI study we 
are aware of has had such a high baseline accuracy, 
which is the accuracy that would be achieved if all 
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cases were classified as belonging to the largest 
group. Because 31 of the 37 participants in the 
Mayfield Tomokiyo and Jones study were Japa-
nese speakers, the baseline accuracy was already 
83.8%. To avoid such a bias and to provide a 
greater challenge to their systems, researchers in 
recent years have engaged in NLI tasks that have 
involved more equally balanced groups with a far 
larger number of L1s. Most of these studies have 
focused on the identification of the L1s of 
nonnative writers who produced the texts included 
in the International Corpus of Learner English 
(ICLE) (Granger et al., 2009). 

NLI studies that have focused on the ICLE in-
clude but are not limited to, in chronological order, 
Koppel et al. (2005), Tsur and Rappoport (2007), 
Jarvis (2011), Bestgen et al. (2012), Jarvis and 
Paquot (2012), Bykh and Meuers (2012), and 
Tetreault et al. (2012). The highest NLI accuracy 
achieved in any of these studies was 90.1%, which 
was reported by Tetreault et al. (2012). The re-
searchers in this study used a system involving the 
LIBLINEAR instantiation of Support Vector Ma-
chines (SVM) with the L1-regularized logistic re-
gression solver and default parameters. The 
features in their model included character n-grams, 
function words, parts of speech, spelling errors and 
features of writing quality, such as grammatical 
errors, style markers, and so forth. They used spe-
cialized software to extract error counts, grammar 
fragments, and counts of basic dependencies. They 
also created language model perplexity scores that 
reflected the lexical 5-grams most representative of 
each L1 in the corpus. This combination of fea-
tures is more comprehensive than that used in any 
other NLI study, but the authors reported that their 
success was not due simply to the combination of 
features, but also because of the ensemble classifi-
cation method they used. The ensemble method 
involved the creation of separate classifier models 
for each category of features; the L1 affiliations of 
individual texts were later predicted by the com-
bined probabilities produced by the different clas-
sifier models. The authors pointed out that 
combining all features into a single classifier gave 
them an NLI accuracy of only 82.6%, which is far 
short of the 90.1% they achieved through the en-
semble method. 

The number of L1s represented in the study by 
Tetreault et al. (2012) was seven, and it is notewor-
thy that they achieved a higher NLI accuracy than 

any of the previous NLI studies that had examined 
the same number (Bykh and Meurers, 2012) or 
even a smaller number of L1s in the ICLE (e.g., 
Koppel et al., 2005, Tsur and Rappoport, 2007; 
Bestgen et al., 2012). The only NLI studies we 
know of that have examined more than seven L1s 
in the ICLE are Jarvis (2011) and Jarvis and 
Paquot (2012). Both studies examined 12 L1s in 
the ICLE, and both used a combination of features 
that included only lexical n-grams (1-grams, 2-
grams, 3-grams, and 4-grams). Jarvis (2011) com-
pared 20 different NLI systems to determine which 
would provide the highest classification accuracy 
for this particular task, and he found that LDA per-
formed best with an NLI accuracy of 53.6%. This 
is the system that was then adopted for the Jarvis 
and Paquot (2012) study. It is important to note 
that the primary goal for Jarvis and Paquot was not 
to maximize NLI accuracy per se, but rather to use 
NLI as a means for assisting in the identification of 
specific instances and types of lexical influence 
from learners’ L1s in their English writing. 

As noted by Bestgen et al. (2012), Jarvis and 
Paquot (2012), and Tetreault et al. (2012), there are 
certain disadvantages to using the ICLE for NLI 
research. One problem made especially clear by 
Bestgen et al. is that the language groups repre-
sented in the ICLE are not evenly balanced in 
terms of their levels of English proficiency. This 
creates an artificial sampling bias that allows an 
NLI system to distinguish between L1 groups on 
the basis of proficiency-related features without 
creating a classification model that accurately re-
flects the influences of the learners’ language 
backgrounds. Another problem mentioned by these 
and other authors is that writing topics are not 
evenly distributed across the L1 groups in the 
ICLE. That is, learners from some L1 groups tend-
ed to write their essays in response to certain writ-
ing prompts, whereas learners from other L1 
groups tended to write in response to other writing 
prompts. Tetreault et al. took extensive measures 
to remove as much of the topic bias as possible 
before running their analyses, but they also intro-
duced a new corpus of nonnative English writing 
that is much larger and better balanced than the 
ICLE in terms of the distribution of topics across 
L1 groups. The new corpus is the TOEFL11, 
which will be described in detail in Section 3. 

Prior to the 2013 NLI Shared Task, the only NLI 
study to have been conducted on the TOEFL11 
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corpus was Tetreault et al. (2012). As described 
earlier, they performed an NLI analysis on a sub-
sample of the ICLE representing seven L1 back-
grounds. They also used the same system 
(including an identical set of features) in an NLI 
analysis of the TOEFL11. The fact that the 
TOEFL11 is better balanced than the ICLE is ad-
vantageous in terms of the strength of the NLI 
classification model that it promotes, but this also 
makes the classification task itself more challeng-
ing because it gives the system fewer cues (i.e., 
fewer systematic differences across groups) to rely 
on. The fact that the TOEFL11 includes 11 L1s, as 
opposed to the seven L1s in the subsample of the 
ICLE the authors examined, also makes the NLI 
task more challenging. For these reasons, NLI ac-
curacy is bound to be higher for the ICLE than for 
the TOEFL11. This is indeed what the authors 
found. The NLI accuracy they reported for the 
TOEFL11 was nearly 10% lower than for the ICLE 
(80.9% vs. 90.1%). Nevertheless, their result of 
80.9% accuracy was still remarkable for a task in-
volving 11 L1s. Tetreault et al. have thus set a very 
high benchmark for the 2013 NLI Shared Task. 

3 Data 

The present study tests the effectiveness of our 
own NLI system for identifying the L1s represent-
ed in the TOEFL11 (Blanchard et al., 2013). The 
TOEFL11 is a corpus of texts consisting of 11,000 
essays written by nonnative English speakers as 
part of a high-stakes test of general proficiency in 
academic English. The essays were written by 
learners from the following 11 L1 backgrounds: 
Arabic, Chinese, French, German, Hindi, Italian, 
Japanese, Korean, Spanish, Telugu, and Turkish. 
The corpus is perfectly balanced in terms of its 
number of essays per L1 group (i.e., 1,000 per L1), 
and it is also fairly well balanced in relation to the 
topics written about. The essays in the TOEFL11 
were written in response to any of eight different 
writing prompts, and all eight prompts are reflected 
in all 11 L1 groups. Within four of the L1 groups, 
all prompts are almost equally represented with a 
proportion of approximately 12.5% per prompt 
(i.e., 100% ÷ 8 prompts = 12.5%). In other groups, 
there is more variability. The Italian group shows 
the largest discrepancies, with one prompt repre-
senting only 1.2% of the essays, and another 
prompt representing 17.2% of the group’s essays. 

  English Proficiency 

L1  Low Medium High 

ARABIC Count 274 545 181 

% 27.4% 54.5% 18.1% 

CHINESE Count 90 662 248 

% 9.0% 66.2% 24.8% 

FRENCH Count 60 526 414 

% 6.0% 52.6% 41.4% 

GERMAN Count 14 371 615 

% 1.4% 37.1% 61.5% 

HINDI Count 25 399 576 

% 2.5% 39.9% 57.6% 

ITALIAN Count 145 569 286 

% 14.5% 56.9% 28.6% 

JAPANESE Count 207 617 176 

% 20.7% 61.7% 17.6% 

KOREAN Count 154 617 229 

% 15.4% 61.7% 22.9% 

SPANISH Count 73 502 425 

% 7.3% 50.2% 42.5% 

TELUGU Count 86 595 319 

% 8.6% 59.5% 31.9% 

TURKISH Count 73 561 366 

% 7.3% 56.1% 36.6% 
 
Table 1: Distribution of English Proficiency Levels 

 
The distribution of learners’ proficiency levels 

(low, medium, high) is even more variable across 
groups. Ideally, 33% of each group would fall into 
each proficiency level, but Table 1 shows that the 
distribution of proficiency levels does not come 
close to this in any L1 group. The distribution is 
especially skewed in the case of the German 
speakers, where only 1.4% of the participants fall 
into the low proficiency category whereas 61.5% 
fall into the high proficiency category. In any case, 
in nine of the 11 groups, the bulk of participants 
falls into the medium proficiency category, and in 
seven of those nine groups, the proportion of high-
proficiency learners is greater than the proportion 
of low-proficiency learners. Clearly, the TOEFL11 
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is not a perfectly balanced corpus, but it is much 
larger than the ICLE and involves fewer prompts, 
which are more evenly distributed across L1 
groups. Another advantage of the TOEFL11 is that 
each text is associated with a proficiency level that 
has been determined by assessment experts using a 
consistent rating procedure for the entire corpus. 
This fact may allow researchers to isolate the ef-
fects of learners’ proficiency levels and to adjust 
their systems accordingly.  

The TOEFL11 data were distributed to the 2013 
NLI Shared Task participants in three stages. The 
initial distribution was a training set consisting of 
9,900 of the 11,000 texts in the TOEFL11. The 
training set was made up of 900 texts from each L1 
group. Later, a development set was made availa-
ble. This included the remaining 1,100 texts in the 
TOEFL11, with 100 texts per L1. Finally, a test set 
was also provided to the teams participating in the 
2013 NLI Shared Task. The test set consisted of 
1,100 texts representing the same 11 L1s that are 
found in the TOEFL11. The test set included in-
formation about the prompt that each text was writ-
ten in response to, as well as information about the 
writer’s proficiency level, but did not include in-
formation about the writer’s L1. 

4 System 

Although our previous work has used NLI as a 
means toward exploring and identifying the effects 
of crosslinguistic influence in language learners’ 
written production (see Jarvis and Crossley, 2012), 
in the present study we approached NLI exclusive-
ly as a classification task, in keeping with the goals 
of the NLI Shared Task (Tetreault et al. 2013). In 
order to maximize classification accuracy for the 
present study, we chose a system that would allow 
for the inclusion of thousands of features without 
violating statistical assumptions. Due to the unre-
stricted number of features it allows and the high 
levels of classification accuracy it has achieved in 
previous research, such as in the study by Tetreault 
et al. (2012), we chose to use linear Support Vector 
Machines (SVM) via the LIBLINEAR software 
package (Fan et al., 2008). The software allows the 
user to choose among the following types of solv-
ers: 

a: L2-regularized L1-loss SVM (dual) 
b: L2-regularized L2-loss SVM (dual) 
c: L2-regularized logistic regression (primal) 

d: L1-regularized L2-loss SVM 
e: L1-regularized logistic regression 
f: L2-regularized L1-loss SVM (primal) 
g: L2-regularized L2-loss SVM (primal) 
h: Multi-class SVM by Crammer and Singer 
Although Tetreault et al. (2012) used the Type e 

solver, we found Type b to be the most efficient in 
terms of both speed and accuracy. LIBLINEAR 
implements SVM via a multi-class classification 
strategy that juxtaposes each class (i.e., each L1) 
against all others. It also optimizes a cost parame-
ter (Parameter C) using a grid search that relies on 
a crossvalidation criterion. The software iterates 
over multiple values of C until it arrives at an op-
timal value. Although LIBLINEAR has a built-in 
program for optimizing C, we used our own opti-
mization program in order to have more flexibility 
in choosing values of C to test. 

4.1 Features Used 

The features we tried represented three broad cate-
gories: words, characters, and complex features. 
The word category included lexemes, lemmas, and 
POS tags, as well as n-grams consisting of lex-
emes, lemmas, and POS tags. Lexemes were de-
fined as the observed forms of words, numbers, 
punctuation marks, and even symbols that were 
encountered in the TOEFL11. Lemmas were de-
fined as the dictionary forms of lexemes, and we 
used the TreeTagger software package (Schmid, 
1995) to automate the task of converting lexemes 
to lemmas. TreeTagger is unable to determine 
lemmas for rare words, misspelled words, and 
newly borrowed or coined words, and in such cas-
es, it outputs “unknown” in place of a lemma. We 
also used TreeTagger to automate the identification 
of the parts of speech (POS) associated with indi-
vidual words. TreeTagger can only estimate the 
POS for unknown words, and it is also not perfect-
ly accurate in determining the correct POS for 
words that it does recognize. Nevertheless, Schmid 
(1995) found that its POS tagging accuracy tends 
to be between 96% and 98%, which we consider to 
be adequate for present purposes. We included in 
our system all 1-grams, 2-grams, 3-grams, and 4-
grams of lexemes, lemmas, and POS tags that oc-
curred in at least two texts in the training set. 

Our character n-grams included all character n-
grams from one character to nine characters in 
length that occurred in at least two texts in the 
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training set. Finally, our complex features included 
nominalization suffixes (e.g., -tion, -ism), number 
of tokens per essay, number of types, number of 
sentences, number of characters, mean sentence 
length, mean length of lexemes, and a measure of 
lexical variety (i.e., type-token ratio). 

5 Results 

We applied the system described in the previous 
section to the TOEFL11 corpus. We did this in 
multiple stages, first by training the system on the 
original training set of 9,900 texts while using 
LIBLINEAR’s built-in 5-fold crossvalidation. 
With the original training set, we tried multiple 
combinations of features in order to arrive at an 
optimal model. We found that our complex fea-
tures contributed very little to any model we tested, 
and that we could achieve higher levels of NLI 
accuracy by excluding them altogether. We also 
found that models made up of optimal sets of lexi-
cal features gave us roughly the same levels of NLI 
accuracy as models made up of optimal sets of 
character n-grams. However, models made up of a 
combination of lexical features and character fea-
tures together performed worse than models made 
up of just one or the other. Our best performing 
model, by a small margin, was a model consisting 
of 1-grams, 2-grams, and 3-grams involving lex-
emes, lemmas, and POS tags. The results of our 
comparison of multiple lexical models is shown in 

Table 2, with the best performing model represent-
ed as Model A. 

Table 2 shows that Model A consists of all 1-
gram, 2-gram, and 3-gram lexemes, lemmas, and 
POS tags that occur in at least two texts, using a 
log-entropy weighting schema and normalizing 
each text to unit length. It is noteworthy that nor-
malizing each text vector, but also using a log-
entropy weighting schema clearly improves the 
model accuracy. Normalizing each text vector as 
recommended by Fan et al. (2008), but also using a 
log-entropy weighting schema (Dumais, 1991; 
Bestgen, 2012) clearly improves the model accura-
cy. The total number of unique features in Model 
A is over 400,000. Our initial run of this model on 
the training set gave us a 5-fold cross-validated 
NLI accuracy of 82.53%.  

We then attempted to determine whether these 
results could be replicated using other test 
materials. We first applied the best performing 
models displayed in Table 2 to the development 
set—using the development set as a test set—and 
achieved an NLI accuracy of over 86% for Model 
A, which remained the most accurate one. 

Then we applied these models to our own test 
set built to be evenly balanced in terms of the strat-
ification of both L1s and prompts. We built this 
test set because we discovered large differences 
when we compared the distribution of prompts 
across L1 groups in the official test set for the 2013

 

Model Lexemes Lemmas Parts of Speech 
(POS tag) 

Frequency 
cut-off 

Weighting 
schema 

Normalization 
(to 1 per text) 

Accuracy 
(5-fold) 

 1g 2g 3g 1g 2g 3g 1g 2g 3g     
A x x x x x x x x x ≥2 LE Yes 82.53 
B x x x x x x x x x ≥5 LE Yes 82.52 
C x x x x x x x x x ≥10 LE Yes 82.48 
D x x x x x x x x x ≥2 LE No 80.46 
E x x x x x x x x x ≥2 Bin Yes 79.13 
F x x x x x x x x x ≥2 LFreq Yes 79.12 
G x x  x x  x x  ≥2 LE Yes 82.49 
H x   x   x   ≥2 LE Yes 76.42 
I x x x x x x    ≥2 LE Yes 82.09 
J x x x    x x x ≥2 LE Yes 81.24 
K    x x x x x x ≥2 LE Yes 80.92 
L x x x       ≥2 LE Yes 81.57 
M    x x x    ≥2 LE Yes 81.02 
N       x x x ≥2 LE Yes 54.95 
Weighting schema: LE = Log-Entropy, Bin = Binary, LFreq = log of the raw frequencies 
 

Table 2: Feature Combinations 
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NLI Shared Task versus both the training set and 
development set. To build it, we combined the 
training set and development set into a single cor-
pus (i.e., the full TOEFL11), and then divided the 
TOEFL11 into a double-stratified set of cells 
cross-tabulated by L1 and prompt. This resulted in 
11 x 8 = 88 cells, and we randomly selected 10 
texts per cell for the test set. This gave us a test set 
of 880 texts. We used the remaining 10,120 texts 
as a training set. However, the new division of 
training and test sets did not strongly modify our 
results, so we retained the previous Model A as our 
final model. 

In preparation for the final task of identifying 
the L1 affiliations of the 1,100 texts included in the 
official test set for the 2013 NLI Shared Task, we 
used the entire TOEFL11 corpus of 11,000 texts as 
our training set—with the features in Model A—in 
order to select the final values for the cost parame-
ter (C) of our SVM system. By means of a 10-fold 

crossvalidation (CV) procedure on this dataset, the 
C parameter was set to 3200. 

The results of a 10-fold CV (using the fold split-
ting of Tetreault et al., 2012) of the system’s per-
formance with the TOEFL11 are shown in Table 3. 
The total number of texts per L1 group is consist-
ently 1000, which makes the raw frequencies in the 
table directly interpretable as percentages. The 
lowest rate of accurate identification for any L1 in 
the 10-fold CV was 78.6%, and this was for Telu-
gu. For all other L1s, the NLI accuracy rate ex-
ceeded 80%, and in the case of German, it reached 
96.5%. The overall NLI accuracy for the 10-fold 
CV was 84.5%. 

For the final stage of the analysis, we applied 
our system to the official test set in order to deter-
mine how well it can identify writers’ L1s in texts 
it has not yet encountered. The results of the final 
analysis are shown in Table 4. The classification 
accuracy (or recall) for individual L1s in the final 

 
 Predicted L1  

Actual 
L1 

ARA CHI FRE GER HIN ITA JPN KOR SPA TEL TUR Total 

ARA 802 16 41 14 28 11 9 12 47 8 12 1000 
CHI 6 894 5 6 15 2 20 31 7 3 11 1000 
FRE 24 11 856 28 11 25 4 4 33 1 3 1000 
GER 2 4 6 965 5 3 1 2 9 0 3 1000 
HIN 10 6 1 7 803 0 1 1 11 155 5 1000 
ITA 3 3 26 24 8 890 3 1 35 1 6 1000 
JPN 10 29 3 11 3 0 810 108 9 4 13 1000 

KOR 5 51 3 8 7 1 98 802 12 1 12 1000 
SPA 20 9 40 24 10 65 5 5 807 5 10 1000 
TEL 5 0 2 1 200 0 1 2 1 786 2 1000 
TUR 22 11 16 20 18 5 7 14 17 5 865 1000 

Accuracy = 84.5% 
Table 3: 10-Fold Crossvalidation Results 

 
 ARA CHI FRE GER HIN ITA JPN KOR SPA TEL TUR Prec. F 

ARA 75 0 5 2 2 1 1 2 7 3 2 82.4 78.5 
CHI 1 89 0 1 1 0 4 2 0 0 2 82.4 85.6 
FRE 2 1 86 6 2 1 0 0 2 0 0 86.0 86.0 
GER 0 0 1 96 0 0 0 0 2 0 1 83.5 89.3 
HIN 1 0 0 0 81 0 0 0 4 13 1 74.3 77.5 
ITA 0 1 3 4 0 90 0 0 2 0 0 90.9 90.5 
JPN 2 3 0 1 1 2 85 3 2 0 1 85.9 85.4 
KOR 0 10 1 0 1 0 8 76 1 2 1 87.4 81.3 
SPA 4 0 4 2 3 3 0 1 81 0 2 78.6 79.8 
TEL 1 1 0 1 18 0 0 0 0 79 0 81.4 80.2 
TUR 5 3 0 2 0 2 1 3 2 0 82 89.1 85.4 
Accuracy = 83.6% 

Table 4: Final NLI Results 
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analysis ranges from 75% (Arabic) to 96% (Ger-
man), and precision ranges from 74.3% (Hindi) to 
90.9% (Italian). Our overall accuracy in identifying 
the L1s in the test set was 83.6%. 

6 Conclusion 

Our system turned out to be the most successful 
system in the 2013 NLI Shared Task. Our 10-fold 
crossvalidated accuracy of 84.5% is also higher 
than the result of 80.9% previously achieved by 
Tetreault et al. (2012) in their earlier NLI analysis 
of the TOEFL11. We find this to be both interest-
ing and unexpected given that Tetreault et al. used 
more complex measures than we did, such as 5-
gram language models, and they also used an en-
semble method of classification. Accordingly, we 
interpret the success of our model as an indication 
that the most reliable L1 specificity in the 
TOEFL11 is to be found simply in the words, word 
forms, sequential word combinations, and sequen-
tial POS combinations that the nonnative writers 
produced. Tetreault et al. emphasized the useful-
ness of features that reflect L1-specific language 
models, but we believe that the multiple binary 
class comparisons that SVM makes might already 
take full advantage of L1 specificity as long as all 
of the relevant features are fed into the system. 

As for the ensemble method of classification 
used by Tetreault et al., their results clearly indi-
cate that this method enhanced their NLI accuracy 
not only for the TOEFL11, but also for three addi-
tional learner corpora, including the ICLE. Our 
own study did not compare our single-model sys-
tem with the use of an ensemble method, but we 
are naturally curious about whether our own results 
could have been enhanced through the use of an 
ensemble method. As mentioned earlier, our pre-
liminary attempts to construct a model based on 
character n-grams produced nearly as high levels 
of NLI accuracy as our final model involving lexi-
cal and POS n-grams. Although we found that 
combining lexical and character n-grams worsened 
our results, we believe that a fruitful avenue for 
future research would be to test whether an ensem-
ble of separate models based on character versus 
lexical n-grams could improve classification accu-
racy. Importantly, however, a useful ensemble 
method generally needs to include more than two 
models unless it is based on probabilities rather 

than on the majority-vote method (cf. Jarvis, 2011; 
Tetreault et al., 2012). 

Our original interest in NLI began with a curios-
ity about the evidence it can provide for the pres-
ence of crosslinguistic influence in nonnative 
speakers’ speech and writing. We believe that NLI 
strongly supports investigations of L1 influence, 
but in the case of the present results, we do not 
believe that L1 influence is solely responsible for 
the 83.6% NLI accuracy our system has achieved. 
Other factors are certainly also at play, such as the 
educational systems and cultures that the nonnative 
speakers come from. Apparent effects of cultural 
and/or educational background can be seen in the 
misclassification results in Table 4. Note, for ex-
ample, that when Hindi speakers are miscatego-
rized, they are overwhelmingly identified as 
Telugu speakers and vice versa. Importantly, Hindi 
and Telugu are both languages of India, but they 
belong to separate language families. Thus, L1 in-
fluence appears to overlap with other background 
variables that, together, allow texts to be grouped 
reliably. To the extent that this is true, the term 
NLI might be somewhat misleading. Clearly, NLI 
research has the potential to contribute a great deal 
to the understanding of crosslinguistic influence, 
but it of course also needs to be combined with 
other types of evidence that demonstrate L1 influ-
ence (see Jarvis, 2012). 
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Abstract 

Native Language Identification (NLI), which 

tries to identify the native language (L1) of a 

second language learner based on their writ-

ings, is helpful for advancing second language 

learning and authorship profiling in forensic 

linguistics. With the availability of relevant 

data resources, much work has been done to 

explore the native language of a foreign lan-

guage learner. In this report, we present our 

system for the first shared task in Native Lan-

guage Identification (NLI). We use a linear 

SVM classifier and explore features of words, 

word and character n-grams, style, and 

metadata. Our official system achieves accu-

racy of 0.773, which ranks it 18
th

 among the 

29 teams in the closed track. 

1 Introduction 

Native Language Identification (NLI) (Ahn, 2011; 

Kochmar, 2011), which tries to identify the native 

language (L1) of a second language learner based 

on their writings, is expected to be helpful for ad-

vancing second language learning and authorship 

profiling in forensic linguistics. With the availabil-

ity of relevant data resources, much work has been 

done to explore the effective way to identify the 

native language of a foreign language learner 

(Koppel et al., 2005; Wong et al., 2011; Brooke 

and Hirst, 2012a, 2012b; Bykh and Meurers, 2012; 

Crossley and McNamara, 2012; Jarvis et al., 2012; 

Jarvis and Paquot, 2012; Tofighi et al., 2012; Tor-

ney et al. 2012). 

To evaluate different techniques and approaches 

to Native Language Identification with the same 

setting, the first shared task in Native Language 

Identification (NLI) was organized by researchers 

from Nuance Communications and Educational 

Testing Service (Tetreault et al., 2013). A larger 

and more reliable data set, TOEFL11 (Blanchard et 

al., 2013), was used in this open evaluation. 

This paper reports our NLI2013 shared task sys-

tem that we built at the Department of Computer 

Science, Henan University of Technology, China. 

To be involved in this evaluation, we would like to 

obtain a more thorough knowledge of the research 

on native language identification and its state-of-

the-art, as we may focus on authorship attribution 

(Koppel et al., 2008) problems in the near future. 

The NLI2013 shared task is framed as a super-

vised text classification problem where the set of 

native languages (L1s), i.e. categories, is known, 

which includes Arabic, Chinese, French, German, 

Hindi, Italian, Japanese, Korean, Spanish, Telugu, 

and Turkish. A system is given a large part of the 

TOEFL11 dataset for training a detection model, 

and then makes predictions on the test writing 

samples. 

Inspired by our experience of dealing with dif-

ferent text classification problems, we decide to 

employ a linear support vector machine (SVM) in 

our NLI2013 system. We plan to take this system 

as a starting point, and may explore other complex 

classifiers in the future. Although in-depth syntac-
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tic features may be helpful for this kind of tasks 

(Bergsma et al., 2012; Wong and Dras, 2011; 

Swanson and Charniak, 2012; Wong et al., 2012), 

we decide to explore the effectiveness of the tradi-

tional word and character features, as well as style 

features, in our system. We would like to verify on 

the first open available large dataset whether these 

traditional features work and how good they are. 

 

 
 

Figure 1. System Architecture. 

 

We submitted four runs with different feature 

sets. The run with all the features achieved the best 

accuracy of 0.773, which ranks our system 18th 

among the 29 systems in the closed track. 

In the rest of this paper we describe the detail of 

our system and analyze the results. Section 2 gives 

the overview of our system, while Section 3 dis-

cusses the various features in-depth. We present 

our experiments and discussions in Section 4, and 

conclude in Section 5. 

2 System Description  

Figure 1 gives the architecture of our NLI2013 

system, which takes machine learning framework. 

At the training stage, annotated data is first pro-

cessed through preprocessing and feature extrac-

tion, then fed to the classifier learning module, and 

we can finally obtain a NLI model. At the testing 

stage, each test sample goes through the same pre-

processing and feature extraction modules, and is 

assigned a category with the learned NLI model. 

Data Preprocessing: this module aims at trans-

forming the original data into a suitable format for 

the system, e.g. inserting the category information 

into the individual writing sample and attaching 

metadata to essays. 

Feature Extraction: this module tries to obtain 

all the useful features from the original data. We 

considered features like: word, word n-gram, char-

acter n-gram, style, and available metadata. 

Linear SVM training and testing: these two 

modules are the key components. The training 

module takes the transformed digitalized vectors as 

input, and train an effective NLI model, where the 

testing module just applies the learned model on 

the testing data. As linear support vector machines 

(SVM) achieves quite good performance on a lot 

of text classification problems, we use this general 

machine learning algorithm in our NLI2013 system. 

The excellent SVM implementation, Libsvm 

(Chang and Lin, 2011), was incorporated in our 

system and TFIDF is used to derive the feature 

values in vectors. Then, we turn to focus on what 

features are effective for native language identifi-

cation. We explore words, word n-grams, character 

n-grams, style, and metadata features in the system. 

3 Features 

In this section, we explain what kind of features we 

used in our NLI2013 system. 

3.1 Word and Word n-gram 

The initial feature set is words or tokens in the da-

taset. As the dataset is tokenized and sen-

tence/paragraph split, we simply use space to 

delimit the text and get individual tokens. We re-

move rare features that appear only once in the 

training dataset. Words or tokens are transformed 

to lowercase. 

Word n-grams are combined by consecutive 

words or tokens. They are expecting to capture 

some syntactic characteristics of writing samples. 

Two special tokens, “BOS” and “EOS”, which in-

dicate “Beginning” and “Ending”, are attached at 

the two ends of a sentence. We considered word 2-

grams and word 3-grams in our system. 

3.2 Character n-gram 
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We assume sub-word features like prefix and 

suffix are useful for detecting the learners’ native 

languages. To simplify the process rather than 

employing a complex morphological analyzer, we 

consider character n-grams as another important 

feature set. The n-grams are extracted from each 

sentence by regarding the whole sentence as a 

large word / string and replacing the delimited 

symbol (i.e. white space) with a special uppercase 

character ‘S’. As what we did in getting word n-

grams, we attached two special character “B” and 

“E” at the two ends of a sentence. Character 2-

grams, 3-grams, 4-grams, and 5-grams are used in 

our system. 

3.3 Style 

We would like to explore whether the traditional 

style features are helpful for this task as those fea-

tures are widely used in authorship attribution. We 

include the following style features: 

• __PARA__: a paragraph in an essay; 

• __SENT__: a sentence in an essay; 

• PARASENTLEN=NN: a paragraph of NN 

sentences long; 

• SENTWDLEN=NN: a sentence of 4*NN 

words long; 

• WDCL=NN: a word of NN characters long; 

3.4 Other 

As the TOEFL11 dataset includes two metadata for 

each essay, English language proficiency level 

(high, medium, or low) and Prompt ID, we include 

them as additional features in our system. 

4 Experiments and Results 

4.1 Dataset 

The dataset of the NLI2013 shared task contains 

12,100 English essays from the Test of English as 

a Foreign Language (TOEFL). Educational Testing 

Service (ETS) published the dataset through the 

LDC with the motivation to create a larger and 

more reliable data set for researchers to conduct 

Native Language Identification experiments on. 

This dataset, henceforth TOEFL11, comprises 11 

native languages (L1s) with 1,000 essays per lan-

guage. The 11 covered native languages are: Ara-

bic, Chinese, French, German, Hindi, Italian, 

Japanese, Korean, Spanish, Telugu, and Turkish. 

In addition, each essay in the TOEFL11 is marked 

with an English language proficiency level (high, 

medium, or low) based on the judgments of human 

assessment specialists. The essays are usually 300 

to 400 words long. 9,900 essays of this set are cho-

sen as the training data, 1,100 are for development 

and the rest 1,100 as test data.  
 

Runs HAUTCS-1 HAUTCS-2 HAUTCS-3 HAUTCS-4 

Accuracy 0.773 0.758 0.76 0.756 

ARA 0.731
1
 0.703 0.703 0.71 

CHI 0.82 0.794 0.794 0.782 

FRE 0.806 0.788 0.786 0.783 

GER 0.897 0.899 0.899 0.867 

HIN 0.686 0.688 0.694 0.707 

ITA 0.83 0.84 0.844 0.844 

JPN 0.832 0.792 0.798 0.81 

KOR 0.763 0.764 0.768 0.727 

SPA 0.703 0.651 0.651 0.65 

TEL 0.702 0.702 0.702 0.751 

TUR 0.736 0.715 0.716 0.698 

 

Table 1. Official results of our system. 
 

 
Figure 2. Performance of our official runs. 

 

4.2 Official Results 

Accuracy, which measures the percentage of how 

many essays are correctly detected, is used as the 

main evaluation metric in the NLI2013 shared task.  

Table 1 gives the official results of our system 

on the evaluation data. We submitted four runs 

with different feature sets: 

HAUTCS-1: all the features, which include 

words, word 2-grams, word 3-grams, character 2-

grams, character 3-grams, character 4-grams, 

                                                           
1 This number, as well as others in the cells from this row to 

the bottom, is value of F-1 measure for each language. 
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character 5-grams, style, and other metadata fea-

tures; 

HAUTCS-2:  uses words, word 2-grams, word 

3-grams, style, and other metadata features; 

HAUTCS-3: uses words, word 2-grams, word 

3-grams, and other metadata features; 

HAUTCS-4: uses words or tokens and other 

metadata features. 

For the runs HAUTCS-2, HAUTCS-3, and 

HAUTCS-4, we combined the development and 

training data for learning the identification model, 

where for the HAUTCS-1, it’s a pity that we forgot 

to include the development data for training the 

model. 

Our best run (HAUTCS-1) achieved the overall 

accuracy (0.773). The system performs best on the 

German category, but poorest on the Hindi catego-

ry, as can be easily seen on figure 2. 

Analyzing the four runs’ performance showing 

on figure 2, we observe: word features are quite 

effective for Telugu and Hindi categories, but not 

powerful enough for others; word n-grams are 

helpful for languages Chinese, French, German, 

Korean, and Turkish, but useless for others; Style 

features only boost a little for French; Character n-

grams work for Arabic, Chinese, French, Japanese, 

Spanish, and Turkish; Spanish category prefers 

character n-grams, where Telugu category likes 

word features. As different features have different 

effects on different languages, a better NLI system 

is expected to use different features for different 

languages. 

After the evaluation, we experimented with the 

same setting as the HAUTCS-1 run, but included 

both training and development data for learning the 

NLI model. We got accuracy 0.781 on the new 

released test data, which has the same format with 

paragraph split as the training and development 

data. 

As we include style features like how many par-

agraphs in an essay, the old test data, which re-

moved the paragraph delimiters (i.e. single blank 

lines), may be not good for our trained model. 

Therefore, we did experiments with the new test 

data. Unfortunately, the accuracy 0.772 is a little 

poorer than that we obtained with the old test data. 

It seems that the simple style features are not effec-

tive in this task. As shown in table 1, HAUTCS-2 

performs poorer than HAUTCS-3, which helps us 

derive the same conclusion. 

4.3 Additional Experiments 

We did 10-fold cross validation on the training and 

development data with the same setting as the 

HAUTCS-1 run. The data splitting is given by the 

organizers. Accuracies of the 10 runs are show in 

table 2. The overall accuracy 0.799 is better than 

that on the test data. 

 

Fold 1 2 3 4 5 

Accuracy 0.802 0.795 0.81 0.791 0.79 

Fold 6 7 8 9 10 

Accuracy 0.805 0.789 0.803 0.798 0.805 

Table 2. Results of 10-fold cross validation on the train-

ing and development data. 

 

To check how metadata features work, we did 

another run HAUTCS-5, which uses only words as 

features. This run got the same overall accuracy 

0.756 on the old test data as HAUTCS-4 did, 

which demonstrates that those metadata features 

may not provide much useful information for na-

tive language identification. 

5 Conclusion and Future Work 

In this paper, we report our system for the 

NLI2013 shared task, which automatically detect-

ing the native language of a foreign English learner 

from her/his writing sample. The system was built 

on a machine learning framework with traditional 

features including words, word n-grams, character 

n-grams, and writing styles. Character n-grams are 

simple but quite effective. 

We plan to explore syntactic features in the fu-

ture, and other machine learning algorithms, e.g. 

ECOC (Li and Vogel, 2010), also deserve further 

experiments. As we discussed in section 4, we are 

also interested in designing a framework to use 

different features for different categories. 
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Abstract

Our submission for this NLI shared task used
for the most part standard features found in re-
cent work. Our focus was instead on two other
aspects of our system: at a high level, on pos-
sible ways of constructing ensembles of multi-
ple classifiers; and at a low level, on the gran-
ularity of part-of-speech tags used as features.
We found that the choice of ensemble com-
bination method did not lead to much differ-
ence in results, although exploiting the vary-
ing behaviours of linear versus logistic regres-
sion SVM classifiers could be promising in fu-
ture work; but part-of-speech tagsets showed
noticeable differences.

We also note that the overall architecture, with
its feature set and ensemble approach, had an
accuracy of 83.1% on the test set when trained
on both the training data and development data
supplied, close to the best result of the task.
This suggests that basically throwing together
all the features of previous work will achieve
roughly the state of the art.

1 Introduction

Among the efflorescence of work on Native Lan-
guage Identification (NLI) noted by the shared task
organisers, there are two trends in recent work in
particular that we considered in building our sub-
mission. The first is the proposal and use of new
features that might have relevance to NLI: for exam-
ple, Wong and Dras (2011), motivated by the Con-
trastive Analysis Hypothesis (Lado, 1957) from the
field of Second Language Acquisition, introduced

syntactic structure as a feature; Swanson and Char-
niak (2012) introduced more complex Tree Substi-
tution (TSG) structures, learned by Bayesian infer-
ence; and Bykh and Meurers (2012) used recurring
n-grams, inspired by the variation n-gram approach
to corpus error annotation detection (Dickinson and
Meurers, 2003). Starting from the features intro-
duced in these papers and others, then, other recent
papers have compiled a comprehensive collection of
features based on the earlier work — Tetreault et
al. (2012) is an example, combining and analysing
most of the features used in previous work. Given
the timeframe of the shared task, there seemed to be
not much mileage in trying new features that were
likely to be more peripheral to the task.

A second trend, most apparent in 2012, was the
examination of other corpora besides the Interna-
tional Corpus of Learner English used in earlier
work, and in particular the use of cross-corpus evalu-
ation (Brooke and Hirst, 2012; Tetreault et al., 2012)
to avoid topic bias in determining native language.
Possible topic bias had been a reason for avoiding
a full range of n-grams, in particular those contain-
ing content words (Koppel et al., 2009); the devel-
opment of new corpora and the analysis of the effect
of topic bias mitigated this. The consequent use of a
full range of n-grams further reinforced the view that
novel features were unlikely to be a major source of
interesting results.

We therefore concentrated on two areas: the use
of classifier ensembles, and the choice of part-of-
speech tags. With classifier ensembles, Tetreault
et al. (2012) noted that these were highly useful in
their system; but while that paper had extensive fea-
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ture descriptions, it did not discuss in detail the ap-
proach to its ensembles. We therefore decided to
examine a range of possible ensemble architectures.
With part-of-speech tags, most work has used the
Penn Treebank tagset, including those based on syn-
tactic structure. Kochmar (2011) on the other hand
used the CLAWS tagset,1 which is much richer and
more oriented to linguistic analysis than the Penn
Treebank one. Given the much larger size of the
TOEFL11 corpus used for this shared task than the
corpora used for much earlier work, data sparsity
could be less of an issue, and the tagset a viable one
for future work.

The description of our submission is therefore in
three parts. In §2 we present the system description,
with a focus on the ensemble architectures we inves-
tigated; in §3 we list the features we used, which are
basically those of much of the previous work; in §4
we present results of some of the variants we tried,
particularly with respect to ensembles and tagsets;
and in §5 we discuss some of the interesting charac-
teristics of the data we noted during the shared task.

2 System Design

Our overall approach in terms of features and clas-
sifiers used is a fairly standard one. One difference
from most approaches, but inspired by Tetreault et
al. (2012), is that we train multiple classifiers over
subsets of the features, over different feature rep-
resentations, and over different regularisation ap-
proaches; we then combine them in ensembles (Di-
etterich, 2000).

2.1 SVM Ensemble Construction

To construct our ensemble, we train individual clas-
sifiers on a single feature type (e.g. PoS n-grams),
using a specific feature value representation and
classifier. We utilise a parallel ensemble structure
where the classifiers are run on the input texts in-
dependently and their results are then fused into the
final output using a combiner.

Additionally, we also experiment with bagging
(bootstrap aggregating), a commonly used method
for ensemble generation (Breiman, 1996) to gener-
ate multiple ensembles per feature type.

1http://ucrel.lancs.ac.uk/claws/

For our classifier, we use SVMs, specifically the
LIBLINEAR SVM software package (Fan et al.,
2008),2 which is well-suited to text classification
tasks with large numbers of features and large num-
bers of documents. LIBLINEAR provides both lo-
gistic regression and linear SVMs; we experiment
with both. In general, the linear classifier performs
better, but it only provides the decision output. The
logistic regression classifier on the other hand gives
probability estimates, which are required by most
of our combination methods (§2.3). We therefore
mostly use the logistic regression classifiers.

2.2 L1- and L2-regularized SVM Classifiers
In our preliminary experiments we noted that
some feature types performed better with L1-
regularization and others with L2. In this work we
generate classifiers using both methods and evaluate
their individual and combined performance.

2.3 Classifier Combination Methods
We experiment with the following decision combi-
nation methods, which have been discussed in the
machine learning literature. Polikar (2006) provides
an exposition of these rules and methods.

Plurality vote: Each classifier votes for a single
class label, the label with the highest number of
votes wins. Ties are broken arbitrarily.

Sum: All probability estimates are added together
and the label with the highest sum is picked.

Average: The mean of all scores for each class
is calculated and the label with the highest average
probability is chosen.

Median: Each label’s estimates are sorted and the
median value is selected as the final score for that
label. The label with the highest value is picked.

Product: For each class label, all of the probabil-
ity estimates are multiplied together to create the la-
bel’s final estimate. The label with the highest esti-
mate is selected. A single low score can have a big
effect on the outcome.

Highest Confidence: In this simple method, the
class label that receives the vote with the largest de-
gree of confidence is selected as the final output.

2Available at http://www.csie.ntu.edu.tw/

˜cjlin/liblinear/
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Borda Count: The confidence estimates are con-
verted to ranks and the final label selected using the
Borda count algorithm (Ho et al., 1994). In this
combination approach, broadly speaking points are
assigned to ranks, and these tallied for the overall
weight.

With the exception of the plurality vote, all of
these can be weighted. In our ensembles we also ex-
periment with weighting the output of each classifier
using its individual accuracy on the training data as
an indication of our degree of confidence in it.

2.4 Feature Representation
Most NLI studies have used two types of feature rep-
resentations: binary (presence or absence of a fea-
ture in a text) and normalized frequencies. Although
binary feature values have been used in some stud-
ies (e.g. Wong and Dras (2011)), most have used
frequency-based values.

In the course of our experiments we have ob-
served that the effect of the feature representation
varies with the feature type, size of the feature space
and the learning algorithm itself. In our current sys-
tem, then, we generate two classifiers for each fea-
ture type, one trained with frequency-based values
(raw counts scaled using the L2-norm) and the other
with binary. Our experiments assess both their indi-
vidual and joint performance.

2.5 Proficiency-level Based Classification
To utilise the proficiency level information provided
in the TOEFL11 corpus (texts are marked as either
low, medium or high proficiency), we also investi-
gate classifiers that are trained using only texts from
specific proficiencies.

Tetreault et al. (2012) established that the classi-
fication accuracy of their system varied across pro-
ficiency levels, with high proficiency texts being the
hardest to classify. This is most likely due to the fact
that writers at differing skill levels commit distinct
types of errors at different rates (Ortega, 2009, for
example). If learners of different backgrounds com-
mit these errors with different distributions, these
patterns could be used by a learner to further im-
prove classification accuracy. We will use these fea-
tures in one of our experiments to investigate the
effectiveness of such proficiency-level based classi-
fiers for NLI.

3 Features

We roughly divide out feature types into lexical,
part-of-speech and syntactic. In all of the feature
types below, we perform no feature selection.

3.1 Lexical Features
As all previous work, we use function words as fea-
tures. In addition, given the attempts to control for
topic bias in the TOEFL11 corpus, we also make
use of various lexical features which have been pre-
viously avoided by researchers due to the reported
topic bias (Brooke and Hirst, 2011) in other NLI cor-
pora such as the ICLE corpus.

Function Words In contrast to content words,
function words do not have any meaning themselves,
but rather can be seen as indicating the grammat-
ical relations between other words. Examples in-
clude articles, determiners, conjunctions and auxil-
iary verbs. They have been widely used in studies of
authorship attribution as well as NLI and established
to be informative for these tasks. We use the list
of 398 common English function words from Wong
and Dras (2011). We also tested smaller sets, but ob-
served that the larger sets achieve higher accuracy.

Function Word n-grams We devised and tested a
new feature that attempts to capture patterns of func-
tion word use at the sentence level. We define func-
tion word n-grams as a type of word n-gram where
content words are skipped: they are thus a specific
subtype of skip-gram discussed by Guthrie et al.
(2006). For example, the sentence We should all
start taking the bus would be reduced to we should
all the, from which we would extract the n-grams.

Character n-grams Tsur and Rappoport (2007)
demonstrated that character n-grams are a useful
feature for NLI. These n-grams can be considered
as a sub-word feature and their effectiveness is hy-
pothesized to be a result of phoneme transfer from
the writer’s L1. They can also capture orthographic
conventions of a language. Accordingly, we limit
our n-grams to a maximum size of 3 as longer se-
quences would correspond to short words and not
phonemes or syllables.

Word n-grams There has been a shift towards the
use of word-based features in several recent studies
(Brooke and Hirst, 2012; Bykh and Meurers, 2012;
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Tetreault et al., 2012), with new corpora come into
use for NLI and researchers exploring and address-
ing the issues relating to topic bias that previously
prevented their use. Lexical choice is considered to
be a prime feature for studying language transfer ef-
fects, and researchers have found word n-grams to
be one of the strongest features for NLI. Tetreault
et al. (2012) expanded on this by integrating 5-gram
language models into their system. While we did not
replicate this, we made use of word trigrams.

3.2 POS n-grams

Most studies have found that POS tag n-grams are
a very useful feature for NLI (Koppel et al., 2005;
Bykh and Meurers, 2012, for example). The tagset
provided by the Penn TreeBank is the most widely
used in these experiments, with tagging performed
by the Stanford Tagger (Toutanova et al., 2003).

We investigate the effect of tagset granularity
on classification accuracy by comparing the clas-
sification accuracy of texts tagged with the PTB
tagset against those annotated by the RASP Tagger
(Briscoe et al., 2006). The PTB POS tagset contains
36 unique tags, while the RASP system uses a subset
of the CLAWS2 tagset, consisting of 150 tags.

This is a significant size difference and we hy-
pothesize that a larger tagset could provide richer
levels of syntactically meaningful info which is
more fine-grained in distinction between syntactic
categories and contains more morpho-syntactic in-
formation such as gender, number, person, case
and tense. For example, while the PTB tagset
has four tags for pronouns (PRP, PRP$, WP,
WP$), the CLAWS tagset provides over 20 pronoun
tags (PPHO1, PPIS1, PPX2, PPY, etc.) dis-
tinguishing between person, number and grammati-
cal role. Consequently, these tags could help better
capture error patterns to be used for classification.

3.3 Syntactic Features
Adaptor grammar collocations Drawing on
Wong et al. (2012), we also utilise an adaptor gram-
mar to discover arbitrary lengths of n-gram collo-
cations for the TOEFL11 corpus. We explore both
the pure part-of-speech (POS) n-grams as well as
the more promising mixtures of POS and function
words. Following a similar experimental setup as
per Wong et al. (2012), we derive two adaptor gram-

mars where each is associated with a different set of
vocabulary: either pure POS or the mixture of POS
and function words. We use the grammar proposed
by Johnson (2010) for capturing topical collocations
as presented below:

Sentence → Docj j ∈ 1, . . . ,m
Docj → j j ∈ 1, . . . ,m
Docj → Docj Topici i ∈ 1, . . . , t;

j ∈ 1, . . . ,m
Topici → Words i ∈ 1, . . . , t
Words → Word
Words → Words Word
Word → w w ∈ Vpos;

w ∈ Vpos+fw

As per Wong et al. (2012), Vpos contains 119
distinct POS tags based on the Brown tagset and
Vpos+fw is extended with 398 function words used
in Wong and Dras (2011). The number of topics t
is set to 50 (instead of 25 as per Wong et al. (2012))
given that the TOEFL corpus is larger than the ICLE
corpus. The inference algorithm for the adaptor
grammars are based on the Markov Chain Monte
Carlo technique made available by Johnson (2010).3

Tree Subtitution Grammar fragments In rela-
tion to the context-free grammar (CFG) rules ex-
plored in the previous NLI work of Wong and Dras
(2011), Tree Substitution Grammar (TSG) frag-
ments have been proposed by Swanson and Char-
niak (2012) as another form of syntactic features
for NLI classification tasks. Here, as an approxi-
mation to deploying the Bayesian approach to in-
duce a TSG (Post and Gildea, 2009; Swanson and
Charniak, 2012), we first parse each of the essays in
the TOEFL training corpus with the Stanford Parser
(version 2.0.4) (Klein and Manning, 2003) to obtain
the parse trees. We then extract the TSG fragments
from the parse trees using the TSG system made
available by Post and Gildea (2009).4

Stanford dependencies In Tetreault et al. (2012),
Stanford dependencies were investigated as yet an-
other form of syntactic features. We follow a
similar approach: for each essay in the train-
ing corpus, we extract all the basic (rather than

3http://web.science.mq.edu.au/˜mjohnson/
Software.htm

4https://github.com/mjpost/dptsg
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the collapsed) dependencies returned by the Stan-
ford Parser (de Marneffe et al., 2006). Simi-
larly, we generate all the variations for each of
the dependencies (grammatical relations) by sub-
stituting each lemma with its corresponding PoS
tag. For instance, a grammatical relation of
det(knowledge, the) yields the following
variations: det(NN, the), det(knowledge,
DT), and det(NN, DT).

4 Experiments and Results

We report our results using 10-fold cross-validation
on the combined training and development sets, as
well as by training a model using the training and
development data and running it on the test set.

We note that for our submission, we trained only
on the training data; the results here thus differ from
the official ones.

4.1 Individual Feature Results and Analysis
We ran the classifiers generated for each feature type
to assess their performance. The results are summa-
rized in Table 1: the Train + Dev Set results were for
the system when trained on the training and develop-
ment data with 10 fold cross-validation, and the Test
Set results for the system trained on the training and
development data combined.

Character n-grams are an informative feature and
our results are very similar to those reported by pre-
vious researchers (Tsur and Rappoport, 2007). In
particular, it should be noted that the use of punc-
tuation is a very powerful feature for distinguishing
languages. Romance language speakers were most
likely to use more punctuation symbols (colons,
semicolons, ellipsis, parenthesis, etc.) and at higher
rates. Chinese, Japanese and Korean speakers were
far less likely to use punctuation.

The performance for word n-grams, TSG frag-
ments and Stanford Dependencies is very strong and
comparable to previously reported research. For the
adaptor grammar n-grams, the mixed POS/function
word version yielded best results and was included
in the ensemble.

4.2 POS-based Classification and Tagset Size
To compare the tagsets we trained individual classi-
fiers for n-grams of size 1–4 using both tagsets and
tested them. The results are shown in Table 2 and

Feature Train +
Dev Set

Test Set

Chance Baseline 9.1 9.1

Character unigram 33.99 34.70

Character bigram 51.64 49.80

Character trigram 66.43 66.70

RASP POS unigram 43.76 45.10

RASP POS bigram 58.93 61.60

RASP POS trigram 59.39 62.70

Function word unigram 51.38 54.00

Function word bigram 59.73 63.00

Word unigram 74.61 75.50

Word bigram 74.46 76.00

Word trigram 63.60 65.00

TSG Fragments 72.16 72.70

Stanford Dependencies 73.78 75.90

Adaptor Grammar
POS/FW n-grams

69.76 70.00

Table 1: Classification results for our individual features.

N PTB RASP

1 34.03 43.76

2 48.85 58.93

3 51.06 59.39
4 49.85 52.81

Table 2: Classification accuracy results for POS n-grams
of size N using both the PTB and RASP tagset. The larger
RASP tagset performed significantly better for all N.

N Accuracy

1 51.38

2 59.73
3 52.14

Table 3: Classification results for Function Word n-grams
of size N. Our proposed Function Word bigram and tri-
gram features outperform the commonly used unigrams.
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Ensemble Train +
Dev Set

Test Set

Complete Ensemble 81.50 81.60

Only binary values 82.46 83.10
Only freq values 65.28 67.20

L1-regularized solver only 80.33 81.10

L2-regularized solver only 81.42 81.10

Bin, L1-regularized only 81.57 82.00

Bin, L2-regularized only 82.00 82.50

Table 4: Classification results for our ensembles, best re-
sult in column in bold (binary values with L1- and L2-
regularized solvers).

show that the RASP tagged data provided better per-
formance in all cases. While it is possible that these
differences could be attributed to other factors such
as tagging accuracy, we do not believe this to be the
case as the Stanford Tagger is known for its high ac-
curacy (97%). These differences are quite clear; this
finding also has implications for other syntactic fea-
tures that make use of POS tags, such as Adaptor
Grammars, Stanford Dependencies and Tree Substi-
tution Grammars.

4.3 Function Word n-grams

The classification results using our proposed Func-
tion Word n-gram feature are shown in Table 3.
They show that function word skip-grams are more
informative than the simple function word counts
that have been previously used.

4.4 Ensemble Results

Table 4 shows the results from our ensembles. The
feature types included in the ensemble are those
whose results are listed individually in Table 1. (So,
for example, we only use the RASP-tagged PoS n-
grams, not the Penn Treebank ones.) The complete
ensemble consists of four classifiers per feature type:
L1-/L2-regularized versions with both binary and
freq. values.

Bagging Our experiments with bagging did not
find any improvements in accuracy, even with larger
numbers of bootstrap samples (50 or more). Bag-
ging is said to be more suitable for unstable clas-

sifiers which have greater variability in their perfor-
mance and are more susceptible to noise in the train-
ing data (Breiman, 1996). In our experiments with
individual feature types we have found the classi-
fiers to be quite stable in their performance, across
different folds and training set sizes. This is one po-
tential reason why bagging did not yield significant
improvements.

Combiner Methods Of the methods outlined in
§2.3 we found the sum and weighted sum combiners
to be the best performing, but the weighted results
did not improve accuracy in general over their un-
weighted counterparts. Our results are reported us-
ing the unweighted sum combiner. A detailed com-
parison of the results for the combiners has been
omitted here due to time constraints; the differences
across all combination methods was roughly 1–2%.
Any new approach to ensemble combination meth-
ods would consequently want to be radically differ-
ent to expect a notable improvement in performance.

As noted at the start of this section, results here
are for the system trained on training and develop-
ment data. The best result on the test set (83.1%)
is almost 4% higher than our submission result, and
close to the highest result achieved (83.6%).

Binary & Frequency-Based Feature Values Our
results are consistent with those of Brooke and Hirst
(2012), who conclude that there is a preference
for binary feature values instead of frequency-based
ones. Including both types in the ensemble did not
improve results.

However, in other experiments on the TOEFL11
corpus we have also observed that use of frequency
information often leads to significantly better results
when using a linear SVM classifier: in fact, the lin-
ear classifier is better on all frequency feature types,
and also on some of the binary feature types. We
present results in Table 5 comparing the two. An ap-
proach using the linear SVM that provides an asso-
ciated probability score — perhaps through bagging
— allowing it to be combined with the methods de-
scribed in §2.3 could then perhaps boost results. All
these results were from a system using the training
data with 10 fold cross-validation.

Combining Regularisation Approaches Results
show that combining the L1- and L2-regularized
classifiers in the ensemble provided a small in-
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Feature L2-norm scaled counts Binary
linear log. regr. linear log. regr.

Char unigram 31.60 26.23 25.68 26.36

Char bigram 51.59 41.81 41.20 45.11

Char trigram 65.78 54.97 58.30 61.76

RASP POS bigram 60.38 54.00 50.31 54.56

RASP POS trigram 58.75 53.92 55.93 58.58

Function word unigram 51.38 45.09 46.67 47.13

Function word bigram 58.95 53.22 54.97 58.53

Word unigram 70.33 55.60 69.40 72.00
Word bigram 73.90 54.25 73.65 74.93
Word trigram 63.78 52.46 64.78 64.94

Table 5: Classification results for our individual features.

crease in accuracy. Ensembles with either the L1 or
L2-regularized solver have lower accuracy than the
combined methods (row 2).

4.5 Proficiency-level Based Classification

Table 6 shows our results for training models with
texts of a given proficiency level and the accuracy on
the test set. The numbers show that in general texts
should be classified with a learner trained with texts
of a similar proficiency. They also show that not all
texts in a proficiency level are of uniform quality as
some levels perform better with data from the clos-
est neighbouring levels (e.g. Medium texts perform
best with data from all proficiencies), suggesting
that the three levels form a larger proficiency con-
tinuum where users may fall in the higher or lower
ends of a level. A larger scale with more than three
levels could help address this.

5 Discussion

5.1 Unused Experimental Features

We also experimented with some other feature types
that were not included in the final system.

CCG SuperTag n-grams In order to introduce
additional rich syntactic information into our sys-
tem, we investigated the use CCG SuperTags as fea-
ture for NLI classification. We used the C&C CCG

Train Test Acc. Train Test Acc.
Low Low 52.2 All Med 86.8
Med Low 72.1 M + H Med 85.3
High Low 40.3 L + M Med 83.8
All Low 75.2 Low High 16.1
L + M Low 76.0 Med High 68.1
Low Med 40.7 High High 65.7
Med Med 83.6 M + H High 74.7
High Med 62.1 All High 75.2

Table 6: Results for classifying the test set documents
using classifiers trained with a specific proficiency level.
Each level’s best result in bold.

Parser and SuperTagger (Curran et al., 2007) to ex-
tract SuperTag n-grams from the corpus, which were
then used as features to construct classifiers. The
best results were achieved by using n-grams of size
2–4, which achieved classification rates of around
44%. However, adding these features to our ensem-
ble did not improve the overall system accuracy. We
believe that this is because when coupled with the
other syntactic features in the system, the informa-
tion provided by the SuperTags is redundant, and
thus they were excluded from our final ensemble.

Hapax Legomena and Dis Legomena The spe-
cial word categories Hapax Legomena and Dis
legomena refer to words that appear only once and
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twice, respectively, in a complete text. In practice,
these features are a subset of our Word Unigram
feature, where Hapax Legomena correspond to un-
igrams with an occurrence count of 1 and Hapax dis
legomena are unigrams with a count of 2.

In our experimental results we found that Ha-
pax Legomena alone provides an accuracy of 61%.
Combining the two features together yields an accu-
racy of 67%. This is an interesting finding as both
of these features alone provide an accuracy close to
the whole set of word unigrams.

5.2 Corpus Representativeness
We conducted a brief analysis of our extracted fea-
tures, looking at the most predictive ones according
to their Information Gain. Although we did not find
any obvious indicators of topic bias, we noted some
other issues of potential concern.

Chinese, Japanese and Korean speakers make ex-
cessive use of phrases such as However, First of all
and Secondly. At first glance, the usage rate of these
phrases seems unnaturally high (more than 50% of
Korean texts had a sentence beginning with How-
ever). This could perhaps be a cohort effect relat-
ing to those individually attempting this particular
TOEFL exam, rather than an L1 effect: it would
be useful to know how much variability there is in
terms of where candidates come from.

It was also noticed that many writers mention the
name of their country in their texts, and this could
potentially create a high correlation between those
words and the language class label, leading perhaps
to an artificial boosting of results. For example, the
words India, Turkey, Japan, Korea and Germany ap-
pear with high frequency in the texts of their corre-
sponding L1 speakers — hundreds of times, in fact,
in contrast to frequencies in the single figures for
speakers of other L1s. These might also be an arte-
fact of the type of text, rather than related to the L1
as such.

5.3 Hindi vs. Telugu
We single out here this language pair because of
the high level of confusion between the two classes.
Looking at the results obtained by other teams, we
observe that this language pair provided the worst
classification accuracy for almost all teams. No
system was able to achieve an accuracy of 80%

for Hindi (something many achieved for other lan-
guages). In analysing the actual and predicted
classes for all documents classified as Hindi and
Telugu by our system, we find that generally all
of the actual Hindi and Telugu texts (96% and
99%, respectively) are within the set. Our classifier
is clearly having difficulty discriminating between
these two specific classes.

Given this, we posit that the confounding influ-
ence may have more to do with the particular style
of English that is spoken and taught within the
country, rather than the specific L1 itself. Consult-
ing other research about SLA differences in multi-
lingual countries could shed further light on this.

Analysing highly informative features provides
some clues about the influence of a common cul-
ture or national identity: in our classifier, the words
India, Indian and Hindu were highly predictive of
both Hindi and Telugu texts, but no other lan-
guages. In addition, there were terms that were
not geographically- or culturally-specific that were
strongly associated with both Hindi and Telugu:
these included hence, thus, and etc, and a much
higher rate of use of male pronouns. It has been
observed in a number of places (Sanyal, 2007, for
example) that the English spoken across India still
retains characteristics of the English that was spo-
ken during the time of the Raj and the East India
Company that have disappeared from other varities
of English, so that it can sound more formal to other
speakers, or retain traces of an archaic business cor-
respondence style; the features just noted would fit
that pattern. The effect is likely to occur regardless
of the L1.

Looking at individual language pairs in this way
could lead to incremental improvement in the overall
classification accuracy of NLI systems.
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Abstract

This paper describes the Nara Institute of
Science and Technology (NAIST) native lan-
guage identification (NLI) system in the NLI
2013 Shared Task. We apply feature selec-
tion using a measure based on frequency for
the closed track and try Capping and Sampling
data methods for the open tracks. Our system
ranked ninth in the closed track, third in open
track 1 and fourth in open track 2.

1 Introduction

There have been many studies using English as a
second language (ESL) learner corpora. For exam-
ple, automatic grammatical error detection and cor-
rection is one of the most active research areas in this
field. More recently, attention has been paid to na-
tive language identification (NLI) (Brooke and Hirst,
2012; Bykh and Meurers, 2012; Brooke and Hirst,
2011; Wong and Dras, 2011; Wong et al., 2011).
Native language identification is the task of identi-
fying the ESL learner’s L1 given a learner’s essay.

The NLI Shared Task 2013 (Tetreault et al., 2013)
is the first shared task on NLI using the com-
mon dataset “TOEFL-11” (Blanchard et al., 2013;
Tetreault et al., 2012). TOEFL-11 consists of essays
written by learners of 11 native languages (Arabic,
Chinese, French, German, Hindi, Italian, Japanese,
Koran, Spanish, Telugu, Turkish), and it contains
1,100 essays for each native language. In addition,
the essay topics are balanced, and the number of top-
ics is 8.

In the closed track, we tackle feature selection
for increasing accuracy. We use a feature selection

method based on the frequency of each feature (e.g.,
document frequency, TF-IDF).

In the open tracks, to address the problem of im-
balanced data, we tried two approaches: Capping
and Sampling data in order to balance the size of
training data.

In this paper, we describe our system and exper-
imental results. Section 2 describes the features we
used in the system for NLI. Section 3 and Section 4
describe the systems for closed track and open track
in NLI Shared Task 2013. Section 5 describes the re-
sults for NLI Shared Task 2013. Section 6 describes
the experimental result for 10-fold cross validation
on the data set used by Tetreault et al. (2012).

2 Features used in all tracks

In this section, we describe the features in our sys-
tems. We formulate NLI as a multiclass classifica-
tion task. Following previous work, we use LIB-
LINEAR 2 for the classification tool and tune the C
parameter using grid-search.

We select the features based on previous work
(Brooke and Hirst, 2012; Tetreault et al., 2012). All
features used are binary. We treated the features as
shown in Table 1. The example of features in Table
1 shows the case whose input is “I think not a really
difficult question”.

We use a special symbol for the beginning and
end of sentence (or word) for bigrams and trigrams.
For surface forms, we lowercased all words. POS,
POS-function and dependency features are extracted

1http://www.lextek.com/manuals/onix/stopwords1.html
2http://www.csie.ntu.edu.tw/∼cjlin/liblinear/
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Name Description Example
Word N-gram (N=1,2) Surface form of the word. N=1 i, think, not

N=2 BOS i, i think
POS N-gram (N=2,3) POS tags of the word. N=2 BOS PRP, PRP VBP

N=3 BOS PRP VBP, PRP VBP RB
Character N-gram (N=2,3) N=2 ˆ t, t h, hi, in, nk, k$

N=3 ˆ t h, t h i
POS-function N-gram (N=2,3) We use surface form for words in stop

word list 1, otherwise we use POS form.
N=2 RB difficult, difficult NN

N=3 RB difficult NN
Dependency the surface and relation name (i, nsubj)

the surface and the dependend token’s
surface

(think, i)

the surface, relation name and the de-
pendend token’s surface

(nsubj, i, think)

Tree substitution grammer Fragments of TSG (PRP UNK-INITC-
KNOWNLC) (VB think)
(NP RB DT ADJP NN)
(JJ UNK-LC)

Table 1: All features for native language identification.

using the Stanford Parser 2.0.2 3.
We use tree substitution grammars as fea-

tures. TSGs are generalized context-free grammars
(CFGs) that allow nonterminals to re-write to tree
fragments. The fragments reflect both syntactic and
surface structures of a given sentence more effi-
ciently than using several CFG rules. In practice,
efficient Bayesian approaches have been proposed
in prior work (Post and Gildea, 2009). In terms
of the application of TSG to NLI task, (Swanson
and Charniak, 2012) have shown a promising re-
sult. Post (2011) also uses TSG to judge grammat-
icality of a sentence written by language learners.
With these previous findings in mind, we also ex-
tract TSG rules. We use the training settings and
public software from Post (2011)4, obtaining 21,020
unique TSG fragments from the training dataset of
the TOEFL-11 corpus.

3 Closed Track

In this section, we describe our system for the closed
track. We use the tools and features described in
Section 2.

In our system, feature selection is performed us-
ing a measure based on frequency. Although Tsur

3http://nlp.stanford.edu/software/lex-parser.shtml
4https://github.com/mjpost/post2011judging

and Rappoport (2007) used TF-IDF, they use it to
decrease the influence of topic bias rather than for
increasing accuracy. Brooke and Hirst (2012) used
document frequency for feature selection, however
it does not affect accuracy.

We use the native language frequency (hereafter
we refer to this as NLF). NLF is the number of na-
tive languages a feature appears in. Thus, NLF takes
values from 1 to 11. Figure 1 shows an example of
NLF. The word bigram feature “in Japan” appears
only in essays of which the learners’ native language
is Japanese, therefore the NLF is 1.

The assumption behind using this feature is that a
feature which appears in all native languages affects
NLI less, while a feature which appears in few na-
tive language affects NLI more. The features whose
NLFs are 11 include e.g. “there are”, “PRP VBP”
and “a JJ NN”. Table 2 shows some examples of the
features appearing in only 1 native language in the
TOEFL-11 corpus. The features include place-name
or company name such as “tokyo”, “korea”, “sam-
sung”, which are certainly specific for some native
language.
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Native Language
Chinese Japanese Korean

carry more this : NN samsung
i hus become of tokyo of korea
JJ whole and when i worked debatable whether

striking conclusion usuful NN VBG whether
traffic tools oppotunity for in thesedays

Table 2: Example of feature appearing in 1 native language for Chinese, Japanese and Korean

Figure 1: Example of native language frequency

Native Language # of articles
Japanese 258,320
Mandarin 48,364
Korean 31,188
Spanish 5,106
Italian 2,589
Arabic 1,549
French 1,168
German 832
Turkish 504
Hindi 223
Telugu 19

Table 3: Distribution of native languages in Lang-8
corpus

4 Open tracks

4.1 Lang-8 corpus

For the open tracks, we used Lang-8 as a source to
create a learner corpus tagged with the native lan-
guages of learners. Lang-8 is a language learning
social networking service. 5 Users write articles
in their non-native languages and native speakers
correct them. We used all English articles written
through the end of 2012. We removed all sentences
which contain non-ASCII characters. 6

Almost all users register their native language on
the site. We regard users’ registered native language

5http://lang-8.com/
6Some users also add translation in their native languages

for correctors’ reference.

as the gold label for each article. We split the learner
corpus extracted from Lang-8 into sub-corpora by
the native languages. The numbers of articles in all
corpora are summarized in Table 3. Unfortunately,
some sub-corpora are too small to train the model.
For example, the Telugu corpus has only 19 articles.

In order to balance the size of the training data,
we tried two approaches: Capping and Sampling.
We confirmed in preliminary experiments that the
model with these approaches work better than the
model with the original sized data.

Capping
In this approach, we limit the size of a sub-corpus

for training to N articles. For a sub-corpus which
contains over N articles, we randomly extract ar-
ticles up to N . We set N = 5000 and adapt this
approach for Run 1 and Run 3 in the open tracks.

Sampling
In this approach, we equalize the size of all sub-

corpora. For corpora which contain less than N ar-
ticles, we randomly copy articles until their size be-
comes N . We set N = 5000 and adapt this approach
for Run 2 and Run 4 in the open tracks.

4.2 Models
We compared two approaches with baseline features
and all features.

The models in Run 1 and Run 3 were trained with
the data created by the Capping approach, and the
models in Run 2 and Run 47 were trained by the
Sampling approach.

We used only word N-grams (N = 1, 2) as base-
line features. As extra features we used the follow-
ing features.

7We did not have time to train the model for Run 4 in the
open 1 track.
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• POS N-grams (N = 2, 3)

• dependency

• character N-grams (N = 2, 3)

In open track 2, we also add the TOEFL-11
dataset to the training data for all runs.

5 Result for NLI shared Task 2013

Table 4 shows the results of our systems for NLI
Shared Task. Chance accuracy is 0.09. All results
outperform random guessing.

5.1 Closed track

In the closed track, we submitted 5 runs. Run 1
is the system using only word 1,2-grams features.
Run 2 is the system using all features with NLF fea-
ture selection (1 < NLF < 11). Run 3 is the system
using word 1,2-grams and POS 2,3-grams features.
Run 4 is the system using word 1,2-grams, POS 2,3-
grams, character 2,3-grams and dependency features
without parameter tuning. Run 5 is the system us-
ing word 1,2-grams without parameter tuning. The
method using the feature selection method we pro-
posed achieved the best performance of our systems.

5.2 Open tracks

Comparison of the two data balancing
approaches

In open track 1, the method of “Sampling” out-
performs that of “Capping” (Run 2 > Run 1). This
means even duplicated training data can improve the
performance.

On the other hand, in open track 2, “Capping”
works better than “Sampling” (Run 1 > Run 2 and
Run 3 > Run 4). In the first place, the models trained
with both Lang-8 data and TOEFL data do not per-
form better than ones trained with only TOEFL data.
This means the less Lang-8 data we use, the better
performance we obtain.

Comparison on two feature sets
In open track 1, adding extra features seems to

have a bad influence because the result of Run 3
is worse than that of Run 1. This may be because
Lang-8 data is out of domain of the test corpus
(TOEFL).

Closed Open 1 Open 2
Run Accuracy Accuracy Accuracy

1 0.811 0.337 0.699
2 ∗0.817 0.356 0.661
3 0.808 0.285 0.703
4 0.771 - 0.665
5 0.783 - -

Table 4: Result for systems which submitted in NLI
2013 ∗We re-evaluated the Run2 because we submitted the

Run1 with the same output as Run2.

In open track 2, adding extra features makes the
performance better (Run 3 > Run 1, Run 4 > Run
2). In-domain TOEFL data seem to be effective for
training with extra features. In order to improve the
result with extra features in open track 2, domain
adaptation may be effective.

6 Experiment and Result for 10 fold
Cross-Validation

We conducted an experiment using 10-fold cross
validation on the data set used by Tetreault et al.
(2012). Table 5 shows the results for different fea-
ture set. The table consists of 3 blocks; the first
block is results of the system using 1 feature, the
second block is the result of the system using word
1,2-grams feature and another feature, and the third
block is the result of the system using word 1,2-
grams and more features.

In the first block results, the system using the
word 1,2-grams feature achieved 0.8075. It is the
highest accuracy in the first block, and third highest
accuracy in the results of Table 5. From the second
block of results, adding an extra feature does not im-
prove accuracy, however in the third block the sys-
tems in (14) and (15) outperform the system using
only word 1,2-grams.

Table 6 shows the results of using feature selec-
tion by NLF. The table consists of 3 blocks; the
first block is the results of the system using features
whose NLF is smaller than N (N = 11, 10, 9, 8), the
second block is the results of the system using fea-
tures whose NLF is greater than N (N = 1, 2, 3, 4),
and the third block is the results of the system using
features whose NLF is smaller than 11 and greater
than N (N = 1, 2, 3, 4).

The best accuracy is achieved by excluding fea-
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Feature Accuracy
(1) Word 1,2-gram 0.8075
(2) POS 2,3-gram 0.5555
(3) POS,Function 2,3-gram 0.7080
(4) Chracter 2,3-gram 0.6678
(5) Dependency 0.7236
(6) Tree substitution grammar 0.6455
(7) 1 + 2 0.7825
(8) 1 + 3 0.7913
(9) 1 + 4 0.7953

(10) 1 + 5 0.8020
(11) 1 + 6 0.7999
(12) 1 + 2 + 3 0.7849
(13) 1 + 2 + 3 + 4 0.8000
(14) 1 + 2 + 3 + 4 + 5 0.8097
(15) ALL 0.8088

Table 5: 10-fold cross validation results for each
feature

tures whose NLF is 1 or 11. While the results of the
first block and the second block are intuitive, the re-
sults of the third block are not (looking at the second
block of Table 6, excluding features whose NLF is
greater than N (1, 2, 3, 4) reduces accuracy). One
possible explanation is that features whose NLF is
1 includes features that rarely appear in the training
corpus.

7 Conclusion

In this paper, we described our systems for the NLI
Shared Task 2013. We tried feature selection using
native language frequency for the closed track and
Capping and the Sampling data to balance the size of
training data for the open tracks. The feature selec-
tion we proposed improves the performance for NLI.
The system using our feature selection achieved
0.817 on the test data of NLI Shared Task and 0.821
using 10-fold cross validation. While the Sampling
system outperformed Capping system for open track
1, the Capping system outperformed Sampling sys-
tem in open track 2 (because it reduced the amount
of out of domain data).
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Abstract

We apply Support Vector Machines to differ-
entiate between 11 native languages in the
2013 Native Language Identification Shared
Task. We expand a set of common language
identification features to include cognate inter-
ference and spelling mistakes. Our best results
are obtained with a classifier which includes
both the cognate and the misspelling features,
as well as word unigrams, word bigrams, char-
acter bigrams, and syntax production rules.

1 Introduction

As the world becomes more inter-connected, an in-
creasing number of people devote effort to learn-
ing one of the languages that are dominant in the
global community. English, in particular, is stud-
ied in many countries across the globe. The goal is
often related to increasing one’s chances to obtain
employment and succeed professionally. The lan-
guage of work-place communication is often not a
speaker’s native language (L1) but their second lan-
guage (L2). Speakers and writers of the same L1
can sometimes be identified by similar L2 errors.
The weak Contrastive Analysis Hypothesis (Jarvis
and Crossley, 2012) suggests that these errors may
be a result of L1 causing linguistic interference; that
is, common tendencies of a speaker’s L1 are super-
imposed onto their L2. Native Language Identifi-
cation, or NLI, is an attempt to exploit these errors
in order to identify the L1 of the speaker from texts
written in L2.

Our group at the University of Alberta was unfa-
miliar with the NLI research prior to the announce-

ment of a shared task (Tetreault et al., 2013). How-
ever, we saw it as an opportunity to apply our exper-
tise in character-level NLP to a new task. Our goal
was to propose novel features, and to combine them
with other features that have been previously shown
to work well for language identification.

In the end, we managed to define two feature sets
that are based on spelling errors made by L2 writers.
Cognate features relate a spelling mistake to cognate
interference with the writer’s L1. Misspelling fea-
tures identify common mistakes that may be indica-
tive of the writer’s L1. Both feature sets are meant
to exploit the Contrastive Analysis Hypothesis, and
benefit from the writer’s L1 influence on their L2
writing.

2 Related Work

Koppel et al. (2005b) approach the NLI task using
Support Vector Machines (SVMs). They experi-
ment with features such as function-word unigrams,
rare part-of-speech bigrams, character bigrams, and
spelling and syntax errors. They report 80% accu-
racy across 5 languages. We further investigate the
role of word unigrams and spelling errors in native
language identification. We consider not only func-
tion words, but also content words, as well as word
bigrams. We also process spell-checking errors with
a text aligner to find common spelling errors among
writers with the same L1.

Tsur and Rappoport (2007) also use SVMs on the
NLI task, but limit their feature set to character bi-
grams. They report 65% accuracy on 5 languages,
and hypothesize that the choice of words when writ-
ing in L2 is strongly affected by the phonology of
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their L1. We also consider character bigrams in our
feature set, but combine them with a number of other
features.

Wong and Dras (2011) opt for a maximum en-
tropy classifier, and focus more on syntax errors than
lexical errors. They find that syntax tree production
rules help their classifier in a seven language clas-
sification task. They only consider non-lexicalized
rules, and rules with function words. In contrast, we
consider both lexicalized and non-lexicalized pro-
duction rules, and we include content words.

Bergsma et al. (2012) consider the NLI task as a
sub-task of the authorship attribution task. They fo-
cus on the following three questions: (1) whether the
native language of the writer of a paper is English,
(2) what is the gender of the writer, and (3) whether
a paper is a conference or workshop paper. The au-
thors conclude that syntax aids the native language
classification task, further motivating our decision to
use part-of-speech n-grams and production rules as
features for our classifier. Furthermore, the authors
suggest normalizing text to reduce sparsity, and im-
plement several meta-features that they claim aid the
classification.

3 Classifier

Following Koppel et al. (2005b) and others, we
perform classification with SVMs. We chose the
SVM-Multiclass package, a version of the SVM-
light package(Joachims, 1999) specifically modified
for multi-class classification problems. We use a lin-
ear kernel, and two hyperparameters that were tuned
on the development set: the c soft-margin regular-
ization parameter, which measures the tradeoff be-
tween training error and the size of the margin, and
ε, which is used as a stopping criterion for the SVM.
C was tuned to a value of 5000, and epsilon to a
value of 0.1.

4 Features

As features for our SVM, we used a combination of
features common in the literature and new features
developed specifically for this task. The features are
listed in the following section.

4.1 Word n-grams

Following previous work, we use word n-grams as
the primary feature set. We normalize the text before
selecting n-grams using the method of Bergsma et
al. (2012). In particular, all digits are replaced with
a representative ’0’ character; for example, ’22’ and
’97’ are both represented as ’00’. However, unlike
Koppel et al. (2005b), we incorporate word bigrams
in addition to word unigrams, and utilize both func-
tion words and content words.

4.1.1 Function Words
Using a list of 295 common function words, we

reduce each document to a vector of values repre-
senting their presence or absence in a document. All
other tokens in the document are ignored. When
constructing vectors of bigrams, any word that is not
on the list of function words is converted to a place-
holder token. Thus, most of our function-word bi-
grams consist of a single function word preceded or
followed by a placeholder token.

4.1.2 Content Words
Other than the normalization mentioned in Sec-

tion 4.1, all tokens in the documents are allowed as
possible word unigrams. No spelling correction is
used for reducing the number of word n-grams. Fur-
thermore, we consider all token unigrams that occur
in the training data, regardless of their frequency.

An early concern with token bigrams was that
they were both large in number, and sparse. In an
attempt to reduce the number of bigrams, we con-
ducted experiments on the development set with dif-
ferent numbers of bigrams that exhibited the highest
information gain. It was found that using all combi-
nations of word bigrams improved predictive accu-
racy the most, and did not lead to a significant cost
to the SVM. Thus, for experiments on the test set, all
token bigrams that were encountered in the training
set were used as features.

4.2 Character n-grams

Following Tetreault et al. (2012), we utilize all char-
acter bigrams that occur in the training data, rather
than only the most frequent ones. However, where
the literature uses either binary indicators or relative
frequency of bigrams as features, we use a modi-
fied form of the relative frequency in our classifier.
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In a pre-processing step, we calculate the average
frequency of each character bigram across all train-
ing documents. Then, during feature extraction, we
again determine the relative frequency of each char-
acter bigram across documents. We then use bi-
nary features to indicate if the frequency of a bigram
is higher than the average frequency. Experiments
conducted on the development set showed that al-
though this modified frequency was out-performed
by the original relative frequency on its own, our
method performed better when further features were
incorporated into the classifier.

4.3 Part-of-speech n-grams

All documents are tagged with POS tags using the
Stanford parser (Klein and Manning, 2003), From
the documents in the training data, a list of all POS
bigrams was generated, and documents were repre-
sented by binary indicators of the presence or ab-
sence of a bigram in the document. As with char-
acter bigrams, we did not simply use the most com-
mon bigrams, but rather considered all bigrams that
appeared in the training data.

4.4 Syntax Production Rules

After generating syntactic parse trees with the Stan-
ford Parser. we extract all possible production rules
from each document, including lexicalized rules.
The features are binary; if a production rule occurs
in an essay, its value is set to 1, and 0 otherwise. For
each language, we use information gain for feature
selection to select the most informative production
rules as suggested by Wong and Dras (2011). Ex-
periments on the development set indicated that the
information gain is superior to raw frequency for the
purpose of syntax feature selection. Since the accu-
racy increased as we added more production rules,
the feature set for final testing includes all produc-
tion rules encountered in the training set. The ma-
jority of the rules are of the form POS⇒ terminal.
We hypothesized that most of the information con-
tained in these rules may be already captured by the
word unigram features. However, experiments on
the development set suggested that the lexicalized
rules contain information that is not captured by the
unigrams, as they led to an increase in predictive ac-
curacy.

4.5 Spelling Errors

Koppel et al. (2005a) suggested spelling errors
could be helpful as writers might be affected by
the spelling convention in their native languages.
Moreover, spelling errors also reflect the pronun-
ciation characteristics of the writers’ native lan-
guages. They identified 8 types of spelling errors
and collected the statistics of each error type as
their features. Unlike their approach, we focus on
the specific spelling errors made by the writers be-
cause 8 types may be insufficient to distinguish the
spelling characteristics of writers from 11 differ-
ent languages. We extract the spelling error fea-
tures from character-level alignments between the
misspelled word and the intended word. For ex-
ample, if the word abstract is identified as the in-
tended spelling of a misspelling abustruct, the char-
acter alignments are as follows:

a bu s t ru ct
| | | | | |
a b s t ra ct

Only the alignments of the misspelled parts, i.e.
(bu,b) and (ru,ra) in this case, are used as fea-
tures. The spell-checker we use is aspell1, and the
character-level alignments are generated by m2m-
aligner (Jiampojamarn et al., 2007).

4.6 Cognate Interference

Cognates are words that share their linguistic origin.
For example, English become and German bekom-
men have evolved from the same word in a com-
mon ancestor language. Other cognates are words
that have been transfered between languages; for ex-
ample, English system comes from the Greek word
συστηµα via Latin and French. On average, pairs
of cognates exhibit higher orthographic similarity
than unrelated translation pairs (Kondrak, 2013).

Cognate interference may cause an L1-speaker
to use a cognate word instead of a correct English
translation (for example, become instead of get).
Another instance of cognate interference is mis-
spelling of an English word under the influence of
the L1 spelling (Table 1).

We aim to detect cognate interference by identi-
fying the cases where the cognate word is closer to

1http://aspell.net

142



Misspelling Intended Cognate
developped developed developpé (Fre)

exemple example exemple (Fre)
organisation organization organisation (Ger)
conzentrated concentrated konzentrierte (Ger)

comercial commercial comercial (Spa)
sistem system sistema (Spa)

Table 1: Examples of cognate interference in the data.

the misspelling than to the intended word (Figure 1).
We define one feature to represent each language L,
for which we could find a downloadable bilingual
English-L dictionary. We use the following algo-
rithm:

1. For each misspelled English word m found in
a document, identify the most likely intended
word e using a spell-checking program.

2. For each language L:

(a) Look up the translation f of the intended
word e in language L.

(b) Compute the orthographic edit distance D
between the words.

(c) If D(e, f) < t then f is assumed to be a
cognate of e.

(d) If f is a cognate and D(m, f) < D(e, f)
then we consider it as a clue that L = L1.

We use a simple method of computing ortho-
graphic distance with threshold t = 0.58 defined
as the baseline method by Bergsma and Kondrak
(2007). However, more accurate methods of cog-
nate identification discussed in that paper could also
be used.

Misspellings can betray cognate interference even
if the misspelled word has no direct cognate in
language L1. For example, a Spanish speaker
might spell the word quick as cuick because of
the existence of numerous cognates such as ques-
tion/cuestión. Our misspelling features can detect
such phenomena at the character level; in this case,
qu:cu corresponds to an individual misspelling fea-
ture.

4.7 Meta-features
We included a number of document-specific meta-
features as suggested by Bergsma et al. (2012): the

conzentrated

concentrated

konzentrierte
0.3

0.4

Figure 1: A cognate word influencing the spelling.

average number of words per sentence, the average
word length, as well as the total number of char-
acters, words, and sentences in a document. We
reasoned that writers from certain linguistic back-
grounds may prefer many short sentences, while
other writers may prefer fewer but longer sentences.
Similarly, a particular linguistic background may in-
fluence the preference for shorter or longer words.

5 Results

The dataset used for experiments was the TOEFL11
Non-Native English Corpus (Blanchard et al., 2013).
The dataset was split into three smaller datasets: the
Training set, consisting of 9900 essays evenly dis-
tributed across 9 languages, the Development set,
which contained a further 1100 essays, and the Test
set, which also contained 1100 essays. As the data
had a staggered release, we used the data differently.
We further split the Training set, with a split of 80%
for training, and 10% for development and testing.
We then used the Development set as a held-out test
set. For held-out testing, the classifier was trained on
all data in the Training set, and for final testing, the
classifier was trained on all data in both the Training
and Development sets.

We used four different combinations of features
for our task submissions. The results are shown in
Table 2. We include the following accuracy values:
(1) the results that we obtained on the Development
set before the Test data release, (2) the official Test
set results provided by the organizers (Tetreault et
al., 2013), (3) the actual Test set results, and (4) the
mean cross-validation results (for submissions 1 and
3). The difference between the official and the ac-
tual Test set results is attributed to two mistakes in
our submissions. In submission 1, the feature lists
used for training and testing did not match. In sub-
missions 3 and 4, only non-lexicalized syntax pro-
duction rules were used, whereas our intention was
to use all of them.
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No. Features Dev Org Test CV
1 Base 82.0 61.2 80.4 58.2
2 – cont. words 67.4 68.7 68.7 –
3 + char 81.4 80.3 81.7 58.5
4 + char + meta 81.2 80.0 80.8 –

Table 2: Accuracy of our submissions.

All four submissions used the following base
combination of features:

• word unigrams

• word bigrams

• error alignments

• syntax production rules

• word-level cognate interference features

In addition, submission 3 includes character bi-
grams, while submission 4 includes both character
bigrams and meta-features. In submission 2, only
function words are used, with the exclusion of con-
tent words.

Our best submission, which achieves 81.73% ac-
curacy on the Test set, includes all features discussed
in Section 4 except POS bigrams. Early tests in-
dicated that any gains obtained with POS bigrams
were absorbed by the production rules, so they were
excluded form the final experiments. Character bi-
grams help on the Test set but not on the Devel-
opment set. The meta-features decrease accuracy
on both sets. Finally, the content words dramati-
cally improve accuracy. The reason we included a
submission which did not use content words is that
it is a common practice in previous work. In our
analysis of the data, we found content words that
were highly indicative of the language of the writer.
Particularly, words and phrases which contained the
speaker’s home country were useful in predicting the
language. It should be noted that this correspon-
dence may be dependent upon the prompt given to
the writer. Furthermore, it may lead to false posi-
tives for L1 speakers who live in multi-lingual coun-
tries.

5.1 Confusion Matrix
We present the confusion matrix for our best submis-
sion in Table 5.1. The highest number of incorrect

A C F G H I J K S T Tu
ARA 83 0 0 0 2 2 2 1 4 5 1
CHI 1 81 2 0 1 0 8 6 1 0 0
FRE 6 0 82 2 1 3 0 0 1 0 5
GER 1 0 0 90 1 1 1 0 2 0 4
HIN 1 2 2 0 76 1 0 0 0 16 2
ITA 1 1 0 1 0 89 1 0 5 1 1
JPN 2 1 1 1 0 1 86 6 0 0 2
KOR 1 8 0 0 0 0 11 78 0 1 1
SPA 2 2 7 0 3 5 0 2 75 0 4
TEL 2 0 0 2 15 0 0 0 1 80 0
TUR 4 3 2 1 0 1 1 5 2 2 79

Table 3: Confusion Matrix for our best classifier.

Features Test
Full system 81.7
w/o error alignments 81.3
w/o word unigrams 81.1
w/o cognate features 81.0
w/o production rules 80.6
w/o character bigrams 80.4
w/o word bigrams 76.7

Table 4: Accuracy of various feature combinations.

classifications are between languages that are either
linguistically or culturally related (Jarvis and Cross-
ley, 2012). For example, Korean is often misclassi-
fied as Japanese or Chinese. The two languages are
not linguistically related to Korean, but both have
historically had cultural ties with Korean. Likewise,
while Hindi and Telugu are not related linguistically,
they are both spoken in the same geographic area,
and speakers are likely to have contact with each
other.

5.2 Ablation Study

Table 4 shows the results of an ablation experiment
on our best-performing submission. The word bi-
grams contribute the most to the classification; their
removal increases the relative error rate by 27%. The
word unigrams contribute much less., This is un-
surprising, as much of the information contained in
the word unigrams is also contained in the bigrams.
The remaining features are also useful. In particu-
lar, our cognate interference features, despite apply-
ing to only 4 of 11 languages, reduce errors by about
4%.
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6 Conclusions and Future Work

We have described the system that we have devel-
oped for the NLI 2013 Shared Task. The system
combines features that are prevalent in the litera-
ture with our own novel character-level spelling fea-
tures and word cognate interference features. Most
of the features that we experimented with appear
to increase the overall accuracy, which contradicts
the view that simple bag-of-words usually perform
better than more complex feature sets (Sebastiani,
2002).

Our cognate features can be expanded by includ-
ing languages that do not use the Latin script, such
as Russian and Greek, as demonstrated by Bergsma
and Kondrak (2007). We utilized bilingual dictio-
naries representing only four of the eleven languages
in this task2; yet our cognate interference features
still improved classifier accuracy. With more re-
sources and with better methods of cognate identi-
fication, the cognate features have the potential to
further contribute to native language identification.

Our error-alignment features can likewise be fur-
ther investigated in the future. Currently, after ana-
lyzing texts with a spell-checker, we automatically
accept the first suggestion as the correct one. In
many cases, this leads to faulty corrections, and mis-
leading alignments. By using context sensitive spell-
checking, we can choose better corrections, and ob-
tain information which improves classification.

This shared task was a wonderful introduction
to Native Language Identification, and an excellent
learning experience for members of our group,
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Abstract

Tree Substitution Grammar rules form a large
and expressive class of features capable of rep-
resenting syntactic and lexical patterns that
provide evidence of an author’s native lan-
guage. However, this class of features can
be applied to any general constituent based
model of grammar and previous work has
done little to explore these options, relying
primarily on the common Penn Treebank an-
notation standard. In this work we contrast
the performance of syntactic features for Na-
tive Language Indentification using five dif-
ferent formalisms. The use of different for-
malisms captures complementary information
from second language data, and can be used
in combination to yield classification perfor-
mance superior to any formalism taken on its
own.

1 Introduction

Native Language Identification, the automatic deter-
mination of an author’s native language (L1) from
their writing in a second language (L2), follows a
general trend of supervised classification using fea-
tures extracted from text. These systems can be opti-
mized by both classification algorithm selection and
the integration of diverse feature sets, and in this
work we focus on the latter.

Syntactic features have been shown to provide
a strong discriminative signal of an author’s na-
tive language (Wong and Dras, 2011; Swanson and
Charniak, 2012), but little work has been done to ex-
plore the various options for representation of syn-
tax of learner text. Many such representations ex-

ist, and are routinely employed to improve perfor-
mance on the widely studied task of parsing the Penn
Treebank. Furthermore, most techniques that prove
widely successful at this task have publicly available
implementations, making them very feasible options
for NLI systems.

In this work we investigate the use of Tree Sub-
stitution Grammars as features for NLI, focusing on
the implication of syntactic paradigm (constituent vs
dependency grammar) and the addition of annota-
tions that have proved useful in statistical parsing.
A Tree Substitution Grammar (TSG) is an intuitive
extension of the Context Free Grammar (CFG) that
allows rewrite rules of arbitrary tree structure. Alter-
natively, a CFG can be seen as a TSG in which the
rewrite rules obey the constraint that each is a tree
structure of unit depth.

While a collection of parsed data can be poten-
tially generated by a TSG that is exponential in the
length of the text, recent techniques allow for the ef-
ficient induction of compact grammars (Cohn and
Blunsom, 2010). At a high level, this technique
employs the rich-get-richer dynamics of a Dirich-
let Process to sample derivations for the trees in the
training corpus: the more that a rule is used in other
derivations, the more likely it is that we will choose
it when sampling a derivation.

We follow previous work in stylometry with
TSGs for the NLI in that we parse the entirety of
the training data and use it to induce a compact TSG
using the method described above.1 We then use the

1An alternative method of note that we do not consider in
this work is to induce TSG rules on hand-annotated data such
as the Penn Treebank, as in Bergsma et al. (2012).
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Figure 1: Sample parse trees produced by the Berkeley Parser. An example of what the tree might look like with split
symbol annotations is shown on the right.

TSG rules as binary features for supervised classi-
fication such that the feature for a TSG rule is trig-
gered on a document if that rule appears in the parse
of some derivation of any of its sentences. This de-
scription purposefully treats the parsing of text as a
black box whose input is plain text and whose out-
put is any valid tree structure. Our work considers
five alternatives for this black box, and evaluates the
effect of this choice on the NLI Shared Task at the
BEA Workshop of NAACL 2013 (Tetreault et al.,
2013).

2 Syntactic Representations

We investigate five variations on the output of the
parsing process. All five are easily produced by
freely available Java software; two with the Berkeley
Parser, two with the Stanford Parser, and one with a
combination of both software packages.

2.1 Berkeley Constituent Parses

Our first representation reproduces previous work by
using the output of the Berkeley Parser (Petrov et
al., 2006), one of highest performing systems on the
benchmark Penn Treebank task. The basic motivat-
ing principle involved is that the traditional nonter-
minal symbols used in Penn Treebank parsing are
too coarse to satisfy the context free assumption of
a CFG. To combat this, hierarchical latent annota-
tions are induced that split a symbol into several
subtypes, and a larger CFG is estimated on this set
of split nonterminals. A sentence is parsed using
this large CFG and each resulting symbol is mapped
back to its original unsplit supertype to produce the

final parse.
One important subtlety of the Berkeley Parser is

its default binarization, which we leave intact in our
downstream use of its parses. While binarization is
normally motivated by the desired cubic complexity
of parsing algorithms, it also benefits syntactic sty-
lometry. Consider the nugget of wisdom from the
great Frank Zappa shown on the left in Figure 1, in
which artificially introduced binarization nodes are
marked with the @ symbol.

The use of binarization allows us to capture pat-
terns such as verb phrases that begin with ”is not”
independent of the following child constituents. The
capabilities of TSG rules makes the use of binariza-
tion even more apt, as we can easily choose to re-
cover the unbinarized pattern with a slightly larger
fragment. This choice will be made in TSG induc-
tion based on the frequency with which the combi-
nation occurs, which intuitively aligns with our goal
of choosing representative features.

The second form that we investigate is identical
to the normal Berkeley Parser output, but with the
split annotations used in parsing left intact, as shown
the right of Figure 1. This parsed sentence shows
how each nonterminal is annotated with a split cat-
egory, and illustrates the potential advantages that
this method affords. For example, consider the @VP
node in the left-hand tree, whose subtree is gen-
erated with a CFG by first choosing to produce a
VBZ and RB, and then by lexicalizing each inde-
pendently. These two lexicalizations are not in fact
independent, as can be seen by the combination of
”is” with the RB ”may”, which is impossible al-
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though each are independently quite likely. Splitting
the symbols as shown on the right allows us to cre-
ate a special RB node that is most likely to produce
”not” and VBZ node likely to produce ”is”. Their
likely co-occurrence can then be modeled as shown
by a rule with both specialized tags as children.

It is worth noting that this particular ability of
split symbol grammars to coordinate lexical items
is easily captured with the TSG rules that we induce
on these parses, regardless of the presence of split
symbols. The more orthogonal quality of these split
grammars is their ability to categorize symbols that
appear in similar syntactic situations. Consider that
some adjectives are more likely to appear in ”X is Y”
sentences in the ”Y” position, while some are more
likely to be used directly to the left of nouns. A split
symbol grammar handily captures this trait with a
split POS tag, while a TSG cannot associate patterns
containing different lexical items on its own.

2.2 Stanford Dependency Parses

The third and fourth syntactic models we employ
are derived from dependency parses produced by the
Stanford parser(Marneffe et al., 2006). In its stan-
dard form, a dependency parse is a directed tree in
which each word except the special ROOT node has
exactly one incoming edge and zero to many outgo-
ing edges, where edges represent syntactic depen-
dence. Arcs are labeled with the type of syntactic
dependence that they indicate. Following conven-
tion, we represent each word in combination with its
part of speech tag, as shown in the following exam-
ple dependency parse.

ROOT DT NN VBZ PRP
The poodle chews it

root

det nsubj dobj

In order to apply the techniques of TSG induction
to dependency parsed data, we implement a conver-
sion from dependency tree to constituent form. The
mechanics of this conversion are simple and illus-
trated in full by the following conversion of the de-
pendency tree shown above, and are similar to trans-

forms used in previous work in unsupervised depen-
dency parsing(Carroll and Charniak, 1992).

ROOT

VBZ-L

nsubj

NN-L

det

DT

the

NN

poodle

VBZ

chews

VBZ-R

dobj

PRP

it

Note that it is always the case that the arc labels
from the dependency parses are always produced
by unary rules. This allows the simple removal of
the nodes corresponding to arc labels, yielding our
fourth syntactic model.

ROOT

VBZ-L

NN-L

DT

the

NN

poodle

VBZ

chews

VBZ-R

PRP

it

Those familiar with the Stanford Parser may be
concerned that the dependency parses used here are
determined by a deterministic transform of a con-
stituent parse of Penn Treebank style, and then sim-
ply transformed back into constituent form. This is
especially concerning when considering the second
form in which arc labels have been removed; this
form can be constructed directly from the Berkeley
Parse form used above, and contains no additional
information. Our motivation in the investigation of
dependency parses is not that they offer new infor-
mation, but that they are organized differently than
constituent parses. When inducing a TSG, our abil-
ity to find a useful connections is impeded by phys-
ical distance between structures. In particular, in a
dependency parse, the head of the subject and the
verb are always contained in some TSG fragment
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made up of small number of CFG rules, five or four
depending on the presence of arc labels. In con-
stituent parses, the presence of modifying phrases
can arbitrarily increase this distance.

2.3 Stanford Heuristic Annotations
Our final variation uses the annotations internal to
the Stanford Penn Treebank parser, as presented in
Klein and Manning (2003). These annotations are
motivated in the same way as Berkeley Parser split
states, but are deterministically applied to parse trees
using linguistic motivations. Besides handling ex-
plicit tracking of binarization and parent annotation,
several additional annotations are applied, such as
the splitting of certain POS tags into useful cate-
gories and annotation of some nodes with their num-
ber of children or siblings.

For ease of implementation, we do not use the
Stanford Parser itself to produce our trees, instead
we used our results from the Berkeley Parser. The
Stanford Parser annotations were then applied to
these trees after binarization symbols were first col-
lapsed. The following tree is an example of the
actual annotations applied by this process, and in-
cludes a fair subset of the many annotation types
that are used. The original symbol in each case is
the leftmost string of capital letters in the resulting
symbol strings shown.

ROOT

S-v

NP-B

NNPˆNP

Ace

VP-VBF-v

VBZˆVB-BE

is

PP

INˆPP

in

NP-B

DTˆNP

the

NNˆNP

house

3 Experiments

We contrast the syntactic formalisms on the NLI
shared task experimental setup for the NAACL 2013
BEA workshop. This new data set (Blanchard et al.,

2013) consists of TOEFL essays drawn from speak-
ers of 11 different L1 backgrounds. 9900 Essays
were supplied as a training set, with an additional
1100 development set essays and 1100 test essays.

Previous work in NLI has relied heavily on the
International Corpus of Learner English, but due to
significant topic biases along L1 lines in this data
set the explicit use of word tokens was frequently
limited to a predetermined set of stopwords. With
this in mind, the data set for the shared task was bal-
anced across TOEFL essay prompts and proficiency
levels. The result was that the participants in this
task were not forced to limit the word tokens explic-
itly employed, with the hopes that mitigating factors
had been minimized.

We prepared the data in the five forms described
above and induced TSGs on each version of the
parsed training set with the blocked sampling algo-
rithm of Cohn and Blunsom (2010). The resulting
rules were used as binary feature functions over doc-
uments indicating the presence of the rule in some
derivation of sentence in that document. We used
the Mallet implementation of a log-linear (MaxEnt)
classifier with a zero mean Gaussian prior with vari-
ance .1 on the classifier’s weights. Our results on the
development set are shown in Figure 3.

While a range of performance is achieved, when
we construct a classifier that simply averages the
predictive distributions of all five methods we get
better accuracy than any model on its own. We ob-
served further evidence of the orthogonality of these
methods by looking at pairs of formalisms and ob-
serving how many development set items were pre-
dicted correctly by one formalism and incorrectly by
another. This was routinely around 10 percent of the
development set in each direction for a given pair,
implying that gains of up to at least 20 percent classi-
fication accuracy are possible with an expert system
that approaches oracle selection of which formalism
to use.

As our submission to the shared task, we used the
Berkeley Parser output in isolation, the average of
the five classifiers, and the weighted average of the
classifiers using the optimal weights on the devel-
opment set. The former two models use the devel-
opment set as additional training data, which is one
possible explanation of the slightly higher perfor-
mance of the equally weighted average model. An-
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ARA CHI FRE GER HIN ITA JPN KOR SPA TEL TUR P R F

ARA 76 2 4 1 2 2 2 1 4 3 3 76.8 76.0 76.4
CHI 2 86 0 1 1 0 4 4 1 0 1 81.1 86.0 83.5
FRE 2 1 77 3 2 6 2 1 5 1 0 82.8 77.0 79.8
GER 0 1 1 91 1 1 0 0 2 0 3 86.7 91.0 88.8
HIN 2 2 1 2 71 0 0 0 0 20 2 73.2 71.0 72.1
ITA 2 0 2 1 1 84 0 1 7 0 2 79.2 84.0 81.6
JPN 3 4 0 1 0 0 83 7 1 0 1 74.1 83.0 78.3

KOR 1 6 1 1 1 0 20 65 2 1 2 69.1 65.0 67.0
SPA 4 2 4 3 2 12 0 3 66 0 4 71.7 66.0 68.8
TEL 1 2 0 0 16 0 0 0 0 81 0 76.4 81.0 78.6
TUR 6 0 3 1 0 1 1 12 4 0 72 80.0 72.0 75.8

Figure 2: Confusion Matrix and per class results on the final test set evaluation using the evenly averaged model.

other explanation of note is that while the weight
optimization was carried out with EM over the like-
lihood of the development set labels, this did not
in correlate positively with classification accuracy;
even as we optimized on the development set the ac-
curacy in absolute classification of these items de-
creased slightly.

The confusion matrix for the evenly averaged
model, our best performing system, is shown in Fig-
ure 2. The most frequently confused L1 pairs were
Hindi and Telegu, Japanese and Korean, and Span-
ish and Italian. The similarity between Hindi and
Telegu is particularly troubling, as they come from
two completely different language families and their
most obvious similarity is that they are both spoken
primarily in India. This suggests that even though
the TOEFL corpus has been balanced by topic that
there is a strong geographical signal that is corre-
lated with but not caused by native language.

BP BPS DP DPA KM AVG

Acc 74.5 69.3 72.4 73.5 73.5 77.3

Figure 3: The resulting classification accuracies on the
development set for the various syntactic forms that we
considered. The forms used are plain Berkeley Parses
(BP), Berkeley Parses with split symbols (BPS), depen-
dency parses (DP), dependency parses without arc la-
bels (DPA), and the heuristic annotations from (Klein and
Manning, 2003) (KM). When the predictive distributions
of the five models are averaged (AVG), a higher accuracy
is achieved.

BP AVG AVG-EM

Acc 74.7 77.5 77.0

Figure 4: The classification accuracies obtained on the
test data using the Berkeley parser output alone (BP), the
arithmetic mean of all five predictive distributions (AVG)
and the weighted mean using the optimal weights from
the development set as determined with EM (AVG-EM)

4 Conclusion

In this work we open investigation of a generally un-
considered variable in syntactic stylometry: the ac-
tual syntactic formalism. We examine five poten-
tial candidates of which only one has been previ-
ously presented in the context of TSG features for
NLI. These five formalisms cover both constituent
and dependency grammars, and explore the possi-
bility of split state annotations for constituent gram-
mars and the inclusion of arc labels for dependency
grammars. We find that the use of different grammar
formalisms captures orthogonal information about
an author’s native language. Furthermore, the com-
bination of different formalisms can be used to in-
crease classification accuracy.

While our results are intriguing, they primarily
serve as a proof of concept that syntactic stylome-
try can benefit from a range of representations and
should not be taken as an exhaustive search for the
best representations to use. Other syntactic forms
exist, and even in our methods there are additional
variables that can be adjusted.

One such variable is the number of splits used in
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the Berkeley Parser when split states are included;
the default number that we use in this work is 6,
the optimal value for the parsing task, but this may
be suboptimal as a representation for feature extrac-
tion. Binarization is another easily adjusted variable,
with several available options in the literature. For
example, binarization can be done that is aware of
head attachment. Another option is to binarize more
heavily, increasing the ability of TSG fragments to
separate sister nodes and find frequent patterns.

Alternative syntactic forms not explored in this
work are also available. These include well stud-
ied grammars such as Hierarchical Phrase Structure
Grammars and Combinatory Categorial Grammars,
and transforms that rearrange the tree such as the
Left Corner Transform used in Roark and Johnson
(1999). Furthermore, the use of the TSG as a fea-
ture extractor itself has the potential for extension
to more powerful systems such as Tree Adjoining
Grammars or Tree Insertion Grammars.
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Abstract 

Native language identification (NLI) is the 
task to determine the native language of the 
author based on an essay written in a second 
language.  NLI is often treated as a classifica-
tion problem.  In this paper, we use the 
TOEFL11 data set which consists of more 
data, in terms of the amount of essays and 
languages, and less biased across prompts, i.e., 
topics, of essays.  We demonstrate that even 
using word level n-grams as features, and sup-
port vector machine (SVM) as a classifier can 
yield nearly 80% accuracy. We observe that 
the accuracy of a binary-based word level n-
gram representation (~80%) is much better 
than the performance of a frequency-based 
word level n-gram representation (~20%).  
Notably, comparable results can be achieved 
without removing punctuation marks, suggest-
ing a very simple baseline system for NLI. 

1 Introduction 

Native language identification (NLI) is an emerg-
ing field in the natural language processing com-
munity and machine learning community (Koppel 
et al., 2005; Blanchard et al., 2013). It is a task to 
identify the native language (L1) of an author 
based on his/her texts written in a second language.  
The application of NLI can bring many benefits, 
such as providing a learner adaptive feedback of 
their writing errors based on the native language 

for educational purposes (Koppel et al., 2005; 
Blanchard et al., 2013).  

NLI can be viewed as a classification problem.  
In a classification problem, a classifier is first 
trained using a set of training examples.  Each 
training example is represented as a set of features, 
along with a class label.  After a classifier is 
trained, the classifier is evaluated using a testing 
set (Murphy, 2012). Good data representation often 
yields a better classification performance (Murphy, 
2012).  Often time, the simpler representations 
might produce better performance.  In this work, 
we demonstrate that a binary-based word level n-
gram representation yields much better perform-
ance than a frequency-based word level n-gram 
representation.  In addition, we observed that re-
moving punctuation marks in an essay does not 
make too much difference in a classification per-
formance. 

The contributions of this paper are to demon-
strate the usefulness of a binary-based word level 
n-gram representation, and a very simple baseline 
system without the need of removing punctuation 
marks and stop words. 

This paper is organized as the following.  In 
Section 2, we present related literatures.  
TOEFL11 data set is introduced in Section 3.  In 
Section 4, our features and system design are de-
scribed.  The results are presented in Section 5, 
followed by conclusion in Section 6. 
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2 Related Work 

The work by Koppel et al. (2005) is the first study 
to investigate native language identification.  They 
use the International Corpus of Learner English 
(ICLE).  They set up this task as a classification 
problem studied in machine learning community.  
They use three types of features: function words, 
character n-gram, errors and idiosyncrasies, e.g. 
spelling and grammatical errors.   For errors and 
idiosyncrasies, they used Microsoft Office Word to 
detect those errors.  Their features were evaluated 
on a subset of the ICLE corpus, including essays 
sampled from five native languages (Russian, 
Czech, Bulgarian, French and Spanish) with 10-
fold cross validation.  They achieve an accuracy of 
80.2% by combining all of the features and using a 
support vector machine as the classification algo-
rithm. In addition, Tsur and Rappoport (2007) 
show that using character n-gram only on the ICLE 
can yield an accuracy of 66%.   

The work from Kochmar (2011) identifies an 
author’s native language using error analysis.  She 
suggests that writers with different native lan-
guages generate different grammatical error pat-
terns. Instead of using ICLE, this work uses a 
different corpus, English learner essays from the 
Cambridge Learner Corpus. She uses SVM on 
manually annotated spelling and grammatical er-
rors along with lexical features. 

Most of the systems described in NLI literature 
reach good performance in predicting an author’s 
native language, using character n-gram and part of 
speech n-gram as features (Blanchard et al., 2013).  
In recent years, various studies have started to look 
into complex features in order to improve the per-
formance.  Wong and Dras (2009) use contrastive 
analysis, a systematic analysis of structural simi-
larities and differences in a pair of languages.  A 
writer’s native language influences the target lan-
guage they aim to learn. They explore the impact 
of three English as Second Language (ESL) error 
types, subject-verb disagreement, noun-number 
disagreement and determiner errors, and use a sub-
set of ICLE with 7 languages.   However, although 
the determiner error feature seems useful, when it 
is combined with a baseline model of lexical fea-
tures, the classification performance is not signifi-
cantly improved (Wong and Dras, 2009). 

Wong and Dras (2011) use complex features 
such as production rules from two parsers and 

reranking features into the classification frame-
work, incorporating lexical features of Koppel et al. 
(2005).  They achieve a classification performance 
of 81.71% on the 7-native-languages NLI, slightly 
better than 80.2% accuracy of the original Koppel 
et al. (2005). 

Note that although the International Corpus of 
Learner English (ICLE) is used in most of the NLI 
studies, ICLE has been known to have fewer es-
says, and a skewed distribution toward topics of 
essays (Blanchard et al., 2013).  In addition, even 
though there are 16 native languages in ICLE, as 
each language has different numbers of essays, 
most work often uses different subsets of 7 native 
languages, which makes comparison harder across 
different studies (Blanchard et al., 2013). The NLI 
shared task 2013 provides a new data set, namely 
the TOEFL11 (Blanchard et al., 2013), which ad-
dresses these issues.  As previously discussed, 
complex features do not necessarily improve clas-
sification accuracy.  In this work, we use 
TOEFL11 to investigate the classification per-
formance using simple word n-gram based features.  

3 Data  

In this work, we use TOEFL11 as our corpus.  
TOEFL11 is a new data set for NLI (Blanchard et 
al., 2013). There are 11 native languages, including 
Arabic (ARA), Chinese (CHI), French (French), 
German (GER), Hindi (HIN), Italian (ITA), Japa-
nese (JPN), Korean (KOR), Spanish (SPA), Telugu 
(TEL), and Turkish (TUR).  Authors write essays 
based on 8 different topics in English.  There are 
1,100 essays for each language, and sampled from 
8 different topics, i.e., prompts.    Each essay is 
also annotated with an English proficiency level 
(low/medium/high) determined by assessment spe-
cialists.  Among 12,100 essays, there are 9,900 
essays in the training set, 1,100 essays in the de-
velopment set, i.e., validation set in machine learn-
ing, and 1,100 essays in the testing set.  In the 
training set and the development set, there are 
equal numbers of essays from each of the 11 native 
languages. By using TOEFL11, it makes our 
analysis less biased toward a specific topic of es-
says (Blanchard et al., 2013).  
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4 NIL System Design 

In this section, we describe our NLI system, the 
features, and the classifier we use. 

4.1 Data Preprocessing 

Each essay is tokenized, and then capitalizations 
are removed.  Note that we did not remove English 
stop words, which might be useful to discriminate 
the native language for a writer.  For example, 
function words, which belong to stop words, such 
as ‘the’, ‘at’, ‘which’, have been proven to be ef-
fective to distinguish native language for writers 
(Koppel et al., 2005).  There are two settings: ei-
ther punctuation marks are removed or kept.   
When punctuation marks are kept, they are viewed 
the same as word in constructing n-grams.  For 
example, in the sentence “NLI is fun.”, “fun .” is 
viewed as a bigram. 

4.2 Features 

In our system, word level n-grams are used to rep-
resent an essay.  Previous studies have shown that 
word level n-grams are useful in determining the 
native language of a writer (Bykh and Meurers, 
2012).  One reasonable hypothesis is that non-
native English writers with the same native lan-
guages tend to choose more similar words to ex-
press the same or similar concepts.  In addition, the 
combination of a sequence of words might also be 
affected by the different native language of writers.  
Therefore, word n-gram is useful to distinguish the 
native language of a writer.  Even though some 
previous studies have looked into using word level 
n-grams as features, how to use word level n-
grams has not been explored too much yet on 
TOEFL11 corpus.  To our knowledge, the most 
recent study by Blanchard et al. (2013) started to 
research the effect of different forms of word level 
n-gram representations. 

There could be many ways to represent an essay 
by word level n-grams.  One possible representa-
tion of an essay is to use the frequency of a spe-
cific word n-gram, i.e., the number of times a 
specific word n-gram appears in an essay divided 
by the number of times all word n-grams appear in 
an essay.  In this representation, an essay is a vec-
tor whose elements are the frequency of different 
word n-grams in the essay.  Another possible rep-
resentation is to use binary representation, i.e., 1 

indicates this word n-gram is in this essay, 0 indi-
cates this word n-gram is not in this essay.  One 
interesting question to ask is:  

Which representation can be more informative 
to distinguish the native language of writers of es-
says? 

 Here we compare the performance of a fre-
quency-based word level n-gram representation 
and a binary-based word level n-gram representa-
tion. We included all word level n-grams in the 
training set, without any frequency cutoff.  For 
both binary-based and frequency-based representa-
tions, we run the experiments on the two settings:  
punctuation marks are either removed or kept. 

In addition to word level n-grams, since 
TOEFL11 also consists of English proficiency lev-
els evaluated by assessment experts, we also in-
cluded it to test whether this feature might improve 
the classification performance.  All of the features 
used in our system are summarized in Table 1.  
Besides each feature described above, we have also 
combined different features to test whether various 
combinations of features might improve the accu-
racy performance.  Here, we simply aggregated 
different features, for example, all word level uni-
grams, combined with all word level bigrams. 

4.3 Classifier 

Previous literatures have used various methods 
such as Naïve Bayse, logistic regression and sup-
port vector machine on NLI problem.  As it has 
been shown that when representing an essay in 
order to perform a classification task, it often re-
sults in an essay being represented in a very high 
dimensional space.  Since support vector machine 
(SVM) is known to be adaptive when the feature 
dimension is high, we chose SVM as our classifi-
cation algorithm.   We also compared the results 
from Naïve Bayse for an experimental purpose and 
found that SVM is better. We use SVM-Light for 
our system (Joachims, 1999).  We then train our 
SVM classifier on the training set (n=9900), and 
test the trained classifier on the testing set 
(n=1100). 
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5 Results and Discussions 

5.1 Results 

Table 1 and Table 2 show the accuracies on the 
testing set for the different feature sets, when punc-
tuation marks are removed or kept respectively.  
As the results demonstrated, the accuracies of word 
level bigram are better than unigram using a bi-
nary-based representation.  When combining word 
level unigram and bigram, the accuracy is im-
proved in a binary-based representation.  This is 
consistent when punctuations are either removed or 
kept.  This observation is consistent with the exist-
ing NLI literatures: when combining word n-grams, 
it seems to improve the accuracy of the classifier, 
compared with a word n-gram alone. But we do 
not observe too much difference when punctuation 
marks are removed or kept, using both unigram 
and bigram. In fact, including punctuation marks 
lead to high accuracies in many scenarios, espe-
cially in unigram in a frequency-based representa-
tion, suggesting the usage of punctuation marks 
varies across native languages.   

 

Features 

Performance of  
Binary Word n-

gram Representa-
tion 

Performance of 
Freq. Word n-

gram Representa-
tion 

word unigram 70.91% 25.36% 

word bigram 76.00% 17.64% 

word unigram 
and  

word bigram 
79.73% 23.36% 

Table 1 Accuracy of Different Feature Sets, without 
Punctuation Marks 

 

Features 

Performance of 
Binary Word n-

gram Representa-
tion 

Performance of 
Freq. Word n-

gram Representa-
tion 

word unigram 70.18% 30.00% 

word bigram 77.09% 18.73% 

word unigram 
and  

word bigram 
79.45% 28.73% 

Table 2 Accuracy of Different Feature Sets, with 
Punctuation Marks 

 
Table 3 shows the confusion matrix of classifi-

cation performance, using unigram and bigram, in 

a binary-based representation when punctuation 
marks are removed. We observe that some of na-
tive languages, such as German, Italian, and Chi-
nese, lead to better classification accuracy than for 
Korean, Spanish, and Arabic. 
 

 ARA CHI FRE GER HIN ITA JPN KOR SPA TEL TUR 
Preci-
sion 

Re-
call 

F-
measure 

ARA 75 1 5 3 1 3 1 1 3 4 3 78.9 75.0 76.9

CHI 3 86 0 0 1 0 5 4 0 0 1 81.9 86.0 83.9

FRE 1 1 79 7 3 4 2 0 1 0 2 77.5 79.0 78.2

GER 3 1 2 87 1 1 1 0 2 0 2 79.8 87.0 83.3

HIN 1 2 1 2 77 0 0 0 5 10 2 74.0 77.0 75.5

ITA 0 0 6 4 0 85 0 0 3 0 2 83.3 85.0 84.2

JPN 2 2 1 0 0 1 86 3 2 0 3 77.5 86.0 81.5

KOR 0 8 2 1 1 0 14 72 1 1 0 82.8 72.0 77.0

SPA 4 0 6 3 4 6 1 1 70 1 4 78.7 70.0 74.1

TEL 1 0 0 1 15 0 0 0 0 82 1 83.7 82.0 82.8

TUR 5 4 0 1 1 2 1 6 2 0 78 79.6 78.0 78.8

Average Performance: 79.7%.   Precision, Recall, F-measures are in %. 

Table 3 Confusion Matrix on Testing Set 

5.2 Binary Based of Word N-Gram Repre-
sentation 

We observe that the accuracy of a binary-based 
word level n-gram representation in our system is 
significantly better than a frequency-based repre-
sentation.  This is similar to the result reported by 
Blanchard et al., (2013) in TOEFL11 corpus.  The 
differences between their system and ours are that 
the system developed by Blanchard et al., (2013) 
used logistic regression with L1-regularzation, in-
stead of SVM and they did not remove all punctua-
tion marks and special characters.   

This might imply that a frequency-based word 
n-gram representation do not capture the character-
istics of the data. This might be because the data 
resides in a high dimension space, and the frequen-
cies of word level n-grams would be skewed.  In a 
future study, one might investigate a better repre-
sentation form and other complex features that 
have a stronger interpretative power of the data.  

5.3 Effects of Proficiency Level 

In our results, we have included English profi-
ciency level (low/medium/high) as a feature pro-
vided by assessment experts.  However, we did not 
find a strong improvement in accuracies, for ex-
ample, 79.13% using a binary-based word level n-
grams when punctuation marks removed.  We 
think this might be because only one feature will 
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not dramatically change the accuracies.  This may 
be due to the fact word n-grams have already con-
tributed a large amount of features.  

6 Conclusion 

In this paper, we used a new data set, TOEFL11 to 
investigate NLI. In the most existing literatures, 
ICLE corpus was used. However, ICLE has fewer 
data and is known to be biased to topics of essays.  
The newly released corpus, TOEFL11 addresses 
these two drawbacks, which is useful for NLI 
community.  Support vector machine (SVM) was 
used as a classifier in our system.  We have dem-
onstrated that a binary-based word level n-gram 
representation has resulted in a significantly better 
performance compared to a frequency-based n-
gram representation.  We observed that there is not 
much difference in classification accuracies when 
punctuation removed or kept, when combining 
both unigram and bigram.  Interestingly, a fre-
quency-based word unigram with punctuation 
marks outperforms than the case without punctua-
tion marks, suggesting the potential of utilizing 
punctuation marks in NLI.  In addition, English 
proficiency level has also been included in our fea-
ture set, but did not yield a significant improve-
ment in accuracy.  As most of the essays are 
represented in a high dimension space using word 
level n-grams, we are looking into feature selection 
to reduce dimensionality and how to represent 
those features in order to improve accuracy, as 
well as other features.  
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Abstract

This paper investigates the use of prompt-
based content features for the automated as-
sessment of spontaneous speech in a spoken
language proficiency assessment. The results
show that single highest performing prompt-
based content feature measures the number
of unique lexical types that overlap with the
listening materials and are not contained in
either the reading materials or a sample re-
sponse, with a correlation of r = 0.450 with
holistic proficiency scores provided by hu-
mans. Furthermore, linear regression scor-
ing models that combine the proposed prompt-
based content features with additional spoken
language proficiency features are shown to
achieve competitive performance with scoring
models using content features based on pre-
scored responses.

1 Introduction

A spoken language proficiency assessment should
provide information about how well the non-native
speaker will be able to perform a wide range of tasks
in the target language. Therefore, in order to provide
a full evaluation of the non-native speaker’s speak-
ing proficiency, the assessment should include some
tasks eliciting unscripted, spontaneous speech. This
goal, however, is hard to achieve in the context of
a spoken language assessment which employs auto-
mated scoring, due to the difficulties in developing
accurate automatic speech recognition (ASR) tech-
nology for non-native speech and in extracting valid
and reliable features. Because of this, most spo-
ken language proficiency assessments which use au-

tomated scoring have focused on restricted speech,
and have included tasks such as reading a word / sen-
tence / paragraph out loud, answering single-word
factual questions, etc. (Chandel et al., 2007; Bern-
stein et al., 2010).

In order to address this need, some automated
spoken language assessment systems have also in-
cluded tasks which elicit spontaneous speech. How-
ever, these systems have focused primarily on a non-
native speaker’s pronunciation, prosody, and fluency
in their scoring models (Zechner et al., 2009), since
these types of features are relatively robust to ASR
errors. Some recent studies have investigated the
use of features related to a spoken response’s con-
tent, such as (Xie et al., 2012). However, the ap-
proach to content scoring taken in that study requires
a large amount of responses for each prompt to be
provided with human scores in order to train the
content models. This approach is not practical for a
large-scale, high-stakes assessment which regularly
introduces many new prompts into the assessment–
obtaining the required number of scored training re-
sponses for each prompt would be quite expensive
and could lead to potential security concerns for the
assessment. Therefore, it would be desirable to de-
velop an approach to content scoring which does not
require a large amount of actual responses to train
the models. In this paper, we propose such a method
which uses the stimulus materials for each prompt
contained in the assessment to evaluate the content
in a spoken response.
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2 Related Work

There has been little prior work concerning auto-
mated content scoring for spontaneous spoken re-
sponses (a few recent studies include (Xie et al.,
2012) and (Chen and Zechner, 2012)); however, sev-
eral approaches have been investigated for written
responses. A standard approach for extended writ-
ten responses (e.g., essays) is to compare the con-
tent in a given essay to the content in essays that
have been provided with scores by human raters us-
ing similarity methods such as Content Vector Anal-
ysis (Attali and Burstein, 2006) and Latent Semantic
Analysis (Foltz et al., 1999). This method thus re-
quires a relatively large set of pre-scored responses
for each test question in order to train the content
models. For shorter written responses (e.g., short an-
swer questions targeting factual content) approaches
have been developed that compare the similarity be-
tween the content in a given response and a model
correct answer, and thus do not necessarily require
the collection of pre-scored responses. These ap-
proaches range from fully unsupervised text-to-text
similarity measures (Mohler and Mihalcea, 2009) to
systems that incorporate hand-crafted patterns iden-
tifying specific key concepts (Sukkarieh et al., 2004;
Mitchell et al., 2002).

For extended written responses, it is less practical
to make comparisons with model responses, due to
the greater length and variability of the responses.
However, another approach that does not require
pre-scored responses is possible for test questions
that have prompts with substantial amounts of in-
formation that should be included in the answer. In
these cases, the similarity between the response and
the prompt materials can be calculated, with the hy-
pothesis that higher scoring responses will incorpo-
rate certain prompt materials more than lower scor-
ing responses. This approach was taken by (Gure-
vich and Deane, 2007) which demonstrated that
lower proficiency non-native essay writers tend to
use more content from the reading passage, which is
visually accessible and thus easier to comprehend,
than the listening passage. The current study inves-
tigates a similar approach for spoken responses.

3 Data

The data used in this study was drawn from TOEFL
iBT, an international assessment of academic En-
glish proficiency for non-native speakers. For this
study, we focus on a task from the assessment which
elicits a 60 second spoken response from the test
takers. In their response, the test takers are asked
to use information provided in reading and listen-
ing stimulus materials to answer a question concern-
ing specific details in the materials. The responses
are then scored by expert human raters on a 4-point
scale using a scoring rubric that takes into account
the following three aspects of spoken English pro-
ficiency: delivery (e.g., pronunciation, prosody, flu-
ency), language use (e.g., grammar, lexical choice),
and topic development (e.g., content, discourse co-
herence). For this study, we used a total of 1189
responses provided by 299 unique speakers to four
different prompts1 (794 responses from 199 speak-
ers were used for training and 395 responses from
100 speakers were used for evaluation).

4 Methodology

We investigated several variations of simple features
that compare the lexical content of a spoken re-
sponse to following three types of prompt materials:
1) listening passage: a recorded lecture or dialogue
containing information relevant to the test question
(the number of words contained in each of the four
listening passages used in this study were 213, 223,
234, and 318), 2) reading passage: an article or es-
say containing additional information relevant to the
test question (the number of words contained in the
two reading passages were 94 and 111), and 3) sam-
ple response: a sample response provided by the test
designers containing the main ideas expected in a
model answer (the number of words contained in the
four sample responses were 41, 74, 102, and 133).

The following types of features were investi-
gated for each of the materials: 1) stimulus cosine:
the cosine similarity between the spoken response
and the various materials, 2) tokens/response,
types/response: the number of word tokens / types
that occur in both the spoken response and each of

1Two out of the four tasks in this study had only listening
materials; responses to these tasks are not included in the results
for the features which require reading materials.
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the materials, divided by the number of word to-
kens / types in the response,2 and 3) unique tokens,
unique types: the number of word tokens / types that
occur in both the spoken response and one or two
of the materials, but do not occur in the remaining
material(s).

As a baseline, we also compare the proposed
content features based on the prompt materials to
content features based on collections of scored re-
sponses to the same prompts. This type of feature
has been shown to be effective for content scoring
both in non-native essays (Attali and Burstein, 2006)
and spoken responses (Xie et al., 2012), and is com-
puted by comparing the content in a test response to
content models trained using responses from each of
the score points. It is defined as follows:

• Simi: the similarity score between the words
in the spoken response and a content model
trained from responses receiving score i (i ∈
1, 2, 3, 4 in this study)

The Simi features were trained on a corpus of
7820 scored responses (1955 for each of the four
prompts), and we investigated two different meth-
ods for computing the similarity between the test
responses and the content models: Content Vector
Analysis using the cosine similarity metric (CVA)
and Pointwise Mutual Information (PMI).

The spoken responses were processed using an
HMM-based triphone ASR system trained on 800
hours of non-native speech (approximately 15% of
the training data consisted of responses to the four
test questions in this study), and the ASR hypothe-
ses were used to compute the content features.3

5 Results

We first examine the performance of each of the
individual features by calculating their correlations
with the holistic English speaking proficiency scores
provided by expert human raters. These results for

2Dividing the number of matching word tokens / types by
the number of word tokens in the response factors out the over-
all length of the response from the calculation of the feature.

3Transcriptions were not available for the spoken responses
used in this study, so the exact WER of the ASR system is un-
known. However, the WER of the ASR system on a comparable
set of spoken responses is 28%.

the training partition are presented in Table 1.4

Feature Set Feature r

stimulus cosine
listening 0.384
reading 0.176
sample 0.384

tokens/response
listening 0.022
reading 0.096
sample 0.121

types/response
listening 0.426
reading 0.142
sample 0.128

unique tokens
L’RS 0.116
L’RS’ 0.162
LR’S 0.219
LR’S’ 0.337

unique types
L’RS 0.140
L’RS’ 0.166
LR’S 0.259
LR’S’ 0.450

CVA

Sim1 0.091
Sim2 0.186
Sim3 0.261
Sim4 0.311

PMI

Sim1 0.191
Sim2 0.261
Sim3 0.320
Sim4 0.361

Table 1: Correlations of individual content features with
holistic human scores on the training partition

As Table 1 shows, some of the individual content
features based on the prompt materials obtain higher
correlations with human scores than the baseline
CVA and PMI features based on scored responses.
Next, we investigated the overall contribution of the
content features to a scoring model that takes into
account features from various aspects of speaking
proficiency. To show this, we built a baseline lin-
ear regression model to predict the human scores us-
ing 9 features from 4 different aspects of speaking

4For the unique tokens and unique types features, each row
lists how the prompt materials were used in the similarity com-
parison as follows: R = reading, L = listening, S = sample,
and ’ indicates no lexical overlap between the spoken response
and the material. For example, L’RS indicates content from the
test response that overlapped with both the reading passage and
sample response but was not contained in the listening material.
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proficiency (fluency, pronunciation, prosody, and
grammar) produced by SpeechRater, an automated
speech scoring system (Zechner et al., 2009), as
shown in Table 2.

Category Features
Fluency normalized number of silences

> 0.15 sec, normalized number
of silences > 0.495 sec, average
chunk length, speaking rate, nor-
malized number of disfluencies

Pronunciation normalzied Acoustic Model
score from forced alignment
using a native speaker AM,
average normalized phone du-
ration differnce compared to a
reference corpus

Prosody mean deviation of distance be-
tween stressed syllables

Grammar Language Model score

Table 2: Baseline speaking proficiency features used in
the scoring model

In order to investigate the contribution of the vari-
ous types of content features to the scoring model,
linear regression models were built by adding the
features from each of the feature sets in Table 1 to
the baseline features. The models were trained using
the 794 responses in the training set and evaluated
on the 395 responses in the evaluation set. Table 3
presents the resulting correlations both for the indi-
vidual responses (N=395) as well as the sum of all
four responses from each speaker (N=97).5

As Table 3 shows, all of the scoring models us-
ing feature sets with the proposed content features
based on the prompt materials outperform the base-
line model. While none of the models incorporat-
ing features from a single feature set outperforms
the baseline CVA model using features based on
scored responses, a model incorporating all of the
proposed prompt-based content features, all prompt-
based, does outperform this baseline. Furthermore,
a model incorporating all of the content features
(both the proposed features and the baseline CVA /
PMI features), all content, outperforms a model us-

5Three speakers were removed from the evaluation set for
this analysis since they provided fewer than four responses.

Feature Set response r speaker r

Baseline 0.607 0.687
+ types/response 0.612 0.701
+ tokens/response 0.615 0.700
+ unique tokens 0.616 0.695

+ stimulus cosine 0.630 0.716
+ unique types 0.658 0.761

+ CVA 0.665 0.762
+ all prompt-based 0.677 0.779

+ PMI 0.723 0.818
+ CVA and PMI 0.723 0.818

+ all content 0.742 0.838

Table 3: Performance of scoring models with the addition
of content features

ing only the baseline CVA and PMI features.6

6 Discussion and Conclusion

This paper has demonstrated that the use of content
scoring features based solely on the prompt stimu-
lus materials and a sample response is a viable al-
ternative to using features based on content mod-
els trained on large sets of pre-scored responses for
the automated assessment of spoken language profi-
ciency. Under this approach, automated scoring sys-
tems for large-scale spoken language assessments
involving spontaneous speech can begin to address
an area of spoken language proficiency (content ap-
propriateness) which has mostly been neglected in
systems that have been developed to date. Com-
pared to an approach using pre-scored responses for
training the content models, the proposed approach
is much more cost effective and reduces the risk
that test materials will be seen by test takers prior
to the assessment; both of these attributes are cru-
cial benefits for large-scale, high-stakes language as-
sessments. Furthermore, the proposed prompt-based
content features, when combined in a linear regres-
sion model with other speaking proficiency features,
outperform a baseline set of CVA content features
which use models trained on pre-scored responses,

6While the prompt-based content features do result in im-
provements, neither of these two differences are statistically sig-
nificant at α = 0.05 using the Hotelling-Williams Test, since
both the magnitude of the increase and the size of the data set
are relatively small.
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and they add further improvement to a model incor-
porating the higher performing baseline with PMI
content features.

The results in Table 1 indicate that the indi-
vidual features based on overlapping lexical types
(types/response and unique types) perform slightly
better than the ones based on overlapping lexical to-
kens (tokens/response and unique tokens). This sug-
gests that it is important for test takers to use a range
of concepts that are contained in the stimulus mate-
rials in their responses. Similarly to the result from
(Gurevich and Deane, 2007), Table 1 also shows that
the features measuring overlap between the response
and the listening materials typically perform better
than the features measuring overlap between the re-
sponse and the reading materials; the best individ-
ual feature, LR’S’ for unique types, measures the
amount of overlap with lexical types that are con-
tained in the listening stimulus, but absent from the
reading stimulus and sample response. This indi-
cates that the use of content from the listening ma-
terials is a better differentiator among students of
differing language proficiency levels than reading
materials, likely because test takers generally have
more difficulty understanding the content from lis-
tening materials.

Table 1 also shows the somewhat counterintu-
itive result that features based on no lexical over-
lap with the sample response produce higher corre-
lations than features based on lexical overlap with
the sample response, when there is lexical overlap
with the listening materials and no overlap with the
reading materials. That is, the LR’S’ feature out-
performs the LR’S feature for both the unique types
and unique tokens features sets. However, as shown
in Section 4, the sample responses varied widely
in length (ranging from 41 to 133 words), and all
were substantially shorter than the listening materi-
als, which ranged from 213 to 318 words. Therefore,
it is likely that many of the important lexical items
from the sample response are also contained in the
listening materials. Thus, the LR’S feature provided
less information than the LR’S’ feature.

The features used in this study are all based on
simple lexical overlap statistics, and are thus triv-
ial to implement. Future research will investigate
more sophisticated methods of text-to-text similar-
ity for prompt-based content scoring, such as those

used in (Mohler and Mihalcea, 2009). Furthermore,
future research will address the validity of the pro-
posed features by ensuring that there are ways to fil-
ter out responses that are too similar to the stimulus
materials, and thus indicate that the test taker simply
repeated the source verbatim.
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Abstract

We introduce a cognitive framework for mea-
suring reading comprehension that includes
the use of novel summary writing tasks. We
derive NLP features from the holistic rubric
used to score the summaries written by stu-
dents for such tasks and use them to design a
preliminary, automated scoring system. Our
results show that the automated approach per-
forms well on summaries written by students
for two different passages.

1 Introduction

In this paper, we present our preliminary work on
automatic scoring of a summarization task that is de-
signed to measure the reading comprehension skills
of students from grades 6 through 9. We first intro-
duce our underlying reading comprehension assess-
ment framework (Sabatini and O’Reilly, In Press;
Sabatini et al., In Press) that motivates the task of
writing summaries as a key component of such as-
sessments in §2. We then describe the summariza-
tion task in more detail in §3. In §4, we describe our
approach to automatically scoring summaries writ-
ten by students for this task and compare the results
we obtain using our system to those obtained by hu-
man scoring. Finally, we conclude in §6 with a brief
discussion and possible future work.

2 Reading for Understanding (RfU)
Framework

We claim that to read for understanding, readers
should acquire the knowledge, skills, strategies, and
dispositions that will enable them to:

• learn and process the visual and typographical
elements and conventions of printed texts and
print world of literacy;

• learn and process the verbal elements of lan-
guage including grammatical structures and
word meanings;

• form coherent mental representations of texts,
consistent with discourse, text structures, and
genres of print;

• model and reason about conceptual content;

• model and reason about social content.

We also claim that the ability to form a coher-
ent mental model of the text that is consistent with
text discourse is a key element of skilled reading.
This mental model should be concise but also reflect
the most likely intended meaning of the source. We
make this claim since acquiring this ability:

1. requires the reader to have knowledge of
rhetorical text structures and genres;

2. requires the reader to model the propositional
content of a text within that rhetorical frame,
both from an author’s or reader’s perspective;
and

3. is dependent on a skilled reader having ac-
quired mental models for a wide variety of
genres, each embodying specific strategies for
modeling the meaning of the text sources to
achieve reading goals.

In support of the framework, research has shown
that the ability to form a coherent mental model
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is important for reading comprehension. Kintsch
(1998) showed that it is a key aspect in the process of
construction integration and essential to understand-
ing the structure and organization of the text. Sim-
ilarly, Gernsbacher (1997) considers mental models
essential to structure mapping and in bridging and
making knowledge-based inferences.

2.1 Assessing Mental Models

Given the importance of mental models for reading
comprehension, the natural question is how does one
assess whether a student has been able to build such
models after reading a text. We believe that such
an assessment must encompass asking a reader to
(a) sample big ideas by asking them to describe the
main idea or theme of a text, (b) find specific details
in the text using locate/retrieve types of questions,
and (c) bridging gaps between different points in the
text using inference questions. Although these ques-
tions can be multiple-choice, existing research indi-
cates that it is better to ask the reader to write a brief
summary of the text instead. Yu (2003) states that
a good summary can prove useful for assessment of
reading comprehension since it contains the relevant
important ideas, distinguishes accurate information
from opinions, and reflects the structure of the text
itself. More specifically, having readers write sum-
maries is a promising solution since:

• there is considerable empirical support that it
both measures and encourages reading compre-
hension and is an effective instructional strat-
egy to help students improve reading skills
(Armbruster et al., 1989; Bean and Steenwyk,
1984; Duke and Pearson, 2002; Friend, 2001;
Hill, 1991; Theide and Anderson, 2003);

• it is a promising technique for engaging stu-
dents in building mental models of text; and

• it aligns with our framework and cognitive the-
ory described earlier in this section.

However, asking students to write summaries in-
stead of answering multiple choice questions entails
that the summaries must be scored. Asking human
raters to score these summaries, however, can be
time consuming as well as costly. A more cost-
effective and efficient solution would be to use an

automated scoring technique using machine learn-
ing and natural language processing. We describe
such a technique in the subsequent sections.

During the Neolithic Age, humans developed agriculture-what we 
think of as farming.  Agriculture meant that people stayed in one 
place to grow their crops.  They stopped moving from place to 
place to follow herds of animals or to find new wild plants to eat.  
And because they were settling down, people built permanent 
shelters.  The caves they had found and lived in before could be 
replaced by houses they built themselves.

To build their houses, the people of this Age often stacked mud 
bricks together to make rectangular or round buildings.  At first, 
these houses had one big room.  Gradually, they changed to 
include several rooms that could be used for different purposes.  
People dug pits for cooking inside the houses.  They may have 
filled the pits with water and dropped in hot stones to boil it.  You 
can think of these as the first kitchens.

The emergence of permanent shelters had a dramatic effect on 
humans.  They gave people more protection from the weather and 
from wild animals.  Along with the crops that provided more food 
than hunting and gathering, permanent housing allowed people to 
live together in larger communities.

Please write a summary. The first sentence of your summary 
should be about the whole passage.  Then write 3 more 
sentences. Each sentence should be about one of the 
paragraphs.

Passage

Directions

Figure 1: An example passage for which students are
asked to write a summary, and the summary-writing di-
rections shown to the students.

3 Summary Writing Task

Before describing the automated scoring approach,
we describe the details of the summary writing task
itself. The summarization task is embedded within
a larger reading comprehension assessment. As part
of the assessment, students read each passage and
answer a set of multiple choice questions and, in ad-
dition, write a summary for one of the passages. An
example passage and the instructions can be seen in
Figure 1. Note the structured format of summary
that is asked for in the directions: the first sentence
of the summary must be about the whole passage
and the next three should correspond to each of the
paragraphs in the passage. All summary tasks are
structured similarly in that the first sentence should
identify the “global concept” of the passage and the
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next three sentences should identify “local concepts”
corresponding to main points of each subsequent
paragraph.

Each summary written by a student is scored ac-
cording to a holistic rubric, i.e., based on holistic
criteria rather than criteria based on specific dimen-
sions of summary writing. The scores are assigned
on a 5-point scale which are defined as:

Grade 4: summary demonstrates excellent global
understanding and understanding of all 3 lo-
cal concepts from the passage; does not include
verbatim text (3+ words) copied from the pas-
sage; contains no inaccuracies.

Grade 3: summary demonstrates good global un-
derstanding and demonstrates understanding of
at least 2 local concepts; may or may not in-
clude some verbatim text, contains no more
than 1 inaccuracy.

Grade 2: summary demonstrates moderate local
understanding only (2-3 local concepts but no
global); with or without verbatim text, contains
no more than 1 inaccuracy; OR good global un-
derstanding only with no local concepts

Grade 1: summary demonstrates minimal local
understanding (1 local concept only), with or
without verbatim text; OR contains only verba-
tim text

Grade 0: summary is off topic, garbage, or demon-
strates no understanding of the text; OR re-
sponse is “I don’t know” or “IDK”.

Note that students had the passage in front of them
when writing the summaries and were not penalized
for poor spelling or grammar in their summaries. In
the next section, we describe a system to automati-
cally score these summaries.

4 Automated Scoring of Student
Summaries

We used a machine learning approach to build an
automated system for scoring summaries of the type
described in §3. To train and test our system, we
used summaries written by more than 2600 students
from the 6th, 7th and 9th grades about two differ-
ent passages. Specifically, there were a total of 2695

summaries – 1016 written about a passage describ-
ing the evolution of permanent housing through his-
tory (the passage shown in Figure 1) and 1679 writ-
ten about a passage describing living conditions at
the South Pole. The distribution of the grades for
the students who wrote the summaries for each pas-
sage is shown in Table 1.

Passage Grade Count

South Pole
6 574
7 521
9 584

Perm. Housing
6 387
7 305
9 324

Table 1: The grade distribution of the students who wrote
summaries for each of the two passages.

All summaries were also scored by an experi-
enced human rater in accordance with the 5-point
holistic rubric described previously. Figure 2 shows
the distribution of the human scores for both sets of
summaries.

South Pole (N=1679)

Permanent Housing (N=1016)

0
100
200
300
400
500
600
700
800
900

Score
0 1 2 3 4

Score
0 1 2 3 4

Figure 2: A histogram illustrating the human score distri-
bution of the summaries written for the two passages.

Our approach to automatically scoring these sum-
maries is driven by features based on the rubric.
Specifically, we use the following features:

1. BLEU: BLEU (BiLingual Evaluation Under-
study) (Papineni et al., 2002) is an automated
metric used extensively in automatically scor-
ing the output of machine translation systems.
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It is a precision-based metric that computes n-
gram overlap (n=1 . . . 4) between the summary
(treated as a single sentence) against the pas-
sage (treated as a single sentence). We chose to
use BLEU since it measures how many of the
words and phrases are borrowed directly from
the passage. Note that some amount of borrow-
ing from the passage is essential for writing a
good summary.

2. ROUGE: ROUGE (Recall-Oriented Under-
study for Gisting Evaluation) (Lin and Hovy,
2003) is an automated metric used for scoring
summaries produced by automated document
summarization systems. It is a recall-based
metric that measures the lexical and phrasal
overlap between the summary under consider-
ation and a set of “model” (or reference) sum-
maries. We used a single model summary for
the two passages by randomly selecting each
from the set of student summaries assigned a
score of 4 by the human rater.

3. CopiedSumm: Ratio of the sum of lengths of
all 3-word (or longer) sequences that are copied
from the passage to the length of the summary.

4. CopiedPassage: Same as CopiedSumm but
with the denominator being the length of the
passage.

5. MaxCopy: Length of the longest word se-
quence in the summary copied from the pas-
sage.

6. FirstSent: Number of passage sentences that
the first sentence of the summary borrows 2-
word (or longer) sequences from.

7. Length: Number of sentences in the summary.
8. Coherence: Token counts of commonly used

discourse connector words in the summary.

ROUGE computes the similarity between the
summary S under consideration and a high-scoring
summary - a high value of this similarity indicates
that S should also receive a high score. Copied-
Summ, CopiedPassage, BLEU, and MaxCopy
capture verbatim copying from the passage. First-
Sent directly captures the “global understanding”
concept for the first sentence, i.e., a large value for
this feature means that the first sentence captures
more of the passage as expected. Length captures

the correspondence between the number of para-
graphs in the passage and the number of sentences
in the summary. Finally, Coherence captures how
well the student is able to connect the different “lo-
cal concepts” present in the passage. Note that:

• Although the rubric states that students not be
penalized for spelling errors, we did not spell-
correct the summaries before scoring them. We
plan to do this for future experiments.

• The students were not explicitly told to refrain
from verbatim copying since the summary-
writing instructions indicated this implicitly
(“. . . about the whole passage” and “. . . about
one of the paragraphs”). However, for future
experiments, we plan to include explicit in-
structions regarding copying.

All features were combined in a logistic regres-
sion classifier that output a prediction on the same
5-point scale as the holistic rubric. We trained a sep-
arate classifier for each of the two passage types.1

The 5-fold cross-validation performance of this clas-
sifier on our data is shown in Table 2. We compute
exact as well as adjacent agreement of our predic-
tions against the human scores using the confusion
matrices from the two classifiers. The exact agree-
ment shows the rate at which the system and the
human rater awarded the same score to a summary.
Adjacent agreement shows the rate at which scores
given by the system and the human rater were no
more than one score point apart (e.g., the system as-
signed a score of 4 and the human rater assigned a
score of 5 or 3). For holistic scoring using 5-point
rubrics, typical exact agreement rates are in the same
range as our scores (Burstein, 2012; Burstein et al.,
2013). Therefore, our system performed reasonably
well on the summary scoring task. For comparison,
we also show the exact and adjacent agreement of
the most-frequent-score baseline.

It is important to investigate whether the various
features correlated in an expected manner with the
score in order to ensure that the summary-writing
construct is covered accurately. We examined the
weights assigned to the various features in the clas-
sifier and found that this was indeed the case. As ex-
pected, the CopiedSumm, CopiedPassage, BLEU,

1We used the Weka Toolkit (Hall et al., 2009).
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Method Passage Exact Adjacent

Baseline
South Pole .51 .90
Perm. Housing .32 .77

Logistic
South Pole .65 .97
Perm. Housing .52 .93

Table 2: Exact and adjacent agreements of the most-
frequent-score baseline and of the 5-fold cross-validation
predictions from the logistic regression classifier, for both
passages.

and MaxCopy features all correlate negatively with
score, and ROUGE, FirstSent and Coherence cor-
relate positively.

In addition to overall performance, we also exam-
ined which features were most useful to the classi-
fier in predicting summary scores. Table 3 shows the
various features ranked using the information-gain
metric for both logistic regression models. These
rankings show that the features performed consis-
tently for both models.

South Pole Perm. Housing
BLEU (.375) BLEU (.450)
CopiedSumm (.290) ROUGE (.400)
ROUGE (.264) CopiedSumm (.347)
Length (.257) Length (.340)
CopiedPassage (.246) MaxCopy(.253)
MaxCopy (.231) CopiedPassage (.206)
FirstSent (.120) Coherence (.155)
Coherence (.103) FirstSent (.058)

Table 3: Classifier features for both passages ranked by
average merit values obtained using information-gain.

5 Related Work

There has been previous work on scoring summaries
as part of the automated document summarization
task (Nenkova and McKeown, 2011). In that task,
automated systems produce summaries of multiple
documents on the same topic and those machine-
generated summaries are then scored by either hu-
man raters or by using automated metrics such as
ROUGE. In our scenario, however, the summaries
are produced by students—not automated systems—
and the goal is to develop an automated system to
assign scores to these human-generated summaries.

Although work on automatically scoring student
essays (Burstein, 2012) and short answers (Lea-
cock and Chodorow, 2003; Mohler et al., 2011) is
marginally relevant to the work done here, we be-
lieve it is different in significant aspects based on
the scoring rubric and on the basis of the underlying
RfU framework. We believe that the work most di-
rectly related to ours is the Summary Street system
(Franzke et al., 2005; Kintsch et al., 2007) which
attempts to score summaries written for tasks not
based on the RfU framework and uses latent seman-
tic analysis (LSA) rather than a feature-based classi-
fication approach.

6 Conclusion & Future Work

We briefly introduced the Reading for Understand-
ing cognitive framework and how it motivates the
use of a summary writing task in a reading compre-
hension assessment. Our motivation is that such a
task is theoretically suitable for capturing the abil-
ity of a reader to form coherent mental representa-
tions of the text being read. We then described a
preliminary, feature-driven approach to scoring such
summaries and showed that it performed quite well
for scoring the summaries about two different pas-
sages. Obvious directions for future work include:
(a) getting summaries double-scored to be able to
compare system-human agreement against human-
human agreement (b) examining whether a single
model trained on all the data can perform as well as
passage-specific models, and (c) using more sophis-
ticated features such as TERp (Snover et al., 2010)
which can capture and reward paraphrasing in ad-
dition to exact matches, and features that can better
model the “local concepts” part of the scoring rubric.
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Abstract

This paper reports on a study of inter-
annotator agreement (IAA) for a dependency
annotation scheme designed for learner En-
glish. Reliably-annotated learner corpora are
a necessary step for the development of POS
tagging and parsing of learner language. In
our study, three annotators marked several
layers of annotation over different levels of
learner texts, and they were able to obtain
generally high agreement, especially after dis-
cussing the disagreements among themselves,
without researcher intervention, illustrating
the feasibility of the scheme. We pinpoint
some of the problems in obtaining full agree-
ment, including annotation scheme vagueness
for certain learner innovations, interface de-
sign issues, and difficult syntactic construc-
tions. In the process, we also develop ways to
calculate agreements for sets of dependencies.

1 Introduction

Learner corpora have been essential for develop-
ing error correction systems and intelligent tutor-
ing systems (e.g., Nagata et al., 2011; Rozovskaya
and Roth, 2010). So far, error annotation has been
the main focus, to the exclusion of corpora and an-
notation for more basic NLP development, despite
the need for parse information for error detection
(Tetreault et al., 2010), learner proficiency identifi-
cation (Hawkins and Buttery, 2010), and acquisition
research (Ragheb and Dickinson, 2011). Indeed,
there is very little work on POS tagging (Thouësny,
2009; van Rooy and Schäfer, 2002; de Haan, 2000)

or parsing (Rehbein et al., 2012; Krivanek and Meur-
ers, 2011; Ott and Ziai, 2010) learner language, and,
not coincidentally, there is a lack of annotated data
and standards for these tasks. One issue is in know-
ing how to handle innovative learner forms: some
map to a target form before annotating syntax (e.g.,
Hirschmann et al., 2010), while others propose di-
rectly annotating the text (e.g., Ragheb and Dick-
inson, 2011). We follow this latter strand and fur-
ther our work towards a syntactically-annotated cor-
pus of learner English by: a) presenting an annota-
tion scheme for dependencies, integrated with other
annotation layers, and b) testing the inter-annotator
agreement for this scheme. Despite concerns that di-
rect annotation of the linguistic properties of learn-
ers may not be feasible (e.g., Rosén and Smedt,
2010), we find that annotators have generally strong
agreement, especially after adjudication, and the
reasons for disagreement often have as much to do
with the complexities of syntax or interface issues as
they do with learner innovations.

Probing grammatical annotation can lead to ad-
vancements in research on POS tagging and syntac-
tic parsing of learner language, for it shows what can
be annotated reliably and what needs additional di-
agnostics. We specifically report on inter-annotator
agreement (IAA) for the annotation scheme de-
scribed in section 2, focusing on dependency an-
notation. There are numerous studies investigating
inter-annotator agreement between coders for differ-
ent types of grammatical annotation schemes, focus-
ing on part-of-speech, syntactic, or semantic anno-
tation (e.g., Passonneau et al., 2006; Babarczy et al.,
2006; Civit et al., 2003). For learner language, a
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number of error annotation projects include mea-
sures of interannotator agreement, (see, e.g., Boyd,
2012; Lee et al., 2012; Rozovskaya and Roth, 2010;
Tetreault and Chodorow, 2008; Bonaventura et al.,
2000), but as far as we are aware, there have been no
studies on IAA for grammatical annotation.

We have conducted an IAA study to investigate
the quality and robustness of our annotation scheme,
as reported in section 3. In section 4, we report quan-
titative results and a qualitative analysis of this study
to tease apart disagreements due to inherent ambigu-
ity or text difficulty from those due to the annotation
scheme and/or the guidelines. The study has already
reaped benefits by helping us to revise our annota-
tion scheme and guidelines, and the insights gained
here should be applicable for future development of
other annotation schemes and to parsing studies.

On a final note, our dependency annotation allows
for multiple heads for each token in the corpus, vi-
olating the so-called single-head constraint (Kübler
et al., 2009). In the process of evaluating these de-
pendencies (see section 4.1), we also make some mi-
nor contributions towards comparing sets of depen-
dencies, moving beyond just F-measure (e.g., Cer
et al., 2010) to account for partial agreements.

2 Annotation scheme

We present a sketch of the annotation scheme here,
outlining the layers and the general motivation. Our
general perspective is to annotate as closely as pos-
sible to what the learner wrote, marking grammat-
ical properties even if the meaning of the sentence
or clause is unclear within the particular grammat-
ical analysis. For example, in the learner sentence
(1), the verb admit clearly occurs in the form of
an active verb, and is annotated as such, regard-
less of the (passive) meaning of the sentence (cf.
was admitted). In this case, basing the annotation
on syntactic evidence makes for a more straightfor-
ward task. Moreover, adhering to a syntactic anal-
ysis helps outline the grammatical properties of a
learner’s interlanguage and can thus assist in auto-
matic tasks such as native language identification
(e.g., Tetreault et al., 2012), and proficiency level de-
termination (Yannakoudakis et al., 2011).

(1) When I admit to Korea University, I decide
...

Another part of the motivation for shying away
from marking target forms and annotating the syn-
tactic properties of those (cf., e.g., Rehbein et al.,
2012) is that, for general essays from learners of
many levels, the grammatical evidence can be un-
derstood even when the intended meaning is not.
Consider (2): in the context of the learner’s es-
say, the sentence probably means that this person
guards their personal belongings very well because
of prevalent theft in the city they are talking about.

(2) Now I take very hard my personal stuffs.

Annotating the syntax of a target form here could
obscure the grammatical properties of the learner’s
production (e.g., pluralizing a mass noun). Encour-
aging annotators to focus on the syntactic properties
and not intended meanings makes identifying the de-
pendency relations in a sentence like this one easy.

Another aspect of our annotation scheme is that
we do not directly annotate errors (except for lexi-
cal violations; see section 2.1). Annotators had ac-
cess to an extensive manual detailing the annotation
scheme, which will be made public soon.1 A brief
outline of the guidelines is in section 3.3.

2.1 Initial annotation layers

Using ideas developed for annotating learner lan-
guage (Ragheb and Dickinson, 2012, 2011; Dı́az-
Negrillo et al., 2010; Dickinson and Ragheb, 2009),
we annotate several layers before targeting depen-
dencies: 1) lemmas (i.e., normalized forms), 2) mor-
phological part-of-speech (POS), 3) distributional
POS, and 4) lexical violations.

The idea for lemma annotation is to normalize a
word to its dictionary form. In (3), for example, the
misspelled excersice is normalized to the correctly-
spelled exercise for the lemma annotation. We spec-
ify that only “reasonable” orthographic or phonetic
changes are allowed; thus, for prison, it is lemma-
annotated as prison, not person. In this case, the
lemma annotation does not affect the rest of the an-
notation, as prison and person are both nouns, but
for no, the entire analysis changes based on whether
we annotate the lemma as no or not. Marking no
makes the final tree more difficult, but fits with the
principle of staying true to the form the learner has

1See: http://cl.indiana.edu/˜salle
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presented. As we will see in section 4.3, determining
the lemma can pose challenges for building trees.

(3) After to start , I want to tell that this excer-
sice is very important in the life , no only as
a prison .

We annotate two POS layers, one capturing mor-
phological evidence and one for distributional. For
most words, the layers include the same informa-
tion, but mismatches arise with non-canonical struc-
tures. For instance, in (3) the verb (to) start has a
morphological POS of base form verb (VV0), but
it appears in a context where some other verb form
would better be licensed, e.g., a gerund. Since we
do not want to overstate claims, we allow for un-
derspecified POS tags and annotate the distributional
POS simply as verb (VV). The use of two POS lay-
ers captures the mismatch between morphology and
distribution without referencing a unified POS.

Finally, annotators can mark lexical violations
when nothing else appears to capture a non-standard
form. Specifically, lexical violations are for syntac-
tically ungrammatical forms where the specific word
choice seems to cause the ungrammaticality. In (4),
for example, about should be marked as a lexical vi-
olation. Lexical violations were intended as a last re-
sort, but as we will see in section 4.3, there was con-
fusion about when to use lexical violations and when
to use other annotations, e.g., POS mismatches.

(4) ... I agree about me that my country ’s help
and cooperation influenced . . .

2.2 Dependencies
While the initial annotation layers are used to build
the syntactic annotation, the real focus of the anno-
tation concerns dependencies. Using a set of 45 de-
pendencies,2 we mark two types of annotations here:
1) dependency relations rooted in the lemma and the
morphological POS tag, and 2) subcategorization in-
formation, reflecting not necessarily what is in the
tree, but what is required. Justification for a mor-
phological, or morphosyntactic, layer of dependen-
cies, along with a layer of subcategorization, is given
in Ragheb and Dickinson (2012). Essentially, these
two layers allow one to capture issues involving ar-
gument structure (e.g., missing argument), without

2We use a label set adapted from Sagae et al. (2010).

having to make the kind of strong claims a layer of
distributional dependencies would require. In (5),
for example, wondered subcategorizes for a finite
complement (COMP), but finds a non-finite comple-
ment (XCOMP), as the tree is based on the morpho-
logical forms (e.g., to).

(5) I wondered what success to be .

An example tree is shown in figure 1, where we
can see a number of properties of our trees: a) we
annotate many “raised” subjects, such as I being the
subject (SUBJ) of both would and like, thereby al-
lowing for multiple heads for a single token; b) we
ignore semantic anomalies, such as the fact that life
is the subject of be (successful); and c) dependencies
can be selected for, but not realized, as in the case of
career subcategorizing for a determiner (DET).

3 Inter-annotator agreement study

3.1 Selection of annotation texts
From a learner corpus of written essays we have col-
lected from students entering Indiana University, we
chose a topic (What Are Your Plans for Life?) and
randomly selected six essays, based on both learner
proficiency (beginner, intermediate, advanced) and
the native language of the speaker (L1).3 From each
essay, we selected the first paragraph and put the six
paragraphs into two texts; each text contained, in
order, one beginner, one intermediate, and one ad-
vanced paragraph. Text 1 contained 19 sentences
(333 tokens), and Text 2 contained 22 sentences
(271 tokens). Annotators were asked to annotate
only these excerpts, but had access to the entire es-
says, if they wanted to view them.

While the total number of tokens is only 604, the
depth of the annotation is quite significant, in that
there are at least seven decisions to be made for ev-
ery token: lemma, lexical violation, morphological
POS, distributional POS, subcategorization, attach-
ment, and dependency label, in addition to possi-
ble extra dependencies for a given word, i.e., a few
thousand decisions. It is hard to quantify the ef-
fort, as some layers are automatically pre-annotated
(see section 3.5) and some are used sparingly (lexi-
cal violations), but we estimate around 2000 new or
changed annotations from each annotator.

3Korean, Spanish, Chinese, Arabic, Japanese, Hungarian.
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ROOT I would like my life to be successful in career ...
<ROOT> <SUBJ,VC> <SUBJ,OBJ,XCOMP> <DET> <VC> <SUBJ,PRED> <POBJ> <DET> ...

SUBJ

SUBJ

ROOT VC

DET
OBJ

SUBJ

XCOMP

VC PRED JCT POBJ

Figure 1: Morphosyntactic dependency tree with subcategorization information

3.2 Annotators

This study involved three annotators, who were un-
dergraduate students at Indiana. They were native
speakers of English and majors in Linguistics (2 ju-
niors, 1 senior). Two had had a syntax course before
the semester, and one was taking it concurrently.
We trained them over the course of an academic
semester (fall 2012), by means of weekly meetings
to discuss relevant readings, familiarize them with
the scheme, and give feedback about their annota-
tion. The IAA study took place Nov. 9–Dec. 15.

Annotators were taking course credit for partici-
pating in this project. This being the case, they were
encouraged to learn from the experience, and part
of their training was to make notes of challenging
cases and their decision-making process. This has
provided significant depth in qualitatively analyzing
the IAA outcomes (section 4.3).

3.3 Guidelines

At the start of the study, the annotators were given
a set of guidelines (around 100 pages) to reference
as they made decisions. These guidelines outline
the general principles of the scheme (e.g., give the
learner the benefit of the doubt), an overview of the
annotation layers, and annotation examples for each
layer. The guidelines refer to the label sets used
for POS (Sampson, 1995) and dependencies (Sagae
et al., 2010), but emphasize the properties of our
scheme. Although the guidelines discuss general
syntactic treatment (e.g., “attach high” in the case of
attachment ambiguities), a considerable focus is on
handling learner innovations, across different layers.
While we cannot list every example of how learners
innovate, we include instructions and examples that
should generalize to other non-native constructions
(e.g., when to underspecify a label). Examples of

Text 1 Text 2
Time Avg. Min. Max. Time Avg. Min. Max.

A 224 11.8 3 25 151 6.9 2 21
B 280 14.7 4 30 170* 8.5 3 20
C 480 25.3 8 60 385 17.5 10 45

Table 1: Annotation time, in minutes, for phase 1 (*times
for two sentences were not reported and are omitted)

how to treat difficult syntactic constructions are also
illustrated (e.g., coordination).

3.4 Annotation task

Via oral and written instructions, the annotators
were asked to independently annotate the two texts
and take notes on difficult issues, in addition to
marking how long they spent on each sentence.
Times are reported in table 1 for the first phase, as
described next. Longer sentences take more time
(cf. Text 1 vs. Text 2), and annotator times vary,
but, given the times of nearly 30–60 minutes per sen-
tence at the start of the semester, these times seemed
reasonable for the depth of annotation required.

The annotation task proceeded in phases. Phase
1: Text 1 was annotated over the course of one
week, and Text 2 over the next week. Phase 2: Af-
ter an hour-long meeting with annotators covering
general annotation points that seemed to be prob-
lematic (e.g., lemma definitions), they were given
another week to individually go over their annota-
tions and make modifications. At the meeting, noth-
ing about the scheme or guidelines was added, and
no specific examples from the data being annotated
were used (only ones from earlier in the semester).
Phase 3: Each annotator received a document point-
ing out pairwise disagreements between annotators,
in a simple textual format like (6). Each annota-
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tor was asked to use this document and make any
changes where they thought that their analysis was
not the best one, given the other two. This process
took approximately a week. Phase 4: The annota-
tors met (for three hours) and discussed remaining
differences, to see whether they could reach a con-
sensus. Each annotator fixed their own file based on
the results of this discussion. At each point, we took
a snapshot of the data, but at no point did we provide
feedback to the annotators on their decisions.

(6) Sentence 2, word 1: relation ... JCT NJCT

3.5 Annotation interface
The annotation is done via the Brat rapid annotation
tool (Stenetorp et al., 2012).4 This online interface,
shown in figure 2, allows an annotator to drag an
arrow between words to create a dependency. An-
notators were given automatically-derived POS tags
from TnT (Brants, 2000), trained on the SUSANNE
corpus (Sampson, 1995), but created the dependen-
cies from scratch.5 Subcategorizations, lemmas, and
lexical violations are annotated within one of the
POS layers; lemmas are noted by the blue shading,
and the presence of other layers is noted by asterisks,
an interface point discussed in section 4.2.3. Anno-
tators liked the tool, but complained of its slowness.

4 Evaluation

4.1 Methods of comparison
For lemma and POS annotation, we can calculate
basic agreement statistics, as there is one annotation
for each token. But our primary focus is on subcat-
egorization and dependency annotation, where there
can be multiple elements (or none) for a given token.

For subcategorization, we treat elements as mem-
bers of a set, as annotators were told that order was
unimportant (e.g., <SUBJ,OBJ> = <OBJ,SUBJ>);
we discuss metrics for this in section 4.1.1. For de-
pendencies, we adapt standard parse evaluation (see
Kübler et al., 2009, ch. 6). In brief, unlabeled at-
tachment agreement (UAA) measures the number
of attachments annotators agree upon for each token,
disregarding the label, whereas labeled attachment

4http://brat.nlplab.org
5Annotators need to provide the dependency annotations

since we lacked an appropriate L2 parser. It is a goal of this
project to provide annotated data for parser development.

agreement (LAA) requires both the attachment and
labeling to be the same to count as an agreement.
Label only agreement (LOA) ignores the head a
token attaches to and only compares labels.

All three metrics (UAA, LAA, LOA) require cal-
culations for sets of dependencies, described in sec-
tions 4.1.1 and 4.1.2. In figure 3, for instance, one
annotator (accidentally) drew a JCT arrow in the
wrong direction, resulting in two heads for is. For
is, the annotator’s set of dependencies is {(0,ROOT),
(1,JCT)}, compared to another’s of {(0,ROOT)}. We
thus treat dependencies as sets of (head, label) pairs.

4.1.1 Metrics
For sets, we use two different calculations. First is

MASI (Measuring Agreement on Set-valued Items,
Passonneau et al., 2006), which assigns each com-
parison between sets a value between 0 and 1, as-
signing partial credit for partial set matches and al-
lowing one to treat agreement on a per-token basis.
We use a simplified form of MASI as follows: 1 =
identical sets, 2

3 = one set is a subset of the other, 1
3

= the intersection of the sets is non-null, and so are
the set differences, & 0 = disjoint sets.6

The second method is a global comparison
method (GCM), which counts all the elements in
each annotator’s sets in the whole file and counts
up the total number of agreements. In the following
subcategorization example over three tokens, there
are two agreements, compared to four total elements
used by A1 (GCMA1 = 2

4 ) and compared to three
elements used by A2 (GCMA2 = 2

3 ). These metrics
are essentially precision and recall, depending upon
which annotator is seen as the “gold” (Kübler et al.,
2009, ch. 6). For MASI scores, we have 0, 1, and 1

3 ,
respectively, giving 11

3/3, or 0.44.

• A1: {SUBJ}, A2: {}

• A1: {SUBJ}, A2: {SUBJ}

• A1: {SUBJ,PRED}, A2: {SUBJ,OBJ}

Since every word is annotated, the methods as-
sign similar numbers for dependencies. Subcatego-
rization gives different results, due to empty sets. If
annotator 1 and annotator 2 both mark an empty set,

6Since our sets tend to be small (rarely bigger than two), we
do not expect much change with a full MASI calculation.
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Figure 2: Example of the annotation interface

root In my opinion , My Age is Very Young

JCT

DET
POBJ

PUNCT

DET SUBJ

ROOT

JCT
PRED

Figure 3: A mistaken arrow (JCT) leading to two dependencies for is ((0,ROOT),(1,JCT))

we count full agreement for MASI, i.e., a score of 1;
for GCM, nothing gets added to the totals.

We could, of course, report various coefficients
commonly used in IAA studies, such as kappa or
alpha (see Artstein and Poesio, 2008), but, given
the large number of classes and lack of predominant
classes, chance agreement seems very small.

4.1.2 Dependency-specific issues

As a minor point: for dependencies, we calcu-
late agreements for matches in only attachment or
labeling. Consider (7), where there is one match
only in attachment ((24,OBJ)-(24,JCT)), counting to-
wards UAA, and one only in labeling ((24,SUBJ)-
(22,SUBJ)) for LOA. Importantly, we have to ensure
that (24,SUBJ) and (24,JCT) are not linked.

(7) A1: {(24,SUBJ), (24,OBJ)}
A2: {(22,SUBJ), (24,JCT)}

In general, we prioritize identical attachment over
labeling, if a dependency could match in either.
We wrote a short script to align attachment/label
matches between two sets, but omit details here, due
to space. We generally do not have large sets of de-
pendencies to compare, but these technical decisions
should allow for any situation in the future.

4.2 Results

4.2.1 Bird’s-eye view
Table 2 presents an overview of pairwise agree-

ments between annotators for all 604 tokens. Of the
four phases of annotation, we report two: the files
they annotated (and revised) independently (phase
2) and the final files after discussion of problematic
cases (phase 4). Annotators reported feeling rushed
during phase 1, so phase 2 numbers likely better
indicate the ability to independently annotate, and
phase 4 can help to investigate the reasons for lin-
gering disagreements. The numbers for subcatego-
rization and dependency (UAA, LAA) agreements
are the MASI agreement rates.

A few observations are evident from these fig-
ures. First, for both POSm (morphology) and POSd

(distribution), the high agreement rates reflect the
fact that annotators made very few changes to the
automatic pre-annotation, partly because such lay-
ers were not heavily emphasized. Lemmas were
also pre-annotated, as identical to the surface form,
but more changes were made here (decapitaliza-
tion, affix-stripping, etc.). Comparing phases 2 and
4 shows an improvement in agreement, although
agreement seems like it could be higher, given the
simplicity of lemma information. We discuss lem-
mas, and associated lexical violations, more in sec-
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Annotators lemma POSm POSd Subcat. UAA LAA
P2 P4 P2 P4 P2 P4 P2 P4 P2 P4 P2 P4

A, B 93.4 96.9 99.0 98.7 99.2 98.7 85.5 94.0 86.6 97.0 80.0 95.2
B, C 94.4 97.7 99.0 99.5 98.7 99.3 86.1 95.7 86.7 97.1 80.3 96.0
C, A 92.4 96.9 99.7 99.7 98.5 99.3 86.1 96.6 86.9 97.7 82.4 96.7

Table 2: Overview of agreement rates before & after discussion (phases 2 & 4)

tion 4.3.
Dependency-related annotations had no pre-

annotation. While the starting value of agreement
rates for these last three layers is not as high as for
lemma and POS annotation, agreement rates around
80–85% still seem moderately high. More important
is how much the agreement rates improved after dis-
cussion, achieving approximately 95% agreement.
This was without any direct intervention from the re-
searchers regarding how to annotate disagreements.
We examine dependencies in section 4.2.2 and sub-
categorization in 4.2.3, breaking results down by
text to see differences in difficulty.

4.2.2 Dependencies
We report MASI agreement rates for dependen-

cies in tables 3 and 4 for Text 1 and Text 2, re-
spectively.7 Comparing the starting agreement val-
ues (e.g., 73.6% vs. 87.8% LAA for annotators A
and B), it is clear that text difficulty had an enor-
mous impact on annotator agreement. The clear dif-
ference in tokens per sentence (17.5 in Text 1 vs.
12.3 in Text 2; see section 3.1) contributed to the
differences. The reported difficulty from annotators
referred to more non-native properties present in the
text, and, to a smaller extent, the presence of more
complex syntactic structures. Though we take up
some of these issues up again in section 4.3, an in-
depth analysis of how text difficulty affects the an-
notation task is beyond the scope of this paper, and
we leave it for future investigation.

Looking at the agreement rates for Text 1 in ta-
ble 3, we can see that the initial rates of agree-
ment for UAA and LOA are moderately high, indi-
cating that annotator training and guideline descrip-
tions were working moderately well. However, they

7We only report MASI scores for dependencies, since the
GCM scores are nearly the same. For example, for raters A &
B, the GCM value for phase 4 is 96.15% with respect to either
annotator vs. 96.10% for MASI.

Ann. UAA LAA LOA
P2 P4 P2 P4 P2 P4

A, B 81.8 96.1 73.6 93.4 80.3 95.5
B, C 80.9 96.2 73.4 94.4 79.3 97.1
A,C 83.6 97.6 79.7 96.7 81.8 97.9

Table 3: MASI percentages for dependencies, Text 1

Ann. UAA LAA LOA
P2 P4 P2 P4 P2 P4

A, B 92.6 98.1 87.8 97.4 89.3 97.8
B, C 93.8 98.3 88.7 97.9 90.2 98.6
A, C 90.9 97.9 85.7 96.8 87.6 97.9

Table 4: MASI percentages for dependencies, Text 2

are only 73% for LAA. Note, though, that this may
be more related to issues of fatigue and hurry than
of understanding of the guidelines: the numbers im-
prove considerably by phase 4. The labeled attach-
ment rates, for example, increase between 17 and 21
percent, to reach values around 95%.

For Text 2 in table 4, we notice again the higher
phase 2 rates and the similar improvement in phase
4, with LAA around 97%. Encouragingly, despite
the initially lower agreements for Text 1, annotators
were able to achieve nearly the same level of agree-
ment as for the “easier” text. This illustrates that
annotators can learn the scheme, even for difficult
sentences, though there may be a tradeoff between
speed and accuracy.

4.2.3 Subcategorization

For subcategorization, we present both MASI and
GCM percentage rates, as they give different em-
phases. Results are again broken down by text, in
tables 5 and 6. As with dependencies, we see solid
improvement from phase 2 to phase 4, and we see
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generally higher agreement for Text 2.

Ann. MASI GCM1 GCM2

P2 P4 P2 P4 P2 P4
A,B 84.3 92.4 81.9 90.8 72.8 88.1
B,C 83.6 93.8 74.4 91.6 73.6 90.2
A,C 84.9 96.1 83.0 96.4 73.1 92.2

Table 5: Agreement rates for subcategorization, Text 1

Ann. MASI GCM1 GCM2

P2 P4 P2 P4 P2 P4
A,B 87.1 95.9 88.9 96.0 77.2 94.1
B,C 89.3 98.0 88.3 98.0 82.0 96.8
A,C 87.6 97.2 91.2 97.3 73.7 94.2

Table 6: Agreement rates for subcategorization, Text 2

The GCM numbers are much lower because of the
way empty subcategorization values are handled—
being counted towards agreement for MASI and
not for GCM (see section 4.1.1). A further issue,
though, is that one annotator often simply left out
subcategorization annotation for a token. In table 6,
for example, annotators A and C have vastly differ-
ent GCM values for phase 2 (91.2% vs. 73.7%), due
to annotator C annotating many more subcategoriza-
tion labels. This is discussed more in section 4.3.2.

4.3 Qualitative differences

We highlight some of the important issues that stand
out when we take a closer look at the nature of the
disagreements in the final phase.

4.3.1 Text-related issues
As pointed out earlier regarding the differences

between Text 1 and Text 2 (section 4.2.2), some dis-
agreements are likely due to the nature of the text
itself, both because of its non-native properties and
because of the syntactic complexity. Starting with
unique learner innovations leading to non-uniform
treatment, several cases stemmed from not agreeing
on the lemma, when a word looks non-English or
does not fit the context. An example is cares in (8):
although the guidelines should lead the annotators to
choose care as the lemma, staying true to the learner

form, one annotator chose to accommodate the con-
text and changed the lemma to case. This relying
too heavily on intended meaning and not enough on
syntactic evidence—as the scheme is designed for—
was a consistent problem.

(8) My majors are bankruptcy , corporate reor-
ganizations . . . and arquisisiton cares .

For (8), the trees do not change because the dif-
ferent lemmas are of the same syntactic category,
but more problematic are cases where the trees differ
based on different readings. In the learner sentence
(9), the non-agreement between this and cause led to
a disagreement of this being a COORD of and vs. this
being an APPOS (appositive) of factors. The anno-
tator reported that the choice for this latter analysis
came from treating this as these, again contrary to
guidelines but consistent with one meaning.

(9) Sometimes animals are subjected to changed
environmental factors during their develop-
mental process and this cause FA .

Another great source of disagreement stems from
the syntactic complexity of some of the structures,
even if native-like, though this can be intertwined
with non-native properties, as in (10). Although an-
notators eventually agreed on the annotation here,
there was initial disagreement on the coordination
structure of this sentence, questioning whether to be
coordinates with pursuing or only with to earn, or
whether pursuing coordinates only with to earn (the
analysis they finally chose).

(10) My most important goals are pursuing the
profession to be a top marketing manager
and then to earn a lot of money to buy a
beautiful house and a good car .

4.3.2 Task-related issues
Annotator disagreements stemmed not only from

the text, but from other factors as well, such as as-
pects of the scheme that needed more clarification,
some interface issues, and the fact that the guidelines
though extensive, are still not comprehensive.

A few parts of the annotation scheme were con-
fusing to annotators and likely need refinement. For
example, if the form of a word was incorrect, we
saw a lot of lexical violation annotation, even if it
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was only an issue of grammatical marking and POS
(e.g., did/VVD instead of done/VVN), as opposed
to a truly different word choice. We are currently
tightening the annotation scheme and adding clarifi-
cations about lexical violations in our guidelines.

As another example, verb raising was often not
marked (cf. figure 1), in spite of the scheme and
guidelines requiring it. In their comments, annota-
tors mentioned that it seemed “redundant” to them
and that it caused arcs to cross, which they found
“unappealing.” One annotator commented that they
did not have enough syntactic background to see
why marking multiple subjects was necessary. We
are thus considering a simpler treatment. Another
option in the future is to hire annotators with more
background in syntax.

The interface may be partly to blame for some dis-
agreements, including subcategorizations which an-
notators often left unmarked (section 4.2.3) or only
partly marked (e.g., leaving off a SUBJect for a verb
which has been raised). There are a few reasons for
this. First, marking subcategorization likely needed
more emphasis in the training period, seeing as how
it relates to complicated linguistic notions like dis-
tinguishing arguments and adjuncts. Secondly, the
interface is an issue, as the subcategorization field is
not directly visible, compared to the arcs drawn for
dependencies; in figure 2, for instance, subcatego-
rization can only be seen in the asterisks, which need
to be clicked on to be seen and changed. Relatedly,
because it is not always necessary, subcategorization
may seem more optional and thus forgettable.

By the nature of being an in-progress project, the
guidelines were necessarily not comprehensive. As
one example, the TRANS(ition) label was only gen-
erally defined, leading to disagreements. As another,
a slash could indicate coordination (actor/actress),
and annotators differed on its POS labeling, as either
CC (coordinating conjunction), or a PUNCT (punc-
tuation). The different POS labels then led to vastly
different dependency graphs. In spite of a lengthy
section on how to handle coordination in the guide-
lines, it seems that an additional case needs to be
added to the guidelines to cover when punctuation is
used as a conjunction.

5 Conclusion and outlook

Developing reliable annotation schemes for learner
language is an important step towards better POS
tagging and parsing of learner corpora. We have de-
scribed an inter-annotator agreement study that has
helped shed light on several issues, such as the re-
liability of our annotation scheme, and has helped
identify room for improvement. This study shows
that it is possible to apply a multi-layered depen-
dency annotation scheme to learner text with consid-
erably good agreement rates between three trained
annotators. In the future, we will of course be
applying the (revised) annotation scheme to larger
data sets, but we hope other grammatical annota-
tion schemes can learn from our experience. In the
shorter term, we are constructing a gold standard of
the text files used here, to test annotation accuracy
and whether any (or all) annotators had consistent
difficulties. Another next step is to gather a larger
pool of data and focus more on analyzing the ef-
fects of L1 and learner proficiency level on anno-
tation. Finally, given that syntactic representations
can assist in automating tasks such as developmen-
tal profiling of learners (e.g., Vyatkina, 2013), gram-
matical error detection (Tetreault et al., 2010), iden-
tification of native language (e.g., Tetreault et al.,
2012), and proficiency level determination (Dickin-
son et al., 2012)—all of which impact NLP-based
educational tools—one can explore the effect of spe-
cific syntactic decisions on such tasks, as a way to
provide feedback on the annotation scheme.
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anledning Kari Tenfjords 60-årsdag [Systematic,
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Abstract

This paper reports on our work in the NLI 
shared task 2013 on Native Language Identi-
fication. The task is to automatically detect 
the native language of the TOEFL essays au-
thors in a set of given test documents in Eng-
lish. The task was solved by a system that 
used the PPM compression algorithm based 
on an n-gram statistical model. We submitted 
four runs; word-based PPMC algorithm with 
normalization and without, character-based 
PPMC algorithm with normalization and 
without. The worst result was obtained on 
training and testing data during the evaluation 
procedure using the character-based PPM 
method and normalization: accuracy = 31.9%; 
the best one was macroaverage F-measure =
0.708 with the word-based PPMC algorithm 
without normalization.

1 Introduction

With the emergence of user-generated web con-
tent, text author profiling is being increasingly 
studied by the NLP community. Various works 
describe experiments aiming to automatically dis-
cover hidden attributes of text which reveal au-
thor’s gender, age, personality and others. While 
English remains one of the main global languages
used for communication, interchange of infor-
mation and ideas, English texts written by different 
language speakers differ considerably. This is yet 
another characteristic of the author that can be 
learned from a text. While a great number of works 
have presented investigations in this area there was
no common ground to evaluate different tech-

niques and approaches to Native Language Identi-
fication. NLI shared task 2013 on Native Language 
Identification provides a playground and a corpus 
for such an evaluation.

We participated in this shared task with the PPM 
compression algorithm based on a character-based 
and word-based n-gram statistical model. 

2 Related work

The task of Native Language Identification is to 
automatically detect text’s author’s native lan-
guage when having only English text written by 
this author. It is generally a sub-task of text classi-
fication or, more closely, text author profiling
when various stylometric text features are used for 
certain author’s characteristics (gender, age, educa-
tion, cultural background, etc.) detection (Bergsma
et al., 2012; Argamon et al., 2009). 

This task is mostly solved by machine-learning 
algorithms, such as SVM (Witten and Frank,
2005). However, the algorithm itself is not the 
most influential choice for better performance but 
rather the set of features used for learning. This set 
can consist of character, word and PoS n-grams, 
functional words, punctuation, specific errors, syn-
tactic structures, and others. Some works investi-
gate the influence of thousands of features of very 
different types (Koppel et al., 2011; Abbasi and
Chen, 2008). Extraction of all these features re-
quires a substantial amount of text processing 
work. We, instead, concentrated on an easier 
method, namely, PPM, a statistical model used for 
text compression which almost needs no text pre-
processing. 
Several approaches that apply compression models 
to text classification have been presented in Eibe et 
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al. (2000); Thaper (1996). The underlying idea of 
using compression methods for text classification 
was their ability to create a language model 
adapted to particular texts. It was hypothesized that 
this model captures individual features of the text 
being modelled. Theoretical background to this 
approach was given in Teahan and Harper (2001).

3 System description

Detection of the English text author’s native lan-
guage can be viewed as a type of classification 
task. Such tasks are solved using learning methods. 
There are different types of text classification. Au-
thorship attribution, spam filtering, dialect identifi-
cation are just several of the purposes of text 
categorization. It is natural that for different types 
of categorization different methods are pertinent. 
The most common type is the content-based cate-
gorization which classifies texts by their topic and
requires the most common classification methods 
based on classical set of features. More specific 
methods are necessary in cases when classification 
criterions are not so obvious, for example, in the 
case of author identification. 

In this paper the application of the PPM (Predic-
tion by Partial Matching) model for automatic text 
classification is explored. Prediction by partial 
matching (PPM) is an adaptive finite-context 
method for text compression that is a back-off 
smoothing technique for finite-order Markov mod-
els (Bratko et al., 2006). It obtains all information 
from the original data, without feature engineering, 
is easy to implement and relatively fast. PPM pro-
duces a language model and can be used in a prob-
abilistic text classifier.

PPM is based on conditional probabilities of the 
upcoming symbol given several previous symbols 
(Cleary and Witten, 1984). The PPM technique 
uses character context models to build an overall 
probability distribution for predicting upcoming 
characters in the text. A blending strategy for com-
bining context predictions is to assign a weight to 
each context model, and then calculate the 
weighted sum of the probabilities:

m

P(x) = Σ λi pi(x), (1)
i=1

where 
λi and pi are weights and probabilities assigned 

to each order i (i=1…m). 

For example, the probability of character 'm' in 
context of the word 'algorithm' is calculated as a 
sum of conditional probabilities dependent on dif-
ferent context lengths up to the limited maximal 
length:
PPPM('m') = λ5 ⋅ P( 'm' | 'orith') + λ4 ⋅ P( 'm' | 'rith') 
+ λ3 ⋅ P( 'm' | 'ith') + λ2 ⋅ P( 'm' | 'th') + 
+ λ1 ⋅ P( 'm' | 'h') + + λ0 ⋅ P( 'm' ) +
+ λ-1 ⋅ P( ‘esc’ ), (2)
where

λi (i = 1…5) is the normalization weight;
5 - maximal length of the context;

P( ‘esc’ ) – ‘escape’ probability, the proba-
bility of an unknown character.
PPM is a special case of the general blending strat-
egy. The PPM models use an escape mechanism to 
combine the predictions of all character contexts of 
length m, where m is the maximum model order; 
the order 0 model predicts symbols based on their 
unconditioned probabilities, the default order -1 
model ensures that a finite probability (however 
small) is assigned to all possible symbols. The 
PPM escape mechanism is more practical to im-
plement than weighted blending. There are several 
versions of the PPM algorithm depending on the 
way the escape probability is estimated. In our im-
plementation, we used the escape method C (Bell
et al., 1989), named PPMC. Treating a text as a 
string of characters, a character-based PPM avoids 
defining word boundaries; it deals with different 
types of documents in a uniform way. It can work 
with texts in any language and be applied to di-
verse types of classification; more details can be 
found in Bobicev (2007). Our utility function for 
text classification was cross-entropy of the test 
document:

n

Hd 
m - = Σ pm(xi) log pm(xi), (3)

i=1

where 
n is the number of symbols in a text d, 

Hd 
m – entropy of the text d obtained by model m,

pm(xi) is a probability of a symbol xi in the text d. 
Hd 

m was estimated by the modelling part of the 
compression algorithm. 

Usually, the cross-entropy is greater than the 
entropy, because the probabilities of symbols in 
diverse texts are different. The cross-entropy can 
be used as a measure for document similarity; the 
lower cross-entropy for two texts is, the more simi-
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lar they are. Hence, if several statistical models had 
been created using documents that belong to dif-
ferent classes and cross-entropies are calculated for 
an unknown text on the basis of each model, the 
lowest value of cross-entropy will indicate the 
class of the unknown text. In this way cross-
entropy is used for text classification.

On the training step, we created PPM models 
for each class of documents; on the testing step, we 
evaluated cross-entropy of previously unseen texts 
using models for each class. The lowest value of 
cross-entropy indicates the class of the unknown 
text.

The maximal length of a context equal to 5 in 
PPM model was proven to be optimal for text 
compression (Teahan, 1998). In other experiments,
length of character n-grams used for text classifica-
tion varied from 2 (Kukushkina et al., 2001) to 4 
(Koppel et al., 2011) or a combination of several
lengths (Keselj et al., 2003). Stamatatos (2009)
pointed out that the best length of character n-
grams depends on different conditions and varies 
for different texts. In all our experiments with 
character-based PPM model we used maximal 
length of a context equal to 5; thus our method is 
PPMC5.

The character-based PPM models were used for 
spam detection, source-based text classification 
and classification of multi-modal data streams that 
included texts. In Bratko et al. (2006), the charac-
ter-based PPM models were used for spam detec-
tion. In this task there existed two classes only: 
spam and legitimate email (ham). The created 
models showed strong performance in the Text 
Retrieval Conference competition, indicating that 
data-compression models are well suited to the 
spam filtering problem. In Teahan (2000), a PPM-
based text model and minimum cross-entropy as a 
text classifier were used for various tasks; one of 
them was an author detection task for the well 
known Federalist Papers. In Bobicev and Sokolova 
(2008), the PPM algorithm was applied to text 
categorization in two ways: on the basis of charac-
ters and on the basis of words. Character-based 
methods performed almost as well as SVM, the 
best method among several machine learning 
methods compared in Debole and Sebastiani 
(2004) for the Reuters-21578 corpus. 

Usually, PPM models are character-based. 
However, word-based models were also used for
various purposes. For example, if texts are classi-

fied by the contents, they are better characterized 
by words and word combinations than by frag-
ments consisting of five letters. For some tasks 
words can be more indicative text features than 
character sequences. That’s why we decided to use 
both character-based and word-based models for 
PPM text classification. In the case of word-based 
PPM, the context is only one word and an example 
for formula (1) looks like the following:

PPPM( ' wordi ') = λ1 ⋅ P( ' wordi ' | ' wordi-1 ') +
+ λ0⋅ P( ' wordi ' ) + λ-1 ⋅ P( ‘esc’ ),

where
wordi is the current word;

wordi-1 is the previous word.
This model is coded as PPMC1 because of the 

same C escape method and one length context used 
for probability estimation.
Training and testing data is distributed quite un-
evenly in many tasks, for example, in Reuters-
21578 corpus. This imbalance drastically affected 
the results of the classification experiments; the 
classification was biased towards classes with a 
larger volume of data for training. Such imbalance 
class distribution problems were mentioned in Bo-
bicev and Sokolova (2008), Stamatatos (2009),
Narayanan et al. (2012). Considering the fact that 
unbalanced data affected classification results in 
such a substantial way we used a normalization 
procedure for balancing entropies of the statistical 
data models. 

The first step of our algorithm was training. In 
the process of training, statistical models for each 
class of texts were created. This meant that prob-
abilities of text elements were estimated. The next 
step after training was calculation of entropies of 
test documents on the basis of each class model. 
We obtained a matrix of entropies ‘class statistical 
models x test documents’. The columns were en-
tropies for the class statistical models and rows 
were entropies for a given test documents. After 
this step the normalization procedure was applied. 
The procedure consisted of several steps. 

(1) Mean entropy for each class of texts was 
calculated on the base of the matrix; 

(2) Each value in the matrix was divided by the 
mean entropy for this class. Thereby we obtained 
more balanced values and classification improved 
considerably.

Although the application of PPM model to the 
document classification is not new, PPM was never
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applied to the task of English text author’s native 
language detection.

In order to evaluate the PPM classification 
method for English text author’s native language 
identification a number of experiments were per-
formed. The aim of the experiments was twofold:

- to evaluate the quality of PPM-based docu-
ment classification;

- to compare letter-based and word-based PPM 
classification.

4 Evaluation

Three sets of experiments were carried out during
the NLI shared task event. The first one was per-
formed on the training and development data re-
leased in January. The second set consisted of 
evaluation runs on test data released in March and 
the results for these experiments were provided by 
the organizers. The third set was 10-fold cross-
validation on training + development data request-
ed by the organizers.

4.1 The First set of experiments

The first set of experiments was carried out on the 
first set of data released by the organizers: TOEFL 
essays written by 11 native languages speakers. 
9,900 essays of this set were sequestered as the 
training data and 1,100 were for the development 
set. Thus, we trained our model on 900 files for 
each native language speakers, for each class.
Next, we attributed classes to 1,100 development 
texts. We carried out four experiments. The first 
two were done on the basis of the character-based 
PPMC5 method with and without the normaliza-
tion procedure described earlier. The second two 
experiments were done with the word-based 
PPMC1 method with and without the normaliza-
tion. The Precision, Recall and F-measure for these 
four experiments are presented in Table 1. Tables 2 
and 3 are confusion tables for the worst and for the 
best cases of the four experiments.

Model
Microaverage F-

score
Precision Recall

Macroaverage F-
score

Character-based PPMC5 method without 
normalization

0.382 0.384 0.382 0.383

Character-based PPMC5 method with 
normalization

0.362 0.363 0.362 0.3625

Word-based PPMC1 method without nor-
malization

0.701 0.715 0.701 0.708

Word-based PPMC1 method with normali-
zation

0.687 0.702 0.687 0.695

Table 1. Results obtained on character-based and letter-based PPM models with and without normalization.

ARA CHI FRE GER HIN ITA JPN KOR SPA TEL TUR

ARA 26 7 9 3 6 5 14 6 8 12 4
CHI 3 32 8 7 3 3 20 13 4 4 3
FRE 6 4 32 8 9 13 7 3 4 8 6
GER 1 6 10 36 3 10 8 7 6 5 8
HIN 2 3 4 5 36 7 6 3 1 29 4
ITA 5 3 16 6 2 45 1 4 10 4 4

JPN 3 14 2 3 2 6 49 13 5 1 2
KOR 2 6 5 5 2 3 21 42 1 8 5
SPA 3 4 8 8 3 19 13 5 25 9 3
TEL 1 5 0 4 18 2 4 4 0 60 2
TUR 5 9 9 9 8 5 17 11 3 9 15

Table 2. Confusion table for 1,100 development files for the first PPMC5 character-based experiment with normali-
zation.
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ARA CHI FRE GER HIN ITA JPN KOR SPA TEL TUR
ARA 46 2 3 6 8 7 2 5 8 5 8
CHI 1 67 1 2 1 0 7 9 3 1 8

FRE 0 2 77 9 1 3 1 0 4 0 3
GER 0 0 3 90 1 2 0 0 2 0 2
HIN 0 0 1 2 69 0 0 0 2 26 0
ITA 1 1 6 3 0 82 0 0 3 0 4
JPN 1 7 1 5 0 0 65 15 1 1 4
KOR 1 3 0 2 0 0 20 67 2 1 4

SPA 1 1 7 10 2 9 1 1 62 0 6
TEL 0 0 0 0 31 0 0 1 0 68 0
TUR 0 0 2 7 7 0 2 0 2 2 78

Table 3. Confusion table for 1,100 development files for the first PPMC1 word-based experiment without normali-
zation.

4.2 The second set of experiments

The second set of experiments was done on the 
1,100 test files during the evaluation phase of the 
challenge. The results of these experiments were 
provided by the organizers. Again, we carried out
four experiments: character-based PPMC5 method 
with and without normalization and word-based 
PPMC1 method with and without normalization. 
Confusion tables 4 and 5 presents the worst and the 
best results.
The overall accuracies for these experiments are:

Character-based PPMC5 method without nor-
malization - 37.4%;

Character-based PPMC5 method with normali-
zation - 31.9%;

Word-based PPMC1 method without normaliza-
tion - 62.5%;

Word-based PPMC1 method with normalization
- 62.2%.

ARA CHI FRE GER HIN ITA JPN KOR SPA TEL TUR Precision Recall F-measure

ARA 7 4 16 5 3 17 10 25 0 8 5 43.8% 7.0% 12.1%

CHI 1 31 8 5 1 9 19 23 0 2 1 38.8% 31.0% 34.4%

FRE 0 1 55 5 2 17 6 10 0 0 4 28.4% 55.0% 37.4%

GER 2 2 18 33 2 15 8 15 0 3 2 40.7% 33.0% 36.5%

HIN 0 6 20 9 15 7 15 14 0 11 3 36.6% 15.0% 21.3%

ITA 1 1 16 3 1 58 7 8 2 1 2 32.8% 58.0% 41.9%

JPN 0 2 7 0 0 8 57 24 1 0 1 29.2% 57.0% 38.6%

KOR 2 15 8 0 1 4 27 37 1 2 3 18.5% 37.0% 24.7%

SPA 0 8 21 9 1 18 19 14 8 1 1 66.7% 8.0% 14.3%

TEL 1 5 8 6 13 6 12 10 0 35 4 55.6% 35.0% 42.9%

TUR 2 5 17 6 2 18 15 20 0 0 15 36.6% 15.0% 21.3%

Table 4. Confusion table for 1,100 test files for the PPMC5 character-based experiment with normalization. 
The overall accuracy is 31.9%.
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ARA CHI FRE GER HIN ITA JPN KOR SPA TEL TUR Precision Recall F-measure

ARA 39 2 7 9 6 1 3 1 14 7 11 75.0% 39.0% 51.3%

CHI 3 65 3 5 1 0 8 4 2 0 9 72.2% 65.0% 68.4%

FRE 1 0 67 10 1 11 1 0 4 0 5 60.9% 67.0% 63.8%

GER 0 0 4 92 1 0 0 0 2 0 1 63.4% 92.0% 75.1%

HIN 0 1 3 2 64 0 0 1 12 11 6 58.7% 64.0% 61.2%

ITA 1 1 10 10 0 71 0 0 4 0 3 70.3% 71.0% 70.6%

JPN 1 4 1 1 2 1 66 15 1 1 7 63.5% 66.0% 64.7%

KOR 2 9 3 2 3 0 22 50 2 0 7 61.0% 50.0% 54.9%

SPA 1 2 9 12 2 15 0 4 51 1 3 48.1% 51.0% 49.5%

TEL 1 3 0 0 27 0 1 0 8 54 6 73.0% 54.0% 62.1%

TUR 3 3 3 2 2 2 3 7 6 0 69 54.3% 69.0% 60.8%

Table 5. Confusion table for 1,100 test files for the PPMC1 word-based experiment without normalization. 
The overall accuracy is 62.5%.

Model
Microaverage 

F-score
Precision Recall

Macroaverage 
F-score

Character-based PPMC5 method without normaliza-
tion

0.366 0.368 0.366 0.367

Character-based PPMC5 method with normalization 0.353 0.366 0.353 0.359

Word-based PPMC1 method without normalization 0.649 0.660 0.649 0.655

Word-based PPMC1 method with normalization 0.640 0.652 0.640 0.640

Table 6. Results obtained on character-based and letter-based PPM models with and without normalization on the 
basis of training + development data.

ARA CHI FRE GER HIN ITA JPN KOR SPA TEL TUR
ARA 22 7 13 1 1 11 18 10 7 6 4
CHI 1 29 7 2 1 8 22 22 2 2 4
FRE 6 4 40 8 4 9 10 7 7 2 3
GER 3 3 15 26 3 15 14 9 4 4 4

HIN 5 3 6 3 31 6 7 5 4 26 4
ITA 4 4 10 9 3 42 15 6 4 0 3
JPN 1 9 4 6 1 3 49 17 3 3 4
KOR 1 7 7 2 5 4 37 29 3 1 4
SPA 6 5 12 3 6 21 14 8 20 1 4
TEL 5 1 5 2 16 6 9 9 1 43 3

TUR 4 3 14 7 3 7 22 8 5 2 25
Table 7. Confusion table for the worst case in the third set of experiments; 10-fold cross-validation, fold 9, PPMC5

character-based, with normalization.
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ARA CHI FRE GER HIN ITA JPN KOR SPA TEL TUR
ARA 40 3 9 5 5 7 5 4 8 4 10

CHI 2 73 1 1 2 2 6 10 2 0 1
FRE 0 2 70 9 2 4 1 2 6 1 3
GER 0 0 2 87 3 1 0 1 5 0 1
HIN 1 0 2 3 69 0 0 1 3 15 6
ITA 0 1 11 10 3 72 1 0 2 0 0
JPN 0 6 0 1 2 2 68 16 3 0 2

KOR 1 5 3 1 3 0 16 63 5 0 3
SPA 2 1 8 4 4 5 1 6 65 0 4
TEL 1 1 0 1 25 0 1 1 2 66 2
TUR 1 1 3 4 6 1 0 0 10 1 73

Table 8. Confusion table for the best case in the third set of experiments; 10-fold cross-validation, fold 3, PPMC1
word-based, without normalization.

4.3 The third set of experiments

The third set of the experiments was done at the 
organizers’ request on the basis of training + de-
velopment data. 10-fold cross-validation was made 
on this data with exactly the same splitting used in 
Tetreault et al. (2012). The results of these experi-
ments are presented in Table 6. Tables 7 and 8 are 
confusion tables for the worst and the best cases 
among all 10 folds and four experiments.   

5 Conclusion 

The task of identifying the native language of a 
writer based solely on a sample of their English 
writing is an exiting and intriguing task. It is a type 
of text classification task; however it requires task 
specific features. The PPM method presented in 
this paper uses two types of features: (1) character 
sequences of length from 5 characters and shorter, 
(2) words and bigrams of words. This method 
achieved lower results than methods which used 
carefully selected and adjusted feature sets. The 
advantage of this method is its relative simplicity
of use and ability to work with any text.
Two interesting and surprising conclusions we 
have drawn from these experiments: (1) normaliza-
tion did not improve the results for this data; (2) 
word-based method performed much better than 
character-based. In most previous experiments 
with PPM-based classification (Bobicev, 2007; 
Bobicev and Sokolova, 2008) we obtained inverse 
results: character-based methods were much better 
than word-based. The author recognition experi-

ments showed the same, much better performance 
of character-based methods. The possible explana-
tion is that the data for this experiment was cleaned 
and tokenized whereas the data in other experi-
ments was much noisier which created problems
for the word-based method. 
The same was with normalization. The organizers 
prepared very well balanced data and there was no 
need of normalization which helped to gain anoth-
er 20-25% of accuracy on other data.   
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Abstract

Our efforts in the 2013 NLI shared task fo-
cused on the potential benefits of external cor-
pora. We show that including training data
from multiple corpora is highly effective at ro-
bust, cross-corpus NLI (i.e. open-training task
1), particularly when some form of domain
adaptation is also applied. This method can
also be used to boost performance even when
training data from the same corpus is available
(i.e. open-training task 2). However, in the
closed-training task, despite testing a number
of new features, we did not see much improve-
ment on a simple model based on earlier work.

1 Introduction

Our participation in the 2013 NLI shared task
(Tetreault et al., 2013) follows on our recent work
exploring cross-corpus evaluation, i.e. using dis-
tinct corpora for training and testing (Brooke and
Hirst, 2011; Brooke and Hirst, 2012a; Brooke and
Hirst, 2012b), an approach that is now becoming
fairly standard alternative in relevant work (Bykh
and Meurers, 2012; Tetreault et al., 2012; Swan-
son and Charniak, 2013). Our promotion of cross-
corpus evaluation in NLI was partially motivated by
serious issues with the most popular corpus for na-
tive language identification work up to now, the In-
ternational Corpus of Learner English (Granger et
al., 2009). The new TOEFL-11 (Blanchard et al.,
2013) used for this NLI shared task addresses some
of the problems with the ICLE (most glaringly, the
fact that some topics in the ICLE appeared only in
some L1 backgrounds), but, from the perspective of

topic, proficiency, and particularly genre, it is nec-
essarily limited in scope (perhaps even more so than
the ICLE); in short, it addresses only a small por-
tion of the space of learner texts. Our interest, then,
continues to be in robust models for NLI that are not
restricted to utility in a particular corpus, and in our
participation in this task we have focused our efforts
on the open-training tasks which allow the use of
corpora beyond the TOEFL-11. Since participation
in these tasks was low relative to the closed-training
task, fewer papers will address them, making our
emphasis here all the more relevant.

The models built for all of three of the tasks are
extensions of the model used in our recent work
(Brooke and Hirst, 2012b); we will discuss the as-
pects of this model common to all tasks in Section
2. Section 3 is a brief review of our methodology
and results in the closed-training task, which was fo-
cused exclusively on testing features (both new and
old); we found almost nothing that improved on our
best feature set from previous work, and most fea-
tures actually hurt performance. In Section 4, we
discuss the corpora we used for the open-training
tasks, some of which we collected and/or have not
been applied to NLI before. Our approach to the
open-training task 2 using these corpora is presented
in Section 5. In Section 6, we discuss how we used
domain adaption methods and our various external
corpora to create the (winning) model for the open-
training task 1, which did not permit usage of the
TOEFL-11; we also present some post hoc testing
(now that TOEFL-11 is no longer off limits). In Sec-
tion 7 we offer conclusions.
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2 Basic Model

In our recent work on cross-corpus NLI (Brooke and
Hirst, 2012b), we tested a number of classifier and
feature options, and most of our choices there are
carried over to this work. In particular, we use the
Liblinear SVM 1va (one versus all) classifier (Fan et
al., 2008). Using the TOEFL-11 corpus, we briefly
tested the other options explored in that paper (in-
cluding SVM 1v1) as well as the logistic regression
classifier included in Liblinear, and found that the
SVM 1va classifier was still preferred (with our best
feature set, see below), though the differences in-
volved were marginal. Although small variations in
the choice of C parameter within the SVM model
did occasionally produce benefits (here and in our
previous work), these were not consistent, whereas
the default value of 1 showed consistently near opti-
mal results. We used a binary feature representation,
and then feature vectors were normalized to the unit
circle. With respect to feature selection, our earlier
work used a frequency cutoff of 5 for all features; we
continue to use frequency cutoffs here; other com-
mon feature selection methods (e.g. use of informa-
tion gain) were ineffective in our previous work, so
we did not explore them in detail here.

With regards to the features themselves, our ear-
lier work tested a fairly standard collection of distri-
butional features, including function words, word n-
grams (up to bigram), POS n-grams (up to trigram),
character n-grams (up to trigram), dependencies,
context-free productions, and ‘mixed’ POS/function
n-grams (up to trigram), i.e. n-grams with all lex-
ical words replaced with part of speech. Most of
these had appeared in previous NLI work (Koppel
et al., 2005; Wong and Dras, 2011; Wong et al.,
2012), though until recently word n-grams had been
avoided because of ICLE topic bias. Our best model
used only two of these features, word n-grams and
the mixed POS/function n-grams. This was our
starting point for the present work. The Stanford
parser (Klein and Manning, 2003) was used for POS
tagging and parsing.

Obviously, the training set used varies through-
out the paper, and other differences in specific mod-
els built for each task will be mentioned as they
become relevant. For evaluation here, we primar-
ily use the test set for NLI shared task, though we

Table 1: Feature testing for closed-training task, previ-
ously investigated features; best result is in bold.

Feature Set Accuracy (%)
Word+mixed 76.8
Word+mixed+characters 72.0
Word+mixed+POS 76.6
Word+mixed+productions 77.9
Word+mixed+dependencies 78.9
Word+mixed+dep+prod 78.4

employ some other evaluation corpora, as appropri-
ate. During the preparation for the shared task, we
made our decisions regarding models for two tasks
with TOEFL-11 training according to the results in
two training/test sets (800 per language for training,
100 per language for testing) sampled from the re-
leased training data. Since our research was focused
on cross-corpus evaluation, we never created mecha-
nisms for cross-validation in our system, and in fact
it creates practical difficulties for the open-training
task 2, so we do not include cross-validated results
here.

3 Closed-training Task

Our approach to the closed-training task primarily
involved feature testing. Table 1 contains the re-
sults of testing our previously investigated features
from Brooke and Hirst (2012b) in the TOEFL-11,
pivoted around the best set (word n-grams + mixed
POS/Function n-grams) from that earlier work.

Some of the features we rejected in our previous
work also underperform here, in particular charac-
ter and POS n-grams. In fact, character n-grams had
a much more negative effect on performance here
than they had previously. Dependencies are clearly a
useful feature in the TOEFL-11, this is fully consis-
tent with out initial testing. CFG productions offer a
small benefit on top of our base feature set, but are
not useful when dependencies are also included, so
we discarded them. Thus, our feature set going for-
ward consists of word n-grams, mixed POS/function
n-grams, and dependencies.

Next, we evaluate our feature frequency cutoff us-
ing this feature set (Table 2). We used the rather high
cutoff of 5 (for all features) in the previous work be-
cause of our much larger training set. We looked at
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Table 2: Feature frequency cutoff testing for closed-
training task; best result is in bold.

Cutoff Accuracy (%)
At least 5 occurrences 78.9
At least 3 occurrences 79.5
At least 2 occurrences 79.7
All features 80.2

higher values there, but for this task we focused on
testing lower values.

Lowering our frequency cutoff is indeed benefi-
cial, and we got our best result in the test set when
we had no feature selection at all. This was not con-
sistent with our preparatory testing, which showed
some benefit to removing hapax legomena, though
the difference was marginal. However, we did in-
clude a run with this option in our final submis-
sion, and so this last result represents our best per-
formance on the closed-training task.

We tested several other feature options that were
added to our system for this task. Inspired by Bykh
and Meurers (2012), we first considered n-grams
(up to trigrams) where at least one lexical word is
abstracted to its POS, and at least one isn’t (par-
tial abstraction). Since dependencies were found to
be a positive feature, we tried adding dependency
chains, which combine two dependencies, i.e. three
lexical words linked by two grammatical relations.
We tested productions with wild cards, e.g. S→ NP
VP * matches any sentence production which starts
with NP VP. Tree Substitution grammar fragments
have been shown to be superior to CFG produc-
tions (Swanson and Charniak, 2012); we used raw
Tree Substitution Grammar (TSG) fragments for the
TOEFL-111 and tested a subset of those fragments
which involved at least two levels of the grammar
(i.e. those not already covered by n-grams or CFG
productions).

Our final feature option requires slightly more
explanation. Crossley and McNamara (2012) re-
port that metrics associated with word concreteness,
imagability, meaningfulness, and familiarity are use-
ful for NLI; the metrics they use are derived from the
MRC Psycholinguistic database (Coltheart, 1980),

1We thank Ben Swanson for letting us use his TSG frag-
ments.

Table 3: Feature testing for closed-training task, new fea-
tures; best result is in bold.

Feature Set Accuracy (%)
Best 80.2
Best+partial abstraction 79.7
Best+dependency chains 78.6
Best+wild card productions 78.8
Best+TSG fragments 78.1
Best+MRC lexicon 54.2

which assign values for each dimension to individ-
ual words. We used the scores in the MRC to get
an average score for each dimension for each text,
further normalized to the range 0–1; texts with no
words in the dictionaries were assigned the average
across the training set.

Table 3 indicates that all of these new features
were, to varying degrees, a drag on our model. The
strongly negative effect of the MRC lexicons is par-
ticularly surprising. We speculate that this might
might be due partially to problems with combining
a large number of binary features with a small num-
ber of continuous metrics directly in a single SVM.
A meta-classifier might solve this problem, but we
did not explore meta-classification for features here.

Finally, since that information was available to
us, we tested creating sub-models segregated by
topic and proficiency. The topic-segregated model
consisted of 8 SVMs, one for each topic; accu-
racy of this model was quite low, only 67.3%. The
proficiency-segregated model used two groups, high
and low/medium (there were few low texts, so we
did not think they would be sufficient by themselves
for a viable model). Results were higher, 74.9%, but
still well below the best unsegregated model.

4 External Corpora

In this section we review corpora which will be used
for the open-training tasks in the next two sections.
Including the TOEFL-11, there are at least six pub-
licly available multi-L1 learner text corpora for NLI,
with many of these corpora becoming available rel-
atively recently. Below, we introduce each corpus in
detail; a summary of the number of tokens from each
L1 background for each of the corpora is in Table 4.
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Table 4: Number of tokens (in thousands) in external learner corpora, by L1.

L1 Corpus
Lang-8 (new) ICLE FCE ICCI ICNALE

Japanese 11694k 227k 33k 232k 199k
Chinese 7044k 552k 30k 243k 366k
Korean 5174k 0k 37k 0k 151k
French 536k 256k 61k 0k 0k
Spanish 861k 225k 83k 49k 0k
Italian 450k 251k 31k 0k 0k
German 331k 258k 29k 91k 0k
Turkish 51k 222k 22k 0k 0k
Arabic 218k 0k 0k 0k 0k
Hindi 11k 0k 0k 0k 0k
Telugu 2k 0k 0k 0k 0k

Lang-8 Lang-8 is a website where language learn-
ers write journal entries in their L2 to be corrected
by native speakers. We collected a large set of these
entries, which we’ve shown to be useful for NLI
(Brooke and Hirst, 2012b), despite the noisiness of
the corpus (for instance, some entries directly mix
L1 and L2). For this task we added more entries
written since the first version was collected (58k
on top of the existing 154k entries).2 The corpus
contains entries from all the L1 backgrounds in the
TOEFL-11, though the amounts for Hindi and par-
ticularly Telugu are small. Since many of the entries
are very short, as in our previous work we add en-
tries of the same L1 together to reach a minimum
size of 250 tokens.

ICLE Before 2011, nearly all work on NLI was
done in the International Corpus of Learner English
or ICLE (Granger et al., 2009), a collection of col-
lege student essays from 15 L1 backgrounds, 8 of
which overlap with the 11 L1s in the TOEFL-11.
Despite known issues that might cause problems
(Brooke and Hirst, 2011), it is probably the closest
match in terms of genre and writer proficiency to the
TOEFL-11.

FCE What we call the FCE corpus is a small
sample of the First Certificate in English portion
of the Cambridge Learner Corpus, which was re-

2We do not have permission to distribute the corpus directly;
however, we can offer a list of URLs together with software
which can be used to recreate the corpus.

leased for the purposes of essay scoring evaluation
(Yannakoudakis et al., 2011); 16 different L1 back-
grounds are represented, 9 of which overlap with the
TOEFL-11. Each of the texts consists of two short
answers in the form of a letter, a report, an article,
or a short story. Relative to the other corpora, the
actual amount of text in the FCE is small.

ICCI Like the ICLE and TOEFL-11, the Inter-
national Corpus of Crosslinguistic Interlanguage
(Tono et al., 2012) is also an essay corpus, though
in contrast with other corpora it is focused on young
learners, i.e. those in grade school. It includes both
descriptive and argumentative essays on a number of
topics. Only 4 of its L1s overlap with the TOEFL-
11.

ICANLE The International Corpus Network of
Asian Learners of English or ICANLE (Ishikawa,
2011) is a collection of essays from college students
in 10 Asian countries; 3 of the L1s overlap with the
TOEFL-11.3 Even more so than the TOEFL-11, this
corpus is strictly controlled for topic, it has only 2
topics (part-time jobs and smoking in restaurants).

One obvious problem with using the above cor-
pora to classify L1s in the TOEFL-11 is the lack
of Hindi and Telugu text, which we found were
the two most easily confused L1s in the closed-

3The ICANLE also contains 103K of Urdu text. Since Urdu
and Hindi are mutually intelligible, this could be a good substi-
tute for Hindi; we overlooked this possibility during our prepa-
ration for the task, unfortunately.
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Table 5: Number of tokens (in thousands) in Indian cor-
pora, by expected L1.

L1 Indian Corpus
News Twitter Blog

Hindi 996k 146k 2089k
Telugu 998k 133k 76k

training task. We explored a few methods to get
data to fill this gap. First, we downloaded two
collections of English language Indian news arti-
cles, one from a Hindi newspaper, the Hindus-
tan Times, and one from a Telugu newspaper, the
Andhra Jyothy.4 Second, we extracted a collection
of English tweets from the WORLD twitter corpus
(Han et al., 2012) that were geolocated in the Hindi
and Telugu speaking areas; as with the Lang-8, these
were combined to create texts of at least 250 tokens.5

Our third Indian corpus consists of translations (by
Google Translate) of Hindi and Telugu blogs from
the ICWSM 2009 Spinn3r Dataset (Burton et al.,
2009), which we used in other work on using L1
text for NLI (Brooke and Hirst, 2012a). The number
of tokens in each of these corpora are given in Table
5.

5 Open-training Task 2

Our approach to open-training task 2 is based on the
assumption that in many ways it is a direct extension
of the closed-training task. For example, we directly
use the best feature set from that task, with no further
testing. Based on the results in our initial testing,
we used a feature frequency cutoff of 2 during our
testing for open-training task 2; for consistency, we
continue with that cutoff in this section.

We first attempted to integrate information from
other corpora by using a meta-classifier, as was suc-
cessfully used for features by Tetreault et al. (2012).
Briefly, classifiers were trained on each major exter-
nal corpus (including only the L1s in the TOEFL-
11), and then tested on the TOEFL-11 training set;

4As with the Lang-8, we cannot distribute the corpus di-
rectly but would be happy to provide URLs and scraping soft-
ware for those would like to build it themselves.

5We extracted India regions 07 and 36 for Hindi, and 02 and
25 for Telegu; We can provide a list of tweet ids for reconstruct-
ing the corpus if desired. Our thanks to Bo Han and Paul Cook
for helping us get these tweets.

TOEFL-11 training was accomplished using 10-fold
crossvalidation (by modifying the code for Liblin-
ear crossvalidation to output margins). With the
TOEFL-11 as the training set, the SVM margins
from each 1va classifier (across all L1s and all cor-
pora) were used as the feature input to the meta-
classifier (also an SVM). In addition to Liblinear,
we also outputted this meta-classification problem to
WEKA format (Witten and Frank, 2005), and tested
a number of other classifier options not available
in Liblinear (e.g. Naı̈ve Bayes, decision trees, ran-
dom forests). In addition to (continuous) margins,
we also tested using the classification directly. Ul-
timately, we came to the conclusion were that any
use of a meta-classifer came with a cost (a mini-
mum 2–3% drop in performance) that could not be
fully overcome with the additional information from
our external corpora. The result using SVM classi-
fiers, margin features, and an SVM meta-classifier
was 78.5%, well below the TOEFL-11–only base-
line.

The other approach to using these external cor-
pora is to add the data directly to the TOEFL-11 data
and train a single classifier. This is very straightfor-
ward; really the only variable is which corpora will
be included. However, we need to introduce, at this
point, a domain-adaptation technique from our most
recent work (Brooke and Hirst, 2012b), bias adap-
tion, which we used to greatly improve the accu-
racy of cross-corpus classification. Without getting
into the algorithmic details, bias adaption involves
changing the bias (constant) factor of a model until
the output of the model in some dataset is balanced
across classes (or otherwise fits the expected distri-
bution); it partially addresses skewed results due to
differences between training and testing corpora. In
the previous work, we used a separate development
set, but here we rely on the test set itself; since the
technique is unsupervised, we do not need to know
the classes. Table 6 shows model performance after
adding various corpora to the training set (TOEFL-
11 is always included), with and without bias adap-
tion (BA).

Many of the differences in Table 6 are modest,
but there are are few points to be made. First,
there is a small improvement using either the Lang-
8 or the ICLE as additional data. The ICCI, on the
other hand, has a clearly negative effect, perhaps be-
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Table 6: Corpus testing for open-training task; best result
is in bold.

Training Set Accuracy (%)
no BA with BA

TOEFL-11 only 79.7 79.2
+Lang-8 79.5 80.5
+ICLE 80.2 80.2
+FCE 79.6 79.3
+ICCI 77.3 76.7
+ICANLE 79.7 79.3
+Lang-8+ICLE 80.4 80.4
+all but ICCI 80.0 80.4

cause of the age or proficiency of the contributors to
that corpus. Bias adaption seems to help when the
(messy and highly unbalanced) Lang-8 is involved
(consistent with our previous work), but it does not
seem useful applied to other corpora, at least not in
this setting.

Our second adaptation technique involves training
data selection, which has been used, for instance in
cross-domain parsing (Plank and van Noord, 2011).
The method used here is very simple: we count the
number of times each word appears in a document in
our test data, rank the texts in our training data ac-
cording to the sum of counts (in the test data) each
word that appears in a training texts, and throw away
a certain numbers of low-ranked texts. For example,
if a training text consists solely of the two words I
agree6 and I appears in 1053 texts in the test set,
and agree appears in 325, then the value for that text
is 1378. This method simultaneously penalizes short
texts, those texts with low lexical diversity, and texts
that do not use the same words as our test set. We
use a fixed cutoff, r, which refers to the proportion
of training data that is thrown away for each L1 (al-
lowing this to work independent of L1 was not ef-
fective). We tested this on this method in tandem
with bias adaption on two corpus sets: The TOEFL-
11 and the Lang-8, and all corpora except the ICCI.
The results are in Table 7. The number in italics is
the best run that we submitted.

Again, it is difficult to come to any firm con-
clusions when the differences are this small, but

6This is not a made-up example; there is actually a text in
the TOEFL-11 corpus like this.

Table 7: Training set selection testing for open-training
task 2; best result is in bold, best submitted run is in ital-
ics.

Training Set Accuracy (%)
no BA with BA

TOEFL-11 only 79.7 79.2
+Lang-8 79.5 80.5
+Lang-8 r = 0.1 81.4 81.6
+Lang-8 r = 0.2 80.6 81.5
+Lang-8 r = 0.3 81.0 80.6
+all but ICCI 80.0 80.4
+all but ICCI r = 0.1 81.5 82.5
+all but ICCI r = 0.2 81.0 81.6
+all but ICCI r = 0.3 80.9 81.3

our best results involve all of the corpora (except
the ICCI) and both adaptation techniques. Unfor-
tunately, our initial testing suggested r = 0.2 was
the better choice, so our official best result in this
task (81.6%) is not the best result in this table. Per-
formance clearly drops for r > 0.2. Nevertheless,
nearly all the results in the table show clear improve-
ment on our closed-training task model.

6 Open-training Task 1

The central challenge of open-training task 1 was
that the TOEFL-11 was completely off-limits, even
for testing. Therefore, a discussion of how we pre-
pared for this task is very distinct from a post hoc
analysis of the best method once we allowed our-
selves access to the TOEFL-11; we separate the two
here. We did use the feature set (and frequency cut-
off) from the closed-training (and open-training 2)
task; it was close enough to the feature set from our
earlier work (using the Lang-8, ICLE, and FCE) that
it did not seem like cheating to preserve it.

6.1 Method

Given our failure to create a meta-classifier in open-
training task 2, we did not pursue that option here,
focusing purely on adding corpora directly to a
mixed training set. The central question was which
corpora to add, and whether to use our domain-
adaptation methods. Our experience with the ICCI
in the open-training task 2 suggested that it might be
worth leaving it (or perhaps other corpora) out, but
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Table 8: ICLE testing for Open-training task 1; best result
is in bold.

Training Set Accuracy (%)
no BA with BA

Lang-8 47.0 57.1
Lang-8+FCE 47.9 58.2
Lang-8+ICCI 46.4 54.8
Lang-8+ICNALE 46.9 57.5
Lang-8+ICNALE+FCE 47.7 58.8
Lang-8+ICNALE+FCE r = 0.1 46.6 58.2

could we come to that conclusion independently?
Our approach involved considering each external

corpus as a test set, and seeing which other corpora
were useful when included in the training set; cor-
pora which were consistently useful would be in-
cluded in the final set. Our original exploration in-
volved looking at all of the corpora (as test sets),
but it was haphazard; here, we present results just
with the ICLE and the ICANLE, which are arguably
the two closest corpora to the TOEFL-11 in terms
of proficiency and genre. For this, we used a dif-
ferent selection of L1s, 12 for the ICLE, 7 for the
ICANLE; all of these languages appeared in at least
the Lang-8, and 2 of them (Chinese and Japanese)
appeared in all corpora. Both sets were balanced by
L1. Again, we report results with and without bias
adaption. The results for the ICLE are in Table 8.

The clearest result in Table 8 is the consistently
positive effect of bias adaption, at least 10 percent-
age points, which is line with our previous work.
Adding both ICLE and ICNALE to the Lang-8 cor-
pus gave a small boost in performance, but the effect
of the ICCI was once again negative, as was the ef-
fect of our training set selection.

The ICNALE results in Table 9 support many of
the conclusions that we reached in the ICLE (and
other sets like the FCE and ICCI, which are not in-
cluded here but gave similar results); the effect of
bias adaption is even more pronounced. Two dif-
ferences: the slightly positive effect of training data
selection and the positive effect of the ICCI, the lat-
ter of which we saw nowhere else. We speculate
that this might be due to that fact that although the
ICNALE is a college-level corpus, it is a corpus of

Table 9: ICNALE testing for open-training task 1; best
result is in bold.

Training Set Accuracy
no BA with BA

Lang-8 37.2 59.6
Lang-8+FCE 37.9 61.3
Lang-8+ICCI 35.7 61.4
Lang-8+ICLE 37.3 61.4
Lang-8+ICLE+FCE 37.6 61.7
Lang-8+ICLE+FCE r = 0.1 37.7 61.9

Asian-language native speakers. Our theory is that
Europeans are, on average, more proficient users
of English (this is supported by, for instance, the
testing from Granger et al. (2009)), and that there-
fore the European component of the low-proficiency
ICCI actually interferes with using high proficiency
as a way of distinguishing European L1s, a problem
which would obviously not extend to an Asian-L1-
only corpus. This is an interesting result, but we will
not explore it further here. In any case, it would lead
us to predict that including ICCI data would be a bad
idea for TOEFL-11 testing.

Since we did not have any way to evaluate our
Indian corpora (i.e. the news, twitter, and translated
blogs from Section 4) without using the TOEFL-11,
we instead took advantage of the option to submit
multiple runs, submitting runs which use each of the
corpora, and combining the blogs and news.

6.2 Post Hoc Analysis
With the TOEFL-11 data now visible to us, we first
ask whether our specially collected Indian corpora
can distinguish texts in the ICCI. The test set used
in Table 10 contains only Hindi and Telugu texts.
The results are quite modest (the guessing baseline
is 50%), but suggest that all three corpora contain
some information that distinguish Hindi and Telugu,
particularly if bias adaption is used.

The results for a selection of models on the full
set of TOEFL-11 languages is presented in Table
11. Since ours was the best-performing model in
this task, we include results for both the TOEFL-
11 training (including development set) and test set,
to facilitate future comparison. Again, there is little
doubt that bias adaption is of huge benefit, though
in fact our results in the Lang-8 alone, without bias
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Table 11: 11-language testing on TOEFL-11 sets for open-training task 1; best result is in bold, best submitted run is
in italics.

Training Set
Accuracy (%)

TOEFL-11 test TOEFL-11 training
no BA with BA no BA with BA

Lang-8 39.5 53.2 37.2 48.2
Lang-8+ICCI 36.9 51.0 34.9 46.3
Lang-8+FCE+ICLE+ICNALE 44.5 55.8 44.9 53.1
Lang-8+FCE+ICLE+ICNALE+Indian news 45.2 56.5 45.5 54.9
Lang-8+FCE+ICLE+ICNALE+Indian tweets 44.9 56.4 45.1 53.4
Lang-8+FCE+ICLE+ICNALE+Indian translated blog 45.4 50.1 45.7 49.9
Lang-8+FCE+ICLE+ICNALE+News+Tweets 45.2 57.5 45.5 55.2
Lang-8+FCE+ICLE+ICNALE+News+Tweets r = 0.1 44.9 58.2 45.0 58.2

Table 10: Indian corpus testing for Open-training task 1;
best result is in bold.

Training Set Accuracy (%)
no BA with BA

Indian news 50.0 54.0
Indian tweets 54.0 56.0
Indian blogs 51.5 56.0

adaption, would have been enough to take first place
in this task. Adding other corpora, including the In-
dian corpora but not the ICCI, did consistently im-
prove performance, as suggested by our testing in
other corpora. Although the translated blog data was
useful in distinguishing Hindi from Telugu alone, it
had an unpredictable effect in the main task, lower-
ing bias-adapted performance. Training set selection
does seem to have a small positive effect, though we
did not see this consistently in our original testing.

7 Conclusion

Our efforts in the 2013 NLI shared task focused on
the potential benefits of external corpora. We have
shown here that including training data from multi-
ple corpora is effective at creating good cross-corpus
NLI systems, particularly when domain adaptation,
i.e. bias adaption or training set selection, is also
applied; we were the highest-performing group in
open-training task 1 by a large margin. This ap-
proach can also be applied to improve performance
even when training data from the same corpus is
available, as in open-training task 2. However, in

the closed-training task, despite testing a number
of new features, we did not see much improvement
on our simple model based on earlier work. Other
teams clearly did find some ways to improve on
this straightforward approach, and we hope to see
to what extent those improvements are generalizable
across different NLI corpora.
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Abstract
We explore a range of features and ensembles
for the task of Native Language Identification
as part of the NLI Shared Task (Tetreault et al.,
2013). Starting with recurring word-based n-
grams (Bykh and Meurers, 2012), we tested
different linguistic abstractions such as part-
of-speech, dependencies, and syntactic trees
as features for NLI. We also experimented
with features encoding morphological proper-
ties, the nature of the realizations of particu-
lar lemmas, and several measures of complex-
ity developed for proficiency and readabil-
ity classification (Vajjala and Meurers, 2012).
Employing an ensemble classifier incorporat-
ing all of our features we achieved an ac-
curacy of 82.2% (rank 5) in the closed task
and 83.5% (rank 1) in the open-2 task. In
the open-1 task, the word-based recurring n-
grams outperformed the ensemble, yielding
38.5% (rank 2). Overall, across all three tasks,
our best accuracy of 83.5% for the standard
TOEFL11 test set came in second place.

1 Introduction

Native Language Identification (NLI) tackles the
problem of determining the native language of an
author based on a text the author has written in a
second language. With Tomokiyo and Jones (2001),
Jarvis et al. (2004), and Koppel et al. (2005) as first
publications on NLI, the research focus in computa-
tional linguistics is relatively young. But with over
a dozen new publications in the last two years, it is
gaining significant momentum.

In Bykh and Meurers (2012), we explored a data-
driven approach using recurring n-grams with three

levels of abstraction using parts-of-speech (POS). In
the present work, we continue exploring the contri-
bution and usefulness of more linguistically moti-
vated features in the context of the NLI Shared Task
(Tetreault et al., 2013), where our approach is in-
cluded under the team name “Tübingen”.

2 Corpora used
T11: TOEFL11 (Blanchard et al., 2013) This is the
main corpus of the NLI Shared Task 2013. It con-
sists of essays written by English learners with 11
native language (L1) backgrounds (Arabic, Chinese,
French, German, Hindi, Italian, Japanese, Korean,
Spanish, Telugu, Turkish), and from three different
proficiency levels (low, medium, high). Each L1 is
represented by a set of 1100 essays (train: 900, dev:
100, test: 100). The labels for the train and dev sets
were given from the start, the labels for the test set
were provided after the results were submitted.

ICLE: International Corpus of Learner English
(Granger et al., 2009) The ICLEv2 corpus consists
of 6085 essays written by English learners of 16 dif-
ferent L1 backgrounds. They are at a similar level of
English proficiency, namely higher intermediate to
advanced and of about the same age. For the cross-
corpus tasks we used the essays for the seven L1s in
the intersection with T11, i.e., Chinese (982 essays),
French (311), German (431), Italian (391), Japanese
(366), Spanish (248), and Turkish (276).

FCE: First Certificate in English Corpus (Yan-
nakoudakis et al., 2011) The FCE dataset consists
of 1238 scripts produced by learners taking the First
Certificate in English exam, assessing English at an
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upper-intermediate level. For the cross-corpus tasks,
we used the essays by learners of the eight L1s in
the intersection with T11, i.e., Chinese (66 essays),
French (145), German (69), Italian (76), Japanese
(81), Korean (84), Spanish (198), and Turkish (73).

BALC: BUiD (British University in Dubai) Arab
Learner Corpus (Randall and Groom, 2009) The
BALC corpus consists of 1865 English learner texts
written by students with an Arabic L1 background
from the last year of secondary school and the first
year of university. The texts were scored and as-
signed to six proficiency levels. For the cross-corpus
NLI tasks, we used the data from the levels 3–5
amounting to overall 846 texts. We excluded the two
lowest and the highest, sixth level based on pretests
with the full BALC data.

ICNALE: International Corpus Network of
Asian Learners of English (Ishikawa, 2011) The
version of the ICNALE corpus we used consists of
5600 essays written by college students in ten coun-
tries and areas in Asia as well as by English na-
tive speakers. The learner essays are assigned to
four proficiency levels following the CEFR guide-
lines (A2, B1, B2, B2+). For the cross-corpus tasks,
we used the essays written by learners from Korea
(600 essays) and from Pakistan (400).1 Without ac-
cess to a corpus with Hindi as L1, we decided to la-
bel the essays written by Pakistani students as Hindi.
Most of the languages spoken in Pakistan, including
the official language Urdu, belong to the same Indo-
Aryan/-Iranian language family as Hindi. Our main
focus here was on avoiding overlap with Telugu, the
other Indian language in this shared task, which be-
longs to the Dravidian language family.

TÜTEL-NLI: Tübingen Telugu NLI Corpus We
collected 200 English texts written by Telugu native
speakers from bilingual (English-Telugu) blogs, lit-
erary articles, news and movie review websites.

NT11: NON-TOEFL11 We combined the ICLE,
FCE, ICNALE, BALC and TÜTEL-NLI sources
discussed above in the NT11 corpus consisting of
overall 5843 essays for 11 L1s, as shown in Table 1.

1We did not include ICNALE data for more L1s to avoid
overrepresentation of already well-represented Asian L1s.

Corpora
L1 ICLE FCE BALC ICNALE TÜTEL #
ARA - - 846 - - 846
CHI 982 66 - - - 1048
FRE 311 145 - - - 456
GER 431 69 - - - 500
HIN - - - 400 - 400
ITA 391 76 - - - 467
JPN 366 81 - - - 447
KOR - 84 - 600 - 684
SPA 248 198 - - - 446
TEL - - - - 200 200
TUR 276 73 - - - 349
# 3005 792 846 1000 200 5843

Table 1: Distribution of essays for the 11 L1s in NT11

3 Features

Recurring word-based n-grams (rc. word ng.)
Following, Bykh and Meurers (2012), we used all
word-based n-grams occurring in at least two texts
of the training set. We focused on recurring uni-
grams and bigrams, which in our previous work and
in T11 testing with the dev set worked best. For the
larger T11 train ∪ NT11 set, recurring n-grams up
to length five were best, but for uniformity we only
used word-based unigrams and bigrams for all tasks.
As in our previous work, we used a binary feature
representation encoding the presence or absence of
the n-gram in a given essay.

Recurring OCPOS-based n-grams (rc. OCPOS
ng.) All OCPOS n-grams occurring in at least two
texts of the training set were obtained as described
in Bykh and Meurers (2012). OCPOS means that
the open class words (nouns, verbs, adjectives and
cardinal numbers) are replaced by the corresponding
POS tags. For POS tagging we used the OpenNLP
toolkit (http://opennlp.apache.org).

In Bykh and Meurers (2012), recurring OCPOS
n-grams up to length three performed best. How-
ever, for T11 we found that including four- and five-
grams was beneficial. This confirms our assumption
that longer n-grams can be sufficiently common to
be useful (Bykh and Meurers, 2012, p. 433). Thus
we used the recurring OCPOS n-grams up to length
five for the experiments in this paper. We again used
a binary feature representation.
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Recurring word-based dependencies (rc. word
dep.) Extending the perspective on recurring pieces
of data to other data types, we explored a new fea-
ture: recurring word-based dependencies. A feature
of this type consists of a head and all its immediate
dependents. The dependencies were obtained using
the MATE parser (Bohnet, 2010). The words in each
n-tuple are recorded in lowercase and listed in the or-
der in which they occur in the text; heads thus are not
singled out in this encoding. For example, the sen-
tence John gave Mary an interesting book yields the
following two potential features (john, gave, mary,
book) and (an, interesting, book). As with recur-
ring n-grams we utilized only features occurring in
at least two texts of the training set, and we used a
binary feature representation.

Recurring function-based dependencies (rc.
func. dep.) The recurring function-based depen-
dencies are a variant of the recurring word-based
dependencies described above, where each depen-
dent is represented by its grammatical function. The
above example sentence thus yields the two features
(sbj, gave, obj, obj) and (nmod, nmod, book).

Complexity Given that the proficiency level of a
learner was shown to play a role in NLI (Tetreault
et al., 2012), we implemented all the text com-
plexity features from Vajjala and Meurers (2012),
who used measures of learner language complex-
ity from SLA research for readability classification.
These features consist of lexical richness and syn-
tactic complexity measures from SLA research (Lu,
2010; 2012) as well as other syntactic parse tree
properties and traditionally used readability formu-
lae. The parse trees were built using the Berke-
ley parser (Petrov and Klein, 2007) and the syntac-
tic complexity measures were estimated using the
Tregex package (Levy and Andrew, 2006).

In addition, we included morphological and POS
features from the CELEX Lexical Database (Baayen
et al., 1995). The morphological properties of words
in CELEX include information about the deriva-
tional, inflectional and compositional features of
the words along with information about their mor-
phological origins and complexity. POS properties
of the words in CELEX describe the various at-
tributes of a word depending on its parts of speech.

We included all the non-frequency based and non-
word-string attributes from the English Morphology
Lemma (EML) and English Syntax Lemma (ESL)
files of the CELEX database. We also defined Age
of Acquisition features based on the psycholinguis-
tic database compiled by Kuperman et al. (2012). Fi-
nally, we included the ratios of various POS tags to
the total number of words as POS density features,
using the POS tags from the Berkeley parser output.

Suffix features The use of different derivational
and inflectional suffixes may contain information
regarding the L1 – either through L1 transfer, or
in terms of what suffixes are taught, e.g., for
nominalization. In a very basic approximation of
morphological analysis, we used the porter stem-
mer implementation of MorphAdorner (http://
morphadorner.northwestern.edu). For each
word in a learner text, we removed the stem
it identified from the word, and if a suffix re-
mained, we matched it against the Wiktionary list of
English suffixes (http://en.wiktionary.org/
wiki/Appendix:Suffixes:English). For each
valid suffix thus identified, we defined a binary fea-
ture (suffix, bin.) recording the presence/absence
and a feature counting the number of occurrences
(suffix, cnt.) in a given learner text.

Stem-suffix features We also wondered whether
the subset of morphologically complex unigrams
may be more indicative than considering all uni-
grams as features. As a simple approximation of this
idea, we used the stemmer plus suffix-list approach
mentioned above and used all words for which a suf-
fix was identified as features, both binary (stemsuf-
fix, bin.) and count-based (stemsuffix, cnt.).

Local trees Based on the syntactic trees assigned
by the Berkeley Parser (Petrov and Klein, 2007), we
extracted all local trees, i.e., trees of depth one. For
example, for the sentence I have a tree, the parser
output is: (ROOT (S (NP (PRP I)) (VP (VBP have)
(NP (DT a) (NN tree))) (. .))) for which the local
trees are (S NP VP .), (NP PRP), (NP DT NN), (VP
VBP NP), (ROOT S). Count-based features are used.

Stanford dependencies Tetreault et al. (2012) ex-
plored the utility of basic dependencies as features
for NLI. In our approach, we extracted all Stanford
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dependencies (de Marneffe et al., 2006) using the
trees assigned by the Berkeley Parser. We consid-
ered lemmatized typed dependencies (type dep. lm.)
such as nsubj(work,human) and POS tagged ones
(type dep. POS) such as nsubj(VB,NN) for our fea-
tures. We used count-based features for those typed
dependencies.

Dependency number (dep. num.) We encoded the
number of dependents realized by a verb lemma,
normalized by this lemma’s count. For example, if
the lemma take occurred ten times in a document,
three times with two dependents and seven times
with three dependents, we get the features take:2-
dependents = 3/10 and take:3-dependents = 7/10.

Dependency variability (dep. var.) These fea-
tures count possible dependent-POS combinations
for a verb lemma, normalized by this verb lemma’s
count. If in the example above, the lemma take
occurred three times with two dependents JJ-NN,
two times with three dependents JJ-NN-VB, and five
times with three dependents NN-NN-VB, we ob-
tain take:JJ-NN = 3/10, take:JJ-NN-VB = 2/10, and
take:NN-NN-VB = 5/10.

Dependency POS (dep. POS) These features are
derived from the dep. var. features and encode how
frequent which kind of category was a dependent for
a given verb lemma. Continuing the example above,
take takes dependents of three different categories:
JJ, NN and VB. For each category, we create a fea-
ture, the value of which is the category count divided
by the number of dependents of the given lemma,
normalized by the lemma’s count in the document.
In the example, we obtain take:JJ = (1/2 + 1/3)/10,
take:NN = (1/2 + 1/3 + 2/3)/10, and take:VB = (1/3
+ 1/3)/10.

Lemma realization matrix (lm. realiz.) We spec-
ified a set of features that is calculated for each dis-
tinct lemma and three feature sets generalizing over
all lemmas of the same category:

1. Distinct lemma counts of a specific category
normalized by the total count of this category
in a document. For example, if the lemma can
is found in a document two times as a verb and
five times as a noun, and the document contains
30 verbs and 50 nouns, we obtain the two fea-

tures can:VB = 2/30 and can:NN = 5/50.
2. Type-Lemma ratio: lemmas of same category

normalized by total lemma count
3. Type-Token ratio: tokens of same category nor-

malized by total token count
4. Lemma-Token Ratio: lemmas of same category

normalized by tokens of same category

Proficiency and prompt features Finally, for some
settings in the closed task we also included two nom-
inal features to encode the proficiency (low, medium,
high) and the prompt (P1–P8) features provided as
meta-data along with the T11 corpus.

4 Results

4.1 Evaluation Setup

We developed our approach with a focus on the
closed task, training the models on the T11 train set
and testing them on the T11 dev set. For the
closed task, we report the accuracies on the dev set
for all models (single feature type models and en-
sembles as introduced in sections 4.2 and 4.3),
before presenting the accuracies on the submitted
test set models, which were trained on the T11 train
∪ dev set. In addition, for the submitted models
we report the accuracies obtained via 10-fold cross-
validation on the T11 train ∪ dev set using the folds
specification provided by the organizers of the NLI
Shared Task 2013.

The results for the open-1 task are obtained by
training the models on the NT11 set, and the results
for the open-2 task are obtained by training the mod-
els on the T11 train ∪ dev set ∪ NT11 set. For the
open-1 and open-2 tasks, we report the basic single
feature type results on the T11 dev set and two sets
of results on the T11 test set: the results for the ac-
tual submitted systems and the results for the com-
plete systems, i.e., including the features used in the
closed task submissions that for the open tasks were
only computed after the submission deadline (given
our focus on the closed task and finite computational
infrastructure). We include the figures for the com-
plete systems to allow a proper comparison of the
performance of our models across the tasks.

Below we provide a description of the various ac-
curacies (%) we report for the different tasks:
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• Acctest: Accuracy on the T11 test set after
training the model on:

– closed: T11 train ∪ dev set
– open-1: NT11 set
– open-2: T11 train ∪ dev set ∪ NT11 set

• Accdev: Accuracy on the T11 dev set after
training the model on:

– closed: T11 train set
– open-1: NT11 set
– open-2: T11 train set ∪ NT11 set

• Acc10
train∪dev: Accuracy on the T11 train ∪ dev

set obtained via 10-fold cross-validation using
the data split information provided by the orga-
nizers, applicable only for the closed task.

In terms of the tools used for classification, we
employed LIBLINEAR (Fan et al., 2008) using
L2-regularized logistic regression, LIBSVM (Chang
and Lin, 2011) using C-SVC with the RBF kernel
and WEKA SMO (Platt, 1998; Hall et al., 2009) fit-
ting logistic models to SVM outputs (the -M option).
Which classifier was used where is discussed below.

4.2 Single Feature Type Classifier Results
First we evaluated the performance of each fea-
ture separately for the closed task by computing the
Accdev values. These results constituted the basis
for the ensembles discussed in section 4.3. We also
report the corresponding results for the open-1 and
open-2 tasks, which were partly obtained after the
system submission and thus were not used for de-
veloping the approach. As classifier, we generally
used LIBLINEAR, except for complexity and lm.
realiz., where SMO performed consistently better.
The summary of the single feature type performance
is shown in Table 2.

The results reveal some first interesting insights
into the employed feature sets. The figures show
that the recurring word-based n-grams (rc. word ng.)
taken from Bykh and Meurers (2012) are the best
performing single feature type in our set yielding an
Accdev value of 81.3%. This finding is in line with
the previous research on different data sets showing
that lexical information seems to be highly relevant
for the task of NLI (Brooke and Hirst, 2011; Bykh
and Meurers, 2012; Jarvis et al., 2012; Jarvis and
Paquot, 2012; Tetreault et al., 2012). But also the
more abstract linguistic features, such as complexity

Accdev

Feature type closed open-1 open-2
1. rc. word ng. 81.3 42.0 80.3
2. rc. OCPOS ng. 67.6 26.6 64.8
3. rc. word dep. 67.7 30.9 69.4
4. rc. func. dep. 62.4 28.2 61.3
5. complexity 37.6 19.7 36.5
6. stemsuffix, bin. 50.3 21.4 48.8
7. stemsuffix, cnt. 48.2 19.3 47.1
8. suffix, bin. 20.4 9.1 17.5
9. suffix, cnt. 19.0 13.0 17.7

10. type dep. lm. 67.3 25.7 67.5
11. type dep. POS 46.6 27.8 27.6
12. local trees 49.1 26.2 25.7
13. dep. num. 39.7 19.6 41.8
14. dep. var. 41.5 18.6 40.1
15. dep. POS 47.8 21.5 47.4
16. lm. realiz. 70.3 30.3 66.9

Table 2: Single feature type results on T11 dev set

measures, local trees, or dependency variation mea-
sures seem to contribute relevant information, con-
sidering the random baseline of 9% for this task.

Having explored the performance of the single
feature type models, the interesting question was,
whether it is possible to obtain a higher accuracy
than yielded by the recurring word-based n-grams
by combining multiple feature types into a single
model. We thus investigated different combinations,
with a primary focus on the closed task.

4.3 Combining Feature Types

We followed Tetreault et al. (2012) in exploring two
options: On the one hand, we combined the differ-
ent feature types directly in a single vector. On the
other hand, we used an ensemble classifier. The en-
semble setup used combines the probability distribu-
tions provided by the individual classifier for each
of the incorporated feature type models. The indi-
vidual classifiers were trained as discussed above,
and ensembles were trained and tested using LIB-
SVM, which in our tests performed better for this
purpose than LIBLINEAR. To obtain the ensemble
training files, we performed 10-fold cross-validation
for each feature model on the T11 train set (for in-
ternal evaluation) and on the T11 train ∪ dev set (for
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submission) and took the corresponding probability
estimate distributions. For the ensemble test files,
we took the probability estimate distribution yielded
by each feature model trained on the T11 train set
and tested on the T11 dev set (for internal evalua-
tion), as well as by each feature model trained on
the T11 train ∪ dev set and tested on the T11 test set
(for submission).

In our tests, the ensemble classifier always outper-
formed the single vector combination, which is in
line with the findings of Tetreault et al. (2012). We
thus focused on ensemble classification for combin-
ing the different feature types.

4.4 Closed Task (Main) Results

We submitted the predictions for the systems listed
in Table 3, which we chose in order to test all fea-
ture types together, the best performing single fea-
ture type, everything except for the best single fea-
ture type, and two subsets, with the latter primarily
including more abstract linguistic features.

id system description system type
1 overall system ensemble
2 rc. word ng. single model
3 #1 minus rc. word ng. ensemble
4 well performing subset ensemble
5 “linguistic subset” ensemble

Table 3: Submitted systems for all three tasks

The results for the submitted systems are shown in
Table 4. Here and in the following result tables, the
system ids in the table headers correspond to the ids
in Table 3, the best result on the test set is shown in
bold, and the symbols have the following meaning:

• x = feature type used

• - = feature type not used

• -* = feature type ready after submission

We report the Acctest, Accdev and Acc10
train∪dev ac-

curacies introduced in section 4.1. The Accdev re-
sults are consistently better than the Acctest results,
highlighting that relying on a single development
set can be problematic. The cross-validation results
are more closely aligned with the ultimate test set
performance.

systems
Feature type 1 2 3 4 5

1. rc. word ng. x x - x -
2. rc. OCPOS ng. x - x x -
3. rc. word dep. x - x x -
4. rc. func. dep. x - x x -
5. complexity x - x x x
6. stemsuffix, bin. x - x x x
7. stemsuffix, cnt. x - x - x
8. suffix, bin. x - x x x
9. suffix, cnt. x - x - x

10. type dep. lm. x - x - x
11. type dep. POS x - x - x
12. local trees x - x - x
13. dep. num. x - x x -
14. dep. var. x - x x -
15. dep. POS x - x x -
16. lm. realiz. x - x x -
proficiency x - x x -
prompt x - x x -
Acctest 82.2 79.6 81.0 81.5 74.7
Accdev 85.4 81.3 83.5 84.9 76.3
Acc10

train∪dev 82.4 78.9 80.7 81.7 74.1

Table 4: Results for the closed task

Overall, comparing the results for the different
systems shows the following main points (with the
system ids in the discussion shown in parentheses):

• The overall system performed better than any
single feature type alone (cf. Tables 2 and 4).
The ensemble thus is successful in combining
the strengths of the different feature types.
• The rc. word ng. feature type alone (2) per-

formed very well, but the overall system with-
out that feature type (3) still outperformed it.
Thus apparently the different properties ac-
cessed by more elaborate linguistic modelling
contribute some information not provided by
the surface-based n-gram feature.
• A system incorporating a subset of the differ-

ent feature types (4) performed still reasonably
well. Hence, it is conceivable that a subsys-
tem consisting of some selected feature types
would perform equally well (eliminating only
information present in multiple feature types)
or even outperform the overall system (by re-
moving some noise). This point will be inves-
tigated in detail in our future work.

202



• System 5, combining a subset of feature types,
where each one incorporates some degree
of linguistic abstraction (in contrast to pure
surface-based feature types such as word-based
n-grams), performed at a reasonably high level,
supporting the assumption that incorporating
more linguistic knowledge into the system de-
sign has something to contribute.

Putting our results into the context of the NLI
Shared Task 2013, with our best Acctest value of
82.2% for closed as the main task, we ranked fifth
out of 29 participating teams. The best result in
the competition, obtained by the team “Jarvis”, is
83.6%. According to the significance test results
provided by the shared task organizers, the differ-
ence of 1.4% is not statistically significant (0.124
for pairwise comparison using McNemar’s test).

4.5 Open-1 Task Results

The Accdev values for the single feature type models
for the open-1 task were included in Table 2. The
results for the test set are presented in Table 5. We
report two different Acctest values: the accuracy for
the actual submitted systems (Acctest) and for the
corresponding complete systems (Acctest with ∗) as
discussed in section 4.1.

systems
Feature type 1 2 3 4 5

1. rc. word ng. x x - x -
2. rc. OCPOS ng. x - x x -
3. rc. word dep. x - x x -
4. rc. func. dep. x - x x -
5. complexity x - x x x
6. stemsuffix, bin. x - x x x
7. stemsuffix, cnt. x - x - x
8. suffix, bin. x - x x x
9. suffix, cnt. x - x - x

10. type dep. lm. -∗ - -∗ - -∗

11. type dep. POS -∗ - -∗ - -∗

12. local trees -∗ - -∗ - -∗

13. dep. num. x - x x -
14. dep. var. x - x x -
15. dep. POS x - x x -
16. lm. realiz. x - x x -
Acctest 36.4 38.5 33.2 37.8 21.2
Acctest with ∗ 37.0 n/a 35.4 n/a 29.9

Table 5: Results for the open-1 task

Conceptually, the open-1 task is a cross-corpus
task, where we used the NT11 data for training and
T11 data for testing. It is more challenging for sev-
eral reasons. First, the models are trained on data
that is likely to be different from the one of the
test set in a number of respects, including possible
differences in genre, task and topic, or proficiency
level. Second, the amount of data we were able to
obtain to train our model is far below what was pro-
vided for the closed task. Thus a drop in accuracy is
to be expected.

Particularly interesting is the fact that our best re-
sult for the open-1 task (38.5%) was obtained using
the rc. word ng. feature type alone. Thus adding
the more abstract features did not improve the accu-
racy. The reason for that may be the smaller train-
ing corpus size, the uneven distribution of the texts
among the different L1s in the NT11 corpus, or the
mentioned potential differences between NT11 and
T11 in genre, task and topic, and learner proficiency.
Also interesting is the fact that the system combining
a subset of feature types outperformed the overall
system. This finding supports the assumption men-
tioned in section 4.4 that the ensemble classifier can
be optimized by informed, selective model combina-
tion instead of combining all available information.

To put our results into the context of the NLI
Shared Task 2013, our best Acctest value of 38.5%
for the open-1 task achieved rank two out of three
participating teams. The best accuracy of 56.5% was
obtained by the team “Toronto”. While the open-
1 task results in general are much lower than the
closed task results, highlighting an important chal-
lenge for future NLI work, they nevertheless are
meaningful steps forward considering the random
baseline of 9%.

4.6 Open-2 Task Results
For the open-2 task we provide the same information
as for open-1. The Accdev values for the single fea-
ture type models are shown in Table 2, and the two
Acctest values, i.e., the accuracy for the actual sub-
mitted systems (Acctest) and for the complete sys-
tems (Acctest with ∗) can be found in Table 6.

For the open-2 task, we put the T11 train ∪
dev and NT11 sets together to train our models. The
interesting question behind this task is, whether it is
possible to improve the accuracy of NLI by adding
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systems
Feature type 1 2 3 4 5

1. rc. word ng. x x - x -
2. rc. OCPOS ng. x - x x -
3. rc. word dep. -∗ - -∗ -∗ -
4. rc. func. dep. x - x x -
5. complexity x - x x x
6. stemsuffix, bin. x - x x x
7. stemsuffix, cnt. x - x - x
8. suffix, bin. x - x x x
9. suffix, cnt. x - x - x

10. type dep. lm. -∗ - -∗ - -∗

11. type dep. POS x - x - x
12. local trees x - x - x
13. dep. num. x - x x -
14. dep. var. x - x x -
15. dep. POS x - x x -
16. lm. realiz. x - x x -
Acctest 83.5 81.0 79.3 82.5 64.8
Acctest with ∗ 84.5 n/a 83.3 82.9 79.8

Table 6: Results for the open-2 task

data from corpora other than the one used for test-
ing. This is far from obvious, especially considering
the low results obtained for the open-1 task pointing
to significant differences between the T11 and the
NT11 corpora.

Overall, when using all feature types, our results
for the open-2 task (84.5%) are better than those we
obtained for the closed task (82.2%). So adding data
from a different domain improves the results, which
is encouraging since it indicates that something gen-
eral about the language used is being learned, not
(just) something specific to the T11 corpus. Essen-
tially, the open-2 task also is closest to the real-world
scenario of using whatever resources are available to
obtain the best result possible.

Putting the results into the context of the NLI
Shared Task 2013, our best Acctest value of 83.5%
(84.5%) is the highest accuracy for the open-2 task,
i.e, first rank out of four participating teams.

5 Conclusions

We explored the task of Native Language Identifi-
cation using a range of different feature types in the
context of the NLI Shared Task 2013. We consid-
ered surface features such as recurring word-based
n-grams system as our basis. We then explored

the contribution and usefulness of some more elab-
orate, linguistically motivated feature types for the
given task. Using an ensemble model combining
features based on POS, dependency, parse trees as
well as lemma realization, complexity and suffix in-
formation features, we were able to outperform the
high accuracy achieved by the surface-based recur-
ring n-grams features alone. The exploration of
linguistically-informed features thus is not just of
analytic interest but can also make a quantitative dif-
ference for obtaining state-of-the-art performance.

In terms of future work, we have started exploring
the various feature types in depth to better under-
stand the causalities and correlations behind the re-
sults obtained. We also intend to explore more com-
plex linguistically motivated features further, such
as features based on syntactic alternations as used in
Krivanek (2012). Studying such variation of linguis-
tic properties, instead of recording their presence as
we mostly did in this exploration, also stands to pro-
vide a more directly interpretable perspective on the
feature space identified as effective for NLI.
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Nielsen. 2004. Investigating L1 lexical transfer
through learners’ wordprints. Presented at the 2004
Second Language Research Forum. State College,
Pennsylvania, USA.

Scott Jarvis, Gabriela Castañeda-Jiménez, and Rasmus
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Abstract

In this paper, we describe our approach to na-

tive language identification and discuss the re-

sults we submitted as participants to the First

NLI Shared Task. By resorting to a wide set of

general–purpose features qualifying the lexi-

cal and grammatical structure of a text, rather

than to ad hoc features specifically selected

for the NLI task, we achieved encouraging re-

sults, which show that the proposed approach

is general–purpose and portable across differ-

ent tasks, domains and languages.

1 Introduction

Since the seminal work by Koppel et al. (2005),

within the Computational Linguistics community

there has been a growing interest in the NLP–based

Native Language Identification (henceforth, NLI)

task. However, so far, due to the unavailability

of balanced and wide–coverage benchmark corpora

and the lack of evaluation standards it has been dif-

ficult to compare the results achieved for this task

with different methods and techniques (Tetreault et

al., 2013). The First Shared Task on Native Lan-

guage Identification (Tetreault et al., 2013) can be

seen as an answer to the above mentioned problems.

In this paper, we describe our approach to na-

tive language identification and discuss the results

we submitted as participants to the First NLI Shared

Task. Following the guidelines by the Shared Task

Organizers based on the previous literature on this

topic, Native Language Identification is tackled as

a text classification task combining NLP–enabled

feature extraction and machine learning: see e.g.

Tetreault et al. (2013) and Brooke and Hirst (2012).

Interestingly, the same methodological paradigm is

shared by other tasks like e.g. author recognition and

verification (see e.g. van Halteren (2004), author-

ship attribution (see Juola (2008) for a survey), genre

identification (Mehler et al., 2011) as well as read-

ability assessment (see Dell’Orletta et al. (2011a) for

an updated survey), all relying on feature extraction

from automatically parsed texts and state–of–the–art

machine learning algorithms. Besides obvious dif-

ferences at the level of the typology of selected lin-

guistic features and of learning techniques, these dif-

ferent tasks share a common approach to the prob-

lems they tackle: i.e. they succeed in determining

the language variety, the author, the text genre or the

level of readability of a text by exploiting the distri-

bution of different types of linguistic features auto-

matically extracted from texts.

Our approach to NLI relies on multi–level lin-

guistic analysis, covering morpho–syntactic tagging

and dependency parsing. In the NLI literature, the

range of features used is wide and includes char-

acteristics of the linguistic structure underlying the

L2 text, encoded in terms of sequences of charac-

ters, words, grammatical categories or of syntac-

tic constructions, as well as of the document struc-

ture: note however that, in most part of the cases,

the exploited features are task–specific. In our ap-

proach, we decided to resort to a wide set of fea-

tures ranging across different levels of linguistic de-

scription (i.e. lexical, morpho–syntactic and syntac-

tic) without any a priori selection: the same set of

features was successfully exploited in NLI–related

tasks, i.e. focusing on the linguistic form rather than
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the content of texts, such as readability assessment

(Dell’Orletta et al., 2011a) or the classification of

textual genres (Dell’Orletta et al., 2012).

The exploitation of general features qualifying the

lexical and grammatical structure of a text, rather

than ad hoc features specifically selected for the task

at hand, is not the only peculiarity of our approach

to NLI. Following Biber (1993), we start from the

assumption that “linguistic features from all levels

function together as underlying dimensions of vari-

ation”. This choice stems from studies on linguis-

tic variation, in particular from Biber and Conrad

(2009) who claim that linguistic varieties – called

“registers” from a functional perspective – differ “in

their characteristic distributions of pervasive linguis-

tic features, not the single occurrence of an indi-

vidual feature”. This is to say that by carrying out

the linguistic analysis of collections of essays each

written by different L1 native speakers, we need to

quantify the extent to which a given feature occurs

in each collection, in order to reconstruct the lin-

guistic profile underlying each L1 collection: dif-

ferences lie at the level of the distribution of linguis-

tic features, which can be common and pervasive in

some L1 collections but comparatively rare in oth-

ers. This approach is the basis of so–called “linguis-

tic profiling” of texts, within which “the occurrences

of a large number of linguistic features in a text, ei-

ther individual items or combinations of items, are

counted” (van Halteren, 2004) with the final aim of

reconstructing the profile of a text.

We carried out native language identification in

two steps. The first step consisted of the identifi-

cation of the set of linguistic features characteriz-

ing the essays written by different L1 native speak-

ers, i.e. the linguistic profiling of the different sec-

tions of TOEFL11 corpus (Blanchard et al., 2013)

distributed as training and development data. In

the second step, the features which turned out to

have highly discriminative power were used for the

classification of essays written by different L1 na-

tive speakers. Essay classification has been carried

out by experimenting with different approaches: i.e.

a single–classifier method and two different multi–

model ensemble approaches.

The paper is organised as follows: after introduc-

ing the set of used linguistic features (Section 2),

Section 3 illustrates a selection of the linguistic

profiling results obtained with respect to the train-

ing section of the TOEFL11 corpus; Section 4 de-

scribes the different classification approaches we

followed and the feature selection process; in Sec-

tion 5 achieved results are reported and discussed.

2 Features

In this study, we focused on a wide set of features

ranging across different levels of linguistic descrip-

tion. Differing from previous work on NLI, no a

priori selection of features was carried out. Instead

of focusing on particular classes of errors or on dif-

ferent types of stylistic idiosyncrasies, we took into

account a wide range of features which are typically

used in studies focusing on the “form” of a text,

e.g. on issues of genre, style, authorship or read-

ability. As previously pointed out, this represents a

peculiarity of our approach. This choice makes the

selected features language–independent, domain–

independent and reusable across different types of

tasks, as empirically demonstrated in Dell’Orletta

et al. (2011a) where the same set of features has

been successfully exploited for readability assess-

ment, and in Dell’Orletta et al. (2012) where the fea-

tures have been used for the classification of differ-

ent types of textual genre. Note that in both cases the

language dealt with was Italian: for the NLI Shared

Task we had to specialize the feature extraction pro-

cess with respect to the English language as well as

to the annotation scheme used to represent the un-

derlying linguistic structure.

The whole set of features we started with is de-

scribed below, organised into four main categories:

namely, raw text and lexical features as well as

morpho-syntactic and syntactic features. This pro-

posed four–fold partition closely follows the differ-

ent levels of linguistic analysis automatically car-

ried out on the text being evaluated, i.e. tokeniza-

tion, lemmatization, morpho-syntactic tagging and

dependency parsing.

2.1 Raw and Lexical Text Features

Sentence Length, calculated as the average number

of words per sentence.

Word Length, calculated as the average number of

characters per word.

Document Length, calculated as the total number
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of words per document.

Character bigrams.

Word n-grams, including both unigrams and bi-

grams.

Type/Token Ratio: the Type/Token Ratio (TTR) is

a measure of vocabulary variation which has shown

to be a helpful measure of lexical variety within

a text as well as style marker in an authorship at-

tribution scenario: a text characterized by a low

type/token ratio will contain a great deal of repeti-

tion whereas a high type/token ratio reflects vocabu-

lary richness and variation. Due to its sensitivity to

sample size, TTR has been computed for text sam-

ples of equivalent length (the first 50 tokens).

2.2 Morpho–syntactic Features

Coarse grained Part-Of-Speech n-grams: distri-

bution of unigrams and bigrams of coarse–grained

PoS, corresponding to the main grammatical cate-

gories (e.g. noun, verb, adjective, etc.).

Fine grained Part-Of-Speech n-grams: distribu-

tion of unigrams and bigrams of fine–grained PoS,

which represent subdivisions of the coarse–grained

tags (e.g. the class of nouns is subdivided into proper

vs common nouns, verbs into main verbs, gerund

forms, past particles, etc.).

Verbal chunks: distribution of sequences of verbal

PoS (also including adverbs). This feature can be

seen as a proxy to capture different aspects of verbal

predication, with particular attention to idiosyncratic

usages of verbal mood, tense, person and adverbial

modification.

Lexical density: ratio of content words (verbs,

nouns, adjectives and adverbs) to the total number

of lexical tokens in a text.

2.3 Syntactic Features

Dependency types n-grams: distribution of uni-

grams and bigrams of dependency types calculated

with respect to i) the hierarchical parse tree structure

and ii) the surface linear ordering of words.

Dependency triples: distribution of triplets repre-

senting a dependency relation consisting of a syn-

tactic head (h), the dependency relation type (t) and

the dependent (d). Two different variants of this fea-

ture are distinguished, based on the fact that either

the coarse–grained PoS or the word–form of h and d

is considered: we will refer to the former as Coarse

grained Part-Of-Speech dependency triples and to

the latter as Lexical dependency triples. In both

cases, the relative ordering of h and d, i.e. whether h

precedes or follows d at the level of the linear order-

ing of words within the sentence, is also considered.

Dependency Subtrees: distribution of dependency

subtrees consisting of a dependency relation (repre-

sented as the dependency triple {h, t, d}), the head

father and the dependency relation linking the two.

As in the previous case, two different variants of this

feature are distinguished, based on the fact that ei-

ther the coarse grained PoS or the word–forms of

the nodes in the dependency subtree are considered.

Parse tree depth features: this set of features is

meant to capture different aspects of the parse tree

depth and includes: a) the depth of the whole parse

tree, calculated in terms of the longest path from

the root of the dependency tree to some leaf; b)

the average depth of embedded complement ‘chains’

governed by a nominal head and including either

prepositional complements or nominal and adjecti-

val modifiers; c) the probability distribution of em-

bedded complement ‘chains’ by depth. These fea-

tures represent reliable indicators of sentence com-

plexity, as stated by, among others, Yngve (1960),

Frazier (1985) and Gibson (1998), and they can thus

allow capturing specific difficulties of L2 learners.

Coarse grained Part-Of-Speech of sentence root:

this feature refers to coarse grained POS of the syn-

tactic root of a sentence.

Arity of verbal predicates: this feature refers to

the number of dependencies (corresponding to either

subcategorized arguments or modifiers) governed by

the same verbal head. In the NLI context, it can al-

low capturing improper verbal usage by L2 learners

due to language transfer (e.g. with pro–drop lan-

guages as L1).

Subordination features: this set of features is

meant to capture different aspects of the use of sub-

ordination and includes: a) the distribution of sub-

ordinate vs main clauses; b) the average depth of

‘chains’ of embedded subordinate clauses and c)

the probability distribution of embedded subordinate

clauses ‘chains’ by depth. Similarly to parse tree

depth, this set of features can be taken to reflect the

structural complexity of sentences and can thus be

indicative of specific difficulties of L2 learners.

Length of dependency links: measured in terms
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of the words occurring between the syntactic head

and the dependent. This is another feature which

reflects the syntactic complexity of sentences (Lin,

1996; Gibson, 1998) and which can be successfully

exploited to capture syntactic idiosyncracies of L2

learners due to L1 interferences.

2.4 Other features

Two further features have been considered for NLI

purposes, which were included in the distributed

datasets. For each document, we have also consid-

ered i) the English language proficiency level (high,

medium, or low) based on human assessment by lan-

guage specialists, and ii) the topic of the essays.

3 Linguistic Profiling of TOEFL11 Corpus

In this section, we illustrate the results of linguis-

tic profiling carried out on the training and devel-

opment sets extracted from the TOEFL11 corpus.

This corpus, described in Blanchard et al. (2013),

contains 1,100 essays per 11 languages (for a to-

tal of 12,100 essays) sampled as evenly as possi-

ble from 8 prompts (i.e., topics) along with score

levels (low/medium/high) for each essay. The con-

sidered L1s are: Arabic, Chinese, French, German,

Hindi, Italian, Japanese, Korean, Spanish, Telugu,

and Turkish. For the specific purposes of the NLI

Shared Task, a total of 9,900 essays has been dis-

tributed as training data (900 essays per L1), 1,100

as development data (100 per L1) and the remaining

1,100 essays have been used as test data.

We started from the automatic linguistic annota-

tion of training and development data whose output

has been searched for with respect to the features il-

lustrated in Section 2.

3.1 Linguistic Pre–processing

Both training and development data were au-

tomatically morpho-syntactically tagged by the

POS tagger described in Dell’Orletta (2009) and

dependency–parsed by the DeSR parser using

Multi–Layer Perceptron as learning algorithm (At-

tardi et al., 2009), a state–of–the–art linear–time

Shift–Reduce dependency parser. Feature extraction

is carried out against the output of the multi–level

automatic linguistic analysis carried out during the

pre–processing stage: lexical and grammatical pat-

terns corresponding to the wide typology of selected

features are looked for within each annotation layer

and quantified.

3.2 Linguistic Profiling

Generally speaking, linguistic profiling makes it

possible to identify (groups of) texts which are sim-

ilar, at least with respect to the “profiled” features

(van Halteren, 2004). In what follows we report

the results of linguistic profiling obtained with re-

spect to the 11 L1 sub–corpora considered in this

study. Figure 1 shows the results obtained with re-

spect to a selection of the features described in Sec-

tion 2. These results refer to the combined training

and development data sets: note, however, that we

also calculated the values of these features in the two

datasets separately and it turned out that they do not

vary significantly between the two sets. This fact

can be taken as a proof both of the reliability of our

approach to linguistic profiling and of the relevance

of these features for NLI purposes.

Starting from raw textual features (Figures 1(a)

and 1(b)), both average sentence length and aver-

age word length vary significantly across L1s. In

particular, if on the one hand the essays written by

Arabic and Spanish L1 speakers contain the shortest

words and the longest sentences, on the other hand

the Hindi and Telugu L1 essays are characterized by

the longest words; the L1 Japanese and Korean cor-

pora contain the shortest sentences.

Let us focus now on the distribution of unigrams

of coarse grained Parts–Of–Speech. If we consider

the distributions of determiners and nouns, two fea-

tures typically used for NLI purposes (Wong and

Dras, 2009) which also represent stylistic markers

associated with different linguistic varieties (Biber

and Conrad, 2009), it can be noticed (see Fig-

ures 1(c) and 1(d)) that for Japanese and Korean the

essays show the lowest percentage of determiners,

while for Hindi and Telugu they are characterized

by the highest percentage of nouns.

For what concerns syntactic features, we observe

that essays by Japanese and Korean speakers are

characterized by quite a different distribution with

respect to the other L1 corpora. In particular, they

show the shallowest parse trees, the shortest depen-

dency links as well as the shortest ‘chains’ of em-

bedded complements governed by a nominal head.

On the other hand, the essays by Spanish and Ara-
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(a) Average word length (b) Average sentence length

(c) Distribution of Determiners (d) Distribution of Nouns

(e) Average parse tree depth (f) Average depth of embedded complement ‘chains’

(g) Average length of the longest dependency link (h) Arity of verbal predicates

Figure 1: Results of linguistic profiling carried out on the combined training and development sections of the TOEFL11

corpus.
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bic speakers contain the deepest parse trees, for Ital-

ian and Spanish we observe the longest dependency

links and for Hindi and Telugu the longest sequences

of embedded complements. Moreover, while the

essays by Italians are characterised by the highest

value of arity of verbal predicates, for Hindi, Telugu

and Korean essays much lower values are recorded.

Interestingly, these linguistic profiling results

show similar trends across the 11 languages at dif-

ferent levels of linguistic analysis. For instance, it

can be noted that Japanese and Korean or Italian

and Spanish, which belong to two different language

families, show similar distributions of features. Sim-

ilarities have also been recorded in the sub–corpora

by Hindi and Telugu speakers, even if these lan-

guages do not belong to the same family; we can

hypothesize that this might originate from language

contact phenomena.

4 System Description

4.1 Machine Learning Classifier

Our approach to Native Language Identification has

been implemented in a software prototype, i.e. a

classifier operating on mopho–syntactically tagged

and dependency parsed texts which assigns to each

document a score expressing its probability of be-

longing to a given L1 class. The highest score rep-

resents to the most probable class. Given a set of

features and a training corpus, the classifier creates a

statistical model using the feature statistics extracted

from the training corpus. This model is used in the

classification of unseen documents. The set of fea-

tures and the machine learning algorithm can be pa-

rameterized through a configuration file.

For each feature, we have implemented three dif-

ferent variants, depending on whether the feature

value is encoded in terms of: i ) presence/absence

of the feature (binary variant), ii ) the normalized

frequency (normalized frequency variant), and iii )

the normalized tf*idf value (normalized tf*idf vari-

ant). Since the binary feature variant outperformed

the other two, in all the experiments carried out on

the development set reported in Section 5 we illus-

trate the results obtained using this variant only. This

is in line with the results obtained by Brooke and

Hirst (2012) and Tetreault et al. (2013). According

to (Brooke and Hirst, 2012), a possible explanation

is that “in these relatively short texts, there is high

variability in normalized frequencies, and a simpler

metric, by having less variability, is easier for the

classifier to leverage”. Support Vector Machines

(SVM) using LIBSVM (Chang and Lin, 2001) and

Maximum Entropy (ME) using MaxEnt1 have been

used as machine learning algorithms.

We experimented two classification approaches: a

single classifier method and two ensemble systems,

combining the output of several classifiers.

The single classifier uses the set of features re-

sulting from the feature selection process described

in Section 4.2 and the SVM using linear kernel as

machine learning algorithm. This choice is due to

the fact that in all the experiments the linear SVM

outperformed the SVM using polynomial kernel.

There are two possible explanations for this fact,

namely: a) the number of features is much higher

than the number of training instances, accordingly

it might not be necessary to map data to a higher

dimensional space, therefore the nonlinear mapping

does not improve the performance; b) Weston et al.

(2000) showed that SVMs can indeed suffer in high

dimensional spaces where many features are irrele-

vant. Note that in Section 5, we report the results of

this classifier using different sets of features corre-

sponding to the lexical, morpho–syntactic and syn-

tactic levels of linguistic analysis.

The two ensemble systems combine the outputs

of the component classifiers following two different

strategies. The first one is based on the majority vot-

ing method (henceforth, VoteComb ): the combina-

tion strategy is seen as a classical voting problem

where for each essay is assigned the L1 class that

has been selected from the majority of classifiers. In

case of ties, the L1 class predicted from the best indi-

vidual model (as resulting from the experiments car-

ried out on the development set) is selected. The sec-

ond strategy combines the outputs of the component

classifiers via another classifier (henceforth referred

to as meta–classifier): we will refer to this second

strategy as ClassComb. The meta–classifier uses as

a feature the probability score predicted from each

component classifier for each L1 class. Differently

from the component classifiers, the meta–classifier

is based on polynomial kernel SVM. In both en-

1https://github.com/lzhang10/maxent#readme
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semble systems, the component classifiers use linear

SVM and ME as machine learning algorithms and

exploit different sets of features among the ones re-

sulting from the feature selection process described

below.

4.2 Features Selection Process

Since our approach to NLI relies on a wide num-

ber of general–purpose features, a feature selection

process was necessary in order to prune irrelevant

and redundant features which could negatively af-

fect the classification results. The selection process

starts taking into account all the n features described

in Section 2. In each iteration, for each feature fi we

generate a configuration ci such that fi is disabled

and all the other features are enabled. When an it-

eration finishes, we obtain for each ci a correspond-

ing accuracy score score(ci) which is computed as

the average of the accuracy obtained by the classi-

fier on the development set (ad) and on an internal

development set (ai), corresponding to the 10% of

the training set, used in order to reduce the overfit-

ting risk. Being cb the best configuration among all

the ci configurations, if score(cb) ≤ of the accuracy

scores resulting from the previous iterations the pro-

cess stops. Otherwise:

1. store in F the pair 〈fb, disabled〉 ;

2. for each configuration ci, if score(ci) ≤ of the

accuracy scores resulting from the previous it-

erations, we store in F the pair 〈fi, enabled〉;

3. set C = 〈cb, score(cb)〉

where F is a map containing elements

feature → {disabled, enabled} and C is a

pair that contains the current best configuration cb
and the corresponding score score(cb). In each

iteration, we consider only the features which do

not occur in F . At the initialization step F is empty

and C contains the configuration where all the

considered features are enabled.

In spite of the fact that the described selection

process does not guarantee to obtain the global opti-

mum, it however permitted us to obtain an improve-

ment of about 8% with respect to the starting model

indiscriminately using all features.

Table 1 lists the features resulting from the fea-

ture selection process. It can be noted that some

Lexical features:

Word n-grams

Morpho–syntactic features:

Coarse grained Part-Of-Speech unigrams

Fine grained Part-Of-Speech bigrams

Syntactic features:

Dependency types unigrams

Lexical dependency triples

Parse tree depth features

Coarse grained Part-Of-Speech of sentence root

Arity of verbal predicates

Subordination features

Length of dependency links

Table 1: Features resulting from the feature selection pro-

cess.

of them coincide with those typically used for NLI

purposes: this is the case of n–grams of words,

Parts-Of-Speech and syntactic dependencies. Inter-

estingly, to our knowledge, other features such as ar-

ity of verbal predicates, length of dependency links

as well as subordination and parse tree depth fea-

tures have not been used for NLI so far, in spite of

their being widely exploited in the syntactic com-

plexity literature (as discussed in Section 2).

5 Results

Table 2 reports the overall Accuracy achieved with

the different classifier models in the NLI classifi-

cation task on the official test set as well as the

F-measure score recorded for each L1 class. The

first two lines show the accuracies of the two com-

bination models, while the last three report the re-

sults obtained by the single classifier using i) the set

of features resulting by the features selection pro-

cess (Best Single), ii) the selected lexical features

only (see Table 1) (Lexical ) and iii) the lexical and

morpho–syntactic features (Lex+Morph ).

The two combination models outperform all

the single model classifiers: note that ClassComb

achieved much better results with respect to Vote-

Comb. By comparing these results with the F-

measure scores obtained on the distributed develop-

ment data (see Table 3), it can be seen that the rank-

ing of the scores achieved by the different classifiers

remains the same even if on the test data we obtained

a performance of -2,2% with respect to the develop-

213



Accuracy ARA CHI FRE GER HIN ITA JAP KOR SPA TEL TUR

ClassComb 77,9 73,8 77,5 83,2 87,3 71,1 86,0 78,8 74,2 70,8 76,2 78,0

VoteComb 77,2 74,3 77,0 80,0 87,0 72,8 81,6 79,6 73,8 67,7 77,6 77,6

Best Single 76,6 71,9 77,6 75,8 85,7 73,2 82,0 80,0 74,0 69,0 76,9 76,5

Lex+Morph 76,4 77,2 76,2 78,6 85,9 72,1 80,4 76,8 71,9 68,0 76,4 76,4

Lexical 76,2 71,1 76,5 79,0 87,6 74,5 80,8 77,7 70,8 66,7 79,2 73,4

Table 2: Classification results of different classifiers on official test data.

ment test set.

Let us consider now the results obtained by the

single model classifiers. In all cases the Best Single

outperforms the other two models demonstrating the

reliability of the features selection process and that

a combination of lexical, morpho–syntactic and syn-

tactic features leads to better results.

Although the best performing model is the Class-

Comb, this is not true for all the 11 languages. In

Table 2, the best results for each L1 are bolded. In-

terestingly, even though Lexical is the worst model,

it is the best performing one for three L1s while the

best model, i.e. ClassComb, for five only.

It can be noted that with respect to the devel-

opment data set the syntactic features used by the

Best Single model allow an increment of +1% as

opposed to the Lexical model: this represents a

much higher increase if compared with the result

obtained on the test data, which is +0,4%. This is

an unexpected result since the feature selection de-

scribed in Section 4.2 was carried out on an internal

development set in order to prevent the risk of over-

fitting on the distributed development data.

Classifier Accuracy

ClassComb 80,1

VoteComb 79,3

Best Single 78,8

Lex+Morph 78,2

Lexical 77,8

Table 3: Classification results of different classifiers on

distributed development data.

6 Conclusion

In this paper, we reported our participation results

to the First Native Language Identification Shared

Task. By resorting to a wide set of general–

purpose features qualifying the lexical and grammat-

ical structure of a text, rather than to ad hoc fea-

tures specifically selected for the task at hand, we

achieved encouraging results. After a feature se-

lection process, new features which to our knowl-

edge have never been exploited so far for NLI pur-

poses turned out to contribute significantly to the

task. Interestingly, the same set of features we

started from has been previously successfully ex-

ploited in other related tasks, such as readability

assessment and genre classification, operating on

the Italian language. The obtained results suggest

that our approach is general–purpose and portable

across different domains and languages. Further di-

rections of research currently include: i) comparison

of results obtained with general purpose features and

with NLI–specific features (e.g. typical errors or dif-

ferent types of stylistic idiosyncrasies specific to L2

learners), with a view to combining them to achieve

better results; ii) design and development of new en-

semble classification methods as well as new fea-

ture selection methods considering not only classes

of features but also individual features; iii) testing

our approach to NLI on different L2s (e.g. Italian) .
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Abstract

This paper presents a Native Language Iden-
tification (NLI) system based on TF-IDF
weighting schemes and using linear classi-
fiers - support vector machines, logistic re-
gressions and perceptrons. The system was
one of the participants of the 2013 NLI Shared
Task in the closed-training track, achieving
0.814 overall accuracy for a set of 11 native
languages. This accuracy was only 2.2 per-
centage points lower than the winner’s perfor-
mance. Furthermore, with subsequent evalua-
tions using 10-fold cross-validation (as given
by the organizers) on the combined training
and development data, the best average accu-
racy obtained is 0.8455 and the features that
contributed to this accuracy are the TF-IDF of
the combined unigrams and bigrams of words.

1 Introduction

Native Language Identification (NLI) is the task of
automatically identifying the native language of a
writer based on the writer’s foreign language pro-
duction. The task is modeled as a classification task
in which automatic methods have to assign class la-
bels (native languages) to objects (texts). NLI is by
no means trivial and it is based on the assumption
that the mother tongue influences Second Language
Acquisition (SLA) and production (Lado, 1957).

When an English native speaker hears someone
speaking English, it is not difficult for him/her to
identify if this person is a native speaker or not.
Moreover, it is, to some extent, possible to assert
the mother tongue of non-native speakers by his/hers

pronunciation patterns, regardless of their language
proficiency. In NLI, the same principle that seems
intuitive for spoken language, is applied to text. If
it is true that the mother tongue of an individual in-
fluences speech production, it should be possible to
identify these traits in written language as well.

NLI methods are particularly relevant for lan-
guages with a significant number of foreign speak-
ers, most notably, English. It is estimated that
the number of non-native speakers of English out-
numbers the number of native speakers by two to
one (Lewis et al., 2013). The written production
of non-native speakers is abundant on the Internet,
academia, and other contexts where English is used
as lingua franca.

This study presents the system that participated in
the 2013 NLI Shared Task (Tetreault et al., 2013)
under the name Cologne-Nijmegen. The novel as-
pect of the system is the use of TF-IDF weighting
schemes. For this study, we experimented with a
number of algorithms and features. Linear SVM and
logistic regression achieved the best accuracies on
the combined features of unigrams and bigrams of
words. The rest of the paper will explain in detail
the features, methods and results achieved.

2 Motivation

There are two main reasons to study NLI. On one
hand, there is a strong linguistic motivation, particu-
larly in the field of SLA and on the other hand, there
is the practical relevance of the task and its integra-
tion to a number of computational applications.

The linguistic motivation of NLI is the possibil-
ity of using classification methods to study the inter-
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play between native and foreign language acquisi-
tion and performance (Wong and Dras, 2009). One
of the SLA theories that investigate these phenom-
ena is contrastive analysis, which is used to explain
why some structures of L2 are more difficult to ac-
quire than others (Lado, 1957).

Contrastive analysis postulates that the difficulty
in mastering L2 depends on the differences between
L1 and L2. In the process of acquiring L2, lan-
guage transfer (also known as L1 interference) oc-
curs and speakers apply knowledge from their na-
tive language to a second language, taking advan-
tage of their similarities. Computational methods
applied to L2 written production can function as a
corpus-driven method to level out these differences
and serve as a source of information for SLA re-
searchers. It can also be used to provide more tar-
geted feedback to language learners about their er-
rors.

NLI is also a relevant task in computational lin-
guistics and researchers have turned their attention
to it in the last few years. The task is often regarded
as a part of a broader task of authorship profiling,
which consists of the application of automatic meth-
ods to assert information about the writer of a given
text, such as age, gender as well native language.
Authorship profiling is particularly useful for foren-
sic linguistics.

Automatic methods of NLI may be integrated in
NLP applications such as spam detection or machine
translation. NLP tasks such as POS tagging and
parsing might also benefit from NLI, as these re-
sources are trained on standard language written by
native speakers. These tools can be more accurate to
tag non-native speaker’s text if trained with L2 cor-
pora.

3 Related Work

In the last years, a couple of attempts at identifying
native language have been described in the literature.
Tomokiyo and Jones (2001) uses a Naive Bayes al-
gorithm to classify transcribed data from three native
languages: Chinese, Japanese and English. The al-
gorithm reached 96% accuracy when distinguishing
native from non-native texts and 100% when distin-
guishing English native speakers from Chinese na-
tive speakers.

Koppel et al. (2005) used machine learning to
identify the native languages of non-native English
speakers with five different mother tongues (Bul-
garian, Czech, French, Russian, and Spanish), us-
ing data retrieved from the International Corpus of
Learner English (ICLE) (Granger et al., 2009). The
features used in this study were function words,
character n-grams, and part-of-speech (POS) bi-
grams.

Tsur and Rappoport (2007) investigated the influ-
ence of the phonology of a writer’s mother tongue
through native language syllables modelled by char-
acter bigrams. Estival et al. (2007) addressed NLI as
part of authorship profiling. Authors aim to attribute
10 different characteristics of writers by analysing
a set of English e-mails. The study reports around
84% accuracy in distinguishing e-mails written by
English Arabic and Spanish L1 speakers.

SVM, the algorithm that achieved the best results
in our experiments, was also previously used in NLI
(Kochmar, 2011). In this study, the author identi-
fied error types that are typical for speakers of differ-
ent native languages. She compiled a set of features
based on these error types to improve the classifica-
tion’s performance.

Recently, the TOEFL11 corpus was compiled to
serve as an alternative to the ICLE corpus (Tetreault
et al., 2012). Authors argue that TOEFL11 is more
suitable to NLI than ICLE. This study also experi-
mented with different features to increase results in
NLI and reports best accuracy results of 90.1% on
ICLE and 80.9% on TOEFL11.

4 Methods

We approach the task of native language identifica-
tion as a kind of text classification. In text classifica-
tion, decisions and choices have to be made at three
levels. First, how do we use the training and devel-
opment data? Second, what features do we extract
and how do we select the most informative ones?
Third, which machine learning algorithms perform
best and which parameters can we tune under the
constraints of memory and time? In the following
subsections, we answer these questions.
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4.1 Dataset: TOEFL11
The dataset used for the shared task is called
TOEFL11 (Blanchard et al., 2013). It consists of
12,100 English essays (about 300 to 400 words long)
from the Test of English as a Foreign Language
(TOEFL). The essays are written by 11 native lan-
guage speakers (L1). Table 1 shows the 11 na-
tive languages. Each essay is labelled with an En-
glish language proficiency level (high, medium, or
low) based on the judgments of human assessment
specialists. We used 9,900 essays for training data
and 1,100 for development (parameter tuning). The
shared task organizers kept 1,100 essays for testing.

Table 1: TOEFL11

L1 languages Arabic, Chinese,
French, German,
Hindi, Italian,
Japanese, Korean,
Spanish, Telugu,
Turkish

# of essays per L1
900 for training
100 for validating
100 for testing

4.2 Features
We explored different kinds and combinations of
features that we assumed to be different for different
L1 speakers and that are also commonly used in the
NLI literature (Koppel et al., 2005; Tetreault et al.,
2012). Table 2 shows the sources of the features we
considered. Unigrams and bigrams of words are ex-
plored separately and in combination. One through
four grams of part of speech tags have also been ex-
plored. For POS tagging of the essays, we applied
the default POS tagger from NLTK (Bird, 2006).

Spelling errors have also been treated as features.
We used the collection of words in Peter Norvig’s
website1 as a reference dictionary. The collection
consists of about a million words. It is a concate-
nation of several public domain books from Project
Gutenberg and lists of most frequent words from
Wiktionary and the British National Corpus.

Character n-grams have also been explored for
both the words in the essays and for words with

1http://norvig.com/spell-correct.html

spelling errors. The maximum n-gram size consid-
ered is six.

All features, consisting of either characters or
words or part-of-speech tags or their combinations,
are mapped into normalized numbers (norm L2).
For the mapping, we use TF-IDF, a weighting tech-
nique popular in information retrieval but which is
also finding its use in text classification. Features
that occurred in less than 5 of the essays or those
that occurred in more than 50% of the essays are
removed (all characters are in lower case). These
cut-off values are experimentally selected.

Table 2: A summary of features used in our experiments

Word n-grams Unigrams and bigrams of
words present in the es-
says.

POS n-grams One up to four grams of
POS tags present in the
essays; tagging is done
using default NLTK tag-
ger (Bird, 2006).

Character n-grams One up to six grams of
characters in each essay.

Spelling errors All words that are not
found in the dictionary
of Peter Norvig’s spelling
corrector.

4.2.1 Term Frequency (TF)

Term Frequency refers to the number of times a
particular term appears in an essay. In our experi-
ments, terms are n-grams of characters, words, part-
of-speech tags or any combination of them. The
intuition is that a term that occurs more frequently
identifies/specifies the essay better than another term
that occurs less frequently. This seems a useful
heuristic but what is the relationship between the fre-
quency of a term and its importance to the essay?
From among many relationships, we selected a log-
arithmic relationship (sublinear TF scaling) (Man-
ning et al., 2008):

wft,e =

{
1 + log(tft,e) if tft,e > 0

0 otherwise
(1)
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where wft,e refers to weight and tft,e refers to the
frequency of term t in essay e.

The wft,e weight tells us the importance of a term
in an essay based on its frequency. But not all terms
that occur more frequently in an essay are equally
important. The effective importance of a term also
depends on how infrequent the term is in other es-
says and this intuition is handled by Inverse Docu-
ment Frequency(IDF).

4.2.2 Inverse Document Frequency(IDF)
Inverse Document Frequency (IDF) quantifies the

intuition that a term which occurs in many essays
is not a good discriminator, and should be given
less weight than one which occurs in fewer essays.
In mathematical terms, IDF is the log of the in-
verse probability of a term being found in any essay
(Salton and McGill, 1984):

idf(ti) = log
N

ni
, (2)

where N is the number of essays in the corpus,
and term ti occurs in ni of them. IDF gives a new
weight when combined with TF to form TF-IDF.

4.2.3 TF–IDF
TF–IDF combines the weights of TF and IDF

by multiplying them. TF gives more weight to a
frequent term in an essay and IDF downscales the
weight if the term occurs in many essays. Equation
3 shows the final weight that each term of an essay
gets before normalization.

wi,e = (1 + log(tft,e))× log(N/ni) (3)

Essay lengths are usually different and this has an
impact on term weights. To abstract from different
essay lengths, each essay feature vector is normal-
ized to unit length. After normalization, the result-
ing essay feature vectors are fed into classifiers.

4.3 Classifiers

We experimented with three linear classifiers - lin-
ear support vector machines, logistic regression and
perceptrons - all from scikit-learn (Pedregosa et al.,
2011). These algorithms are suitable for high dimen-
sional and sparse data (text data is high dimensional
and sparse). In the following paragraphs, we briefly

describe the algorithms and the parameter values we
selected.

SVMs have been explored systematically for text
categorization (Joachims, 1998). An SVM classi-
fier finds a hyperplane that separates examples into
two classes with maximal margin (Cortes and Vap-
nik, 1995) (Multi-classes are handled by multi one-
versus-rest classifiers). Examples that are not lin-
early separable in the feature space are mapped to a
higher dimension using kernels. In our experiments,
we used a linear kernel and a penalty parameter of
value 1.0.

In its various forms, logistic regression is also
used for text classification (Zhang et al., 2003;
Genkin et al., 2007; Yu et al., 2011) and native
language identification (Tetreault et al., 2012). Lo-
gistic regression classifies data by using a decision
boundary, determined by a linear function of the fea-
tures. For the implementation of the algorithm, we
used the LIBLINEAR open source library (Fan et
al., 2008) from scikit-learn (Pedregosa et al., 2011)
and we fixed the regularization parameter to 100.0.

For baseline, we used a perceptron classifier
(Rosenblatt, 1957). Perceptron (or single layer net-
work) is the simplest form of neural network. It is
designed for linear separation of data and works well
for text classification. The number of iterations of
the training algorithm is fixed to 70 and the rest of
parameters are left with their default values.

5 Results and Discussion

For each classifier, we ran ten-fold cross-validation
experiments. We divided the training and develop-
ment data into ten folds using the same fold splitting
ids as requested by the shared task organizers and
also as used in (Tetreault et al., 2012). Nine of the
folds were used for training and the tenth for test-
ing the trained model. This was repeated ten times
with each fold being held out for testing. The per-
formance of the classifiers on different features are
presented in terms of average accuracy.

Table 3 gives the average accuracies based on
the TF-IDF of word and character n-grams. Lin-
ear SVM gives the highest accuracy of 84.55% us-
ing features extracted from unigrams and bigrams
of words. Logistic regression also gives comparable
accuracy of 84.45% on the same features.
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Table 3: Cross-validation results; accuracy in %

N-gram
Linear
SVM

Logistic
Regression

Perceptron

Words
1 74.73 74.18 65.45
2 80.91 80.27 75.45

1 and 2 84.55 84.45 78.82
(1 and 2)* 83.36 83.27 78.73
* minus country and language names
Characters

1 18.45 19.27 9.09
2 43.27 40.82 10.36
3 71.36 68.00 36.91
4 80.36 79.91 59.64
5 83.09 82.64 73.91
6 84.09 84.00 76.45

The size of the feature vector of unigrams and bi-
grams of words is 73,6262. For each essay, only a
few of the features have non-zero values. Which
features are active and most discriminating in the
classifiers? Table 4 shows the ten most informative
features for the 10th run in the cross-validation (as
picked up linear SVM).

Table 4: Ten most informative features for each L1

ARA many reasons / from / self / advertisment / , and /
statment / any / thier / alot of / alot

CHI in china / hold / china / time on / may / taiwan / just /
still / , the / . take

FRE french / conclude , / even if / in france / france / to
conclude / indeed , / ... / . indeed / indeed

GER special / furthermore / might / germany / , because /
have to / . but / - / often / , that

HIN which / and concept / various / hence / generation / &
/ towards / then / its / as compared

ITA in italy / , for / infact / that a / italy / i think / in fact /
italian / think that / :

JPN , and / i disagree / is because / . it / . if / i think /
japan , / japanese / in japan / japan

KOR . however / however , / even though / however / these
days / various / korea , / korean / in korea / korea

SPA an specific / because is / moment / , etc / going to / ,
is / necesary / , and / diferent / , but

TEL
may not / the statement / every one / days / the above
/ where as / with out / when compared / i conclude /
and also

TUR ages / istanbul / addition to / conditions / enough / in
turkey / the life / ; / . because / turkey

The ten most informative features include coun-
2features that occur less than 5 times or that occur in more

than 50% of the essays are removed from the vocabulary

try and language names. For example, for Japanese
and Korean L1s, four of the ten top features include
Korea or Korean in the unigrams or bigrams. How
would the classification accuracy decrease if we re-
moved mentions of country or language names?

We made a list of the 11 L1 language names and
the countries where they are mainly spoken (for ex-
ample, German, Germany, French, France, etc.). We
considered this list as stop words (i.e. removed them
from corpus) and ran the whole classification exper-
iments. The new best accuracy is 83.36% ( a loss of
just 1.2% ). Table 3 shows the new accuracies for all
classifiers. The new top ten features mostly consist
of function words and some spelling errors. Table 5
shows all of the new top ten features.

The spelling errors seem to have been influenced
by the L1 languages, especially for French and
Spanish languages. The English words example
and developed have similar sounding/looking equiv-
alents in French (exemple and développé) . Simi-
larly, the English words necessary and different have
similar sounding/looking words in Spanish (nece-
sario and diferente). These spelling errors made it
to the top ten features. But how discriminating are
they on their own?

Table 5: Ten most informative features (minus country
and language names) for each L1

ARA many reasons / from / self / advertisment / , and /
statment / any / thier / alot of / alot

CHI and more / hold / more and / time on / taiwan / may /
just / still / . take / , the

FRE conclude / exemple / developped / conclude , / even
if / to conclude / indeed , / ... / . indeed / indeed

GER has to / special / furthermore / might / , because /
have to / . but / - / often / , that

HIN and concept / which / various / hence / generation / &
/ towards / then / its / as compared

ITA possibility / probably / particular / , for / infact / that
a / i think / in fact / think that / &

JPN i agree / the opinion / tokyo / two reasons / is because
/ , and / i disagree / . it / . if / i think

KOR creative / , many / ’s / . also / . however / even though
/ however , / various / however / these days

SPA activities / an specific / moment / , etc / going to / , is
/ necesary / , and / diferent / , but

TEL
may not / the statement / every one / days / the above
/ where as / when compared / with out / i conclude /
and also

TUR enjoyable / being / ages / addition to / istanbul /
enough / conditions / the life / ; / . because

We ran experiments with features extracted from
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Table 6: Confusion matrix: Best accuracy is for German (95%) and the worst is for Hindi (72%)

ARA CHI FRE GER HIN ITA JPN KOR SPA TEL TUR
ARA 83 1 4 1 1 3 1 2 3 1 0
CHI 0 88 2 0 2 0 2 5 1 0 0
FRE 3 0 88 2 1 2 0 1 2 0 1
GER 2 0 1 95 0 0 0 0 1 0 1
HIN 2 1 1 1 72 0 0 0 2 18 3
ITA 0 0 6 3 0 84 0 0 6 0 1
JPN 1 2 0 1 1 0 84 10 0 0 1

KOR 0 3 0 2 3 0 8 81 1 1 1
SPA 6 2 5 2 0 4 0 0 79 0 2
TEL 0 0 0 0 16 0 1 0 0 83 0
TUR 1 1 0 1 3 0 0 0 1 0 93

only spelling errors. For comparison, we also ran
experiments with POS tags with and without their
words. None of these experiments beat the best ac-
curacy obtained using unigram and bigram of words
- not even the unigram and bigram of POS tagged
words. See table 7 for the obtained results.

Table 7: Cross-validation results; accuracy in %

N-gram
Linear
SVM

Logistic
Regression

Perceptron

POS
1 17.00 17.09 9.09
2 43.45 40.00 11.18
3 55.27 53.55 35.36
4 56.09 56.18 48.64

POS + Word
1 75.09 74.18 64.09
2 80.45 80.64 76.18

1 and 2 83.00 83.36 79.09
Spelling errors - characters

1 20.36 21.00 9.09
2 34.09 32.64 9.73
3 47.00 44.64 26.82
4 50.82 48.09 41.64

1–4 51.82 48.27 34.18
words 42.73 39.45 28.73

All our reported results so far have been global
classification results. Table 6 shows the confusion
matrix for each L1. The best accuracy is 95% for
German and the worst is for Hindi (72%). Hindi
is classified as Telugu (18%) of the times and Tel-
ugu is classified as Hindi 16% of the times and
only one Telugu essay is classified as any other than
Hindi. More generally, the confusion matrix seems
to suggest that geographically closer countries are
more confused with each other: Hindi and Telugu,

Japanese and Korean, Chinese and Korean.
The best accuracy (84.55%) obtained in our ex-

periments is higher than the state-of-the-art accuracy
reported in (Tetreault et al., 2012) (80.9%). But the
features we used are not different from those com-
monly used in the literature (Koppel et al., 2005;
Tetreault et al., 2012) (n-grams of characters or
words). The novel aspect of our system is the use
of TF-IDF weighting on all of the features including
on unigrams and bigrams of words.

TF-IDF weighting has already been used in na-
tive language identification (Kochmar, 2011; Ahn,
2011). But its importance has not been fully ex-
plored. Experiments in Kochmar (2011) were lim-
ited to character grams and in a binary classifica-
tion scenario. Experiments in Ahn (2011) applied
TF-IDF weighting to identify content words and
showed how their removal decreased performance
(Ahn, 2011). By contrast, in this paper, we applied
TF-IDF weighting consistently to all features - same
type features (e.g. unigrams) or combined features
(e.g. unigram and bigrams).

How would the best accuracy change if TF-IDF
weighting is not applied? Table 8 shows the changes
to the best average accuracies with and without
TF/IDF weighting for the three classifiers.

Table 8: The importance of TF-IDF weighting

TF IDF SVM LR Perceptron
Yes Yes 84.55 84.45 78.82
Yes No 80.82 80.73 63.18
No Yes 82.36 82.27 78.82
No No 79.18 78.55 56.36
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6 Conclusions

This paper has presented the system that participated
in the 2013 NLI Shared Task in the closed-training
track. Cross-validation testing on the TOEFL11 cor-
pus showed that the system could achieve an accu-
racy of about 84.55% in categorizing unseen essays
into one of the eleven L1 languages.

The novel aspect of the system is the use
of TF-IDF weighting schemes on features –
which could be any or combination of n-gram
words/characters/POS tags. The feature combina-
tion that gave the best accuracy is the TF-IDF of
unigrams and bigrams of words. The next best fea-
ture class is the TF-IDF of 6-gram characters , which
achieved 84.09%, very close to 84.55%. Both lin-
ear support vector machines and logistic regression
classifiers have performed almost equally.

To improve performance in NLI, future work
should examine new features that can classify ge-
ographically or typologically related languages such
as Hindi and Telugu. Future work should also ana-
lyze the information obtained in NLI experiments to
quantify and investigate differences in the usage of
foreign language lexicon or grammar according to
the individual’s mother tongue.
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Abstract

This paper describes our approaches to Na-
tive Language Identification (NLI) for the NLI
shared task 2013. NLI as a sub area of au-
thor profiling focuses on identifying the first
language of an author given a text in his sec-
ond language. Researchers have reported sev-
eral sets of features that have achieved rel-
atively good performance in this task. The
type of features used in such works are: lex-
ical, syntactic and stylistic features, depen-
dency parsers, psycholinguistic features and
grammatical errors. In our approaches, we se-
lected lexical and syntactic features based on
n-grams of characters, words, Penn TreeBank
(PTB) and Universal Parts Of Speech (POS)
tagsets, and perplexity values of character of
n-grams to build four different models. We
also combine all the four models using an en-
semble based approach to get the final result.
We evaluated our approach over a set of 11 na-
tive languages reaching 75% accuracy.

1 Introduction

Recently, a growing number of applications are tak-
ing advantage of author profiling to improve their
services. For instance, in security applications (Ab-
basi and Chen, 2005; Estival et al., 2007) to help
limit the search space of, for example, the author of
an email threat, or in marketing where the demog-
raphy information about customers is important to
predict behaviors or to develop new products.

Particularly, author profiling is a task of identi-
fying several demographic characteristics of an au-
thor from a written text. Demographic groups can be

identified by age, gender, geographic origin, level of
education and native language. The idea of identi-
fying the native language based on the manner of
speaking and writing a second language is borrowed
from Second Language Acquisition (SLA), where
this is known as language transfer. The theory of
language transfer says that the first language (L1)
influences the way that a second language (L2) is
learned (Ahn, 2011; Tsur and Rappoport, 2007).
According to this theory, if we learn to identify what
is being transfered from one language to another,
then it is possible to identify the native language of
an author given a text written in L2. For instance,
a Korean native speaker can be identified by the er-
rors in the use of articles a and the in his English
writings due to the lack of similar function words in
Korean. As we see, error identification is very com-
mon in automatic approaches, however, a previous
analysis and understanding of linguistic markers are
often required in such approaches.

In this paper we investigate if it is possible to build
native language classifiers that are not based on the
analysis of common grammatical errors or in deeper
semantic analysis. On the contrary, we want to find
a simple set of features related to n-grams of words,
characters, and POS tags that can be used in an ef-
fective way. To the best of our knowledge, almost
all the works related to L1 identification use fine
grained POS tags, but do not look into whether a
coarse grained POS tagset could help in their work.
Here, we explore the use of coarse grained Univer-
sal POS tags with 12 POS categories in the NLI task
and compare the result with the fine grained Penn
TreeBank (PTB) POS tags with 36 POS categories.
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Moreover, we also investigate how the system works
when perplexity values are used as features in iden-
tifying native languages. Using an ensemble based
approach that combines four different models built
by various combinations of feature sets of n-grams
of words, characters, and POS tags, and perplexity
values, we identify the native language of the author,
over 11 different languages, with an accuracy close
to 80% and 75% in development and test dataset re-
spectively.

2 Related Work

The first known work about native language identifi-
cation appears in 2005 (Koppel et al., 2005). In their
study, the authors experimented with three types of
features, i.e. function words, letter n-grams, er-
rors and idiosyncrasies. But their analysis was fo-
cused on the identification of common errors. They
found that using a combination of all the features in
a Support Vector Machine (SVM), they can obtain
an accuracy of 80% in the classification of 5 differ-
ent native languages. As in this first study, analyz-
ing errors is common in native language identifica-
tion methods, since it is a straightforward adapta-
tion of how this task is performed in SLA. For in-
stance, Wong and Dras (2009) investigate the use
of error types such as disagreement on subject-verb
and noun-number, as well as misuse of determin-
ers to show that error analysis is helpful in this task.
But their results could not outperform the results ob-
tained by Koppel et al. (2005). They also suggested
that analyzing other types of errors might help to im-
prove their approach. In the same path, Jarvis et al.
(2012) investigate a larger variety of errors, for ex-
ample lexical words and phrase errors, determiner
errors, spelling errors, adjective order errors and er-
rors in the use of punctuation marks, among others.
But they also could not achieve results comparable
to the previous results in this task.

Since language transfer occurs when grammati-
cal structures from a first language determine the
grammatical structures of a second language, the in-
clusion of function words and dependency parsers
as features seem to be helpful to find such trans-
fers as well as error types (Tetreault et al., 2012;
Brooke and Hirst, 2011; Wong et al., 2012). It
is common that the analysis of the structure of

certain grammatical patterns is also informative to
find the use or misuse of well-established gram-
matical structures (e.g. to distinguish between the
use of verb-subject-object, subject-verb-object, and
subject-object-verb), in such cases n-grams of POS
tags can be used. Finally, according to Tsur and
Rappoport (2007), the transfer of phonemes is use-
ful in identifying the native language. Even though
the phonemes are usually speech features, the au-
thors suggest that this transfer can be captured by
the use of character n-grams in the text. Character
n-grams have been proved to be a good feature in
author profiling as well since they also capture hints
of style, lexical information, use of punctuation and
capitalization.

In sum, there are varieties of feature types used
in native language identification, most of them com-
bine three to nine types. Each type aims to capture
specific information such as lexical and syntactic in-
formation, structural information, idiosyncrasies, or
errors.

3 Shared Task Description

The Native Language Identification (NLI) shared
task focuses on identifying the L1 of an author based
on his writing in a second language. In this case,
the second language is English. The shared task had
three sub-tasks: one closed training and two open
training. The details about the tasks are described
by Tetreault et al. (2013). For each subtask, the par-
ticipants were allowed to submit up to five runs. We
participated in the closed training sub-task and sub-
mitted five runs.

The data sets provided for the shared task were
generated from the TOEFL corpus (Blanchard et al.,
2013) that contains 12, 100 English essays. The
corpus comprised 11 native languages (L1s): Ara-
bic (ARA), Chinese (CHI), French (FRE), German
(GER), Hindi (HIN), Italian (ITA), Japanese (JPN),
Korean (KOR), Spanish (SPA), Telugu (TEL), and
Turkish (TUR), each containing 1100 essays. The
corpus was divided into training, development, and
test datasets with 9900, 1100, and 1100 essays re-
spectively. Each L1 contained an equal number of
essays in each dataset.
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Feature Sets N-grams Error rates for top k features
500 800 1000 3000 6000

Character n-grams
2 grams 78.27 77.64 77.18 75.82 -
3 grams 78.55 60.55 64.27 43.73 44.36

Word n-grams
2 grams 66.55 58.36 55.64 44.91 38.73
3 grams 75.55 69.18 76.36 67.09 54.18

PTB POS n-grams
2 grams 69.73 76.73 69.55 72.09 -
3 grams 72.82 72.45 67.27 56.18 62.27

Universal POS n-grams
2 grams 85.36 - - - -
3 grams 78.1818 79.55 72.36 85.27 -

Table 1: Error rates in L1 identification using various feature sets with different number of features

4 General System Description

In this paper we describe two sets of experiments.
We performed a first set of experiments to evaluate
the accuracy of different sets of features in order to
find the best selection. This set was also intended to
determine the threshold of the number of top fea-
tures in each set needed to obtain a good perfor-
mance in the classification task. These experiments
are described in Section 5.

In the second set, we performed five different ex-
periments for five runs. Four of the five models
used different combinations of feature sets to train
the classifier. The major goal of these experiments
was to find out how good the results achieved can
be by using lower level lexical and shallow syntactic
features. We also compared the accuracy obtained
by using the fine grained POS tags and the coarse
grained POS tags. In one of these experiments, we
used perplexity values as features to see how effec-
tive these features can be in NLI tasks. Finally, the
fifth experiment was an ensemble based approach
where we applied a voting scheme to the predictions
of the four approaches to get the final result. The de-
tails of these experiments are described in Section 6.

In our experiments, we trained the classifier using
the training dataset, and using the model we tested
the accuracy on the development and test dataset.
We used an SVM multiclass classifier (Crammer and
Singer, 2002) with default parameter settings for the
machine learning tasks. We used character n-grams,
word n-grams, Parts of Speech (POS) tag n-grams,
and perplexity of character trigrams as features. For
all the features except perplexity, we used a TF-IDF
weighting scheme. To reduce the number of fea-

tures, we selected only the top k features based on
the document frequency in the training data.

The provided dataset contained all the sentences
in the essays tokenized by using ETS’s proprietary
tokenizers. For the POS tags based features, we
used two tagsets: Penn TreeBank (PTB) and Uni-
versal POS tags. For PTB POS tags, we tagged the
text with the Stanford parser (Klein and Manning,
2003). In order to tag the sentences with Universal
POS tags, we mapped the PTB POS tags to universal
POS tags using the mapping described by Petrov et
al. (2011).

We also used perplexity values from language
models in our experiments. To generate the lan-
guage models and compute perplexity, we used the
SRILM toolkit (Stolcke et al., 2011). We used train-
ing data to generate the language models and train
the classifier. Finally, all the sentences were con-
verted into lower case before finding the word and
character n-grams.

5 Feature Sets Evaluation

We performed a series of experiments using a sin-
gle feature set per experiment in order to find the
best combinations of features to use in classification
models. All of the feature sets were based on n-
grams. We ranked the n-grams by their frequencies
on the training set and then used the development set
to find out the best top k features in the training set.
We used the values of k as 500, 800, 1000, 3000,
and 6000 for this set of experiments. The error rates
of these experiments are shown in Table 1. Since the
total number of features in character bigrams, PTB

226



Exp-W2,3PTB3C3 Exp-W2,3Univ3C3 Exp ClassBased Exp Perplexity Exp Ensemble
L1 P R F1 P R F1 P R F1 P R F1 P R F1
ARA 90.7 68.0 77.7 87.1 54.0 66.7 72.2 70.0 71.1 70.8 51.0 59.3 90.9 70.0 79.1
CHI 79.0 83.0 81.0 57.9 84.0 68.6 75.0 78.0 76.5 71.7 66.0 68.8 78.4 87.0 82.5
FRE 91.5 75.0 82.4 75.7 81.0 78.3 92.8 64.0 75.7 71.2 74.0 72.5 90.8 79.0 84.5
GRE 86.0 92.0 88.9 77.5 86.0 81.5 84.2 85.0 84.6 63.8 83.0 72.2 88.3 91.0 89.7
HIN 67.3 66.0 66.7 70.0 63.0 66.3 66.3 63.0 64.6 52.3 45.0 48.4 70.2 66.0 68.0
ITA 72.3 94.0 81.7 76.9 83.0 79.8 66.4 89.0 76.1 65.3 77.0 70.6 74.6 94.0 83.2
JPN 86.6 71.0 78.0 76.0 76.0 76.0 64.3 81.0 71.7 51.7 60.0 55.6 85.2 75.0 79.8
KOR 78.3 83.0 80.6 65.0 80.0 71.7 68.1 64.0 66.0 55.1 49.0 51.9 78.8 82.0 80.4
SPA 72.3 68.0 70.1 90.9 50.0 64.5 65.4 68.0 66.7 58.5 38.0 46.1 74.5 70.0 72.2
TEL 68.4 80.0 73.7 66.9 83.0 74.1 68.2 75.0 71.4 53.4 71.0 60.9 69.2 81.0 74.7
TUR 77.9 81.0 79.4 84.0 63.0 72.0 83.3 55.0 66.3 69.5 66.0 67.7 81.8 81.0 81.4
Overall 78.3 73.0 72.0 61.8 79.6

Table 2: L1 identification accuracy in development data

POS bigrams, Universal POS bigrams, and Univer-
sal POS trigrams were 1275, 1386, 144, and 1602
respectively, some fields in the table are blank.

A trivial baseline for this task is to classify all the
instances to a single class, which gives 9.09% ac-
curacy. The table above shows that the results ob-
tained in all cases is better than the baseline. In five
cases, better results were obtained when using the
top 3000 or 6000 features compared to other feature
counts. In the case of the character trigram feature
set, though the result using top 3000 features is bet-
ter than the others, the difference is very small com-
pared to the experiment using top 6000 features. The
accuracy obtained by using top 3000 features in PTB
POS tags is 6% higher than that with top 6000 fea-
tures. In case of Universal POS tags trigrams, better
results were obtained with top 1000 features.

Results show that bigram and trigram feature sets
of words give higher accuracy compared to bigrams
and trigrams of characters and POS tags. Comparing
the results of n-grams of two different POS tagsets,
the results obtained when using the PTB tagset are
better than those when using the Universal tagsets.
In the case of character, PTB POS tag, and Univer-
sal POS tag bigram feature sets, the overall accu-
racy is less than 30%. Based on these results, we de-
cided to use the following sets of features: trigrams
of characters and POS tags (PTB and Universal) and
bigrams of words in our experiments below.

6 Final Evaluation

We submitted five runs for the task based on five
classifiers. We named the experiments based on the
features used and the approaches used for feature se-
lection. Details about the experiments and their re-
sults are described below.

1. Exp-W2,3PTB3C3: In this experiment, we
used bigrams at the word level, and trigrams at
the word, character level, as well as PTB POS
tag trigrams as feature sets. We selected these
feature sets based on the accuracies obtained
in the experiments described in Section 5. We
tried to use a consistent number of features in
each feature set. As seen in Table 1, though
the results obtained by using top 3000 and 6000
features are better in equal number of cases (2
and 2), the difference in accuracies when us-
ing 6000 features is higher than that when us-
ing 3000 features. Thus, we decided to use the
top 6000 features in all the four feature sets.

2. Exp-W2,3Univ3C3: The PTB POS tagset con-
tains 36 fine grained POS categories while the
Universal POS tagset contains only 12 coarse
POS categories. In the second experiment, we
tried to see how the performance changes when
using coarse grained Universal POS categories
instead of fine grained PTB POS tags. Thus,
we performed the second experiment with the
same settings as the first experiment except we
used Universal POS tags instead of PTB POS
tags. Since the total number of Universal POS
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Exp-W2,3PTB3C3 Exp-W2,3Univ3C3 Exp ClassBased Exp Perplexity Exp Ensemble
L1 P R F1 P R F1 P R F1 P R F1 P R F1
ARA 74.3 55.0 63.2 90.9 50.0 64.5 67.9 74.0 70.8 54.3 44.0 48.6 79.7 63.0 70.4
CHI 76.2 80.0 78.0 65.9 81.0 72.6 74.5 73.0 73.7 69.3 61.0 64.9 80.2 81.0 80.6
FRE 86.4 70.0 77.3 75.8 75.0 75.4 90.6 58.0 70.7 54.5 54.0 54.3 85.7 72.0 78.3
GRE 83.2 89.0 86.0 79.1 91.0 84.7 82.7 86.0 84.3 65.2 86.0 74.1 87.6 92.0 89.8
HIN 63.7 65.0 64.4 64.5 69.0 66.7 59.6 56.0 57.7 60.0 54.0 56.8 67.0 67.0 67.0
ITA 62.5 90.0 73.8 70.0 84.0 76.4 61.4 86.0 71.7 52.5 64.0 57.7 62.5 90.0 73.8
JPN 85.7 72.0 78.3 67.2 78.0 72.2 62.1 87.0 72.5 52.6 50.0 51.3 81.9 77.0 79.4
KOR 75.0 75.0 75.0 60.3 73.0 66.1 68.1 62.0 64.9 52.6 50.0 51.3 72.8 75.0 73.9
SPA 60.0 57.0 58.5 81.1 43.0 56.2 57.6 57.0 57.3 55.6 45.0 49.7 67.1 57.0 61.6
TEL 75.3 67.0 70.9 70.0 77.0 73.3 71.7 71.0 71.4 66.1 74.0 69.8 73.0 73.0 73.0
TUR 66.4 79.0 72.1 79.0 64.0 70.7 80.6 50.0 61.7 61.4 51.0 55.7 72.4 76.0 74.1
Accuracy 72.6 71.4 69.1 58.6 74.8

Table 3: L1 identification accuracy in test data

trigrams was only 1602, we replaced 6000 PTB
POS trigrams with 1602 Universal POS tri-
grams.

3. Exp ClassBased: The difference in this exper-
iment from the first one lies in the process of
feature selection. Instead of selecting the top k
features from the whole training data, the se-
lection was done considering the top m fea-
tures for each L1 class present in the training
dataset, i.e., we first selected the top m features
from each L1 class and combined them for a
total of p where p is greater than or equal to
m and k. After a number of experiments per-
formed with different combinations of features
to train the classifier and testing on the develop-
ment dataset, we obtained the best result using
character trigrams, PTB POS tag bigrams and
trigrams, and word bigrams feature sets with
3000, 1000, 1000, and 6000 features from each
L1 respectively. This makes the total number
of features in character trigrams, POS tag bi-
grams, POS tag trigrams, and word bigrams as
3781, 1278, 1475, and 15592 respectively.

4. Exp Perplexity: In this experiment, we used
the perplexity values as the features that were
computed from character trigram language
models. Language models define the proba-
bility distribution of a sequence of tokens in
a given text. We used perplexity values since
these have been successfully used in some au-
thorship attribution tasks (Sapkota et al., 2013).

5. Exp Ensemble: In the fifth experiment, we
used an ensemble based approach with our
above mentioned four different models. We
allowed each of the four models to have two
votes. The first vote is a weighted voting
schema in which the models were ranked ac-
cording to their results in the development
dataset and the weight for each model was
given by wc = 1/rank(c), where rank(c) is
the position of c in the ranked list. The final
output was based on the second vote that used
a majority voting schema. In the second vote,
the output of the first voting schema was also
used along with the output of four models.

The results obtained by the above mentioned five
experiments on the development and test datasets are
shown in Tables 2 and 3 respectively. The tables
show that the results obtained in the development
dataset are better than those in the test dataset for
all the approaches. In both datasets, we achieved the
best results using the ensemble based approach, i.e.
79.2% and 74.8% accuracies in the development and
test dataset respectively. Considering the accuracies
of individual L1s, this approach achieved the high-
est accuracy in 10 L1s in the development dataset
and in 7 L1s in the test dataset. Our system has the
best accuracy for German in both development and
test dataset. The other classes with higher accura-
cies in both datasets are French and Chinese. In both
datasets, our system had the lowest accuracy for the
Hindi and Spanish classes. Arabic and Telugu have
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ARA CHI FRE GER HIN ITA JPN KOR SPA TEL TUR
ARA 63 2 1 0 6 8 1 5 6 4 4
CHI 2 81 0 1 2 1 5 4 0 0 4
FRE 2 0 72 7 1 11 0 0 4 0 3
GER 0 2 2 92 1 1 0 0 1 0 1
HIN 2 2 0 0 67 2 0 2 3 19 3
ITA 0 0 2 2 0 90 0 0 3 0 3
JPN 3 3 1 1 0 3 77 9 1 1 1
KOR 1 7 1 0 0 0 8 75 4 1 3
SPA 1 1 3 0 2 25 1 4 57 0 6
TEL 1 0 0 0 21 0 1 0 3 73 1
TUR 4 3 2 2 0 3 1 4 3 2 76

Table 4: Confusion Matrix

3rd and 4th lowest accuracies.
Besides the ensemble based approach, the sec-

ond best result was obtained by the first experiment
(Exp W2,3PTB3C3). Comparing the overall accura-
cies of the first and second (Exp-W2,3Univ3C3) ex-
periments, though the difference between them does
not seem very high in the test dataset, there is a dif-
ference of more than 5% in the development dataset.
In the test dataset, the second experiment has the
best results among all the approaches for classes
Italian and Telugu, and has better results than the
first experiment for classes Arabic and Hindi. The
difference in the approaches used in the first and sec-
ond experiments was the use of n-grams of different
POS tagsets. The use of coarse grained Universal
POS tagset features generalizes the information and
loses the discriminating features that the fine grained
PTB POS tagset features captures. For instance, the
PTB POS tagset differentiates verbs into six cate-
gories while the Universal POS tagset has only one
category for that grammatical class. Because of this,
the fine grained POS tagset seems better for identify-
ing the native languages than using a coarse grained
POS tagset in most of the cases. More studies are
needed to analyze the cases where Universal POS
tagset works better than the fine grained PTB POS
tagset.

The difference in accuracies obtained between the
first experiment (Exp W2,3PTB3C3) and the third
experiment (Exp ClassBased) is more than 6% in
the development dataset and more than 3% in the test
dataset. In the test dataset, the third experiment has
the highest accuracy for Arabic class and has better
accuracy than the first experiment for Telugu class.
The difference between these approaches was the

feature selection approach used to create the feature
vector. The results show that in most of the cases se-
lecting the features from the whole dataset achieves
better accuracy in identifying native languages com-
pared to using the stratified approach of selecting the
features from individual classes. The main reason
behind using the class based feature selection was
that we tried to capture some features that are specif-
ically present in one class and not in others. Since all
the texts in our dataset were about one of the eight
prompts, and we have a balanced dataset, there was
no benefit of doing the class based feature selection
approach.

The fourth experiment (Exp Perplexity) using
perplexity values as features did not achieve accu-
racy comparable to the first three experiments. Be-
cause of the time constraint, we calculated perplex-
ity based on only character trigram language mod-
els. Though the result we achieved is not promis-
ing, this approach could be an interesting work in fu-
ture experiments where we could use other language
models or the combination of various language mod-
els to compute the perplexity.

7 Error Analysis

The confusion matrix of the results obtained in the
test dataset by using the ensemble based approach
is shown in Table 4. The table shows the German
class has the best accuracy with only a small number
of texts of German mispredicted to other languages,
while 7 texts of French class are mispredicted as
German. The German language is rich in morpohol-
ogy and shares a common ancestor with English. It
also has a different grammatical structure from the
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other languages in the task. The features we used
in our experiments are shallow syntactic and lexical
features, which could discriminate the writing styles
and the structure of the German class texts, thus hav-
ing a higher prediction accuracy.

The table shows that French, Italian, and Spanish
classes seem to be confused with each other. Though
the misclassification rate of texts in the Italian class
is considerably low, a good number of texts in the
French and Spanish classes are misclassified as Ital-
ian. The highest number of documents mispredicted
is from Spanish to Italian, i.e. 25 texts of Span-
ish class are mispredicted as Italian. These three
languages fall under the same language family i.e.
Indo-European/Romance and have a similar gram-
matical features. The grammatical structure is a par-
ticular example of the high rate of misclassification
among these classes. While English language is very
strict in the order of words (Subject-Verb-Object),
Spanish, Italian and French allow more flexibility.
For instance, in Spanish, the phrases ‘the car red’
(el auto rojo) and ‘the red car’ (el rojo auto) are
both correct although the later is a much less com-
mon construction. In this scenario, it is easy to see
that the n-grams of words and POS tags are benefi-
cial to distinguish them from English, but these n-
grams might be confusing to identify the differences
among these three languages since the patterns of
language transfer might be similar.

Though Hindi and Telugu languages do not fall
under the same language family, they are highly con-
fused with each other. After Spanish to Italian, the
second highest number of misclassified texts is from
Telugu to Hindi. Similarly, 19 texts from the class
Hindi are mispredicted as Telugu. Both of these lan-
guages are spoken in India. Hindi is the National
and official language of India, while Telugu is an of-
ficial language in some states of India. Moreover,
English is also one of the official languages. So, it
is very likely that the speakers are exposed to the
same English dialect and therefore their language
transfer patterns might be very similar. This might
have caused our approach of lexical and syntactic
features to be unable to capture enough information
to identify the differences between the texts of these
classes.

Texts from Arabic class are equally misclassified
to almost all the other classes, while misclassifica-

tion to Arabic do not seem that high. Texts of the
Japanese, Korean, Chinese classes seem to be con-
fused with each other, but the confusion does not
seem very high thus having a good accuracy rate.

8 Conclusion and Future Work

In this paper, we describe our approaches to Na-
tive Language identification for the NLI Shared Task
2013. We present four different models for L1 iden-
tification, three of them using various combinations
of n-gram features at the word, character and POS
tag levels and a fourth one using perplexity values as
features. Results show that all these approaches give
a good accuracy in L1 identification. We achieved
the best result among these by using the combina-
tion of character, words, and PTB POS tags. Fi-
nally, we applied an ensemble based approach over
the results of the four different models that gave the
highest overall accuracy of 79.6% and 74.8% in the
development and test dataset respectively.

In our approaches, we use simple n-grams and do
not consider grammatical errors in L1 identification.
We would like to expand our approach by using the
errors such as misspelled words and subject-verb,
and noun-number disagreements as features. More-
over, in our current work of using perplexity values,
the result seems good but is not promising. In this
approach, we used the perplexity values based on
only character trigram language models. We would
like to incorporate other word and character n-gram
language models to calculate perplexity values in
our future work.
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Abstract

Our goal is to predict the first language (L1)
of English essays’s authors with the help of
the TOEFL11 corpus where L1, prompts (top-
ics) and proficiency levels are provided. Thus
we approach this task as a classification task
employing machine learning methods. Out
of key concepts of machine learning, we fo-
cus on feature engineering. We design fea-
tures across all the L1 languages not making
use of knowledge of prompt and proficiency
level. During system development, we experi-
mented with various techniques for feature fil-
tering and combination optimized with respect
to the notion of mutual information and infor-
mation gain. We trained four different SVM
models and combined them through majority
voting achieving accuracy 72.5%.

1 Introduction

Learner corpora are collections of texts written by
second language (L2) learners, e.g. English as L2
– ICLE (Granger et al., 2009), Lang-8 (Tajiri et al.,
2012), Cambridge Learner Corpus,1 German as L2
– FALKO (Reznicek et al., 2012), Czech as L2 –
CzeSL (Hana et al., 2010). They are a valuable
resource for second language acquisition research,
identifying typical difficulties of learners of a cer-
tain proficiency level (e.g. low/medium/high) or
learners of a certain native language (L1 learners of
L2). Research on the learner corpora does not con-
centrate on text collections only. Studying the er-
rors in learner language is undertaken in the form

1http://www.cambridge.org/gb/elt

of error annotation like in the projects (Hana et al.,
2012), (Boyd et al., 2012), (Rozovskaya and Roth,
2010), (Tetreault and Chodorow, 2008). Once the
errors and other relevant data are recognized in the
learner corpora, automatic procedures for e.g. error
correction, author profiling, native language identi-
fication etc. can be designed.

Our attention is focused on the task of automatic
Native Language Identification (NLI), namely with
English as L2.

In this report, we summarize the involment of the
Charles University team in the first shared task in
NLI co-located with the 8th Workshop on Innova-
tive Use of NLP for Building Educational Appli-
cations in June 2013 in Atlanta, USA. The report
is organized as follows: we briefly review related
works in Section 2. The data sets to experiment with
are characterized in Section 3. Section 4 lists the
main concepts we pursue during the system devel-
opment. Our approach is entirely focused on feature
engineering and thus Section 5 is the most impor-
tant one. We present there our main motivation for
making such a decision, describe patterns according
to which the features are generated and techniques
that manipulate the features. We revise our ideas ex-
perimentally as documented in Section 6. In total,
we submitted five systems to the sub-task of closed-
training. In Sections 7 and 8, we describe these sys-
tems and discuss their results in detail. We summa-
rize our two month effort in the shared task in Sec-
tion 9.
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2 Related work

We understand the task of native language identifica-
tion as a subtask of natural language processing and
we consider it as still a young task since the very
first attempt to address it occurred eight years ago in
2005, as evident from the literature, namely (Koppel
et al., 2005b), (Koppel et al., 2005a).

We appreciate all the previous work concerned
with the given topic but we focus on the latest three
papers only, all of them published at the 24th In-
ternational Conference on Computational Linguis-
tics held in December 2012 in Bombay, India,
namely (Brooke and Hirst, 2012), (Bykh and Meur-
ers, 2012), and (Tetreault et al., 2012). They provide
a comprehensive review of everything done since the
very first attempts. We do not want to replicate their
chapters. Rather, we summarize them from the as-
pects we consider the most important ones in any
machine learning system, namely the data, the fea-
ture design, the feature manipulation, and the ma-
chine learning methods - see Table 1.

3 Data sets

A new publicly available corpus of non-native En-
glish writing called TOEFL112 consists of essays on
eight different topics written by non-native speakers
of three proficiency levels (low/medium/high); the
essays’ authors have 11 different native languages.
The corpus contains 1,100 essays per language with
an average of 348 word tokens per essay. A corpus
description and motivation to build such corpus can
be found in (Blanchard et al., 2013).

The texts from TOEFL11 were released for the
purpose of the shared task as three subsets, namely
Train for training, DevTest for testing while sys-
tem development, and EvalTest for final testing.
The texts were already tokenized and we processed
them with the Standford POS tagger (Toutanova et
al., 2003).

4 System settings

1. Task: Having a collection of English essays
written by non-native speakers, the goal is to
predict a native language of the essays’ authors.

2Source: Derived from data provided by ETS. Copyright c©
2013 ETS. www.ets.org.

Languages L1 are known in advance. Since we
have a collection of English essays for which
L1 is known (TOEFL11) at our disposal, we
formulate this task as a classification task ad-
dressed by using supervised machine learning
methods.

2. Feature set: A setA = {A1, A2, ..., Am} ofm
features where m changes as we perform var-
ious feature combinations and filtering steps.
We prefer to work with binary features. We
do not include two extra features, proficiency
level and prompt, provided with the data. In
addition, we design features across all 11 lan-
guages, i.e. we do not design features sepa-
rately for a particular L1. Doing so, we ad-
dress the task of predicting L1 from the text
only, without any additional knowledge.

3. Input data: A set X of instances being texts
from TOEFL11 corpus represented as feature
vectors, x = 〈x1, x2, ..., xm〉 ∈ X,xi ∈ Ai.

4. Output classes: A set C of L1 languages, C
= {ARA, CHIN, FRE, GER, HIN, ITA, JPN,
KOR, SPA, TEL, TUR}, |C| = 11.

5. True prediction: A set D = {< x, y >:
x ∈ X , y ∈ C}, |D| = 12, 100 and its pairwise
disjoint subsets Train, DevTest, EvalTest
where Train ∪ DevTest ∪ EvalTest = D,
|Train| = 9, 900, |DevTest| = 1, 100,
|EvalTest| = 1, 100.

6. Training data: Train ∪ DevTest. No other
type of training data is used.

7. Learning mechanism: Since we focus on fea-
ture engineering, we do not study appropriate-
ness of particular machine learning methods to
our task in details. Instead, reviewing the re-
lated works, we selected the Support Vector
Machine algorithm to experiment with.

8. Evaluation: 10-fold cross-validation with the
sample Train ∪ DevTest. Accuracy, Pre-
cision, Recall. Proficiency-based evaluation.
Topic-based evaluation.
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PAPER DATA FEATURE FEATURE ML
DESIGN MANIPULATION METHOD

[1] Lang-8,
ICLE,
Cambridge
Learner
Corpus

function words, charac-
ter n-grams, POS n-grams,
POS/function n-grams, context-
free-grammar productions,
dependencies, word n-grams

frequency-based
feature selection

SVM, MaxEnt

[2] ICLE binary features spanning word-
based recurring n-grams, func-
tion words, recurring POS based
n-grams and combination of
them

no special feature
treatment

logistic regression

[3] ICLE,
TOEFL11

character n-grams, function
words, POS, spelling errors,
writing quality

no special feature
treatment

logistic regression

Table 1: A summary of latest related works [1](Brooke and Hirst, 2012), [2](Bykh and Meurers, 2012), [3](Tetreault
at al., 2012)

5 Feature engineering

We split the process of feature engineering into two
mutually interlinked steps. The first step aims at an
understanding of the task projected into features de-
scribing properties of entities we experiment with.
These experiments represent the second step where
we find out how the features interact with each other
and how they interact with a chosen machine learn-
ing algorithm.

We compose a feature family as a group of pat-
terns that are relevant for a particular task. The fea-
tures are then extracted from the data according to
them. Since we experiment with English texts writ-
ten by non-native speakers, we have to search for
specific and identifiable text properties, i.e. tenden-
cies of certain first language writers, based on the
errors caused by the difference between L1 and L2.
In addition, we look for phenomena that are not nec-
essarily incorrect in written English but they provide
clear evidence of characteristics typical for L1. Our
feature family is built from chunks of various length
in the texts, formally lexically and part-of-speech
based n-grams. In total, the feature family contains
eight patterns described in Table 2 - six for binary
features l,n,p,s1,s2,sp and two for continuous fea-
tures a,r. Outside the feature family, its patterns can
be combined into joint patterns, like l+sp, n+sp+r.

Considering the key issues of machine learning,

Figure 1: Feature engineering

we mainly pay attention to overfitting. We are aware
of many aspects that may cause overfitting, like
complexity of the model trained, noise in training
data, a small amount of training data. Features can
lead to overfitting as well, thus we address it us-
ing elaborated feature engineering visualised in Fig-
ure 1. We can see there the data components and the
process components having the features in common.
The scheme can be traced either with individual pat-
terns from the feature family or with joint patterns.

Both basic feature filtering and advanced feature
manipulation apply selected concepts from informa-
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FEATURE DESCRIPTION EXAMPLES

FAMILY n=1,2,3
PATTERN

l n-grams of lemmas picture; to see; you, be, not
n n-grams of words picture; to see; you, are, not
p n-grams of function words and POS tags of content

words, i.e. nouns, verbs, adjectives, cardinal num-
bers

not; PRP; you, VBP; JJ, to, VB

s1 skipgrams of words: bigram wi−2, wi and trigrams
wi−3, wi−1, wi, wi−3, wi−2, wi extracted from a se-
quence of words wi−3 wi−2 wi−1 wi

you,not; able, see; to, see,in; to
things, in

s2 skipgrams of words: bigrams wi−3, wi, wi−4, wi

and trigrams wi−4, wi−3, wi, wi−4, wi−2, wi,
wi−4, wi−1, wi extracted from a sequence of words
wi−4 wi−3 wi−2 wi−1 wi

are,see; you,see; you,are,see;
you,able,see; you,to,see;

sp n-grams of function words and shrunken POS tags
of content words: POS tags N* are shrunken into a
tag N, V* into V, J* into J

not; PRP; you V; J to V

a relative frequency of POS tags and function words
r relative frequency of POS tags

Table 2: A feature family. Examples are taken from the file 498.txt, namely from the sentence You are not able to
see things in a big picture. tagged as follows: (You/you/PRP are/be/VBP not/not/RB able/able/JJ to/to/TO see/see/VB
things/thing/NNS in/in/IN a/a/DT big/big/JJ picture/picture/NN ././.)

tion theory.

5.1 Concepts from information theory
Consider a random variable A having two possible
values 0 and 1 where the probability of 1 is p and
0 is 1 − p. A degree of uncertainty we deal with
when predicting the value of the variable depends
on p. If p is close to zero or one, then we are almost
confident about the value and our uncertainty is low.
If the values are equally likely (i.e. p = 0.5), our
uncertainty is maximal.

The entropy H(A) measures the uncertainty. In
other words, it quantifies the amount of information
needed to predict the value of the variable. The for-
mula 1 for the entropy treats variables with N ≥ 1
possible values.

H(A) = −
N∑

i=1

p(A = ai) log2 p(A = ai) (1)

The conditional entropy H(A|B) quantifies the
amount of information needed to predict the value

of the random variable A given that the value of an-
other random variable B is known, see Formula 2.
Then H(A|B) ≤ H(A) holds.

H(A|B) =
∑
b∈B

p(B = b)H(A|B = b) (2)

The amount H(A) − H(A|B) by which H(A)
decreases reflects additional information about A
provided by B and is called mutual information
I(A;B) - see Formula 3. In other words, I(A;B)
quantifies the mutual dependence of two random
variables A and B.

I(A;B) = H(A)−H(A|B) (3)

Proceeding from statistics to machine learning,
independent random variables correspond to fea-
tures. Thus we can directly speak about the entropy
of a feature, the conditional entropy of a feature
given another feature and the mutual information of
two features.
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Information gain of feature Ak - IG(Ak) - mea-
sures the expected reduction in entropy caused by
partitioning the data set Data according to the val-
ues of the feature Ak (Quinlan, 1987):

IG(Ak) = H(Data)−
c∑

i=j

|Dvj |
|Data|

H(Dvj ), (4)

where Av
k = {v1, v2, ..., vc} is a set of possible val-

ues of feature Ak and Dvi is a subset of Data con-
tainig instances with the feature value xk = vj .
C being a target feature, H(Data) = H(C).

Thus the mutual information between C and Ak -
I(C;Ak) - is the information gain of the feature Ak,
i.e.

I(C;Ak) = IG(Ak). (5)

All mentioned concepts are visualized in Figure 2
for our settings:

• Our target feature C has eleven possible val-
ues (i.e. L1 languages). These values are
uniformly distributed in the data D, thus
H(C) = −

∑11
i=1

1
11 log2

1
11 = log2 11

.
=

3.46. Sample features (only for illustration)
A1, A2, A3, A4 ∈ A are binary features so
H(Ai) ≤ 1 < H(C) = 3.46, i = 1, ..., 4.
The circle areas correspond to the entropy of
features.

• The black areas correspond to mutual informa-
tion I(Ai;Ak).

• The striped areas correspond to the mutual in-
formation I(C;Ak) between C and Ak.

• Features A1 and A3 are independent, so
I(A1;A3) = 0.

• A2 has the highest mutual dependence with C,

• H(A2) = H(A3) and IG(A2) > IG(A3)

In addition to the concepts from information the-
ory, we introduce another measure to quantify fea-
tures: the document frequency of feature Ak –
df(Ak) is the number of texts in which Ak occurs,
i.e. df(Ak) ≥ 0.

Figure 2: Information gain and mutual information visu-
alization

5.2 Discussion on features
We impose a fundamental requirement on features:
they should be both informative (i.e. useful for the
classification task) and robust (i.e. not sensitive to
training data). We control the criterion of being in-
formative by information gain maximization. The
criterion of being robust is quantified by document
frequency. If df(Ak) is high enough, then we can
expect that Ak will occur in test data frequently. We
propose two techniques to increase df : (i) filtering
out features with low df ; (ii) feature combination
driven by IG.

The fulfillment of both criteria is always depen-
dent on training data, i.e. the final feature set tends
to fit training data and our goal is to weaken this ten-
dency in order to get a more robust feature set. Both
basic feature filtering and advanced feature combi-
nation help us to address this issue.

5.3 Basic feature filtering
We obtained the feature setA0 by extracting features
according to the feature family patterns) from the
training data. Basic feature filtering removes fea-
tures from A0 in two steps that result in a primary
feature set A1:

1. Remove binary feature Ak if df(Ak) < δdf .
Remove continous feature Ak if
relative frequency(Ak) < δrf or
df(relative frequency(Ak) ≥ δrf ) < δdf .

2. Remove binary feature Ak if IG(Ak) ≤ δIG.
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5.4 Advanced feature manipulation
The process of advanced feature manipulation han-
dles m input features from the primary feature set
A1 in two different ways, filter them and combine
them, in order to generate a final feature set Af

ready to train the model:

• Filter them. We use Fast Correlation-Based
Filter (FCBF; (Fleuret, 2004), (Yu and Liu,
2003)) that addresses the correlation between
features. It first ranks the features accord-
ing to their information gain, i.e. IG(A1) ≥
IG(A2) ≥ ... ≥ IG(Am). In the second step,
it iteratively removes any featureAk if there ex-
ists a feature Aj such that IG(Aj) ≥ IG(Ak)
and I(Ak;Aj) ≥ IG(Ak), i.e. Aj is bet-
ter as a predictor of C and Ak is more sim-
ilar to Aj than to C. In the situation visu-
alized in Figure 2, the feature A4 will be fil-
tered out because there is a featureA3 such that
IG(A3) ≥ IG(A4) and I(A3;A4) ≥ IG(A4)

• Combine them. We combine (COMB) binary
features using logical operations (AND, OR,
XOR, AND NOT, etc.) getting a new binary
feature.

For example, if we combine two features A1

and A2 using the OR operator, we get a new
binary feature Y = A1 OR A2 for which the
inequalities df(Y ) > df(A1) and df(Y ) >
df(A2) hold. Thus we get a feature that is
more robust than the two input features. To
know whether it is more informative, we need
to know how high IG(Y ) is with respect to
IG(A1) and IG(A2). Without loss of gen-
erality, assume that IG(A1) > IG(A2). If
IG(Y ) > IG(A1) > IG(A2), then Y is more
informative than A1 and A2, but both of these
features could be informative enough as well.
It depends on the threshold we set up for being
informative. We can easily iterate this process -
let Y1 = A1 ORA2 and Y2 = A3 ORA4. Then
we can combine Y3 = Y1 OR A5 or Y4 = Y1

OR Y2, etc.

Then, advanced feature manupilation runs ac-
cording to scenarios formed as a series of FCBF
and COMB, for example A1 → FCBF → COMB
→ FCBF→ Af or A1 → COMB→ FCBF→ Af .

6 System development

During system development, we formulated hy-
potheses how to avoid overfitting and get features ro-
bust and informative enough. In parallel, we run the
experiments with parameters using which we con-
trolled this requirement.

Basic feature filtering We set the thresholds δdf ,
δIG, δrf empirically to the values 4, 0 and 0.02, re-
spectively. Table 3 shows the changes in the size of
the initial feature set after the basic feature filtering.
It is evident that even such trivial filtering reduces
the number of features substantially.

FEATURE INITIAL AFTER AFTER

FAMILY FEATURE df IG
PATTERN SET FILTERING FILTERING

(i.e. |A0|) (i.e. |A1|)
l 2,078,105 156,722 2,827
n 2,411,516 163,939 2,840
p 1,116,986 161,681 2,467
s1 4,794,702 242,969 1,877
s2 7,632,011 382,881 4,566
sp 781,018 123,431 933
a 181 111 111
r 48 48 48

Table 3: Volumes of initial feature sets extracted from
Train ∪ DevTest (1st column). Volumes of primary
feature sets after basic filtering of A0 (3rd column)

.

Learning mechanisms Originally, we started
with two learning algorithms, Random Forests (RF)
and Support Vector Machines (SVM), running them
in the R system.3

The Random forests4 algorithm joins random-
ness with classification decision trees. They iterate
the process of two random selections and training a
decision tree k-times on a subset ofm features. Each
of them classifies a new input instance x and the
class with the most votes becomes the output class
of x.

Support Vector Machines (Vapnik, 1995) effi-
ciently perform both linear and non-linear classi-
fication employing different Kernel functions and

3http://www.r-project.org
4http://www.stat.berkeley.edu/˜breiman/
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avoiding the overfitting by two parameters, cost and
gamma.

We run a number of initial experiments with the
following settings: the feature family pattern n; the
basic feature filtering, RF with different values of
parameters k and m, SVM with different values of
parameters kernel, gamma and cost

Cross-validation on the data set Train performed
with SVM showed significantly better results than
those obtained with RF. We were quite suprised that
RF ran with low performance so that we decided
to stop experimenting with this algorithm. Step by
step, we added patterns into the feature family and
carried out experiments with SVM only on the data
set Train ∪ DevTest. We fixed the values of the
SVM parameters kernel, degree, gamma, cost after
several experiments as follows kernel = polynomial,
degree = 1, gamma = 0.0004, cost = 1. Then we
included the advanced feature manipulation into the
experiments according to the scenariosA1 → FCBF
→ COMB → FCBF → Af and A1 → COMB →
FCBF→ Af . COMB was composed using the OR
operator only. Unfortunately, none of them outper-
formed the initial experiments with the basic filter-
ing only.

Table 4 contains candidates for the final submis-
sion. The highlighted candidates were finally se-
lected for the submission.

FEATURE CROSS-VALIDATION Acc (%)
PATTERNS on Train on DevTest
l + a 72.97 ± 0.76 71.09
n + a 72.45 ± 0.98 63.00
l + sp + a 72.00 ± 0.72 70.64
l+sp 71.09 ± 0.72 71.45
n+sp 70.38 ± 0.69 52.27
l 71.67 ± 0.57 70.18
n 71.27 ± 0.84 68.72
l+p 71.17 ± 2.41 71.27
n+s1 69.90 ± 1.04 66.72
n+s2 68.75 ± 1.50 67.63
n+s1+s2 67.97 ± 0.96 66.81

Table 4: Candidates for the final submission. Candidates
in bold were submitted.

MODEL FEATURE FAMILY Acc
PATTERN (%)

CUNI-closed-1 majority voting
of CUNI-closed-[2-5] 72.5

CUNI-closed-2 l+a 71.6
CUNI-closed-3 l+p 71.6
CUNI-closed-5 l+sp+a 71.1
CUNI-closed-4 l+sp 69.7

Table 5: An overview of models submitted.

MODEL Acc (%)
CUNI-closed-1 74.2
CUNI-closed-2 73.4
CUNI-closed-3 73.9
CUNI-closed-4 73.1
CUNI-closed-5 72.9

Table 6: Cross-validation results for all submitted CUNI-
closed systems.

7 Submission to the shared task

In total, we submitted five systems to the closed-
training sub-task - see their overview in Table 5. The
results correspond to our expectations that we made
based on the results of cross-validation presented in
Table 4. The best system, CUNI-closed-1, was the
outcome of majority voting of the remaining four
systems. The performance of this system per lan-
guage is presented in Table 7.

Table 6 reports accuracy results when doing 10-
fold cross-validation on Train ∪ DevTest. The
folds for this experiment were provided by the or-
ganizers to get more reliable comparison of the NLI
systems.

It is interesting to analyse the complementarity of
the CUNI-closed-[2-5] systems that affects the per-
formance of CUNI-closed-1. In Table 8, we list the
numerical characteristics of five possible situations
that can occur when comparing the outputs of two
systems i and j. Situations 2 and 3 capture how
complementary the systems are. The numbers for
our systems are presented in Table 9.

We grouped languages according to the thresholds
of F-measure. First we did it across the data, no mat-
ter what the proficiency level and prompt are - see
the first row of Table 10. Second we did grouping
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Acc(%) P(%) R(%) F(%)
ARA 72 67 72 69,6
CHI 78 71 78 74,3
FRE 73 74 73 73,7
GER 83 83 83 83,0
HIN 75 68 75 71,4
ITA 83 85 83 83,8
JPN 70 65 70 67,6
KOR 64 70 64 67,0
SPA 66 70 66 68,0
TEL 68 72 68 69,7
TUR 65 72 65 68,4

Table 7: CUNI-closed-1 on EvalTest: Acc, P, R, F

1. the number of instances both systems pre-
dicted correctly;
2. the number of instances both systems pre-
dicted incorrectly;
3. the number of instances the systems pre-
dicted differently: i system correctly and j
system incorrectly;
4. the number of instance the systems pre-
dicted differently: i system incorrectly and j
system correctly;
5. the number of instances the systems pre-
dicted differently and both incorrectly.

Table 8: Pair of two systems i and j and their predictions.

pair of CUNI-closed-i
and CUNI-closed-j systems

2-3 2-4 2-5 3-4 3-5 4-5
1 707 717 745 701 710 732
2 161 215 242 183 181 250
3 81 71 43 87 78 35
4 81 50 37 66 72 50
5 70 47 33 63 59 33

Table 9: CUNI-closed-[2-5]: complementary rates.

≥ 90% ≥ 80% ≥ 70% < 70%
overall GER,

ITA
CHI,
FRE,
HIN

TEL,
ARA,
TUR,
SPA,
JPN,
KOR

high GER,
ITA

CHI,
HIN,
FRE

KOR,
TUR,
SPA,
TEL,
ARA,
JPN

medium ITA,
GER,
FRE,
TEL

CHI,
ARA,
SPA,
TUR

JPN,
KOR,
HIN

low GER ITA,
FRE,
JPN

ARA KOR,
TEL,
HIN,
TUR,
SPA,
CHI,
FRE

Table 10: CUNI-closed-1 on EvalTest: Groups of lan-
guages sorted according to F-measure w.r.t. proficiency
level.

for a particular proficiency level - see the remaining
rows in Table 10. We can see that both GER and
ITA are languages with the highest F-measure on all
levels. Third we grouped by a particular prompt -
see Table 11. We can see there diversed numbers for
L1 languages despite the fact that prompts are for-
mulated generally. Even more, we observe a topic
similarity between prompts P2, P3, and P8, between
P4 and P5, and between P1 and P7.

8 Future plans

In our future research, w want to elaborate ideas that
concern the feature engineering. We plan to work
with the feature family that we designed in our ini-
tial experiments. However, we will think about more
specific patterns in the essays, like the average count
of tokens/punctuation/capitalized nouns/articles per
sentence. As Table 12 shows, there is only one can-
didate, namely the number of tokens in sentence, to
be taken into considerations since there is the largest
difference between minimum and maximum.

We confronted Ken Lackman,5 an English
teacher, with the task of manual native language
identification by English teachers. He says: ”I think

5http://kenlackman.com
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≥ 90% ≥ 80% ≥ 70% < 70%
P1 GER,

ITA
FRE,
HIN,
ARA,
TEL

CHI,
KOR,
TUR

SPA,
JPN

P2 GER,
FRE,
ITA,
TEL

ARA,
HIN,
JPN

SPA,
KOR,
CHI

TUR

P3 GER CHI,
KOR

HIN,
ITA

FRE,
JPN,
TUR,
ARA,
SPA,
TEL

P4 ITA CHI,
TUR,
HIN,
FRE

TEL,
SPA,
GER,
JPN,
ARA,
KOR

P5 ITA TUR,
JPN,
GER

FRE,
TEL,
KOR

HIN,
CHI,
SPA,
ARA

P6 ITA,
CHI,
SPA

KOR,
ARA,
JPN

HIN,
FRE,
TEL,
GER,
TUR

P7 ITA,
CHI,
TUR

SPA,
GER,
HIN,
FRE

ARA,
JPN,
KOR,
TEL

P8 ARA GER,
TEL,
SPA,
ITA

FRE
HIN,
KOR,
JPN,
TUR,
CHI

Table 11: CUNI-closed-1 on EvalTest: Groups of lan-
guages sorted according to F-measure w.r.t. prompt.

AVG COUNT Train
PER MIN (L1) - MAX (L1)
SENTENCE

TOKEN 18 (JPN) -25.8 (SPA)
PUNCTUATION 1.5 (HIN, TEL) - 2.1 (SPA)
CAPITALIZED 0.1 (CHI) - 0.3 (HIN)
NOUN

the 0.6 (KOR) - 1.2 (ITA, SPA, TEL)
a/an 0.3 (JPN, KOR) - 0.7 (ITA, SPA)

Table 12: Data counts on Train.

it’s quite possible to do but you would need a set of
guidelines to supply teachers with. The guidelines
would list tendancies of certain first language writ-
ers, based on errors caused by difference between
L1 and L2. For example, Germans tend to capital-
ize too many nouns, since there are far more nouns
capitalized in their language, Asians tend to leave
out articles and Arab students tend to use the verb
”to be” inappropriately before other verbs.” Look-
ing into the data, we observe the phenomena Ken is
speaking about, but the quantity of them is not sta-
tistically significant to distinguish L1s.

We formulate an idea of a bootstrapped feature
extraction that has not been published yet, at least
to our knowledge. Let us assume a set of opera-
tions that can be performed over a feature set (so far,
we have proposed two possible operations with the
features, filtering them out and their combinations).
Determining whether a condition to perform a given
operation holds is done on the high number of ran-
dom samples. If the condition holds on the majority
of them, then the operation is performed. The only
parameter that must be set up is the majority. In-
stead of setting a threshold that is adjusted for all the
features, bootstrapped feature extraction deals with
fitting the data individually for each feature.

9 Conclusion

It was the very first experience for our team to ad-
dress the task of NLI. We assess it as very stimu-
lating and we understand our participation as setting
the baseline for applying other ideas. An overall ta-
ble of results (Tetreault et al., 2013) for all the teams
involved in the NLI 2013 Shared Task shows that
there is still space for improvement of our baseline.

We really appreciate all the work done by the or-
ganizers. They’ve made an effort to prepare the
high-quality data and set up the framework by which
the use of various NLI systems can be reliably com-
pared.
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Abstract 

This study explores the efficacy of an ap-
proach to native language identification that 
utilizes grammatical, rhetorical, semantic, 
syntactic, and cohesive function categories 
comprised of key n-grams. The study found 
that a model based on these categories of key 
n-grams was able to successfully predict the 
L1 of essays written in English by L2 learners 
from 11 different L1 backgrounds with an ac-
curacy of 59%. Preliminary findings concern-
ing instances of crosslinguistic influence are 
discussed, along with evidence of language 
similarities based on patterns of language 
misclassification. 

1. Introduction 

Native language identification (NLI) is generally 
an automated task that can be used in authorship 
profiling (Wong & Dras, 2009) and in assisting 
automatic writing evaluation systems provide fo-
cused feedback (e.g., Rozovskaya & Roth, 2011). 
NLI is achieved by identifying patterns of lan-
guage use that are common to a group of users of a 
particular second language (L2; e.g., English) that 
share a native language (L1). Useful to the discus-
sion of these patterns is the concept of crosslin-
guistic influence (CLI), which references ‘the 
consequences - both direct and indirect - that being 
a speaker of a particular native language (L1) has 
on the person’s use of a later learned language 
(Jarvis, 2012, p.1). Beyond its theoretical applica-

tions, CLI can also be used to inform L2 classroom 
pedagogy (Granger, 2009; Laufer & Girsai, 2008). 
NLI studies, then, are informed by and can inform 
CLI, and have diverse applications. 

The current study seeks to add to the discus-
sions of NLI and CLI by testing the efficacy of a 
new approach – the use of grammatical, rhetorical, 
semantic, syntactic, and cohesive function catego-
ries of key n-grams.  

2. Background 

In this section we outline two approaches to CLI, 
provide a selected review of relevant literature, and 
address gaps in the current body of NLI research. 

2.1 Approaches to CLI  

Jarvis (2000, 2010, 2012) has outlined two ap-
proaches to the investigation of CLI: a compari-
son-based and a detection-based approach. The 
comparison-based approach is generally con-
structed based on specific observed difference be-
tween language systems (e.g., article usage in 
English as compared to article usage in Korean). 
Whether or not these L1 differences affect L2 pro-
duction is then analyzed by examining example 
texts (e.g., inappropriate use of articles by native 
speakers of Korean writing in English as an L2). 
The detection-based argument, on the other hand, 
is built with the opposite trajectory. Instead of be-
ginning with hypotheses based on differences in 
language systems, researchers begin by identifying 
patterns of language use (e.g., inappropriate article 
use) that occur regularly by members of an L1 that 
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use a particular L2 (intragroup homogeneity) but 
do not occur regularly by other L1 users of the 
same L2 (intergroup heterogeneity). These patterns 
of use are then verified through statistical and ma-
chine learning techniques that use these patterns to 
predict the L1 group membership of L2 texts (i.e., 
NLI).  

Recent advances in corpus development and 
natural language processing allow for larger num-
bers of texts to be searched using a greater number 
of linguistic features. These features can then be 
used to create an NLI predictor model. A success-
ful model not only fulfills the NLI task, but pro-
vides further evidence that the observed patterns of 
language use can be attributable to CLI. While 
Type I errors are certainly a potential issue in this 
argument, Jarvis (2012) explains that false posi-
tives can be mitigated by balancing or controlling 
for potentially confounding variables (e.g., profi-
ciency levels and essay prompts) during the con-
struction of the target corpus. 

2.2 Selected literature review 

A limited but growing number of studies have in-
vestigated CLI using the detection-based approach, 
many of which are included in a volume edited by 
Jarvis and Crossley (2012). Researchers have ex-
plored the topic of CLI in the areas of lexical style 
(Jarvis et al., 2012a), lexical n-grams (Jarvis & 
Paquot, 2012), character n-grams (Tsur & Rappo-
prot, 2007), using variables related to cohesion, 
lexical sophistication, syntactic complexity and 
conceptual knowledge (Crossley & McNamara, 
2012), error patterns (Bestgen, et al., 2012; Wong 
& Dras, 2009), and a combination of these ap-
proaches (Jarvis et al., 2012b; Koppel et al., 2005; 
Mayfield Tomokiyo & Jones, 2001, Wong & Dras, 
2009).  

Such studies have demonstrated relatively 
strong success rates for classifying an L2 writing 
sample based on the L1 of the writer. For instance, 
Jarvis and Paquot (2012), using 1-4-grams as pre-
dictor variables on a subset of argumentative es-
says included in the International Corpus of 
Learner English (ICLE) (Granger et al., 2009) 
achieved a 53.6% classification accuracy for 12 
groups of L1s. Crossley and McNamara (2012) 
used features related to cohesion, lexical sophisti-
cation, syntactic complexity, and conceptual 
knowledge taken from the computational tool Coh-

Metrix (Graesser et al., 2004) to classify essays 
written in English by Czech, Finnish, German, and 
Spanish participants and achieved an L1 classifica-
tion accuracy of 65-67.6%. Using error types, 
Bestgen et al. (2012), on 223 ICLE essays written 
by French, German, and Spanish L1 participants, 
achieved a classification accuracy of 65%. In a 
follow-up study, Jarvis et al. (2012b) explored the 
relative efficacy of these three CLI methods (n-
grams, Coh-Metrix indices, and error types) using 
the corpus found in Bestgen et al. (2012). When all 
three approaches were used in the classification 
task, the accuracy increased to 79%.  

2.3 Weakness of extant research in CLI 

Although the studies discussed so far have pro-
duced statistical models that can predict the L1 
group of a text written in L2 English with accura-
cies well above chance, the degree to which these 
studies have demonstrated instances of CLI may be 
questionable as they draw on the ICLE corpus, 
which is arguably imbalanced (Jarvis et al., 2012a, 
and Mayfield Tomokiyo, & Jones, 2001 being the 
exceptions). While ICLE was designed with an 
attempt to control for a number of variables, the 
proficiency levels vary across language groups (as 
suggested by Koppel et al., 2005, and empirically 
confirmed by Bestgen et al., 2012) and though the 
argumentative texts are limited to a particular set 
of prompts within the corpus, these prompts are 
not equally distributed across language groups, 
raising the question of the degree to which the ob-
served differences in texts were due to CLI, profi-
ciency level, or essay prompt.  

In addition, many of the linguistic features 
previously investigated did not lend themselves to 
providing strong links between observed differ-
ences and CLI (e.g., the word concreteness and 
word frequency variables investigated in Crossley 
& McNamara, 2012). A potentially promising 
method that has not been applied to detection-
based CLI studies that may address these limita-
tions is the use of rhetorical, syntactic, grammati-
cal and cohesive categories comprised of key n-
grams. Such features have recently been investi-
gated by Crossley, Defore, Kyle, Dai, and McNa-
mara (submitted for publication), in which they 
explored their usefulness for assessing the efficacy 
of an automatic writing evaluation (AWE) system. 
In this study, Crossley et al. separated a corpus of 
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essays into introduction, body, and conclusion 
paragraphs, and then further separated these into 
high and low proficiency categories based on over-
all essay score. They then identified n-grams that 
occurred significantly more often (positive keyness 
values) in paragraphs of a certain type (e.g., intro-
duction) from high scoring essays than the same 
type of paragraphs from low-scoring essays. Addi-
tionally, they identified n-grams that occurred sig-
nificantly less often (negative keyness values) in 
high-scoring paragraphs of a certain type than low-
scoring paragraphs of the same type. Positively and 
negatively key n-grams for each paragraph type 
were then separated into categories based on their 
rhetorical, syntactic, grammatical, and cohesive 
features. These categories were then successfully 
used as variables in a multiple regression to create 
a model that accounted for between 24%-33% of 
the variance in essay scores. This study demon-
strates the efficacy of using grammatical, rhetori-
cal, syntactic, and cohesive function categories of 
key n-grams to identify instances of linguistic 
variation that successfully predict essay quality. 
These findings hold promise for the use of similar 
methods to contribute to the study of CLI by iden-
tifying linguistic variation across different L1 
groups writing in the same L2. 

2.4 Goals of the current study 

The current study, while drawing on previous re-
search (notably Jarvis & Paquot, 2012 and 
Crossley et al., submitted for publication), contrib-
utes to the detection-based CLI discussion by: a) 
examining a prompt and proficiency-controlled 
corpus and, b) using n-gram indices related to 
grammatical, rhetorical, semantic, syntactic, and 
cohesive functions to assess difference in L2 es-
says based on the L1 of the writers. This study is 
guided by the following research questions: 
 
1. Can a model consisting of functional categorical 
n-grams predict the native language of an L2 writer 
of English? 
 
2. Does the resulting model inform theories of 
CLI? 

3. Method 

In this section, we describe the corpus used for our 
training and test set, the methods used for key n-
gram identification, and the grouping of these n-
grams into grammatical, rhetorical, semantic, syn-
tactic, and cohesive categories. 

3.1 Corpus 

For this project we used an 11,000 essay subset of 
the 12,100 essay TOEFL11 corpus (Blanchard, 
Tetreault, Higgins, Cahill, & Chodorow, 2013). 
The TOEFL11 corpus is comprised of independent 
task essays written during administrations of the 
Test of English as a Foreign Language (TOEFL) 
between 2006-2007 (Blanchard et al., 2013). The 
corpus is balanced across 11 native language (L1) 
groups, includes responses to eight different inde-
pendent-task prompts, and includes essays written 
by low, medium, and high proficiency writers. The 
languages represented include Arabic, Chinese, 
French, German, Hindi, Italian, Japanese, Korean, 
Spanish, Telugu, and Turkish. Following the pro-
cedures of the NLI shared task (Tetreault, Blanch-
ard, & Cahill, 2013), 1,100 of the original 11,000 
essays were set aside as the test set, leaving a train-
ing corpus of 9,900 essays. 

3.2 Identifying key n-grams 

In this study, we considered n-grams from 1-10 
words in length. N-grams were considered to be 
key if they occur in a corpus significantly more or 
less frequently than in a reference corpus. We 
identified key n-grams using the KeyWords func-
tion of Wordsmith Tools 6 (Scott, 2013) and the 
default log likelihood method of identifying key n-
grams (McEnery & Hardie, 2012). To ensure that 
the keyness of a particular n-gram was representa-
tive of use across a particular L1 group and not due 
to prolific use by a small number of individuals, 
we set the minimum threshold for inclusion at a 
range of 10 percent (n-grams had to occur in at 
least 10 percent of the texts written by a particular 
L1 group). Using these parameters, we conducted 
keyness tests for each language group. To create 
the key n-gram list for the Arabic group, for exam-
ple, we compared the frequency of n-grams in the 
Arabic group to the frequency of n-grams in all of 
the other language groups combined. This process  
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was completed for each language group until a key 
n-gram list existed for each. 

Because one of the goals of our study was to 
generalize instances of CLI to essays written on 
prompts other than those included in the TOEFL11 
Corpus, it was important to remove all prompt-
based words from our key n-gram lists. Removing 
all words occurring in the prompts from the n-
grams list would remove a number of high fre-
quency words that may not be prompt-based (e.g., 
the, to), so prompt-based words were operationally 
defined as content words and their lemmas in-
cluded in the prompt that had a Kucera and Francis 
(1967) written frequency value of 715 or less. N-
grams were removed from potential predictor sets 
if they contained any of these prompt-based words. 
The remaining key n-grams for each language 
group were then sorted by absolute keyness in each 
group and filtered for redundancy. For example, 
prior to this stage, the Chinese key n-gram list in-
cluded both more and have more. Because more 
had a higher absolute keyness value than have 
more, have more was removed from the Chinese 
key n-gram list.  

Table 1 provides a summary of the length of 
key n-grams identified in each stage of the selec-
tion process. Although n-grams from 1-10 words in 
length were initially considered, no n-grams longer 
than 5-grams were identified as being key. Addi-
tionally, all 5-grams, such as the key Chinese n-
gram ‘group led by a tour’, and the Telugu n-gram 
‘agree with the statement that’ contained prompt-
based words and were removed from further con-
sideration. After the final n-gram refining step, the 
longest n-gram was a single 4-gram, the Turkish n-
gram ‘on the other hand’. 

3.3 Grouping of key n-grams into indices 

The last stage in our variable selection process was 
to group the key n-grams in each language group 
into categories. First, two indices for each lan-
guage group were created. The first included all n-
grams with positive keyness values that remained 
after the filtering process described above. The 
second included all of the n-grams with negative 
keyness values after filtering. Next, positive and 
negative n-grams were sorted into grammatical, 
rhetorical, semantic, syntactic, and cohesive func-
tion categories by two trained linguists with expe-
rience in the area of second language writing. The 
purpose of sorting n-grams in this manner was to 
identify patterns of relative over/underuse by each 
language group. See Table 2 for a list of all of the 
indices created during this process. 

3.4 Evaluation of model 

In CLI studies and other studies that attempt to 
predict the group membership of a text, discrimi-
nant function analysis (DFA) is often used (Jarvis 
& Paquot, 2012; Crossley & McNamara, 2012). 
Although other methods can be used, such as sup-
port vector machine decision trees (e.g., Koppel et 
al., 2005) or Naïve Bayes (e.g., Mayfield To-
mokiyo & Jones, 2001), DFA has the advantage of 
being the most transparent of these with regard to 
interpreting results (Jarvis, 2012). DFA was there-
fore chosen as the method of analysis for this 
study, using L1 as the dependent variable and n-
gram indices as independent variables. 

The first step in the analysis was to check the 
independent variables for multicollinearity using a 
Pearson correlation matrix. Any two variables 
above a threshold of p>.899 were flagged for fur-
ther analysis. A MANOVA was then conducted 
using the languages from one proficiency group as 
independent variables and the predictor indices/n-
grams as dependent variables. The effect sizes pro-
duced by the MANOVA were used to select which 
variables flagged in the correlation matrix would 
be retained, and which would be eliminated. 
Within each highly correlated pair, the variable 
with the largest effect size was kept. Finally, a 
DFA was conducted on the training set. The pre-
dictor model sets identified in the DFA were then  

N-gram 
Length 

Original No Prompt 
Words 

After Final 
Sort 

5 5 0 0 
4 19 3 1 
3 110 54 8 
2 699 512 147 
1 1100 877 770 

Total 1933 1446 926 
    

Table 1: Length of key n-grams. 
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  L1 Index Coverage  
Variable Category - + Total Examples 
ALL  11 11 22 see below 
Adjectives Syntactic 0 1 1 little, kind, real 
Adverbs Syntactic 0 2 4 always, easily just, still 
Articles Cohesion 8 8 16 a, an, the 
Auxilliary Verbs Syntactic 2 0 2 has, have, will 
Certainty Semantic 0 1 1 necessary, sure, true 
Cognition Semantic 0 1 1 experience, thought 
Comparatives Rhetorical 0 1 1 easier, much more 
Conjunctions Cohesion 6 5 11 and, because, or 
Connectives Cohesion 1 2 3 and to, and that, also 
Determiners Cohesion 1 0 1 that, this 
Evaluation Semantic 0 1 1 good, fun, like to 
Examples Semantic 0 1 1 particular, etc 
Explanation Semantic 0 4 4 explain, in order to, that is 
Go Semantic 0 1 1 are going, go, going to 
Irrealis Grammatical 0 1 1 what, will 
Modality Rhetorical 9 9 18 we can, could, can be 
Negation Syntactic 3 8 11 but not, no 
Nouns Syntactic 3 7 10 country, person, places 
Options Rhetorical 0 1 1 consider, different, instead 
People Semantic 1 4 5 people, society, friends 
Place Semantic 0 1 1 city, place, places 
Possession Semantic 1 1 2 his, having, your 
Possibility Rhetorical 0 3 3 probably, maybe, possible 
Pre-infinitive Syntactic 0 1 1 how to, time to, way to 
Prepositions Grammatical 10 9 19 from, about, with a 
Problems Semantic 1 1 2 problem, problems 
Pronouns Cohesion 10 11 21 he, his, your 
Quantity Semantic 11 11 22 every, more than, some 
Questions Syntactic 7 6 13 where, who, why, question 
Science/ Tech-
nology Semantic 0 2 2 computer, internet 
Signifying Rhetorical 0 1 1 see, mean 
Specificity Rhetorical 0 3 3 certain, especially, special 
Stance Rhetorical 2 6 8 feel that, in my, opinion 
Temporality Semantic 6 7 13 during, more and more, often  
To Be Syntactic 6 8 14 are, been, it is 
Transitions Cohesion 4 9 13 but, however, therefore 
Vagueness Semantic 0 1 1 general, someone, something 
Verbs Syntactic 5 8 13 choose, make, play 
Work/Study Semantic 2 7 9 money, study, parents 
Total  110 167 277  
      

Table 2: Negative and positive key n-gram variables. 
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used on the essays in the test set to determine 
whether the model sets could generalize to a new 
population.  

4. Results 

The training set DFA predicted L1 group member-
ship of TOEFL independent essays with an accu-
racy of 60% using 184 indices (df= 100, n= 9900, 
χ2= 32997.259, p< .001), which is significantly 
higher than the baseline chance of 9%. The re-
ported Kappa = .560, indicates a moderate rela-
tionship between actual and predicted L1.  

The predictive accuracy of the model was veri-
fied on the test set, in which L1 group membership 
was predicted with an accuracy of 59% (df= 100, 
n= 1100, χ2= 3550.791, p< .001). The reported 
Kappa = .549, indicates a moderate agreement be-
tween the actual and predicted L1. Table 3 in-
cludes the test set confusion matrix. 
 
5. Discussion 
 
The results of this study suggest the usefulness of 
key n-grams grouped into categories based on their 
grammatical, rhetorical, semantic, syntactic, and 
cohesive features for NLI. The results demonstrate 
that such indices can correctly classify 59% of es-
says written in English as belonging to 1 of 11 L1 
populations. 

In addition, with regard to n-gram length, we 
found that although n-grams 1-10 words in length 
were initially considered, no n-grams longer than 

5-grams were identified as key, and the longest n-
gram that remained after removing prompt-based 
and redundancy was a single 4-gram. This suggests 
that 4-grams (or possibly even 3-grams) may be a 
useful threshold for future investigations. 

5.1 Preliminary CLI findings 

As Jarvis (2012) notes, CLI studies that use the 
detection-based argument to CLI are exploratory in 
nature, while studies that use the comparison-based 
argument are confirmatory in nature. The present 
study is, thus, exploratory in nature, and without 
substantial further investigation, we cannot defini-
tively posit whether observed differences and simi-
larities in English use can be attributed to the 
influence of the L1 itself or to cultural or educa-
tional norms. 

Nonetheless, a few preliminary observations 
are worthy of discussion. First, we identified a 
number of patterns of language use that may be 
attributable to CLI. Although a full discussion of 
these is beyond the scope of this paper, Table 4 
includes examples of potential CLI features in ref-
erence to the German writers represented in the 
corpus. The table demonstrates the particular n-
grams that German writers are likely to use more 
or less often than writers of the other 10 languages. 
German writers, for example, are more likely to 
use the phrasal modals able to, have to, has to, and 
singular modals might and would more often than 
writers of the other language groups, but are less 
likely to use the modals can and may. These find-
ings are preliminary, and further research that links 
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Precision Recall F-measure 
ARA 66 0 5 3 1 3 2 4 8 1 7 53.2% 66.0% 58.9% 
CHI 3 63 5 3 2 0 6 9 0 3 6 57.8% 63.0% 60.3% 
FRE 3 4 64 7 3 6 2 1 6 0 4 64.6% 64.0% 64.3% 
GER 2 5 5 64 3 5 2 4 6 0 4 62.7% 64.0% 63.4% 
HIN 4 5 0 7 54 1 0 1 6 17 5 56.8% 54.0% 55.4% 
ITA 4 1 9 10 1 64 2 1 6 0 2 68.8% 64.0% 66.3% 
JPN 6 7 1 1 0 1 64 9 2 1 8 61.5% 64.0% 62.7% 
KOR 5 9 2 1 2 0 19 56 2 0 4 57.7% 56.0% 56.9% 
SPA 14 6 6 3 4 9 2 3 43 2 8 47.3% 43.0% 45.0% 
TEL 5 3 0 1 22 1 1 1 4 60 2 70.6% 60.0% 64.9% 
TUR 12 6 2 2 3 3 4 8 8 1 51 50.5% 51.0% 50.7% 
               

Table 3: Test set confusion matrix. 
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these English n-grams with patterns of use in Ger-
man is needed. 

Additionally, our findings provide some evi-
dence for close relationships between languages. 
For example, when checking for multicollinearity, 

we found that the All Negative Japanese and All 
Negative Korean categories were very strongly 
correlated (r =.946, p< .001). Upon further exami-
nation, 8 of the 19 n-grams (42%) in the All Nega-
tive Japanese category occurred in the 
corresponding Korean category. The overlapping 
n-grams were the n-grams all, any, but, different, 
or, person, this, and your, which may indicate 

similarities between these language systems in that 
speakers from both language avoid the use of these 
words. 

Patterns of essay categorization also provide 
preliminary insights into language similarities. 
Based on the test set confusion matrix (see Table 
3), a few conflicting patterns emerged. Among the 
Indo-European languages represented, the Ro-
mance (French, Italian, and Spanish) and Germanic 
(German) languages were regularly miscategorized 
as one another. Italian essays, for example, were 
predicted to be French, German, and Spanish 9%, 
10%, and 6% of the time, respectively, but were 
predicted to be other languages only 0%-4% of the 
time. This seems to confirm generally accepted 
language taxonomies, though Spanish was pre-
dicted to be Arabic (14%) and Turkish (8%) more 
often than Italian (6%) or French (6%) (as com-
pared to 3% for German, and no more than 4% for 
other languages).  

While similarities between language families 
seem to support extant language taxonomies (see 
Blanchard et al., 2013) and lend credence to claims 
of CLI, other observations may cast doubt on 
these. Hindi (an Indo-Iranian member of the Indo-
European family) essays were predicted to be 
Telugu (Dravidian) essays 17% of the time, and 
Telugu essays were predicted to be Hindi essays 
22% of the time. This may indicate instances of 
cultural proximity or educational similarities as 
opposed to linguistic transfer (and/or borrowing) 
because these languages are both spoken within 
India. Further investigations of these issues are 
clearly needed. 

5.2 Limitations 

While we have confidence in our findings, there 
are limitations to the analysis that need to be dis-
cussed. The TOEFL11 corpus was designed to be 
comparable across languages. While it largely ac-
complishes this goal, it is not well balanced across 
proficiency levels (which may reflect the relative 
proficiency levels of TOEFL test-takers). Although 
medium and high proficiency levels are well 
(though not equally) represented, the low profi-
ciency group represents only 11% of the number of 
texts and an estimated 7.2% of total words (based 
on mean lengths of essays from each proficiency 
level given in Blanchard et al., 2013). The medium 
proficiency group represented 54.4% of the texts 

Variable Positive Negative 

Adverbs just, only, there, nec-
essary  

Compara-
tives easier, much more  

Conjunc-
tions or, but, as well  

Modals able to, have to, has 
to, might, would can, may 

Nouns development, job, 
topic, something 

person, 
place 

Preposi-
tions at, on about, by 

Pronouns everybody, this, you, 
your 

she, its, I 
his, us, he, 
we, they, 
our 

Quantity 
(and ex-
ample) 

another, amount of, 
both, less, lot, whole 

any, many, 
some, such 

Specific certain, especially, 
special  

Stance in my, of course, 
opinion, point  

Tempo-
rality often, still 

day, now, 
second, 
then, time 
to, second 

To Be be able, it is, to be was 
Transi-
tions 

furthermore, one 
hand, other hand  

Verbs look, to get, work go, going, 
study 

   
Table 4: German predictor variables. 
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and an estimated 52.8% of words in the corpus, 
and the high proficiency group comprised the re-
maining 34.7% of the texts and an estimated 40% 
of the words. This indicates that caution should be 
used when generalizing any CLI findings from this 
study to low proficiency language users. Further-
more, any CLI findings will be biased towards me-
dium proficiency language users. 

Another limitation that may have affected the 
accuracy of the model was the way in which poten-
tial predictor variables were refined. For each lan-
guage, the absolute keyness values were used when 
refining the lists of potential n-gram predictors (as 
discussed in Section 3.2). After the data had been 
processed, we discovered that this process re-
moved some n-grams that should have remained. 
In a very few instances redundant n-grams (e.g., 
have; have more) had a positive keyness value for 
one n-gram (have) and a negative keyness value 
for the other (have more). Because all n-grams 
were later grouped into categories based on posi-
tive and negative keyness values, both have and 
have more should have been retained (as they 
would not have occurred in any of the same cate-
gories). In future studies, positive and negative n-
grams will be kept separate during the elimination 
of redundant n-grams. 

Another limitation that was discovered after 
the data analysis was that a data input error caused 
All Negative Chinese n-gram category to be com-
bined with two n-grams included in the Positive 
Chinese School and Home category. A similar er-
ror retained two positive German adverb categories 
(with one overlapping n-gram, just). The models 
described in this study retained these variables, as 
they were not highly correlated with each other or 
any other variable (based on the r > .899 thresh-
old), so any CLI findings based solely on these 
variables should be considered with caution. 

5.3 Future research 

Although it is clear that categorical n-grams can be 
used as successful NLI predictor variables, it is 
unclear whether this approach is more or less ef-
fective than the use of raw counts of frequent 
words or n-grams (e.g., Jarvis et al., 2012a; Jarvis 
& Paquot, 2012). Future research should explore 
the relative effectiveness of these methods using 
the TOEFL11 corpus to determine whether the 

time involved to create key n-gram lists and then 
sort those lists into categories is warranted. 

Finally, another remaining question is whether 
the key n-grams identified in this study are due to 
linguistic factors or, alternatively, other influences 
such as culture and educational materials. 
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Abstract

We report on the performance of two different
feature sets in the Native Language Identification
Shared Task (Tetreault et al., 2013). Our feature
sets were inspired by existing literature on native
language identification and word networks. Exper-
iments show that word networks have competitive
performance against the baseline feature set, which
is a promising result. We also present a discussion
of feature analysis based on information gain, and an
overview on the performance of different word net-
work features in the Native Language Identification
task.

1 Introduction

Native Language Identification (NLI) is a well-
established problem in NLP, where the goal is to
identify a writer’s native language (L1) from his/her
writing in a second language (L2), usually English.
NLI is generally framed as a multi-class classifi-
cation problem (Koppel et al., 2005; Brooke and
Hirst, 2011; Wong and Dras, 2011), where native
languages (L1) are considered class labels, and writ-
ing samples in L2 are used as training and test data.
The NLI problem has recently seen a big surge in
interest, sparked in part by three influential early pa-
pers on this problem (Tomokiyo and Jones, 2001;
van Halteren and Oostdijk, 2004; Koppel et al.,
2005). Apart from shedding light on the way non-
native learners (also called “L2 learners”) learn a
new language, the NLI task allows constrastive anal-
ysis (Wong and Dras, 2009), study of different types

of errors that people make while learning a new lan-
guage (Kochmar, 2011; Bestgen et al., 2012; Jarvis
et al., 2012), and identification of language trans-
fer patterns (Brooke and Hirst, 2012a; Jarvis and
Crossley, 2012), thereby helping L2-students im-
prove their writing styles and expediting the learn-
ing process. It also helps L2 educators to concen-
trate their efforts on particular areas of a language
that cause the most learning difficulty for different
L1s.

The NLI task is closely related to traditional NLP
problems of authorship attribution (Juola, 2006; Sta-
matatos, 2009; Koppel et al., 2009) and author pro-
filing (Kešelj et al., 2003; Estival et al., 2007a; Esti-
val et al., 2007b; Bergsma et al., 2012), and shares
many of the same features. Like authorship attri-
bution, NLI is greatly benefitted by having function
words and character n-grams as features (Brooke
and Hirst, 2011; Brooke and Hirst, 2012b). Native
languages form a part of an author’s socio-cultural
and psychological profiles, thereby being related to
author profiling (van Halteren and Oostdijk, 2004;
Torney et al., 2012).

Researchers have used different types of features
for the NLI problem, including but not limited to
function words (Brooke and Hirst, 2012b); char-
acter, word and POS n-grams (Brooke and Hirst,
2012b); spelling and syntactic errors (Koppel et al.,
2005); CFG productions (Brooke and Hirst, 2012b);
Tree Substitution Grammar productions (Swanson
and Charniak, 2012); dependencies (Brooke and
Hirst, 2012b); Adaptor Grammar features (Wong et
al., 2012); L1-influence (Brooke and Hirst, 2012a);
stylometric features (Golcher and Reznicek, 2011;
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Crossley and McNamara, 2012; Jarvis et al., 2012);
recurrent n-grams on words and POS (Bykh and
Meurers, 2012); and features derived from topic
models (Wong et al., 2011). State-of-the-art re-
sults are typically in the 80%-90% range, with re-
sults above 90% reported in some cases (Brooke
and Hirst, 2012b). Note, however, that results vary
greatly across different datasets, depending on the
number of languages being considered, size and dif-
ficulty of data, etc.

2 Our Approach

The NLI 2013 Shared Task (Tetreault et al., 2013)
marks an effort in bringing together the NLI research
community to share and compare their results and
evaluations on a common dataset - TOEFL11 (Blan-
chard et al., 2013) - consisting of 12,100 unique En-
glish essays written by non-native learners of eleven
different languages.1 The dataset has 9,900 essays
for training, 1,100 essays for test, and 1,100 essays
for development. Each of the three sets is balanced
across different L1s.

Inspired by previous work in NLI, in our different
NLI systems submissions we used several different
types of character, word, and POS n-gram features
(cf. Section 2.1). Although not included in the sys-
tems submitted, we also experimented with a family
of new features derived from a word network repre-
sentation of natural language text (cf. Section 2.2).
We used Weka (Hall et al., 2009) for all our classifi-
cation experiments. The systems that were submit-
ted gave best 10-fold cross-validation accuracy on
training data among different feature-classifier com-
binations (Section 3). Word network features - al-
though competitive against the baseline n-gram fea-
tures - were not able to beat the baseline features
on the training set, so we did not submit that sys-
tem for evaluation. Section 2.1 discusses our n-gram
features, followed by a discussion of word network
features in Section 2.2.

2.1 N-gram Features

We used several baseline n-gram features based on
words, characters, and POS. We experimented with
the raw frequency, normalized frequency, and binary

1Arabic, Chinese, French, German, Hindi, Italian, Japanese,
Korean, Spanish, Telugu and Turkish.

presence/absence indicator on top 100, 200, 500 and
1000 n-grams:2

1. word n-grams (n = 1, 2, 3), with and without
punctuation.

2. character n-grams (n = 1, 2, 3), with and with-
out space characters.

3. POS n-grams (n = 1, 2, 3), with and without
punctuation.3

We experimented with punctuation because pre-
vious research indicates that punctuation is help-
ful (Wong and Dras, 2009; Kochmar, 2011). In total,
there are 216 types of n-gram feature vectors (with
dimensions 100, 200, 500 and 1000) for a particular
document. Because of size restrictions (e.g., some n-
gram dictionaries are smaller than the specified fea-
ture vector dimensions), we ended up with 168 types
of feature vectors per document (cf. Tables 2 to 4).

2.2 Word Networks

A “word network” of a particular document is a net-
work (graph) of unique words found in that docu-
ment. Each node (vertex) in this network is a word.
Edges between two nodes (unique words) can be
constructed in several different ways. The simplest
type of edge connects word A to word B, if word
A is followed by word B in the document at least
once. In our work, we have assumed a directed edge
with direction from word A to word B. Note that we
could have used undirected edges as well (cf. (Mi-
halcea and Tarau, 2004)). Moreover, edges can
be weighted/unweighted. We assumed unweighted
edges.

A deeper issue with this network construction
process concerns what we should do with stopwords.
Should we keep them, or should we remove them?
Since stopwords and function words have proved to
be of special importance in previous native language
identification studies (Wong and Dras, 2009; Brooke
and Hirst, 2012b), we chose to keep them in our
word networks.

Two other choices we made in the construction
of our word networks concern sentence boundaries

2Note that these most frequent n-grams were extracted from
the training+development set.

3We used CRFTagger (Phan, 2006) for POS tagging.
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Figure 1: Word network of the sentence “the quick brown
fox jumped over the lazy dog”.

and word co-occurrence. Word networks can be
constructed either by respecting sentence boundaries
(where the last word of sentence 1 does not link
to the first word of sentence 2), or by disregard-
ing them. In our case, we disregarded all sentence
boundaries. Moreover, a network edge can either
link two words that appeared side-by-side in the
original document, or it can link two words that ap-
peared within a window of n words in the document
(cf. (Mihalcea and Tarau, 2004)). In our case, we
chose the first option - linking unique words that ap-
peared side-by-side at least once. Finally, we did
not perform any stemming/morphological analysis
to retain subtle cues that might be revealed from in-
flected/derived words.

The word network of an example sentence (“the
quick brown fox jumped over the lazy dog”) is
shown in Figure 1. Note that the word “the” ap-
peared twice in this sentence, so the correspond-
ing network contains a cycle that starts at “the”
and ends at “the”. In a realistic word network of
a large document, there can be many such cycles.
In addition, it is observed that such word networks
show power-law degree distribution and a small-
world structure (i Cancho and Solé, 2001; Matsuo
et al., 2001).

Once the word networks have been constructed,
we extract a set of simple features from these net-

works4 that represent local properties of individual
nodes. We have extracted ten local features for each
node in a word network:

1. in-degree, out-degree and degree

2. in-coreness, out-coreness and coreness5

3. in-neighborhood size (order 1), out-
neighborhood size (order 1) and neighborhood
size (order 1)

4. local clustering coefficient

We take a set of representative words, and convert
a document into a local feature vector - each local
feature pertaining to one word in the set of repre-
sentative words. For example, when we use the top
200 most frequent words as the representative set,
a document can be represented as the degree vec-
tor of these 200 words in the document’s word net-
work, or as the local clustering coefficient vector of
these words in the word network, or as the coreness
vector of the words (and so on). A document can
also be represented as a concatenation (mixture) of
these vectors. For example, it can be represented
as concat(degree vector, coreness vector) of top
200 most frequent words. We are yet to explore
how such mixed feature sets perform in the NLI
task, and this constitutes a part of our future work
(Section 4). We experimented with top k most fre-
quent words (with k = 100, 200, 500, 1000) on train-
ing+development data as our representative word-
set.

3 Results

Table 1 describes the three systems we submitted.
The first two systems (UNT-closed-1.csv and UNT-
closed-2.csv) were based on a bag of words model
using all the words from the training set. The
systems used a home-grown implementation of the
Naı̈ve Bayes classifier, and achieved 10-fold cross-
validation accuracy of 64.5% and 65.1% respec-
tively, on the training set. The first system used raw

4We used the igraph (Csardi and Nepusz, 2006) software
package for graph feature extraction.

5Coreness is an index given to a particular vertex based
on its position in the k-core decomposition of the word net-
work (Batagelj and Zaversnik, 2003).

253



Submitted System 10-fold CV Accuracy on Accuracy on DescriptionTraining Set (%) Test Set (%)

UNT-closed-1.csv 64.50 63.20
Raw frequency of all words in the training set
including stopwords. Naı̈ve Bayes classifier.

UNT-closed-2.csv 65.10 63.70
Raw frequency of all words in the training set

except stopwords. Naı̈ve Bayes classifier.

UNT-closed-3.csv 62.46 64.50
Raw frequency of 1000 most frequent words

in the training+development set including punctuation.
SVM (SMO) classifier.

Table 1: Performance summary and description of the systems we submitted.

term frequency of all words including stopwords as
features, and the second system used raw term fre-
quency of all words except stopwords. These two
systems achieved test set accuracy of 63.2% and
63.7%, respectively.

The third system we submitted (UNT-closed-
3.csv) was based on n-gram features (cf. Sec-
tion 2.1). We used the raw frequency of top 1000
word unigrams, including punctuation, as features.
The Weka SMO implementation of SVM (Hall et
al., 2009) was used as classifier with default param-
eter settings. This system gave us the best 10-fold
cross-validation accuracy of 62.46% in the training
set, among all n-gram features. Note that this system
was also the top performer among the systems we
submitted in NLI evaluation, with a test set accuracy
of 64.5%, and a 10-fold CV accuracy of 63.77% on
the training+development set folds specified by the
organizers.

We will now describe in the following two sub-
sections how our n-gram features and word network
features performed on the training set. All results re-
ported here reflect best 10-fold cross-validation ac-
curacy in the training set among different classifiers
(SVM, Naı̈ve Bayes, 1-nearest-neighbor (1NN), J48
decision tree, and AdaBoost). SVM and Naı̈ve
Bayes gave best results in our experiments, so only
these two are shown in Tables 2 to 5.

3.1 Performance of N-gram Features

Recall from Section 2.1 that we extracted 168 differ-
ent n-gram feature vectors corresponding to the raw
frequency, normalized frequency, and binary pres-
ence/absence indicator of top k n-grams (with k =
100, 200, 500, 1000) in the training+development

set. Performance of these n-gram features is given
in Tables 2 to 4. A general observation with Tables 2
to 4 is that cross-validation performance improves as
k increases, although there are a few exceptions. We
marked those exceptions with an asterisk (“*”).

It is interesting to note that top k word unigrams
with punctuation were the top performers in most
of the cases. Also interesting is the fact that SVM
mostly gave best performance on n-gram features
among different classifiers. Note that Naı̈ve Bayes
was best performer in a few cases (Table 4). Per-
formance of raw and normalized frequency features
were mostly comparable (Tables 2 and 3), whereas
binary presence/absence indicator achieved worse
accuracy values in general than raw and normalized
frequency features (Table 4).

Among different n-grams, word unigrams per-
formed better than bigrams and trigrams, POS bi-
grams performed better than POS trigrams, and
character bigrams and character trigrams performed
comparably well (Tables 2 and 3). Exceptions to
this observation are seen in Table 4, where character
trigrams performed better than character bigrams,
and word bigrams sometimes performed better than
word unigrams. In general, word n-grams performed
the best, followed by POS and character n-grams.

3.2 Performance of Word Network Features

Word networks and word network features were de-
scribed in Section 2.2. We extracted ten local fea-
tures on four different representative sets of words
- the top k most frequent words (k = 100, 200, 500,
1000) on the training+development set, respectively.
Performance of these features is given in Table 5.
Note that in general, word network features per-
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N-gram Feature
Best Cross-validation Accuracy (%) on Top k Most Frequent N-grams

k = 100 k = 200 k = 500 k = 1000

Word unigram
w/ punctuation 45.07 (SVM) 52.85 (SVM) 60.14 (SVM) 62.46 (SVM)

w/o punctuation 41.63 (SVM) 50.15 (SVM) 58.33 (SVM) 60.85 (SVM)

Word bigram
w/ punctuation 39.54 (SVM) 44.75 (SVM) 51.70 (SVM) 56.06 (SVM)

w/o punctuation 33.40 (SVM) 39.34 (SVM) 47.54 (SVM) 51.86 (SVM)

Word trigram
w/ punctuation 30.62 (SVM) 35.26 (SVM) 41.56 (SVM) 44.97 (SVM)

w/o punctuation 26.67 (SVM) 30.14 (SVM) 36.68 (SVM) 41.22 (SVM)

POS unigram
w/ punctuation N/A N/A N/A N/A

w/o punctuation N/A N/A N/A N/A

POS bigram
w/ punctuation 41.79 (SVM) 45.87 (SVM) 48.11 (SVM) 47.49 (SVM)*

w/o punctuation 35.95 (SVM) 39.23 (SVM) 41.23 (SVM) 39.58 (SVM)*

POS trigram
w/ punctuation 34.97 (SVM) 38.78 (SVM) 43.17 (SVM) 44.52 (SVM)

w/o punctuation 29.73 (SVM) 34.31 (SVM) 37.58 (SVM) 38.40 (SVM)

Character unigram
w/ space N/A N/A N/A N/A
w/o space N/A N/A N/A N/A

Character bigram
w/ space 42.48 (SVM) 48.43 (SVM) 55.87 (SVM) 56.12 (SVM)
w/o space 36.84 (SVM) 45.93 (SVM) 51.11 (SVM) 53.41 (SVM)

Character trigram
w/ space 41.65 (SVM) 48.68 (SVM) 54.54 (SVM) 57.77 (SVM)
w/o space 36.64 (SVM) 43.44 (SVM) 51.46 (SVM) 55.52 (SVM)

Table 2: Performance of raw frequency of n-gram features. Stratified ten-fold cross-validation accuracy values on
TOEFL11 training set are shown, along with the classifiers that achieved these accuracy values. Best results in different
columns are boldfaced. Table cells marked “N/A” are the ones that correspond to an n-gram dictionary size < k.

N-gram Feature
Best Cross-validation Accuracy (%) on Top k Most Frequent N-grams

k = 100 k = 200 k = 500 k = 1000

Word unigram
w/ punctuation 44.65 (SVM) 52.21 (SVM) 59.81 (SVM) 62.35 (SVM)

w/o punctuation 41.15 (SVM) 50.41 (SVM) 58.18 (SVM) 60.61 (SVM)

Word bigram
w/ punctuation 39.63 (SVM) 44.69 (SVM) 52.31 (SVM) 56.08 (SVM)

w/o punctuation 33.44 (SVM) 39.11 (SVM) 47.61 (SVM) 52.56 (SVM)

Word trigram
w/ punctuation 30.42 (SVM) 34.97 (SVM) 41.89 (SVM) 45.68 (SVM)

w/o punctuation 26.08 (SVM) 30.03 (SVM) 37.16 (SVM) 42.39 (SVM)

POS unigram
w/ punctuation N/A N/A N/A N/A

w/o punctuation N/A N/A N/A N/A

POS bigram
w/ punctuation 41.08 (SVM) 45.04 (SVM) 48.23 (SVM) 47.78 (SVM)*

w/o punctuation 34.85 (SVM) 38.95 (SVM) 41.16 (SVM) 40.84 (SVM)*

POS trigram
w/ punctuation 34.74 (SVM) 38.38 (SVM) 42.89 (SVM) 44.86 (SVM)

w/o punctuation 28.74 (SVM) 33.67 (SVM) 36.93 (SVM) 38.64 (SVM)

Character unigram
w/ space N/A N/A N/A N/A
w/o space N/A N/A N/A N/A

Character bigram
w/ space 41.93 (SVM) 47.79 (SVM) 56.31 (SVM) 56.22 (SVM)*
w/o space 36.21 (SVM) 45.18 (SVM) 51.58 (SVM) 53.63 (SVM)

Character trigram
w/ space 40.70 (SVM) 47.90 (SVM) 54.40 (SVM) 57.36 (SVM)
w/o space 35.84 (SVM) 42.79 (SVM) 50.94 (SVM) 55.71 (SVM)

Table 3: Performance of normalized frequency of n-gram features. Stratified ten-fold cross-validation accuracy values
on TOEFL11 training set are shown, along with the classifiers that achieved these accuracy values. Best results in
different columns are boldfaced. Table cells marked “N/A” are the ones that correspond to an n-gram dictionary size
< k.
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N-gram Feature
Best Cross-validation Accuracy (%) on Top k Most Frequent N-grams

k = 100 k = 200 k = 500 k = 1000

Word unigram
w/ punctuation 33.42 (SVM) 42.49 (SVM) 50.63 (Naı̈ve Bayes) 56.95 (SVM)

w/o punctuation 33.05 (SVM) 42.82 (SVM) 50.13 (SVM) 55.91 (SVM)

Word bigram
w/ punctuation 37.74 (SVM) 40.99 (SVM) 46.16 (SVM) 52.66 (SVM)

w/o punctuation 32.02 (SVM) 37.24 (SVM) 42.29 (SVM) 48.36 (SVM)

Word trigram
w/ punctuation 29.87 (SVM) 33.79 (SVM) 38.48 (SVM) 42.00 (SVM)

w/o punctuation 25.75 (SVM) 28.79 (SVM) 34.14 (SVM) 37.80 (SVM)

POS unigram
w/ punctuation N/A N/A N/A N/A

w/o punctuation N/A N/A N/A N/A

POS bigram
w/ punctuation 29.75 (SVM) 35.50 (SVM) 40.39 (Naı̈ve Bayes) 41.11 (Naı̈ve Bayes)

w/o punctuation 25.47 (SVM) 31.41 (SVM) 33.33 (Naı̈ve Bayes) 33.78 (Naı̈ve Bayes)

POS trigram
w/ punctuation 29.20 (SVM) 33.28 (SVM) 38.98 (Naı̈ve Bayes) 43.74 (Naı̈ve Bayes)

w/o punctuation 23.71 (SVM) 28.98 (SVM) 32.21 (SVM) 37.49 (Naı̈ve Bayes)

Character unigram
w/ space N/A N/A N/A N/A
w/o space N/A N/A N/A N/A

Character bigram
w/ space 15.26 (SVM) 23.69 (SVM) 40.07 (SVM) 41.76 (SVM)
w/o space 15.73 (SVM) 25.27 (SVM) 37.05 (SVM) 41.52 (SVM)

Character trigram
w/ space 20.42 (SVM) 28.17 (SVM) 37.61 (SVM) 47.93 (SVM)
w/o space 23.85 (SVM) 30.38 (SVM) 37.39 (SVM) 45.60 (SVM)

Table 4: Performance of binary presence/absence indicator on n-gram features. Stratified ten-fold cross-validation
accuracy values on TOEFL11 training set are shown, along with the classifiers that achieved these accuracy values.
Best results in different columns are boldfaced. Table cells marked “N/A” are the ones that correspond to an n-gram
dictionary size < k.

Word Network Feature
Best Cross-validation Accuracy (%) on Top k Most Frequent Words

k = 100 k = 200 k = 500 k = 1000
Clustering Coefficient 15.31 (SVM) 17.73 (SVM) 19.96 (SVM) 20.71 (SVM)

In-degree 39.89 (SVM) 49.28 (SVM) 56.83 (SVM) 59.47 (SVM)
Out-degree 40.66 (SVM) 49.67 (SVM) 57.16 (SVM) 59.62 (SVM)

Degree 41.05 (SVM) 50.74 (SVM) 58.17 (SVM) 60.21 (SVM)
In-coreness 32.52 (SVM) 42.44 (SVM) 51.09 (SVM) 55.50 (SVM)

Out-coreness 32.41 (SVM) 43.15 (SVM) 51.34 (SVM) 55.39 (SVM)
Coreness 35.32 (SVM) 45.84 (SVM) 53.54 (SVM) 57.18 (SVM)

In-neighborhood Size
40.54 (SVM) 50.08 (SVM) 56.92 (SVM) 59.69 (SVM)

(order 1)
Out-neighborhood Size

41.09 (SVM) 50.09 (SVM) 57.71 (SVM) 59.73 (SVM)
(order 1)

Neighborhood Size 41.83 (SVM) 50.68 (SVM) 57.40 (SVM) 60.41 (SVM)
(order 1)

Table 5: Performance of word network features. Stratified ten-fold cross-validation accuracy values on TOEFL11
training set are shown, along with the classifiers that achieved these accuracy values. Best results in different columns
are boldfaced.
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Rank Word Network Feature Information Gain
1 Degree of the word a 0.1058
2 Neighborhood size of the word a 0.1054
3 Out-neighborhood size of the word a 0.1050
4 Outdegree of the word a 0.1049
5 In-neighborhood size of the word a 0.1017
6 Indegree of the word a 0.1016
7 Neighborhood size of the word however 0.0928
8 Degree of the word however 0.0928
9 Indegree of the word however 0.0928
10 In-neighborhood size of the word however 0.0928
11 Outdegree of the word however 0.0916
12 Out-neighborhood size of the word however 0.0916
13 Out-coreness of the word however 0.0851
14 Coreness of the word however 0.0851
15 In-coreness of the word however 0.0850
16 Outdegree of the word the 0.0793
17 Out-neighborhood size of the word the 0.0790
18 Degree of the word the 0.0740
19 Neighborhood size of the word the 0.0740
20 Coreness of the word a 0.0710

Table 6: Ranking of word network features based on Information Gain, on TOEFL11 training set. We took 1000 most
frequent words on the training+development set, and collected all their word network features in a single file. This
ranking reflects the top 20 features in that file, along with their information gain values.

formed quite well, with the best result (60.41% CV
accuracy on the train set) being competitive against
(but slightly worse than) the baseline n-gram fea-
tures (62.46% CV accuracy on the train set). Perfor-
mance improved with increasing k, thereby corrob-
orating our general observation from Tables 2 to 4.
Clustering coefficient performed poorly, and seems
rather unsuitable for the NLI task. But degree, core-
ness, and neighborhood size performed good. Here
also, SVM turned out to be the best classifier, giving
best CV accuracy in all cases.

We experimented with the in-, out-, and over-
all versions of degree, coreness and neighborhood
size. Their performance was mostly comparable
with each other (Table 5). To investigate which word
network features are the most discriminatory in this
task, we collected all ten word network features of
the top 1000 words in a single file, and then ranked
those features on the training set based on Infor-
mation Gain (IG). The 20 top-ranking features are
shown in Table 6, along with their corresponding
IG values. Note that the words a, the, and however
were among the most discriminatory, and different
versions of degree, neighborhood size and coreness
appeared among the top, which is in line with our

earlier observation that clustering coefficients were
not very discriminatory at the native language clas-
sification task.

4 Conclusions and Future Work

In this paper, we described experiments with the NLI
task using a baseline set of n-gram features, and a
set of novel features derived from a word network
representation of text documents. Useful and less
useful n-gram features were identified, along with
the fact that SVM was the best classifier in most
of the cases. We learned that when using raw or
normalized frequency, lower-order n-grams perform
at least as good as higher-order n-grams; moreover,
Naı̈ve Bayes sometimes give good results when bi-
nary presence/absence indicator variables are used
as features.

We described the construction of our word net-
works in detail, and discussed experiments with
word network features. These features are compet-
itive against the baseline n-gram features, and we
need to fine-tune our classifiers to see if they can
exceed the performance of the baseline. Cluster-
ing coefficients were found to be less useful for the
NLI task, and feature ranking based on information
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gain helped us identify the most important word net-
work features in a collection of top 1000 words in
the training+development set.

Future work consists of experimenting with com-
bined word network features; mixed word network
features and baseline n-gram features; and the one-
vs-all classification scheme instead of the multiclass
classification scheme.
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Abstract

This paper describes LIMSI’s participation to
the first shared task on Native Language Iden-
tification. Our submission uses a Maximum
Entropy classifier, using as features character
and chunk n-grams, spelling and grammati-
cal mistakes, and lexical preferences. Perfor-
mance was slightly improved by using a two-
step classifier to better distinguish otherwise
easily confused native languages.

1 Introduction

This paper describes the submission from LIMSI to
the 2013 shared task on Native Language Identifica-
tion (Tetreault et al., 2013). The creation of this new
challenge provided us with a dataset (12,100 TOEFL
essays by learners of English of eleven native lan-
guages (Blanchard et al., 2013)) that was necessary
to us to develop an initial framework for studying
Native Language Identification in text. We expect
that this challenge will draw conclusions that will
provide the community with new insights into the
impact of native language in foreign language writ-
ing. We believe that such a research domain is
crucial, not only for improving our understanding
of language learning and language production pro-
cesses, but also for developing Natural Language
Processing applications to support text improve-
ment.

This article is organized as follows. We first de-
scribe in Section 2 our maximum entropy system
used for the classification of a given text in English
into the native languages of the shared task. We then

introduce the various sets of features that we have in-
cluded in our submission, comprising basic n-gram
features (3.1) and features to capture spelling mis-
takes (3.2), grammatical mistakes (3.3), and lexical
preference (3.4). We next report the performance of
each of our sets of features (4.1) and our attempt to
perform a two-step classification to reduce frequent
misclassifications (4.2). We finally conclude with a
short discussion (section 5).

2 A Maximum Entropy model

Our system is based on a classical maximum entropy
model (Berger et al., 1996):

pθ(y|x) =
1

Zθ(x)
exp(θ>F (x, y))

whereF is a vector of feature functions, θ a vector of
associated parameter values, and Zθ(x) the partition
function.

Given N independent samples (xi, yi), the model
is trained by minimizing, with respect to θ, the neg-
ative conditional log-likelihood of the observations:

L(θ) = −
N∑
i=1

log p(yi|xi).

This term is complemented with an additional regu-
larization term so as to avoid overfitting. In our case,
an `1 regularization is used, with the additional ef-
fect to produce a sparse model.

The model is trained with a gradient descent algo-
rithm (L-BFGS) using the Wapiti toolkit (Lavergne
et al., 2010). Convergence is determined either by
error rate stability on an held-out dataset or when
limits of numerical precision are reached.
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3 Features

Our submission makes use of basic features, includ-
ing n-grams of characters and part-of-speech tags.
We further experimented with several sets of fea-
tures that will be described and compared in the fol-
lowing sections.

3.1 Basic features

We used n-grams of characters up to length 4 as fea-
tures. In order to reduce the size of the feature space
and the sparsity of these features, we used a hash
kernel (Shi et al., 2009) of size 216 with a hash fam-
ily of size 4. This allowed us to significantly reduce
the training time with no noticeable impact on the
model’s performance.

Our set of basic features also includes n-grams of
part-of-speech (POS) tags and chunks up to length 3.
Both were computed using an in-house CRF-based
tagger trained on PennTreeBank (Marcus et al.,
1993). The POS tags sequences were post-processed
so that word tokens were used in lieu of their cor-
responding POS tags for the following: coordinat-
ing conjunctions, determiners, prepositions, modals,
predeterminers, possessives, pronouns, and question
adverbs (Nagata, 2013).

For instance, from this sentence excerpt:
[NP Some/DT people/NNS] [VP

might/MD think/VB] [SBAR that/IN]

[VP traveling/VBG] [PP in/IN]. . .

we extract n-grams from the pseudo POS-tag se-
quence:
Some NNS MD VB that VBG in. . .

and n-grams from the chunk sequence:
NP VP SBAR VP PP. . .
The length of chunks is encoded as separate fea-

tures that correspond to mean length of each type of
chunks. As shown in (Nagata, 2013), length of noun
sequences is also informative and thus was encoded
as a feature.

3.2 Capturing spelling mistakes

We added a set of features to capture information
about spelling mistakes in the model, following the
intuition that some spelling mistakes may be at-
tributed to the influence of the writer’s native lan-
guage.

To extract these features, each document is pro-
cessed using the ispell1 spell checker. This re-
sults in a list of incorrectly written word forms and
a set of potential corrections. For each word, the
best correction is next selected using a set of rules,
which were built manually after a careful study of
the training dataset.

When a corrected word is found, the incorrect
fragment of the word is isolated by striping from
the original and corrected words common prefix and
suffix, keeping only the inner-most substring differ-
ence. For example, given the following mistake and
correction:

appartment→ apartment

this procedure generates the following feature:

pp→ p

Such a feature may for instance help to identify na-
tive languages (using latin scripts) where doubling
of letters is frequent.

3.3 Capturing grammatical mistakes
Errors at the grammatical level are captured using
the “language tool” toolkit (Milkowski, 2010), a
rule-based grammar and style checker. Each rule fir-
ing in a document is mapped to an individual feature.

This triggers features such as
BEEN PART AGREEMENT, corresponding to
cases where the auxiliary be is not followed by a
past participle, or EN A VS AN, corresponding to
confusions between the correct form the articles a
and an.

3.4 Capturing lexical preferences
Learners of a foreign language may have some pref-
erence for lexical choice given some semantic con-
tent that they want to convey2. We made the follow-
ing assumption: the lexical variant chosen for each
word may correspond to the less ambiguous choice
if mapping from the native language to English3.

1http://www.gnu.org/software/ispell/
2We assumed that we should not expect thematic differences

in the contents of the essays across original languages, as the
prompts for the essays were evenly distributed.

3This assumption of course could not hold for advanced
learners of English, who should make their lexical choices in-
dependently of their native language.

261



Thus, for each word in an English essay, if we
knew a corresponding word (or sense) that a writer
may have thought of in her native language, we
would like to consider the most likely translation
into English, according to some reliable probabilis-
tic model of lexical translation into English, as the
lexical choice most likely to be made by a learner of
this native language.

As we obviously do not have access to the word
in the native language of the writer, we approximate
this information by searching for the word that max-
imizes the translation probability of translating back
from the native language after translating from the
original English word. This in fact corresponds to a
widely used way of computing paraphrase probabili-
ties from bilingual translation distributions (Bannard
and Callison-Burch, 2005):

êl ≈ argmax
e

∑
f

pl(f |e).pl(e|f)

where f ranges over all possible translations of En-
glish word e in a given native language l.

Preferably, we would like to obtain candidate
translations into the native language in context,
that is, by translating complete sentences and us-
ing a posteriori translation probabilities. We could
not do this for a number of reasons, the main one
being that we did not have the possibility of using
or building Statistical Machine Translation systems
for all the language pairs involving English and the
native languages of the shared task. We therefore
resorted to simply finding, for each English word,
the most likely back-translation into English via a
given native language. Using the Google Transla-
tion online Statistical Machine Translation service4,
which proposed translations from and to English and
all the native languages of the shared task, a further
approximation had to be made as, in practice, we
were only able to access the most likely translations
for words in isolation: we considered only the best
translation of the original English word in the native
language, and then kept its best back-translation into
English. We here note some common intuitions with
the use of roundtrip translation as a Machine Trans-
lation evaluation metrics (Rapp, 2009).

4http://translate.google.com

Table 1 provides various examples of back-
translations for English adjectives obtained via each
native language. The samples from the Table show
that our procedure produces a significant number of
non identical back-translations. They also illustrate
some types of undesirable results obtained, which
led us to only consider as features for our classi-
fier the proportion of words in essays for which
the above-defined back-translation yielded the same
word, considering all possible native languages. We
only considered content words, as out-of-context
back-translation for function words would be too un-
reliable. Table 2 shows values for some documents
of the training set. As can be seen, there are impor-
tant differences across languages, some languages
obtaining high scores on average (e.g. French and
Japanese) and others obtaining low scores on aver-
age (e.g. Korean, Turkish). Furthermore, the high-
est score is only rarely obtained for the actual native
language of each document, showing that keeping
the most probable language according to this value
alone would not allow to obtain a good classification
performance.

4 Experiments

4.1 Results per set of features

For all our experiments reported here, we used the
full training data provided using cross-validation to
tune the regularization parameter. Our results are
presented in the top part of Table 3. Using our com-
plete set of features yields our best performance on
accuracy, corresponding to a 0.75% absolute im-
provement over using our basic n-gram features
only. No type of features allows a significant im-
provement over the n-gram features when added in-
dividually.

4.2 Two-step classification

Table 4 contains the confusion matrix for our system
across languages. It clearly stands out that two lan-
guage pairs were harder to distinguish: Hindi (hin)
and Telugu (tel) on the one hand, and Korean (kor)
and Japanese (jpn) on the other.

In order to improve the performance of our model,
we performed a two-step classification focused on
these difficult pairs. For this, we built additional
classifiers for each difficult pairs. Both are built
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eng abrupt affirmative amazing ambiguous anarchic atrocious attentive awkward
ara sudden positive amazing mysterious messy terrible heedful inappropriate
chi sudden sure amazing ambiguous anarchic atrocious careful awkward
fre sudden affirmative amazing ambiguous anarchic atrocious careful awkward
ger abrupt affirmative incredible ambiguous anarchical gruesome attentively awkward
hin suddenly positive amazing vague chaotic brutal observant clumsy
ita abrupt affirmative amazing ambiguous anarchist atrocious careful uncomfortable
jap sudden positive surprising ambiguous anarchy heinous cautious awkward
kor fortuitous positive amazing ambiguous anarchic severe kind awkward
spa abrupt affirmative surprising ambiguous anarchic atrocious attentive clumsy
tel abrupt affirmative amazing ambiguous anarchic formidable attentive awkward
tur sudden positive amazing uncertain anarchic brutal attentive strange

Table 1: Examples of back translations for English adjectives from the training set via each of the eleven native
languages of the shared task. Back-translations that differ from the original word are indicated using a bold face.

Doc id. Native l. ARA CHI FRE GER HIN ITA JPN KOR SPA TEL TUR
976 ARA 0.80 0.88 0.91 0.95 0.75 0.91 0.87 0.73 0.89 0.79 0.71

29905 CHI 0.84 0.81 0.93 0.87 0.79 0.89 0.89 0.56 0.93 0.62 0.75
61765 FRE 0.73 0.84 0.90 0.71 0.73 0.83 0.86 0.50 0.91 0.58 0.66

100416 GER 0.78 0.80 0.86 0.83 0.72 0.89 0.86 0.70 0.90 0.67 0.67
26649 HIN 0.68 0.75 0.88 0.89 0.67 0.85 0.86 0.69 0.86 0.75 0.77
39189 ITA 0.68 0.85 0.92 0.94 0.74 0.93 0.89 0.69 0.92 0.72 0.72

3044 JPN 0.83 0.81 0.89 0.83 0.68 0.94 0.91 0.71 0.94 0.83 0.70
3150 KOR 0.75 0.86 0.91 0.84 0.76 0.88 0.87 0.55 0.88 0.67 0.73
6614 SPA 0.79 0.90 0.86 0.85 0.78 0.85 0.92 0.67 0.90 0.70 0.68

12600 TEL 0.65 0.74 0.84 0.73 0.71 0.92 0.90 0.76 0.95 0.82 0.58
5565 TUR 0.70 0.77 0.88 0.78 0.70 0.84 0.86 0.72 0.84 0.74 0.71

Table 2: Values corresponding to the proportion of content words in a random essay for each native language for which
back-translation yielded the same word.

FRE GER ITA SPA TUR ARA HIN TEL KOR JPN CHI
FRE 79 4 4 3 2 3 0 0 2 2 1
GER 0 89 2 4 1 0 1 0 2 1 0
ITA 6 1 83 6 1 1 0 0 0 1 1
SPA 4 4 5 72 2 3 3 2 1 1 3
TUR 3 2 1 3 81 1 3 2 0 3 1
ARA 3 0 1 3 3 81 5 2 1 0 1
HIN 1 1 1 3 2 1 64 26 1 0 0
TEL 0 0 1 0 0 1 17 81 0 0 0
KOR 1 1 0 0 3 1 0 0 80 12 2
JPN 1 0 2 2 0 3 0 1 13 73 5
CHI 0 1 0 0 2 2 0 2 3 3 87

Table 4: Confusion matrix on the Test set.
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Features X-Val Test
ngm 74.83% 75.27%
ngm+ort 74.98% 75.29%
ngm+grm 75.18% 75.63%
ngm+lex 74.85% 75.47%
all 75.57% 75.81%
2-step (a) 75.46% 75.69%
2-step (b) 75.89% 75.98%

Table 3: Accuracy results obtained by cross-validation
and using the provided Test set for various combina-
tions of features and our two 2-step strategies. The fea-
ture sets are: character and part-of-speech n-grams fea-
tures (ngm), spelling features (ort), grammatical features
(grm), and lexical preference features (lex).

from the same feature sets as for the first-step model
but with only three labels: one for each language of
the pair and one for any other language.

The training data used for these new models in-
clude all documents from both languages as well as
document misclassified as one of them by the first-
step classifier (using cross-validation to label the full
training set). The formers keep their original labels
while the later are relabeled as other.

Document classified in one of the difficult pairs
by the first-step classifier were post-processed with
these new models. When the new label predicted is
other, the second best choice of the first step is used.

We investigated two setups for the first classifier:
(a) using the original 11 native languages classi-
fier, and (b) using a new classifier with languages
of the difficult pairs merged, resulting in 9 native
“languages”.

Our results, shown in Figure 3 for easy com-
parison, improve over our system using all fea-
tures only when the first-pass classifier uses the set
of 9 merged pseudo-languages (b). We obtain a
moderate 0.32% absolute improvement in accuracy
over one-step classification on cross-validation, and
0.17% improvement on the Test set.

5 Discussion and conclusion

We have submitted on maximum entropy system to
the shared task on Native Language Identification,
for which our basic set of n-gram features already
obtained a level of performance, around 75% in ac-
curacy, close to the best performance reported in our

submission. The additional feature sets that we have
included in our system, while improving the model,
did not allow us to capture a deeper influence of the
native language.

A first analysis reveals that the model fails to fully
use the additional feature sets due to lack of context.
Future experiments will need to link more closely
these features to the documents for which they pro-
vide useful information.

Due to time constraints and engineering issues,
the two-pass system was not ready by the time of
submission. The results that we have included in
this report show that it is a promising approach that
we should continue to explore. We also plan to con-
duct experiments that exploit the information about
the level of English available in the essays, some-
thing that we did not consider for this submission.
While this information is not directly available, it
may be infered from the data as a first-step classifi-
cation. We believe that studying its influence on the
mistakes make learners of different native language
is a promising direction.

The approach that we have described in this sub-
mission, as most of previously published approaches
for this task, attempts to find mistakes in the text of
the documents. The most typical mistakes are then
used by the classifier to detect the native language.
This does not take into consideration the fact that na-
tive English writers also make errors. It would be in-
teresting to explore the divergence between various
sets of writers/learners, not from the mean of non-
native writers, but from the mean of native writers.
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Abstract

This paper describes an effort to perform Na-
tive Language Identification (NLI) using ma-
chine learning on a large amount of lexical
features. The features were collected from se-
quences and collocations of bare word forms,
suffixes and character n-grams amounting to
a feature set of several hundred thousand fea-
tures. These features were used to train a lin-
ear Support Vector Machine (SVM) classifier
for predicting the native language category.

1 Introduction

Much effort in Native Language Identification (NLI)
has focused on identifying specific characteristics
of the errors in texts produced by English Second
Language (ESL) learners, like the work presented
in (Bestgen et al., 2012) and (Koppel et al., 2005).
This might be specific spelling errors, syntactic or
morphological mistakes. One motivation for this ap-
proach has been the notion that aspects of the L1 lan-
guage influences which errors and mistakes are pro-
duced by L2 learners, which has guided the model
building towards a smaller number of features and
models which lend themselves to interpretation in
terms of linguistic knowledge.

Research so far has shown mixed support that this
notion of language transfer is the best indicator of
L1 language. While many such features are highly
predictive, features that are usually indicative of the
text topic has shown strong performance when ap-
plied to the NLI task as demonstrated in (Ahn, 2011)
and (Koppel et al., 2005). This is largely lexical fea-
tures such as frequency measures of token, lemma

or character n-grams. There has been some effort
in identifying if this is an artifact of biases in the
available corpora or if it is indeed an indication of
a substantial phenomenon in ESL language use by
different L1 learners (Ahn, 2011).

The approach in this paper extends the use of lexi-
calized features and shows that such lexicalized fea-
tures can by themselves form the basis of a compet-
itive and robust NLI system. This approach entails
possibly abondoning interpretability and other lin-
guistic considerations in order to build an as efficient
as possible system on the NLI classification tasks it-
self. It is also motivated by the possibility that sim-
ple lexicalized features can be applied efficiently in
a task that on the face of it requires the system to
on some level learn differences syntactic relations in
addition to the differences in morphology found in
text produced by the ESL learners.

The experiments presented in this paper are a re-
sult of exploring a range of features and machine
learning approaches. The best systems found used
a combination of bareword features, character n-
grams, suffix and bareword collocations with TF-
IDF weighting. The resulting feature space contains
several hundred thousand features which were used
to train a linear Support Vector Machine (SVM)
classifier. I will first present the features an how
they were extracted in section 2, details of the SVM
model is presented in section 3, the different systems
submitted to the shared task are described in section
4, along with the results in section 5. I have also in-
cluded som discussion of issues encountered during
the development of features and models in section 6.
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2 Model features

This section describes the features used in the sub-
mitted systems. All the different text features are de-
rived from the surface form of the training and devel-
opment corpora without any additional processing or
annotation. The provided tokenization was used and
no steming, lemmatization or syntactic parsing was
performed on the data.

2.1 Bareword features

The frequency of each token by itself was used as
a feature, without any processing or normalization.
I.e. no stemming was used, and any capitalization
was kept.

2.2 Character n-gram features

These features consists of n-grams of length n.
Character n-grams includes single spaces between
tokens and newlines between lines. The systems
presented in this paper uses n-gram orders 3-6 or 1-
7.

2.3 Bareword directed collocation features

These are frequencies of the collocations of the bare
tokens. The features includes the direction of the
collocation, such that a different feature is generated
if a token is collocated to the left or right of another
token. The collocations are restricted to a window
around the target token, and all the systems in this
paper uses a window of one token making this fea-
ture identical to token bigrams.

2.4 Suffix directed collocation features

These features are constructed in the same man-
ner as the directed bareword collocation features de-
scribed in 2.3 except that they are based on the 4-
character long suffix of each token.

2.5 Feature filtering and TF-IDF weighting

Features that are presumed to be uninformative are
filtered out before classifier training and prediction.
Features with a document count less than a cer-
tain limit varying between the systems were ignored,
along with features which appears in more than 50%
of the documents, i.e. with a Document Frequency
(DF) over 0.5.

All the features based on character n-gram or
word counts from the corpus was scaled using sub-
linear Term Frequency (TF) scaling as described in
for exeample (Manning et al., 2008). In addition the
IDF was adjusted using add-one smoothing, i.e. one
was added to all DF counts1.

2.6 Proficiency and prompt features
Both proficiency value and prompt value for the doc-
ument are used as features in the form of 0− 1 indi-
cators for the possible values.2

3 SVM classification

The system uses an SVM multiclass classifier. The
SVM classifier was trained without a kernel, i.e. lin-
ear, and with the cost parameter optimized through
cross validation. SVM was used since it can train
models with a large number of features efficiently,
and has been successsfully used to construct high-
dimensional models in many NLP tasks (Joachims,
1998), including NLI (Tsur and Rappoport, 2007;
Koppel et al., 2005).

The cost hyperparameter of the SVM models was
optimized over 5-fold cross validation on the train-
ing set.

4 Systems submitted

Four systems were submitted to the shared task. Of
these three share the same feature types and differ in
the DF cutoff used to prune individual features. The
fourth system adds additional character n-grams to
the features found in the other three systems.

The first three systems are based on the following
features:

• Weighted token counts.

• Weighted character n-grams of orders 3
through 6.

• Prompt and proficiency values.
1The documentation of the software used for feature ex-

traction notes that this smoothing is mainly for numerical con-
siderations, i.e. avoiding division by zero errors (http://scikit-
learn.org/stable/modules/generated/
sklearn.feature extraction.text.TfidfTransformer.html)

2While the prompt value is included in the submitted sys-
tems it was not found to be an effective feature and did not have
any effect on the performance of the systems. Its inclusion in
the feature set is an oversight.
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• Weighted directed token collocation counts
with a window size of one, i.e. token bigrams.

• Weighted directed 4 character suffix colloca-
tion counts with a window size of 1, i.e. 4 char-
acter suffix bigrams.

The three systems vary in the DF cutoff with no
cutoff in systmem 1, a cutoff of 5 in system 2 and a
cutoff of 10 in system 3.

System 4 uses different cutoffs for different fea-
tures; 10 for token and character n-gram frequencies
and 5 for the token and suffix collocation features.
It also uses character n-grams of order 1 through 7
instead of 3 through 6.

Table 1 show the performance of the four systems
on the development data set in addition to the feature
count for each of the systems. The table shows both
classification accuracy on the development data set
in addition to average and standard deviation for 10-
fold cross validation scores over the combined train-
ing and development data sets.

The software used to generate the systems
is available at https://github.com/andrely/NLI2013-
submission.

5 Results

The final results shows competitive performance
from all the submitted systems with little variation
in performance between them. Both test set accura-
cies and average 10-fold cross validation scores with
standard deviation for the shared tasks fixed folds
are given in table 2.

6 Some impressions

Performance stability: When developing the vari-
ous systems the performance was always robust for
the features described in this paper and variations on
them. There were little variation in 5-fold cross vali-
dation scores, or difference between cross validation
and held out scores. This was taken as an indication
that the system was not being overfitted despite the
amount of and specificity of the features.

Feature comparison: All the lexical features
used were highly predictive also in isolation, and
could be used for a competetive system by them-
selves.

POS tags and lemmatization: Similar features
based on POS tags or lemmatized tokens turned out
to be much less predictive than the lexical features.
This could be caused by low quality of such annota-
tion on data with many spelling or other errors.
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System # of features Dev. 10-fold accuracy Dev. accuracy
1 867479 0.841± 0.010 0.827
2 439063 0.839± 0.012 0.824
3 282797 0.838± 0.012 0.823
4 510191 0.836± 0.011 0.824

Table 1: Performance and number of features for the submitted systems. Performance is shown as accuracy on the
development data set and 10-fold cross validation on the training and test set. The feature counts shown are for the
final systems trained on the training and development data sets. The systems are described in section 4.

System Accuracy 10-fold accuracy
1 0.833 0.839± 0.013
2 0.834 0.837± 0.011
3 0.833 0.835± 0.012
4 0.830 0.835± 0.012

Table 2: Final accuracy scores on the test set and 10-fold cross validation for the submitted systems. The systems are
described in section 4.
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Abstract

This paper presents our approach to the 2013
Native Language Identification shared task,
which is based on machine learning methods
that work at the character level. More pre-
cisely, we used several string kernels and a
kernel based on Local Rank Distance (LRD).
Actually, our best system was a kernel combi-
nation of string kernel and LRD. While string
kernels have been used before in text analysis
tasks, LRD is a distance measure designed to
work on DNA sequences. In this work, LRD is
applied with success in native language iden-
tification.

Finally, the Unibuc team ranked third in the
closed NLI Shared Task. This result is more
impressive if we consider that our approach
is language independent and linguistic theory
neutral.

1 Introduction

This paper presents our approach to the shared task
on Native Language Identification, NLI 2013. We
approached this task with machine learning methods
that work at the character level. More precisely, we
treated texts just as sequences of symbols (strings)
and used different string kernels in conjunction with
different kernel-based learning methods in a series
of experiments to assess the best performance level
that can be achieved. Our aim was to investigate if
identifying native language is possible with machine
learning methods that work at the character level.
By disregarding features of natural language such as
words, phrases, or meaning, our approach has an im-
portant advantage in that it is language independent.

Using words is natural in text analysis tasks like
text categorization (by topic), authorship identifi-
cation and plagiarism detection. Perhaps surpris-
ingly, recent results have proved that methods han-
dling the text at character level can also be very
effective in text analysis tasks (Lodhi et al., 2002;
Sanderson and Guenter, 2006; Popescu and Dinu,
2007; Grozea et al., 2009; Popescu, 2011; Popescu
and Grozea, 2012). In (Lodhi et al., 2002) string
kernels were used for document categorization with
very good results. Trying to explain why treating
documents as symbol sequences and using string
kernels led to such good results the authors sup-
pose that: “the [string] kernel is performing some-
thing similar to stemming, hence providing seman-
tic links between words that the word kernel must
view as distinct”. String kernels were also suc-
cessfully used in authorship identification (Sander-
son and Guenter, 2006; Popescu and Dinu, 2007;
Popescu and Grozea, 2012). For example, the sys-
tem described in (Popescu and Grozea, 2012) ranked
first in most problems and overall in the PAN 2012
Traditional Authorship Attribution tasks. A possible
reason for the success of string kernels in authorship
identification is given in (Popescu and Dinu, 2007):
“the similarity of two strings as it is measured by
string kernels reflects the similarity of the two texts
as it is given by the short words (2-5 characters)
which usually are function words, but also takes into
account other morphemes like suffixes (‘ing’ for ex-
ample) which also can be good indicators of the au-
thor’s style”.

Even more interesting is the fact that two meth-
ods, that are essentially the same, obtained very
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good results for text categorization (by topic) (Lodhi
et al., 2002) and authorship identification (Popescu
and Dinu, 2007). Both are based on SVM and a
string kernel of length 5. How is this possible?
Traditionally, the two tasks, text categorization (by
topic) and authorship identification are viewed as
opposite. When words are considered as features,
for text categorization the (stemmed) content words
are used (the stop words being eliminated), while for
authorship identification the function words (stop
words) are used as features, the others words (con-
tent words) being eliminated. Then, why did the
same string kernel (of length 5) work well in both
cases? In our opinion the key factor is the kernel-
based learning algorithm. The string kernel im-
plicitly embeds the texts in a high dimensional fea-
ture space, in our case the space of all (sub)strings
of length 5. The kernel-based learning algorithm
(SVM or another kernel method), aided by regu-
larization, implicitly assigns a weight to each fea-
ture, thus selecting the features that are important
for the discrimination task. In this way, in the
case of text categorization the learning algorithm
(SVM) enhances the features (substrings) represent-
ing stems of content words, while in the case of au-
thorship identification the same learning algorithm
enhances the features (substrings) representing func-
tion words.

Using string kernels will make the correspond-
ing learning method completely language indepen-
dent, because the texts will be treated as sequences
of symbols (strings). Methods working at the word
level or above very often restrict their feature space
according to theoretical or empirical principles. For
example, they select only features that reflect var-
ious types of spelling errors or only some type of
words, such as function words, for example. These
features prove to be very effective for specific tasks,
but other, possibly good features, depending on the
particular task, may exist. String kernels embed the
texts in a very large feature space (all substrings
of length k) and leave it to the learning algorithm
(SVM or others) to select important features for the
specific task, by highly weighting these features.

A method that considers words as features can not
be language independent. Even a method that uses
only function words as features is not completely
language independent because it needs a list of func-

tion words (specific to a language) and a way to seg-
ment a text into words which is not an easy task for
some languages, like Chinese.

Character n-grams were already used in native
language identification (Brooke and Hirst, 2012;
Tetreault et al., 2012). The reported performance
when only character n-grams were used as features
was modest compared with other type of features.
But, in the above mentioned works, the authors in-
vestigated only the bigrams and trigrams and not
longer n-grams. Particularly, we have obtained sim-
ilar results with (Tetreault et al., 2012) when using
character bigrams, but we have achieved the best
performance using a range of 5 to 8 n-grams (see
section 4.3). We have used with success a similar
approach for the related task of identifying transla-
tionese (Popescu, 2011).

The first application of string kernel ideas came in
the field of text categorization, with the paper (Lodhi
et al., 2002), followed by applications in bioinfor-
matics (Leslie et al., 2002). Computer science re-
searchers have developed a wide variety of methods
that can be applied with success in computational
biology. Such methods range from clustering tech-
niques used to analyze the phylogenetic trees of dif-
ferent organisms (Dinu and Sgarro, 2006; Dinu and
Ionescu, 2012b), to genetic algorithms used to find
motifs or common patterns in a set of given DNA
sequences (Dinu and Ionescu, 2012a). Most of these
methods are based on a distance measure for strings,
such as Hamming (Chimani et al., 2011; Vezzi et
al., 2012), edit (Shapira and Storer, 2003), Kendall-
tau (Popov, 2007), or rank distance (Dinu, 2003). A
similar idea to character n-grams was introduced in
the early years of bioinformatics, where k-mers are
used instead of single characters 1. There are recent
studies that use k-mers for the phylogenetic analy-
sis of organisms (Li et al., 2004), or for sequence
alignment (Melsted and Pritchard, 2011). Analyz-
ing DNA at substring level is also more suited from
a biological point of view, because DNA substrings
may contain meaningful information. For example,
genes are encoded by a number close to 100 base
pairs, or codons that encode the twenty standard
amino acids are formed of 3-mers. Local Rank Dis-

1In biology, single DNA characters are also referred to as
nucleotides or monomers. Polymers are also known as k-mers.
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tance (LRD) (Ionescu, 2013) has been recently pro-
posed as an extension of rank distance. LRD drops
the annotation step of rank distance, and uses k-mers
instead of single characters. The work (Ionescu,
2013) shows that LRD is a distance function and that
it has very good results in phylogenetic analysis and
DNA sequence comparison. But, LRD can be ap-
plied to any kind of string sequences, not only to
DNA. Thus, LRD was transformed into a kernel and
used for native language identification. Despite the
fact it has no linguistic motivation, LRD gives sur-
prisingly good results for this task. Its performance
level is lower than string kernel, but LRD can con-
tribute to the improvement of string kernel when the
two methods are combined.

The paper is organized as follows. In the next
section, the kernel methods we used are briefly de-
scribed. Section 3 presents the string kernels and
the LRD, and shows how to transform LRD into a
kernel. Section 4 presents details about the experi-
ments. It gives details about choosing the learning
method, parameter tuning, combining kernels and
results of submitted systems. Finally, conclusions
are given in section 5.

2 Kernel Methods and String Kernels

Kernel-based learning algorithms work by embed-
ding the data into a feature space (a Hilbert space),
and searching for linear relations in that space. The
embedding is performed implicitly, that is by speci-
fying the inner product between each pair of points
rather than by giving their coordinates explicitly.

Given an input set X (the space of examples), and
an embedding vector space F (feature space), let φ :
X → F be an embedding map called feature map.

A kernel is a function k, such that for all x, z ∈
X , k(x, z) =< φ(x), φ(z) >, where < ·, · > de-
notes the inner product in F .

In the case of binary classification problems,
kernel-based learning algorithms look for a discrim-
inant function, a function that assigns +1 to exam-
ples belonging to one class and −1 to examples be-
longing to the other class. This function will be a lin-
ear function in the space F , that means it will have
the form:

f(x) = sign(< w,φ(x) > +b),

for some weight vector w. The kernel can be
exploited whenever the weight vector can be ex-
pressed as a linear combination of the training

points,
n∑

i=1
αiφ(xi), implying that f can be ex-

pressed as follows:

f(x) = sign(
n∑

i=1

αik(xi, x) + b).

Various kernel methods differ by the way in which
they find the vector w (or equivalently the vector
α). Support Vector Machines (SVM) try to find the
vector w that defines the hyperplane that maximally
separates the images in F of the training examples
belonging to the two classes. Mathematically, SVMs
choose the w and the b that satisfy the following op-
timization criterion:

min
w,b

1

n

n∑
i=1

[1− yi(< w,φ(xi) > +b)]+ + ν||w||2

where yi is the label (+1/−1) of the training ex-
ample xi, ν a regularization parameter and [x]+ =
max(x, 0).

Kernel Ridge Regression (KRR) selects the vec-
tor w that simultaneously has small empirical er-
ror and small norm in Reproducing Kernel Hilbert
Space generated by kernel k. The resulting mini-
mization problem is:

min
w

1

n

n∑
i=1

(yi− < w,φ(xi) >)2 + λ||w||2

where again yi is the label (+1/−1) of the training
example xi, and λ a regularization parameter.

Details about SVM and KRR can be found
in (Taylor and Cristianini, 2004). The important fact
is that the above optimization problems are solved
in such a way that the coordinates of the embedded
points are not needed, only their pairwise inner prod-
ucts which in turn are given by the kernel function
k.

3 String Kernels and Local Rank Distance

The kernel function offers to the kernel methods the
power to naturally handle input data that are not in
the form of numerical vectors, for example strings.
The kernel function captures the intuitive notion of
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similarity between objects in a specific domain and
can be any function defined on the respective do-
main that is symmetric and positive definite. For
strings, many such kernel functions exist with vari-
ous applications in computational biology and com-
putational linguistics (Taylor and Cristianini, 2004).

3.1 String Kernels
Perhaps one of the most natural ways to measure the
similarity of two strings is to count how many sub-
strings of length p the two strings have in common.
This gives rise to the p-spectrum kernel. Formally,
for two strings over an alphabet Σ, s, t ∈ Σ∗, the
p-spectrum kernel is defined as:

kp(s, t) =
∑
v∈Σp

numv(s) · numv(t)

where numv(s) is the number of occurrences of
string v as a substring in s 2. The feature map de-
fined by this kernel associates to each string a vector
of dimension |Σ|p containing the histogram of fre-
quencies of all its substrings of length p (p-grams).

A variant of this kernel can be obtained if the
embedding feature map is modified to associate to
each string a vector of dimension |Σ|p containing
the presence bits (instead of frequencies) of all its
substrings of length p. Thus the character p-grams
presence bits kernel is obtained:

k0/1
p (s, t) =

∑
v∈Σp

inv(s) · inv(t)

where inv(s) is 1 if string v occurs as a substring in
s and 0 otherwise.

Normalized versions of these kernels ensure a fair
comparison of strings of different lengths:

k̂p(s, t) =
kp(s, t)√

kp(s, s) · kp(t, t)

k̂0/1
p (s, t) =

k
0/1
p (s, t)√

k
0/1
p (s, s) · k0/1

p (t, t)

.

Taking into account p-grams of different length
and summing up the corresponding kernels, new
kernels (called blended spectrum kernels) can be ob-
tained.

2Note that the notion of substring requires contiguity. See
(Taylor and Cristianini, 2004) for a discussion about the ambi-
guity between the terms substring and subsequence across dif-
ferent traditions: biology, computer science.

3.2 Local Rank Distance
Local Rank Distance is an extension of rank distance
that drops the annotation step and uses n-grams in-
stead of single characters. Thus, characters in one
string are simply matched with the nearest similar
characters in the other string. To compute the LRD
between two strings, the idea is to sum up all the off-
sets of similar n-grams between the two strings. For
every n-gram in one string, we search for a similar
n-gram in the other string. First, look for similar n-
grams in the same position in both strings. If those
n-grams are similar, sum up 0 since there is no offset
between them. If the n-grams are not similar, start
looking around the initial n-gram position in the sec-
ond string to find an n-gram similar to the one in the
first string. If a similar n-gram is found during this
process, sum up the offset between the two n-grams.
The search goes on until a similar n-gram is found or
until a maximum offset is reached. LRD is formally
defined next.
Definition 1 Let S1, S2 ∈ Σ∗ be two strings with
symbols (n-grams) from the alphabet Σ. Local Rank
Distance between S1 and S2 is defined as:

∆LRD(S1, S2) = ∆left + ∆right

=
∑

xs∈S1

min
xs∈S2

{|posS1(xs)− posS2(xs)|,m}+

+
∑

ys∈S2

min
ys∈S1

{|posS1(ys)− posS2(ys)|,m},

where xs and ys are occurrences of symbol s ∈ Σ in
strings S1 and S2, posS(xs) represents the position
(or the index) of the occurrence xs of symbol s ∈ Σ
in string S, and m ≥ 1 is the maximum offset.

A string may contain multiple occurrences of a
symbol s ∈ Σ. LRD matches each occurrence xs

of symbol s ∈ Σ from a string, with the nearest oc-
currence of symbol s in the other string. A sym-
bol can be defined either as a single character, or
as a sequence of characters (n-grams). Overlapping
n-grams are also permitted in the computation of
LRD. Notice that in order to be a symmetric distance
measure, LRD must consider every n-gram in both
strings. The complexity of an algorithm to compute
LRD can be reduced to O(l × m) using advanced
string searching algorithms, where l is the maximum
length of the two strings involved in the computation
of LRD, and m is the maximum offset.

273



To understand how LRD actually works, consider
example 1 where LRD is computed between strings
s1 and s2 using 1-grams (single characters).

Example 1 Let s1 = CCBAADACB, s2 =
DBACDCA, and m = 10 be the maximum offset.
The LRD between s1 and s2 is given by:

∆LRD(s1, s2) = ∆left + ∆right

where the two sums ∆left and ∆right are computed
as follows:

∆left =
∑

xs∈s1

min
xs∈s2

{|poss1(xs)− poss2(xs)|, 10}

= |1− 4|+ |2− 4|+ |3− 2|+ |4− 3|+ |5− 3|+
+ |6− 5|+ |7− 7|+ |8− 6|+ |9− 2| = 19

∆right =
∑

ys∈s2

min
ys∈s1

{|poss1(ys)− poss2(ys)|, 10}

= |1− 6|+ |2− 3|+ |3− 4|+ |4− 2|+ |5− 6|+
+ |6− 8|+ |7− 7| = 12.

In other words, ∆left considers every symbol
from s1, while ∆right considers every symbol from
s2. Observe that ∆LRD(s1, s2) = ∆LRD(s2, s1).

LRD measures the distance between two strings.
Knowing the maximum offset (used to stop sim-
ilar n-gram searching), the maximum LRD value
between two strings can be computed as the prod-
uct between the maximum offset and the number of
pairs of compared n-grams. Thus, LRD can be nor-
malized to a value in the [0, 1] interval. By normal-
izing, LRD is transformed into a dissimilarity mea-
sure. LRD can be also used as a kernel, since kernel
methods are based on similarity. The classical way
to transform a distance or dissimilarity measure into
a similarity measure is by using the Gaussian-like
kernel (Taylor and Cristianini, 2004):

k(s1, s2) = e
−
LRD(s1, s2)

2σ2

where s1 and s2 are two strings. The parameter
σ is usually chosen to match the number of fea-
tures (characters) so that values of k(s1, s2) are well
scaled.

4 Experiments

4.1 Dataset

The dataset for the NLI shared task is the TOEFL11
corpus (Blanchard et al., 2013). This corpus con-
tains 9900 examples for training, 1100 examples for
development (or validation) and another 1100 ex-
amples for testing. Each example is an essay writ-
ten in English by a person that is a non-native En-
glish speaker. The people that produced the essays
have one of the following native languages: German,
French, Spanish, Italian, Chinese, Korean, Japanese,
Turkish, Arabic, Telugu, Hindi. For more details
see (Blanchard et al., 2013).

We participated only in the closed NLI shared
task, where the goal of the task is to predict the
native language of testing examples, only by us-
ing the training and development data. In our ap-
proach, documents or essays from this corpus are
treated as strings. Thus, when we refer to strings
throughout this paper, we really mean documents
or essays. Because we work at the character level,
we didn’t need to split the texts into words, or to do
any NLP-specific preprocessing. The only editing
done to the texts was the replacing of sequences of
consecutive space characters (space, tab, new line,
etc.) with a single space character. This normaliza-
tion was needed in order to not artificially increase
or decrease the similarity between texts as a result
of different spacing. Also all uppercase letters were
converted to the corresponding lowercase ones. We
didn’t use the additional information from prompts
and English language proficiency level.

4.2 Choosing the Learning Method

SVM and KRR produce binary classifiers and native
language identification is a multi-class classification
problem. There are a lot of approaches for com-
bining binary classifiers to solve multi-class prob-
lems. Typically, the multiclass problem is broken
down into multiple binary classification problems
using common decomposing schemes such as: one-
versus-all (OVA) and one-versus-one (OVO). There
are also kernel methods that directly take into ac-
count the multiclass nature of the problem such as
the kernel partial least squares regression (KPLS).

We conducted a series of preliminary experiments
in order to select the learning method. In these ex-
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Figure 1: 10-fold cross-validation accuracy on the train set for different n-grams.

Method Accuracy
OVO SVM 72.72%
OVA SVM 74.94%
OVO KRR 73.99%
OVA KRR 77.74%
KPLS 74.99%

Table 1: Accuracy rates using 10-fold cross-validation on
the train set for different kernel methods with k̂5 kernel.

periments we fixed the kernel to the p-spectrum nor-
malized kernel of length 5 (k̂5) and plugged it in
the following learning methods: OVO SVM, OVA
SVM, OVO KRR, OVA KRR and KPLS. Note that
in this stage we were interested only in selecting the
learning method and not in finding the best kernel.
We chose the k̂5 because it was reported to work
well in the case of the related task of identifying
translationese (Popescu, 2011).

We carried out a 10-fold cross-validation on the
training set and the result obtained (with the best pa-
rameters setting) are shown in Table 1.

The results show that for native language identi-
fication the one-vs-all scheme performs better than
the one-versus-one scheme. The same fact was re-
ported in (Brooke and Hirst, 2012). See also (Rifkin
and Klautau, 2004) for arguments in favor of one-
vs-all. The best result was obtained by one-vs-all
Kernel Ridge Regression and we selected it as our

learning method.

4.3 Parameter Tuning for String Kernel

To establish the type of kernel, (blended) p-spectrum
kernel or (blended) p-grams presence bits kernel,
and the length(s) of of n-grams that must be used,
we performed another set of experiments. For both
p-spectrum normalized kernel and p-grams presence
bits normalized kernel, and for each value of p from
2 to 10, we carried out a 10-fold cross-validation on
the train set. The results are summarized in Figure 1.
As can be seen, both curves have similar shapes,
both achieve their maximum at 8, but the accuracy of
the p-grams presence bits normalized kernel is gen-
erally better than the accuracy of the p-spectrum nor-
malized kernel. It seem that in native language iden-
tification the information provided by the presence
of an n-gram is more important than the the infor-
mation provided by the frequency of occurrence of
the respective n-gram. This phenomenon was also
noticed in the context of sexual predator identifica-
tion (Popescu and Grozea, 2012).

We also experimented with different blended ker-
nels to see if combining n-grams of different lengths
can improve the accuracy. The best result was ob-
tained when all the n-grams with the length in the
range 5-8 were used, that is the 5-8-grams presence
bits normalized kernel (k̂0/1

5−8). The 10-fold cross-
validation accuracy on the train set for this kernel
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Method Accuracy
KRR + KLRD6 42.1%
KRR + KnLRD4 70.8%
KRR + KnLRD6 74.4%
KRR + KnLRD8 74.8%

Table 2: Accuracy rates, using 10-fold cross-validation
on the training set, of LRD with different n-grams, with
and without normalization. Normalized LRD is much
better.

was 80.94% and was obtained for the KRR param-
eter λ set to 10−5. The authors of (Bykh and Meur-
ers, 2012) also obtained better results using n-grams
with the length in a range than using n-grams of a
fixed length.

4.4 Parameter Tuning for LRD Kernel

Parameter tuning for LRD kernel (KLRD) was also
done by using 10-fold cross validation on the train-
ing data. First, we observed that the KRR based on
LRD works much better with the normalized version
of LRD (KnLRD). Another concern was to choose
the right length of n-grams. We tested with several
n-grams such as 4-grams, 6-grams and 8-grams that
are near the mean English word length of 5-6 let-
ters. The tests show that the LRD kernels based on
6-grams (KnLRD6) and 8-grams (KnLRD8) give the
best results. In the end, the LRD kernels based on 6-
grams and 8-grams are combined to obtain even bet-
ter results (see section 4.5). Finally, the maximum
offset parameter m involved in the computation of
LRD was chosen so that it generates search window
size close to the average number of letters per docu-
ment from the TOEFL 11 set. There are 1802 char-
acters per document on average, and m was chosen
to be 700. This parameter was also chosen with re-
spect to the computational time of LRD, which is
proportional to the parameter value. Table 2 shows
the results of the LRD kernel with different parame-
ters cross validated on the training set. For KnLRD,
the σ parameter of the Gaussian-like kernel was set
to 1. The reported accuracy rates were obtained with
the KRR parameter λ set to 10−5.

Regarding the length of strings, we observed that
LRD is affected by the variation of string lengths.
When comparing two documents with LRD, we
tried to cut the longer one to match the length of

Method Accuracy
KRR + KnLRD6+8 75.4%

KRR + k̂0/1
5−8 + KnLRD6+8 81.6%

KRR + (k̂0/1 +KnLRD)6+8 80.9%

Table 3: Accuracy rates of different kernel combinations
using 10-fold cross-validation on the training set.

the shorter. This made the accuracy even worse. It
seems that the parts cut out from longer documents
contain valuable information for LRD. We decided
to use the entire strings for LRD, despite the noise
brought by the variation of string lengths.

4.5 Combining Kernels

To improve results, we thought of combining the
kernels in different ways. First, notice that the
blended string kernels presented in section 4.3 are
essentially a sum of the string kernels with different
n-grams. This combination improves the accuracy,
being more stable and robust. In the same manner,
the LRD kernels based on 6-grams and 8-grams, re-
spectively, were summed up to obtain the kernel de-
noted by KnLRD6+8 . Indeed, the KnLRD6+8 kernel
works better (see Table 3).

There are other options to combine the string ker-
nels with LRD kernels, besides summing them up.
One option is by kernel alignment (Cristianini et al.,
2001). Instead of simply summing kernels, kernel
alignment assigns weights for each to the two ker-
nels based on how well they are aligned with the
ideal kernel Y Y ′ obtained from labels. Thus, the 5-
8-grams presence bits normalized kernel (k̂0/1

5−8) was
combined with the LRD kernel based on sum of 6,8-
grams (KnLRD6+8), by kernel alignment. From our
experiments, kernel alignment worked slightly bet-
ter than the sum of the two kernels. This also sug-
gests that kernels can be combined only by kernel
alignment. The string kernel of length 6 was aligned
with the LRD kernel based on 6-grams. In the same
way, the string kernel of length 8 was aligned with
the LRD kernel based on 8-grams. The two kernels
obtained by alignment are combined together, again
by kernel alignment, to obtain the kernel denoted by
(k̂0/1 +KnLRD)6+8. The results of all kernel com-
binations are presented in Table 3. The reported ac-
curacy rates were obtained with the KRR parameter
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Method Submission CV Tr. Dev. CV Tr.+Dev. Test
KRR + k̂0/1

5−8 Unibuc-1 80.9% 85.4% 82.5% 82.0%
KRR + KnLRD6+8 Unibuc-2 75.4% 76.3% 75.7% 75.8%

KRR + k̂0/1
5−8 + KnLRD6+8 Unibuc-3 81.6% 85.7% 82.6% 82.5%

KRR + (k̂0/1 +KnLRD)6+8 Unibuc-4 80.9% 85.6% 82.0% 81.4%

KRR + k̂0/1
5−8 + KnLRD6+8 + heuristic Unibuc-5 - - - 82.7%

Table 4: Accuracy rates of submitted systems on different evaluation sets. The Unibuc team ranked third in the closed
NLI Shared Task with the kernel combination improved by the heuristic to level the predicted class distribution.

λ set to 10−5.

4.6 Results and Discussion

For the closed NLI Shared Task we submitted the
two main systems, namely the 5-8-grams presence
bits normalized kernel and the LRD kernel based on
sum of 6,8-grams, separately. Another two submis-
sions are the kernel combinations discussed in sec-
tion 4.5. These four systems were tested using sev-
eral evaluation procedures, with results shown in Ta-
ble 4. First, they were tested using 10-fold cross val-
idation on the training set. Next, the systems were
tested on the development set. In this case, the sys-
tems were trained on the entire training corpus. An-
other 10-fold cross validation procedure was done
on the corpus obtained by combining the training
and the development sets. The folds were provided
by the organizers. Finally, the results of our systems
on the NLI Shared Task test set are given in the last
column of Table 4. For testing, the systems were
trained on the entire training and development set,
with the KRR parameter λ set to 2 · 10−5.

We didn’t expect KnLRD6+8 kernel to perform
very well on the test set. This system was submitted
just to be compared with systems submitted by other
participants. Considering that LRD is inspired from
biology and that it has no ground in computational
linguistics, it performed very well, by standing in the
top half of the ranking of all submitted systems.

The kernel obtained by aligning the k̂
0/1
5−8 and

KnLRD6+8 kernels gives the best results, no matter
the evaluation procedure. It is followed closely by
the other two submitted systems.

We thought of exploiting the distribution of the
testing set in our last submitted system. We knew
that there should be exactly 100 examples per class
for testing. We took the kernel obtained by com-

bining the k̂0/1
5−8 and KnLRD6+8 kernels, and tried to

adjust its output to level the predicted class distribu-
tion. We took all the classes with more than 100 ex-
amples and ranked the examples by their confidence
score (returned by regression) to be part of the pre-
dicted class. The examples ranked below 100 were
chosen to be redistributed to the classes that had less
than 100 examples per class. Examples were redis-
tributed only if their second most confident class had
less than 100 examples. This heuristic improved the
results on the test set by 0.2%, enough to put us on
third place in the closed NLI Shared Task.

5 Conclusion

In this paper, we have presented our approach to
the 2013 NLI Shared Task. What makes our sys-
tem stand out is that it works at the character level,
making the approach completely language indepen-
dent and linguistic theory neutral. The results ob-
tained were very good. A standard approach based
on string kernels, that proved to work well in many
text analysis tasks, obtained an accuracy of 82% on
test data with a difference of only 1.6% between it
and the top performing system. A second system
based on a new kernelKLRD, inspired from biology
with no ground in computational linguistics, per-
formed also unexpectedly well, by standing in the
top half of the ranking of all submitted systems. The
combination of the two kernels obtained an accuracy
of 82.5% making it to the top ten, while an heuristic
improvement of this combination ranked third with
an accuracy of 82.7%. Obviously, an explanation
for these results was needed. It will be adressed in
future work.
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Abstract

We show that it is possible to learn to identify, with
high accuracy, the native language of English test
takers from the content of the essays they write.
Our method uses standard text classification tech-
niques based on multiclass logistic regression, com-
bining individually weak indicators to predict the
most probable native language from a set of 11 pos-
sibilities. We describe the various features used for
classification, as well as the settings of the classifier
that yielded the highest accuracy.

1 Introduction

The task we address in this work is identifying the
native language (L1) of non-native English (L2) au-
thors. More specifically, given a dataset of short
English essays (Blanchard et al., 2013), composed
as part of the Test of English as a Foreign Lan-
guage (TOEFL) by authors whose native language is
one out of 11 possible languages—Arabic, Chinese,
French, German, Hindi, Italian, Japanese, Korean,
Spanish, Telugu, or Turkish—our task is to identify
that language.

This task has a clear empirical motivation. Non-
native speakers make different errors when they
write English, depending on their native language
(Lado, 1957; Swan and Smith, 2001); understand-
ing the different types of errors is a prerequisite for
correcting them (Leacock et al., 2010), and systems
such as the one we describe here can shed interest-
ing light on such errors. Tutoring applications can
use our system to identify the native language of
students and offer better-targeted advice. Forensic

linguistic applications are sometimes required to de-
termine the L1 of authors (Estival et al., 2007b; Es-
tival et al., 2007a). Additionally, we believe that the
task is interesting in and of itself, providing a bet-
ter understanding of non-native language. We are
thus equally interested in defining meaningful fea-
tures whose contribution to the task can be linguis-
tically interpreted. Briefly, our features draw heav-
ily on prior work in general text classification and
authorship identification, those used in identifying
so-called translationese (Volansky et al., forthcom-
ing), and a class of features that involves determin-
ing what minimal changes would be necessary to
transform the essays into “standard” English (as de-
termined by an n-gram language model).

We address the task as a multiway text-
classification task; we describe our data in §3 and
classification model in §4. As in other author attri-
bution tasks (Juola, 2006), the choice of features for
the classifier is crucial; we discuss the features we
define in §5. We report our results in §6 and con-
clude with suggestions for future research.

2 Related work

The task of L1 identification was introduced by Kop-
pel et al. (2005a; 2005b), who work on the Inter-
national Corpus of Learner English (Granger et al.,
2009), which includes texts written by students from
5 countries, Russia, the Czech Republic, Bulgaria,
France, and Spain. The texts range from 500 to
850 words in length. Their classification method
is a linear SVM, and features include 400 standard
function words, 200 letter n-grams, 185 error types
and 250 rare part-of-speech (POS) bigrams. Ten-
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fold cross-validation results on this dataset are 80%
accuracy.

The same experimental setup is assumed by Tsur
and Rappoport (2007), who are mostly interested
in testing the hypothesis that an author’s choice of
words in a second language is influenced by the
phonology of his or her L1. They confirm this hy-
pothesis by carefully analyzing the features used by
Koppel et al., controlling for potential biases.

Wong and Dras (2009; 2011) are also motivated
by a linguistic hypothesis, namely that syntactic er-
rors in a text are influenced by the author’s L1.
Wong and Dras (2009) analyze three error types sta-
tistically, and then add them as features in the same
experimental setup as above (using LIBSVM with a
radial kernel for classification). The error types are
subject-verb disagreement, noun-number disagree-
ment and misuse of determiners. Addition of these
features does not improve on the results of Kop-
pel et al.. Wong and Dras (2011) further extend
this work by adding as features horizontal slices of
parse trees, thereby capturing more syntactic struc-
ture. This improves the results significantly, yielding
78% accuracy compared with less than 65% using
only lexical features.

Kochmar (2011) uses a different corpus, the Cam-
bridge Learner Corpus, in which texts are 200-400
word long, and are authored by native speakers of
five Germanic languages (German, Swiss German,
Dutch, Swedish and Danish) and five Romance lan-
guages (French, Italian, Catalan, Spanish and Por-
tuguese). Again, SVMs are used as the classification
device. Features include POS n-grams, character n-
grams, phrase-structure rules (extracted from parse
trees), and two measures of error rate. The classi-
fier is evaluated on its ability to distinguish between
pairs of closely-related L1s, and the results are usu-
ally excellent.

A completely different approach is offered by
Brooke and Hirst (2011). Since training corpora for
this task are rare, they use mainly L1 (blog) cor-
pora. Given English word bigrams 〈e1, e2〉, they try
to assess, for each L1, how likely it is that an L1 bi-
gram was translated literally by the author, resulting
in 〈e1, e2〉. Working with four L1s (French, Span-
ish, Chinese, and Japanese), and evaluating on the
International Corpus of Learner English, accuracy is
below 50%.

3 Data

Our dataset in this work consists of TOEFL essays
written by speakers of eleven different L1s (Blan-
chard et al., 2013), distributed as part of the Na-
tive Language Identification Shared Task (Tetreault
et al., 2013). The training data consists of 1000
essays from each native language. The essays are
short, consisting of 10 to 20 sentences each. We
used the provided splits of 900 documents for train-
ing and 100 for development. Each document is an-
notated with the author’s English proficiency level
(low, medium, high) and an identification (1 to 8) of
the essay prompt. All essays are tokenized and split
into sentences. In table 1 we provide some statistics
on the training corpora, listed by the authors’ profi-
ciency level. All essays were tagged with the Stan-
ford part-of-speech tagger (Toutanova et al., 2003).
We did not parse the dataset.

Low Medium High
# Documents 1,069 5,366 3,456
# Tokens 245,130 1,819,407 1,388,260
# Types 13,110 37,393 28,329

Table 1: Training set statistics.

4 Model

For our classification model we used the creg re-
gression modeling framework to train a 11-class lo-
gistic regression classifier.1 We parameterize the
classifier as a multiclass logistic regression:

pλ(y | x) =
exp

∑
j λ jh j(x, y)
Zλ(x)

,

where x are documents, h j(·) are real-valued feature
functions of the document being classified, λ j are the
corresponding weights, and y is one of the eleven L1
class labels. To train the parameters of our model,
we minimized the following objective,

L = α

`2 reg.︷︸︸︷∑
j

λ2
j −

∑
{(xi,yi)}

|D|
i=1

( log likelihood︷          ︸︸          ︷
log pλ(yi | xi) +

τEpλ(y′ |xi) log pλ(y′ | xi)︸                      ︷︷                      ︸
−conditional entropy

)
,

1https://github.com/redpony/creg
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which combines the negative log likelihood of the
training dataset D, an `2 (quadratic) penalty on the
magnitude of λ (weighted by α), and the negative en-
tropy of the predictive model (weighted by τ). While
an `2 weight penalty is standard in regression prob-
lems like this, we found that the the additional en-
tropy term gave more reliable results. Intuitively,
the entropic regularizer encourages the model to re-
main maximally uncertain about its predictions. In
the metaphor of “maximum entropy”, the entropic
prior finds a solution that has more entropy than the
“maximum” model that is compatible with the con-
straints.

The objective cannot be minimized in closed
form, but it does have a unique minimum and
is straightforwardly differentiable, so we used L-
BFGS to find the optimal weight settings (Liu et al.,
1989).

5 Feature Overview

We define a large arsenal of features, our motivation
being both to improve the accuracy of classification
and to be able to interpret the characteristics of the
language produced by speakers of different L1s.

While some of the features were used in prior
work (§2), we focus on two broad novel categories
of features: those inspired by the features used
to identify translationese by Volansky et al. (forth-
coming) and those extracted by automatic statisti-
cal “correction” of the essays. Refer to figure 1 to
see the set of features and their values that were ex-
tracted from an example sentence.
POS n-grams Part-of-speech n-grams were used in

various text-classification tasks.
Prompt Since the prompt contributes information

on the domain, it is likely that some words (and,
hence, character sequences) will occur more fre-
quently with some prompts than with others. We
therefore use the prompt ID in conjunction with
other features.

Document length The number of tokens in the text
is highly correlated with the author’s level of flu-
ency, which in turn is correlated with the author’s
L1.

Pronouns The use of pronouns varies greatly
among different authors. We use the same list
of 25 English pronouns that Volansky et al. (forth-

coming) use for identifying translationese.
Punctuation Similarly, different languages use

punctuation differently, and we expect this to taint
the use of punctuation in non-native texts. Of
course, character n-grams subsume this feature.

Passives English uses passive voice more fre-
quently than other languages. Again, the use of
passives in L2 can be correlated with the author’s
L1.

Positional token frequency The choice of the first
and last few words in a sentence is highly con-
strained, and may be significantly influenced by
the author’s L1.

Cohesive markers These are 40 function words
(and short phrases) that have a strong discourse
function in texts (however, because, in fact,
etc.). Translators tend to spell out implicit utter-
ances and render them explicitly in the target text
(Blum-Kulka, 1986). We use the list of Volansky
et al. (forthcoming).

Cohesive verbs This is a list of manually compiled
verbs that are used, like cohesive markers, to spell
out implicit utterances (indicate, imply, contain,
etc.).

Function words Frequent tokens, which are mostly
function words, have been used successfully for
various text classification tasks. Koppel and Or-
dan (2011) define a list of 400 such words, of
which we only use 100 (using the entire list was
not significantly different). Note that pronouns
are included in this list.

Contextual function words To further capitalize
on the ability of function words to discriminate,
we define pairs consisting of a function word from
the list mentioned above, along with the POS tag
of its adjacent word. This feature captures pat-
terns such as verbs and the preposition or particle
immediately to their right, or nouns and the deter-
miner that precedes them. We also define 3-grams
consisting of one or two function words and the
POS tag of the third word in the 3-gram.

Lemmas The content of the text is not considered a
good indication of the author’s L1, but many text
categorization tasks use lemmas (more precisely,
the stems produced by the tagger) as features ap-
proximating the content.

Misspelling features Learning to perceive, pro-
duce, and encode non-native phonemic contrasts
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Firstly the employers live more savely because they are going to have more money to spend for luxury .

Presence Considered alternatives/edits

Characters

"CHAR_l_y_ ": log 2 + 1
"CharPrompt_P5_g_o_i": log 1 + 1
"MFChar_e_ ": log 1 + 1
"Punc_period": log 1 + 1

"DeleteP_p_.": 1.0
"InsertP_p_,": 1.0
"MID:SUBST:v:f": log 1 + 1
"SUBST:v:f": log 1 + 1

Words

"DocLen_": log 19 + 1
"MeanWordRank": 422.6
"CohMarker_because": log 1 + 1
"MostFreq_have": log 1 + 1
"PosToken_last_luxury": log 1 + 1
"Pronouns_they": log 1 + 1

"MSP:safely": log 1 + 1
"Match_p_to": 0.5
"Delete_p_to": 0.5
"Delete_p_are": 1.0
"Delete_p_because": 1.0
"Delete_p_for": 1.0

POS "POS_VBP_VBG_TO": log 1 + 1
"POS_p_VBP_VBG_TO": 0.059

Words + POS "VBP_VBG_to": log 1 + 1
"FW__more RB": log 1 + 1

Figure 1: Some of the features extracted for an L1 German sentence.

is extremely difficult for L2 learners (Hayes-Harb
and Masuda, 2008). Since English’s orthogra-
phy is largely phonemic—even if it is irregular
in many places, we expect leaners whose na-
tive phoneme contrasts are different from those
of English to make characteristic spelling errors.
For example, since Japanese and Korean lack a
phonemic /l/-/r/ contrast, we expect native speak-
ers of those languages to be more likely to make
spelling errors that confuse l and r relative to
native speakers of languages such as Spanish in
which that pair is contrastive. To make this in-
formation available to our model, we use a noisy
channel spelling corrector (Kernighan, 1990) to
identify and correct misspelled words in the train-
ing and test data. From these corrections, we ex-
tract minimal edit features that show what inser-
tions, deletions, substitutions and joinings (where
two separate words are written merged into a sin-
gle orthographic token) were made by the author
of the essay.

Restored tags We focus on three important token
classes defined above: punctuation marks, func-
tion words and cohesive verbs. We first remove
words in these classes from the texts, and then
recover the most likely hidden tokens in a se-
quence of words, according to an n-gram lan-
guage model trained on all essays in the training
corpus corrected with a spell checker and con-
taining both words and hidden tokens. This fea-
ture should capture specific words or punctuation

marks that are consistently omitted (deletions),
or misused (insertions, substitutions). To restore
hidden tokens we use the hidden-ngram util-
ity provided in SRI’s language modeling toolkit
(Stolcke, 2002).

Brown clusters (Brown et al., 1992) describe an al-
gorithm that induces a hierarchical clustering of
a language’s vocabulary based on each vocabu-
lary item’s tendency to appear in similar left and
right contexts in a training corpus. While origi-
nally developed to reduce the number of parame-
ters required in n-gram language models, Brown
clusters have been found to be extremely effective
as lexical representations in a variety of regres-
sion problems that condition on text (Koo et al.,
2008; Turian et al., 2010; Owoputi et al., 2013).
Using an open-source implementation of the al-
gorithm,2 we clustered 8 billion words of English
into 600 classes.3 We included log counts of all
4-grams of Brown clusters that occurred at least
100 times in the NLI training data.

5.1 Main Features

We use the following four feature types as the base-
line features in our model. For features that are sen-
sitive to frequency, we use the log of the (frequency-
plus-one) as the feature’s value. Table 2 reports the
accuracy of using each feature type in isolation (with

2https://github.com/percyliang/brown-cluster
3http://www.ark.cs.cmu.edu/cdyer/en-600/

cluster_viewer.html
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Feature Accuracy (%)
POS 55.18
FreqChar 74.12
CharPrompt 65.09
Brown 72.26
DocLen 11.81
Punct 27.41
Pron 22.81
Position 53.03
PsvRatio 12.26
CxtFxn (bigram) 62.79
CxtFxn (trigram) 62.32
Misspell 37.29
Restore 47.67
CohMark 25.71
CohVerb 22.85
FxnWord 42.47

Table 2: Independent performance of feature types de-
tailed in §5.1, §5.2 and §5.3. Accuracy is averaged over
10 folds of cross-validation on the training set.

10-fold cross-validation on the training set).
POS Part-of-speech n-grams. Features were ex-

tracted to count every POS 1-, 2-, 3- and 4-gram
in each document.

FreqChar Frequent character n-grams. We exper-
imented with character n-grams: To reduce the
number of parameters, we removed features only
those character n-grams that are observed more
than 5 times in the training corpus, and n ranges
from 1 to 4. High-weight features include:
TUR:<Turk>; ITA:<Ital>; JPN:<Japa>.

CharPrompt Conjunction of the character n-gram
features defined above with the prompt ID.

Brown Substitutions, deletions and insertions
counts of Brown cluster unigrams and bigrams in
each document.

The accuracy of the classifier on the development set
using these four feature types is reported in table 3.4

5.2 Additional Features

To the basic set of features we now add more spe-
cific, linguistically-motivated features, each adding
a small number of parameters to the model. As
above, we indicate the accuracy of each feature type
in isolation.

4For experiments in this paper combining multiple types of
features, we used Jonathan Clark’s workflow management tool,
ducttape (https://github.com/jhclark/ducttape).

Feature Group # Params Accuracy (%) `2

POS 540,947 55.18 1.0
+ FreqChar 1,036,871 79.55 1.0

+ CharPrompt 2,111,175 79.82 1.0
+ Brown 5,664,461 81.09 1.0

Table 3: Dev set accuracy with main feature groups,
added cumulatively. The number of parameters is always
a multiple of 11 (the number of classes). Only `2 regular-
ization was used for these experiments; the penalty was
tuned on the dev set as well.

DocLen Document length in tokens.
Punct Counts of each punctuation mark.
Pron Counts of each pronoun.
Position Positional token frequency. We use the

counts for the first two and last three words be-
fore the period in each sentence as features. High-
weight features for the second word include:
ARA:2<,>; CHI:2<is>; HIN:2<can>.

PsvRatio The proportion of passive verbs out of all
verbs.

CxtFxn Contextual function words. High-weight
features include: CHI:<some JJ>;
HIN:<as VBN>.

Misspell Spelling correction edits. Features
included substitutions, deletions, insertions,
doubling of letters and missing doublings of
letters, and splittings (alot→a lot), as well as the
word position where the error occurred.
High-weight features include: ARA:DEL<e>,
ARA:INS<e>, ARA:SUBST<e>/<i>;
GER:SUBST<z>/<y>; JPN:SUBST<l>/<r>,
JPN:SUBST<r>/<l>; SPA:DOUBLE<s>,
SPA:MID_INS<s>, SPA:INS<s>.

Restore Counts of substitutions, deletions and
insertions of predefined tokens that we restored
in the texts. High-weight features include:
CHI:DELWORD<do>; GER:DELWORD<on>;
ITA:DELWORD<be>

Table 4 reports the empirical improvement that each
of these brings independently when added to the
main features (§5.1).

5.3 Discarded Features

We also tried several other feature types that did not
improve the accuracy of the classifier on the devel-
opment set.
CohMark Counts of each cohesive marker.

283



Feature Group # Params Accuracy (%) `2

main + Position 6,153,015 81.00 1.0
main + PsvRatio 5,664,472 81.00 1.0
main 5,664,461 81.09 1.0
main + DocLen 5,664,472 81.09 1.0
main + Pron 5,664,736 81.09 1.0
main + Punct 5,664,604 81.09 1.0
main + Misspell 5,799,860 81.27 5.0
main + Restore 5,682,589 81.36 5.0
main + CxtFxn 7,669,684 81.73 1.0

Table 4: Dev set accuracy with main features plus addi-
tional feature groups, added independently. `2 regulariza-
tion was tuned as in table 3 (two values, 1.0 and 5.0, were
tried for each configuration; more careful tuning might
produce slightly better accuracy). Results are sorted by
accuracy; only three groups exhibited independent im-
provements over the main feature set.

CohVerb Counts of each cohesive verb.
FxnWord Counts of function words. These features

are subsumed by the highly discriminative CxtFxn
features.

6 Results

The full model that we used to classify the test set
combines all features listed in table 4. Using all
these features, the accuracy on the development set
is 84.55%, and on the test set it is 81.5%. The values
for α and τ were tuned to optimize development set
performance, and found to be α = 5, τ = 2.

Table 5 lists the confusion matrix on the test set,
as well as precision, recall and F1-score for each L1.
The largest error type involved predicting Telugu
when the true label was Hindi, which happened 18
times. This error is unsurprising since many Hindi
and Telugu speakers are arguably native speakers of
Indian English.

Production of L2 texts, not unlike translating from
L1 to L2, involves a tension between the impos-
ing models of L1 (and the source text), on the one
hand, and a set of cognitive constraints resulting
from the efforts to generate the target text, on the
other. The former is called interference in Trans-
lation Studies (Toury, 1995) and transfer in second
language acquisition (Selinker, 1972). Volansky et
al. (forthcoming) designed 32 classifiers to test the
validity of the forces acting on translated texts, and
found that features sensitive to interference consis-

tently yielded the best performing classifiers. And
indeed, in this work too, we find fingerprints of the
source language are dominant in the makeup of L2
texts. The main difference, however, between texts
translated by professionals and the texts we address
here, is that more often than not professional trans-
lators translate into their mother tongue, whereas L2
writers write out of their mother tongue by defini-
tion. So interference is ever more exaggerated in
this case, for example, also phonologically (Tsur and
Rappoport, 2007).

We explore the effects of interference by analyz-
ing several patterns we observe in the features. Our
classifier finds that the character sequence alot is
overrepresented in Arabic L2 texts. Arabic has no
indefinite article and we speculate that Arabic speak-
ers conceive a lot as a single word; the Arabic equiv-
alent for a lot is used adverbially like an -ly suffix
in English. For the same reason, another promi-
nent feature is a missing definite article before nouns
and adjectives. Additionally, Arabic, being an Ab-
jad language, rarely indicates vowels, and indeed we
find many missing e’s and i’s in the texts of Arabic
speakers. Phonologically, because Arabic conflates
/I/ and /@/ into /i/ (at least in Modern Standard Ara-
bic), we see that many e’s are indeed substituted for
i’s in these texts.

We find that essays that contain hyphens are more
likely to be from German authors. We again find
evidence of interference from the native language
here. First, relative clauses are widely used in Ger-
man, and we see this pattern in L2 English of L1
German speakers. For example, any given rational
being – let us say Immanual Kant – we find that.
Another source of extra hyphens stems from com-
pounding convention. So, for example, we find well-
known, community-help, spare-time, football-club,
etc. Many of these reflect an effort to both connect
and separate connected forms in the original (e.g.,
Fussballklub, which in English would be more natu-
rally rendered as football club). Another unexpected
feature of essays by native Germans is a frequent
substitution of the letter y for z and vice versa. We
suspect this owes to their switched positions on Ger-
man keyboards.

Lexical item frequency also provides clues to the
L1 of the essay writers. The word that occurs more
frequently in the texts of German L1 speakers. We
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true↓ ARA CHI FRE GER HIN ITA JPN KOR SPA TEL TUR Precision (%) Recall (%) F1 (%)
ARA 80 0 2 1 3 4 1 0 4 2 3 80.8 80.0 80.4
CHI 3 80 0 1 1 0 6 7 1 0 1 88.9 80.0 84.2
FRE 2 2 81 5 1 2 1 0 3 0 3 86.2 81.0 83.5
GER 1 1 1 93 0 0 0 1 1 0 2 87.7 93.0 90.3
HIN 2 0 0 1 77 1 0 1 5 9 4 74.8 77.0 75.9
ITA 2 0 3 1 1 87 1 0 3 0 2 82.1 87.0 84.5
JPN 2 1 1 2 0 1 87 5 0 0 1 78.4 87.0 82.5
KOR 1 5 2 0 1 0 9 81 1 0 0 80.2 81.0 80.6
SPA 2 0 2 0 1 8 2 1 78 1 5 77.2 78.0 77.6
TEL 0 1 0 0 18 1 2 1 1 73 3 85.9 73.0 78.9
TUR 4 0 2 2 0 2 2 4 4 0 80 76.9 80.0 78.4

Table 5: Official test set confusion matrix with the full model. Accuracy is 81.5%.

hypothesize that in English it is optional in rela-
tive clauses whereas in German it is not, so Ger-
man speakers are less comfortable using the non-
obligatory form. Also, often is over represented. We
hypothesize that since it is cognate of German oft, it
is not cognitively expensive to retrieve it. We find
many times—a literal translation of muchas veces—
in Spanish essays.

Other informative features that reflect L1 features
include frequent misspellings involving confusions
of l and r in Japanese essays. More mysteriously,
the characters r and s are misused in Chinese and
Spanish, respectively. The word then is dominant
in the texts of Hindi speakers. Finally, it is clear
that authors refer to their native cultures (and, conse-
quently, native languages and countries); the strings
Turkish, Korea, and Ita were dominant in the texts of
Turkish, Korean and Italian native speakers, respec-
tively.

7 Discussion

We experimented with different classifiers and a
large set of features to solve an 11-way classifica-
tion problem. We hope that studying this problem
will improve to facilitate human assessment, grad-
ing, and teaching of English as a second language.
While the core features used are sparse and sensitive
to lexical and even orthographic features of the writ-
ing, many of them are linguistically informed and
provide insight into how L1 and L2 interact.

Our point of departure was the analogy between
translated texts as a genre in its own and L2 writ-
ers as pseudo translators, relying heavily on their
mother tongue and transferring their native models

to a second language. In formulating our features,
we assumed that like translators, L2 writers will
write in a simplified manner and overuse explicit
markers. Although this should be studied vis-à-vis
comparable outputs of mother tongue writers in En-
glish, we observe that the best features of our clas-
sifiers are of the “interference” type, i.e. phonolog-
ical, morphological and syntactic in nature, mostly
in the form of misspelling features, restoration tags,
punctuation and lexical and syntactic modeling.

We would like to stress that certain features indi-
cating a particular L1 have no bearing on the quality
of the English produced. This has been discussed
extensively in Translation Studies (Toury, 1995),
where interference is observed by the overuse or un-
deruse of certain features reflecting the typological
differences between a specific pair of languages, but
which is still within grammatical limits. For exam-
ple, the fact that Italian native speakers favor the
syntactic sequence of determiner + adjective + noun
(e.g., a big risk or this new business) has little pre-
scriptive value for teachers.

A further example of how L2 quality and the
ability to predict L1 are uncorrelated, we noted
that certain L2 writers often repeat words appear-
ing in their essay prompts, and including informa-
tion about whether the writer was reusing prompt
words improved classification accuracy. We suggest
this reflects different educational backgrounds. This
feature says nothing about the quality of the text, just
as the tendency of Korean and Italian writers to men-
tion their home country more often does not.
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Abstract

In automated speech assessment, adaptation of
language models (LMs) to test questions is im-
portant to achieve high recognition accuracy
However, for large-scale language tests, the
ordinary supervised training, which uses an
expensive and time-consuming manual tran-
scription process, is hard to utilize for LM
adaptation. In this paper, several LM adap-
tation methods that require either no manual
transcription process or just a small amount of
transcriptions have been evaluated. Our ex-
periments suggest that these LM adaptation
methods can allow us to obtain considerable
recognition accuracy gain with no or low hu-
man transcription cost.

Index Terms: language model adaptation, unsuper-
vised training, Web as a corpus

1 Introduction

Automated speech assessment, a fast-growing area
in the speech research field (Eskenazi, 2009), typ-
ically uses an automatic speech recognition (ASR)
system to recognize spontaneous speech responses
and use the recognition outputs to generate the fea-
tures for scoring. Since the recognition accuracy di-
rectly influences the quality of the speech features,
especially for the features related to word entities,
such as those measuring grammar accuracy and vo-
cabulary richness, it is important to use ASR sys-
tems with high recognition accuracy.

Adaptation of language models (LMs) to test re-
sponses is an effective method to improve recogni-
tion accuracy. However, it is difficult to only use

the ordinary supervised training to adapt LMs to test
questions. First, for high-stake tests administered
globally, a very large pool of test questions have to
be used to strengthen the tests’ security and validity.
Since a large number of test questions have many
possible answers for each question, a large set of au-
dio files needs to be transcribed to cover response
content. Second, due to time and cost constraints,
it may not be practical to have a pre-test to collect
enough speech responses for adaptation purposes.
Therefore, it is important to pursue other methods to
obtain LM adaptation data in a faster and lower-cost
way than the ordinary supervised training.

As we will review in Section 2, some promising
technologies, such as unsupervised training, active
learning, and LM adaptation based on Web data,
have been utilized in broadcast news recognition, di-
alog system, and so on. In this paper on the LM
adaptation task used in automated speech scoring
systems, we will report our experiments to obtain
LM adaptation data in a faster and more economical
way that requires little human involvement. To our
knowledge, this is the first such work reported in the
automated speech assessment area.

The rest of the paper is organized as follows: Sec-
tion 2 reviews the related previous research results;
Section 3 describes the English test, the data used
in our experiments, and the ASR system used; Sec-
tion 4 reports the experiments of different methods
we tried to obtain LM adaptation data; Section 5 dis-
cusses our findings and plans for future research.
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2 Previous Work

Unsupervised training is the method of using untran-
scribed audio to adapt a language model (LM). An
initial ASR model (seed model) is used to recognize
the untranscribed audio, and the obtained ASR out-
puts are used in the follow-up LM adaptation. (Chen
et al., 2003) utilized unsupervised LM adaptation
on broadcast news (BN) recognition. The unsuper-
vised adaptation method reduces the word error rate
(WER) by 2% relative to using the baseline LM.
(Bacchiani and Roark, 2003) reported that unsuper-
vised LM adaptation provided an absolute error rate
reduction of 3.9% over the un-adapted baseline per-
formance by using 17 hours of untranscribed adap-
tation data. This was 51% of the 7.7% adaptation
error rate reduction obtained by using an ordinary
supervised adaptation method.

Active learning is used to reduce the number of
training examples to be annotated by automatically
processing the unlabeled examples and then select-
ing the most informative ones with respect to a given
cost function. (Riccardi and Hakkani-Tur, 2003;
Tur et al., 2005) proposed using a combination of
unsupervised and active learning for ASR training
to minimize the workload of human transcription.
Their experiments showed that the amount of la-
beled data needed for a given recognition accuracy
can be reduced by 75% when combining these two
training approaches.

A recent trend in Natural Language Processing
(NLP) and speech recognition research is utilizing
Web data to improve the LMs, especially when in-
domain training material is limited. (Ng et al.,
2005) investigated LM topic adaptation using Web
data. Experiments in recognizing Mandarin tele-
phone conversations showed that use of filtered Web
data leads to a 7% reduction in the character recog-
nition error rate. (Sarikaya et al., 2005) used Web
data to adapt LMs used in a spoken dialog system.
From a limited in-domain data set, they generated
a series of search queries and retrieved Web pages
from Google using these queries. In their recog-
nition experiment done on a dialog system, they
achieved a 5.2% word error reduction by using the
Web data, compared to a baseline LM trained on
1700 in-domain utterances.

3 Test, Data, and ASR

Our in-domain data was from The Test of English
for International Communication, TOEIC R©, which
tests non-native English speakers’ basic speaking
ability required in international business communi-
cations. In our experiments, we focused on opinion
testing questions. An example question is: “Do you
agree with the statement that a company should only
hire experienced employees? Use specific reasons to
support your answer”.

A state-of-the-art HMM LVCSR system, which
was provided by a leading ASR vendor, was used in
our experiments. It contains a cross-word tri-phone
acoustic model (AM) and a combination of bi-gram,
tri-gram, and up to four-gram LMs. The AM and
LM are trained by supervised training from about
800 hours of audio and manual transcriptions of
non-native English speaking data collected from the
Test Of English as a Foreign Language (TOEFL R©).
TOEFL R© is targeted to assess test-takers’ ability
to use English to study in an institution using En-
glish as its primary teaching language. Speaking
content from TOEFL R© data is quite different from
the content shown in TOEIC R© data. When testing
this recognizer on a held-out evaluation set extracted
from the TOEFL R© test, a word error rate (WER) of
33.0% 1 is observed. This recognizer was used as
the seed recognizer in our experiments.

4 Experiments

We collected a set of audio responses from the
TOEIC R© test, focusing on opinion questions. This
data set was randomly selected from different first-
language (L1) and English speaking proficiency lev-
els. Then, these audio files were manually tran-
scribed. In our experiments, 1470 responses were
used for LM adaptation and the remaining 184 re-
sponses were used to evaluate speech recognition

1ASR on non-native speech is more difficult than on native
speech for various reasons (Livescu and Glass, 2000). How-
ever, a high WER does not rule out the possibility of using
ASR outputs for automated scoring, especially when relying
on delivery related features. For example, (Chen et al., 2009)
shows that several pronunciation features’ contributions for as-
sessment, measured as Pearson correlations between the feat-
uers and human scores, only drop about 10% to 20% when us-
ing ASR outputs with a WER as high as 50% compared to using
human transcriptions.
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accuracy. When using the seed recognizer with-
out any adaptation, the WER on the evaluation set
is 42.8%, which is much higher than the accuracy
achieved on the TOEFL R© data (33.0%). Using the
ordinary supervised training, adapting LMs using
these 1470 manual transcriptions, the WER is re-
duced to 34.7%, close to the performance on the
in-domain TOEFL R© data. Note that a fixed dictio-
nary with a vocabulary size of about 20, 000 words,
which in general is much larger than the vocabulary
mastered by non-native test takers, was used in our
experiment.

4.1 Unsupervised LM adaptation

Using the seed recognizer trained on the TOEFL R©

data, we recognized 1470 adaptation responses and
selected varying amounts of ASR outputs for LM
adaptation. From ASR outputs of all responses, we
selected the responses with high confidence scores
estimated by the seed recognizer so that we could
use the ASR outputs with higher recognition accu-
racy on the LM adaptation task. We used two meth-
ods to measure the confidence score for each re-
sponse from word-level confidence scores. First, we
took the average of all word confidence scores a re-
sponse contains, as shown in Equation 1.

ConfperWord =
1

N

N∑
i=1

conf(wi) (1)

where conf(wi) is the confidence score of word, wi.
The other method we used considers each word’s du-
ration, as shown in Equation 2.

ConfperSec =

∑N
i=1 d(wi) ∗ conf(wi)∑N

i=1 d(wi)
(2)

where d(wi) is the duration of wi.
In Figure 1, we showed the WER after running

unsupervised LM adaptation, where the adaptation
responses were selected if they had high word-based
(ConfperWord) or duration-based (ConfperSec)
confidence scores. The data sizes used for adapta-
tion vary from 0% (without any adaptation) to 100%
(using all adaptation data). We observe continuous
reduction of WER when using more and more adap-
tation data. Selecting responses by the word-based

confidence scores performs a little better than the se-
lection method based on the confidence scores nor-
malized by corresponding word durations. However,
there is no significant difference between these two
selection criteria.

Figure 1: Unsupervised LM adaptation performance us-
ing different sizes of development set data.

ASR accuracy may vary within each response.
Therefore, instead of using entire responses, we also
explored using smaller units for LM adaptation. All
of the ASR outputs were split into word sequences
with fixed lengths (10-15 words), and the ones with
higher per-word confidence scores (ConfperWord)
were extracted for model adaptation. Our experi-
ment shows that using word-sequence pieces rather
than entire responses leads to a faster WER reduc-
tion. When only using 5% of the adaptation data, we
obtained 3.5% absolute WER reduction compared to
the baseline result without adaptation. Note that we
only obtained 2.5% absolute WER reduction when
using entire responses in adaptation.

4.2 Web data LM adaptation

Given around 40% WER when using our seed ASR,
unsupervised learning faces the issue that many
recognition errors were included in model adapta-
tion. Can we find another source to obtain LM
adaptation inputs with fewer errors? To address
this question, we explored building a training cor-
pus from Web data based on test questions. We
used BootCat (Baroni and Bernardini, 2004), a cor-
pus building tool designed to collect data from the
Web, to collect our LM adaptation data. Based on
test prompts in the TOEIC R© test, we manually gen-
erated search queries. After receiving the search
queries, the BootCat tool searched the Web using
the Microsoft Bing search engine. Then, top-ranked
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Web pages were downloaded and texts on these Web
pages were extracted. We examined the Web search
results (including URLs and texts) returned by the
BootCat tool. The returned Web data has varied
matching rates among these prompts and are gen-
erally noisy.

By using only the default setup provided by the
BootCat tool, we collected 5312 sentences in total.
After a simple text normalization, we used the ob-
tained Web data for LM adaptation, and the WER
on the evaluation data was 38.5%. This WER result
is a little higher than the WER result achieved by
unsupervised LM adaptation (38.1%). Without tran-
scribing any response from test-takers, the language
model adaptation using Web data already helps to
improve recognition accuracy. Then, we tried us-
ing both the Web data and the ASR hypotheses for
adaptation, and we can further decreased the WER
to 37.6%. This is lower than using the two LM adap-
tation data sets separately.

4.3 Semi-supervised approaches for LM
adaptation

For semi-supervised LM adaptation, we replaced the
speech responses of lower confidence scores with
their corresponding human transcripts. We hoped
that by using the responses with high confidence
scores together with a small amount of human tran-
scripts, we could get better performance by intro-
ducing less noise during adaptation. We set differ-
ent thresholds for selecting the low confidence re-
sponses and replacing them with human transcripts.
We find that just manually transcribing a limited
amount of audio data gives us further WER reduc-
tion, compared to using unsupervised learning. Af-
ter transcribing just 100 responses, 6.8% of 1470 re-
sponses in the adaptation data set, semi-supervised
learning can achieve 61.73% of the WER reduction
(8.1%) obtained by using the ordinary supervised
training that requires transcription of all 1470 re-
sponses.

4.4 Discussion

In Table 1, we compared the performance of all the
adaptation methods mentioned in this paper, includ-
ing two unsupervised methods adapted using the
ASR hypotheses and “related” Web data, and one

semi-supervised method 2, replacing the ASR hy-
potheses of lower confidence scores with their corre-
sponding human transcripts. For a convenient com-
parison, we also include the baseline (without LM
adaptation) and the result of using the supervised
adaptation. All the proposed unsupervised/semi-
supervised methods can significantly improve the
ASR performance compared to the baseline result.
For projects with time limits, we can use these
unsupervised/semi-supervised methods to help us
get relatively good ASR outputs.

Table 1: The WER on the evaluation set using different
LM adaptation methods.

baseline unsupervised semi super.ASR Web ASR&Web
42.8 38.1 38.5 37.6 37.8 34.7

5 Conclusions and Future Work

In this paper, we reported our experiments in ap-
plying several LM adaptation methods to automated
speech scoring systems that require few, if any, hu-
man transcripts, which are expensive and slow to
obtain for large-sized adaptation data sets. The un-
supervised training (using ASR transcriptions from
a seed ASR system) clearly shows higher accuracy
than a ASR system without any domain adaptation.
We also used test questions to collect related texts
from Web. Even though such Web data may be noisy
and its relatedness to real test responses is not al-
ways guaranteed, text data collected from the Web
is helpful to adapt LMs to better fit the responses to
test questions. To better cope with recognition er-
rors brought on by using the unsupervised training
method, we proposed using human transcriptions on
a small amount of poorly recognized responses. Us-
ing such little human involvement further helps to
obtain a lower WER. Therefore, based on the ex-
periments described in this paper, we conclude that
these novel LM adaptation methods provide promis-
ing solutions to let us skip the ordinary supervised
training for LM adaptation tasks frequently used in
automated speech scoring.

2The semi-supervised result was from replacing 100 low-
confidence responses with human transcripts.
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The reported experiments in this paper were con-
ducted on a limited-size data set. We plan to increase
the testing data to a larger size and hope to cover
more types of test questions and spoken tests. In ad-
dition, we plan to investigate how to automatically
generate Web search queries based on test questions.
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Abstract

We present an experiment aimed at improv-
ing interpretation robustness of a tutorial dia-
logue system that relies on detailed semantic
interpretation and dynamic natural language
feedback generation. We show that we can
improve overall interpretation quality by com-
bining the output of a semantic interpreter
with that of a statistical classifier trained on
the subset of student utterances where seman-
tic interpretation fails. This improves on a pre-
vious result which used a similar approach but
trained the classifier on a substantially larger
data set containing all student utterances. Fi-
nally, we discuss how the labels from the sta-
tistical classifier can be integrated effectively
with the dialogue system’s existing error re-
covery policies.

1 Introduction

Giving students formative feedback as they inter-
act with educational applications, such as simu-
lated training environments, problem-solving tutors,
serious games, and exploratory learning environ-
ments, is known to be important for effective learn-
ing (Shute, 2008). Suitable feedback can include
context-appropriate confirmations, hints, and sug-
gestions to help students refine their answers and
increase their understanding of the subject. Pro-
viding this type of feedback automatically, in nat-
ural language, is the goal of tutorial dialogue sys-
tems (Aleven et al., 2002; Dzikovska et al., 2010b;
Graesser et al., 1999; Jordan et al., 2006; Litman and
Silliman, 2004; Khuwaja et al., 1994; Pon-Barry et
al., 2004; VanLehn et al., 2007).

Much work in NLP for educational applications
has focused on automated answer grading (Leacock

and Chodorow, 2003; Pulman and Sukkarieh, 2005;
Mohler et al., 2011). Automated answer assess-
ment systems are commonly trained on large text
corpora. They compare the text of a student answer
with the text of one or more reference answers sup-
plied by human instructors and calculate a score re-
flecting the quality of the match. Automated grad-
ing methods are integrated into intelligent tutoring
systems (ITS) by having system developers antic-
ipate both correct and incorrect responses to each
question, with the system choosing the best match
(Graesser et al., 1999; Jordan et al., 2006; Litman
and Silliman, 2004; VanLehn et al., 2007). Such
systems have wide domain coverage and are robust
to ill-formed input. However, as matching relies on
shallow features and does not provide semantic rep-
resentations of student answers, this approach is less
suitable for dynamically generating adaptive natural
language feedback (Dzikovska et al., 2013).

Real-time simulations and serious games are
commonly used in STEM learning environments
to increase student engagement and support ex-
ploratory learning (Rutten et al., 2012; Mayo, 2007).
Natural language dialogue can help improve learn-
ing in such systems by asking students to explain
their reasoning, either directly during interaction, or
during post-problem reflection (Aleven et al., 2002;
Pon-Barry et al., 2004; Dzikovska et al., 2010b).
Interpretation of student answers in such systems
needs to be grounded in the current state of a dynam-
ically changing environment, and feedback may also
be generated dynamically to reflect the changing
system state. This is typically achieved by employ-
ing hand-crafted parsers and semantic interpreters to
produce structured semantic representations of stu-
dent input, which are then used to instantiate ab-
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stract tutorial strategies with the help of a natural
language generation system (Freedman, 2000; Clark
et al., 2005; Dzikovska et al., 2010b).

Rule-based semantic interpreters are known to
suffer from robustness and coverage problems, fail-
ing to interpret out-of-grammar student utterances.
In the event of an interpretation failure, most sys-
tems have little information on which to base a feed-
back decision and typically respond by asking the
student to rephrase, or simply give away the answer
(though more sophisticated strategies are sometimes
possible, see Section 4). While statistical scoring ap-
proaches are more robust, they may still suffer from
coverage issues when system designers fail to antic-
ipate the full range of expected student answers. In
one study of a statistical system, a human judge la-
beled 33% of student utterances as not matching any
of the anticipated responses, meaning that the sys-
tem had no information to use as a basis for choos-
ing the next action and fell back on a single strategy,
giving away the answer (Jordan et al., 2009).

Recently, Dzikovska et al. (2012b) developed an
annotated corpus of student responses (henceforth,
the SRA corpus) with the goal of facilitating dy-
namic generation of tutorial feedback.1 Student re-
sponses are assigned to one of 5 domain- and task-
independent classes that correspond to typical flaws
found in student answers. These classes can be used
to help a system choose a feedback strategy based
only on the student answer and a single reference
answer. Dzikovska et al. (2013) showed that a sta-
tistical classifier trained on this data set can be used
in combination with a semantic interpreter to sig-
nificantly improve the overall quality of natural lan-
guage interpretation in a dialogue-based ITS. The
best results were obtained by using the classifier
to label the utterances that the semantic interpreter
failed to process.

In this paper we further extend this result by
showing that we can obtain similar results by train-
ing the classifier directly on the subset of utterances
that cannot be processed by the interpreter. The
distribution of labels across the classes is differ-
ent in this subset compared to the rest of the cor-
pus. Therefore we can train a subset-specific classi-

1http://www.cs.york.ac.uk/semeval-2013/
task7/index.php?id=data

fier, reducing the amount of annotated training data
needed without compromising performance of the
combined system.

The rest of the paper is organized as follows. In
Section 2 we describe an architecture for combining
semantic interpretation and classification in a sys-
tem with dynamic natural language feedback gener-
ation. In Section 3 we describe an experiment to im-
prove combined system performance using a classi-
fier trained only on non-interpretable utterances. We
discuss future improvements in Section 4.

2 Background

The SRA corpus is made up of two subsets: (1)
the SciEntsBank subset, consisting of written re-
sponses to assessment questions (Nielsen et al.,
2008b), and (2) the Beetle subset consisting of ut-
terances collected from student interactions with the
BEETLE II tutorial dialogue system (Dzikovska et
al., 2010b). The SRA corpus annotation scheme
defines 5 classes of student answers (“correct”,
“partially-correct-incomplete”, “contradictory”, “ir-
relevant” and “non-domain”). Each utterance is as-
signed to one of the 5 classes based on pre-existing
manual annotations (Dzikovska et al., 2012b).

We focus on the Beetle subset because the Beetle
data comes from an implemented system, meaning
that we also have access to the semantic interpreta-
tions of student utterances produced by the BEETLE

II interpretation component. The system uses fine-
grained semantic analysis to produce detailed diag-
noses of student answers in terms of correct, incor-
rect, missing and irrelevant parts. We developed a
set of rules to map these diagnoses onto the SRA
corpus 5-class annotation scheme to support system
evaluation (Dzikovska et al., 2012a).

In our previous work (Dzikovska et al., 2013), we
used this mapping as the basis for combining the
output of the BEETLE II semantic interpreter with
the output of a statistical classifier, using a rule-
based policy to determine which label to use for
each instance. If the label from the semantic in-
terpreter is chosen, then the full range of detailed
feedback strategies can be used, based on the corre-
sponding semantic representation. If the classifier’s
label is chosen, then the system can fall back to us-
ing content-free prompts, choosing an appropriate
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prompt based on the SRA corpus label.
We evaluated 3 rule-based combination policies,

chosen to reduce the effects of the errors that the
semantic interpreter makes, and taking into account
tutoring goals such as reducing student frustration.
The best performing policy takes the classifier’s out-
put if and only if the semantic interpreter is unable
to process the utterance.2 This allows the system to
choose from a wider set of content-free prompts in-
stead of always telling the student that the utterance
was not understood.

As discussed earlier, non-interpretable utterances
present a problem for both rule-based and statistical
approaches. Therefore, we carried out an additional
set of experiments, focusing on the performance of
system combinations that use policies designed to
address non-interpretable utterances. We discuss our
results and future directions in the rest of the paper.

3 Improving Interpretation Robustness

3.1 Experimental Setup
The Beetle portion of the SRA corpus contains 3941
unique student answers to 47 different explanation
questions. Each question is associated with one or
more reference answers provided by expert tutors,
and each student answer is manually annotated with
the label assigned by the BEETLE II interpreter and
a gold-standard correctness label.

In our experiments, we follow the procedure de-
scribed in (Dzikovska et al., 2013), using 10-fold
cross-validation to evaluate the performance of the
various stand-alone and combined systems. We re-
port the per-class F1 scores as evaluation metrics,
using the macro-averaged F1 score as the primary
evaluation metric.

Dzikovska et al. (2013) used a statistical classi-
fier based on lexical overlap, taken from (Dzikovska
et al., 2012a), and evaluated 3 different rule-based
policies for combining its output with that of the se-
mantic interpreter. In two of those policies the inter-
preter’s output is always used if it is available, and
the classifier’s label is used for a (subset of) non-
interpretable utterances:

1. NoReject: the classifier’s label is used in all
cases where semantic interpretation fails, thus

2We will refer to such utterances as “non-interpretable” fol-
lowing (Bohus and Rudnicky, 2005).

creating a system that never rejects student in-
put as non-interpretable

2. NoRejectCorrect: the classifier’s label is
used for non-interpretable utterances which are
labeled as “correct” by the classifier. This more
conservative policy aims to ensure that correct
student answers are always accepted, but incor-
rect answers may still be rejected with a request
to rephrase.

We conducted a new experiment to evaluate these
two policies together with an enhanced classifier,
discussed in the next section.

3.2 Classifier

For this paper, we extended the classifier from the
previous study (Dzikovska et al., 2013), which we
will call Sim8, with additional features to improve
handling of lexical variability and negation.
Sim8 uses the Weka 3.6.2 implementation of

C4.5 pruned decision trees, with default parameters.
It uses 8 features based on lexical overlap similarity
metrics provided by Perl’s Text::Similarity
package v.0.09: 4 metrics measuring overlap be-
tween the student answer and the expected answer,
and the same 4 metrics applied to the student’s an-
swer and the question text.

In our enhanced classifier, Sim20, we extended
the baseline feature set with 12 additional features.
8 of these are direct analogs of the baseline features,
this time computed on the stemmed text to reduce
the impact of syntactic variation, using the Porter
stemmer from the Lingua::Stem package.3 In
addition, 4 features were added to improve negation
handling and thus detection of contradictions. These
are:

• QuestionNeg, AnswerNeg: features in-
dicating the presence of a negation marker
in the question and the student’s answer re-
spectively, detected using a regular expression.
We distinguish three cases: a negation marker

3We also experimented with features that involve removing
stop words before computing similarity scores, and with using
SVMs for classification, but failed to obtain better performance.
We continue to investigate different SVM kernels and alterna-
tive classification algorithms such as random forests for our fu-
ture work.
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Standalone Sem. Interp. + Sim20 Sem. Interp. + Sim20NI

Sem. Interp. Sim8 Sim20 no rej no rej corr no rej no rej corr
correct 0.66 0.71 0.71 0.70 0.70 0.70 0.70
pc inc 0.48 0.38 0.40 0.51 0.48 0.50 0.48
contra 0.27 0.40 0.45 0.47 0.27 0.51 0.27
irrlvnt 0.21 0.05 0.08 0.22 0.21 0.22 0.21
nondom 0.65 0.73 0.78 0.83 0.65 0.83 0.65
macro avg 0.45 0.45 0.48 0.55 0.46 0.55 0.46

Table 1: F1 scores for three stand-alone systems, and for combination systems using the Sim20 and Sim20NI
classifiers together with the semantic interpreter. Stand-alone performance for Sim20NI is not shown since it was
trained only on the non-interpretable data subset and is therefore not applicable for the complete data set.

likely to be associated with domain content
(e.g., “not connected”); a negation marker more
likely to be associated with general expressions
of confusion (such as “don’t know”); and no
negation marker present.

• BestOverlapNeg: true if the reference an-
swer that has the highest F1 overlap with the
student answer includes a negation marker.

• BestOverlapPolarityMatch: a flag
computed from the values of AnswerNeg and
BestOverlapNeg. Again, we distinguish
three cases: they have the same polarity (both
the student answer and the reference answer
contain negation markers, or both have no
negation markers); they have opposite polar-
ity; or the student answer contains a negation
marker associated with an expression of confu-
sion, as described above.

3.3 Evaluation
Evaluation results are shown in Table 1. Unless
otherwise specified, all performance differences dis-
cussed in the text are significant on an approximate
randomization significance test with 10,000 itera-
tions (Yeh, 2000).

Adding the new features to create the Sim20
classifier resulted in a performance improvement
compared to the Sim8 classifier, raising macro-
averaged F1 from 0.45 to 0.48, with an improvement
in contradiction detection as intended. But these im-
provements did not translate into improvements in
the combined systems. Combinations using Sim20
performed exactly the same as the combinations us-
ing Sim8 (not shown due to space limitations, see

(Dzikovska et al., 2013)). Clearly, more sophisti-
cated features are needed to obtain further perfor-
mance gains in the combined systems.

However, we noted that the subset of non-
interpretable utterances in the corpus has a differ-
ent distribution of labels compared to the full data
set. In the complete data set, 1665 utterances (42%)
are labeled as correct and 1049 (27%) as contradic-
tory. Among the 1416 utterances considered non-
interpretable by the semantic interpreter, 371 (26%)
belong to the “correct” class, and 598 (42%) to “con-
tradictory” (other classes have similar distributions
in both subsets). We therefore hypothesized that a
combination system that uses the classifier output
only if an utterance is non-interpretable, may ben-
efit from employing a classifier trained specifically
on this subset rather than on the whole data set.

If our hypothesis is true, it offers an interesting
possibility for combining rule-based and statistical
classifiers in similar setups: if the classifier can be
trained using only the examples that are problematic
for the rule-based system, it can provide improved
robustness at a significantly lower annotation cost.

We therefore trained another classifier,
Sim20NI, using the same feature set as Sim20,
but this time using only the instances rejected
as non-interpretable by the semantic interpreter
in each cross-validation fold (1416 utterances,
36% of all data instances). We again used the
NoReject and NoRejectCorrect policies to
combine the output of Sim20NI with that of the
semantic interpreter. Evaluation results confirmed
our hypothesis. The system combinations that
use Sim20 and Sim20NI perform identically on
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macro-averaged F1, with NoReject being the best
combination policy in both cases and significantly
outperforming the semantic interpreter alone. How-
ever, the Sim20NI classifier has the advantage of
needing significantly less annotated data to achieve
this performance.

4 Discussion and Future Work

Our research focuses on combining deep and shal-
low processing by supplementing fine-grained se-
mantic interpretations from a rule-based system
with more coarse-grained classification labels. Al-
ternatively, we could try to learn structured se-
mantic representations from annotated text (Zettle-
moyer and Collins, 2005; Wong and Mooney, 2007;
Kwiatkowski et al., 2010), or to learn more fine-
grained assessment labels (Nielsen et al., 2008a).
However, such approaches require substantially
larger annotation effort. Therefore, we believe it is
worth exploring the use of the simpler 5-label anno-
tation scheme from the SRA corpus. We previously
showed that it is possible to improve system perfor-
mance by combining the output of a symbolic inter-
preter with that of a statistical classifier (Dzikovska
et al., 2013). The best combination policy used the
statistical classifier to label utterances rejected as
non-interpretable by the rule-based interpreter.

In this paper, we showed that similar results can
be achieved by training the classifier only on non-
interpretable utterances, rather than on the whole la-
beled corpus. The student answers that the inter-
preter has difficulty with have a distinct distribution,
which is effectively utilized by training a classifier
only on this subset. This reduces the amount of an-
notated training data needed, reducing the amount of
manual labor required.

In future, we will further investigate the best com-
bination of parsing and statistical classification in
systems that offer sophisticated error recovery poli-
cies for non-understandings. Our top-performing
policy, NoReject, uses deep parsing and semantic
interpretation to produce a detailed semantic analy-
sis for the majority of utterances, and falls back on a
shallower statistical classifier for utterances that are
difficult for the interpreter. This policy assumes that
it is always better to use a content-free prompt than
to reject a non-interpretable student utterance. How-

ever, interpretation problems can arise from incor-
rect uses of terminology, and learning to speak in
the language of the domain has been positively cor-
related with learning outcomes (Steinhauser et al.,
2011). Therefore, rejecting some non-interpretable
answers as incorrect could be a valid tutoring strat-
egy (Sagae et al., 2010; Dzikovska et al., 2010a).

The BEETLE II system offers several error re-
covery strategies intended to help students phrase
their answers in more acceptable ways by giving a
targeted help message, e.g., “I am sorry, I’m hav-
ing trouble understanding. Paths cannot be broken,
only components can be broken” (Dzikovska et al.,
2010a). Therefore, it may be worthwhile to con-
sider other combination policies. We evaluated the
NoRejectCorrect policy, which uses the statis-
tical classifier to identify correct answers rejected
by the semantic interpreter and asks for rephrasings
in other cases. Using this policy resulted in only a
small improvement in system performance. A dif-
ferent classifier geared towards more accurate iden-
tification of correct answers may help, and we are
planning to investigate this option in the future.

Alternatively, we could consider a combination
policy which looks for rejected answers that the
classifier identifies as contradictory and changes the
wording of the targeted help message to indicate that
the student may have made a mistake, instead of
apologizing for the misunderstanding. This has the
potential to help students learn correct terminology
rather than presenting the issue as strictly an inter-
pretation failure.

Ultimately, all combination policies must be
tested with users to ensure that improved robust-
ness translates into improved system effectiveness.
We have previously studied the effectiveness of our
targeted help strategies with respect to improving
learning outcomes (Dzikovska et al., 2010a). A sim-
ilar study is required to evaluate our combination
strategies.
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Abstract

We present a method for automatically de-
tecting missing hyphens in English text. Our
method goes beyond a purely dictionary-based
approach and also takes context into account.
We evaluate our model on artificially gener-
ated data as well as naturally occurring learner
text. Our best-performing model achieves
high precision and reasonable recall, making
it suitable for inclusion in a system that gives
feedback to language learners.

1 Introduction

While errors of punctuation are not as frequent, nor
often as serious, as some of the other typical mis-
takes that learners make, they are nevertheless an
important consideration for students aiming to im-
prove the overall quality of their writing. In this pa-
per we focus on the error of missing hyphens. The
following example is a typical mistake made by a
student writer:

(1) Schools may have more after school sports.

In this case the tokens after and school should be hy-
phenated as they modify the noun sports. However,
in Example (2) a hyphen between after and school
would be incorrect, since in this instance after func-
tions as as the head of a prepositional phrase modi-
fying went.

(2) I went to the dentist after school today.

These examples illustrate that purely dictionary-
based approaches to detecting missing hyphens are
not likely to be sophisticated enough to differentiate

the contexts in which a hyphen is required. In addi-
tion, learner text frequently contains other grammat-
ical and spelling errors, further complicating auto-
matic error detection. Example (3) contains an error
father like instead of father likes to. This causes dif-
ficulty for automated hyphenation systems because
like is a frequent suffix of hyphenated words and
play can function as a noun.

(3) My father like play basketball with me.

In this paper, we propose a classifier-based approach
to automatically detecting missing hyphen errors.
The goal of our system is to detect missing hyphen
errors and provide feedback to language learners.
Therefore, we place more importance on the preci-
sion of the system than recall. We train our model on
features that take the context of a pair of words into
account, as well as other discriminative features. We
present a number of evaluations on both artificially
generated errors and naturally occurring learner er-
rors and show that our classifiers achieve high preci-
sion and reasonable recall.

2 Related Work

The task of detecting missing hyphens is related to
previous work on detecting punctuation errors. One
of the classes of errors in the Helping Our Own
(HOO) 2011 shared task (Dale and Kilgarriff, 2011)
was punctuation. Comma errors are the most fre-
quent kind of punctuation error made by learners. Is-
rael et al. (2012) present a model for detecting these
kinds of errors in learner texts. They train CRF mod-
els on sentences from unedited essays written by
high-level college students and show that they per-
forms well on detecting errors in learner text. As
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far as we are aware, the HOO 2011 system descrip-
tion of Rozovskaya et al. (2011) is the only work to
specifically reference hyphen errors. They use rules
derived from frequencies in the training corpus to
determine whether a hyphen was required between
two words separated by white space.

The task of detecting missing hyphens is related
to the task of inserting punctuation into the output of
unpunctuated text (for example, the output of speech
recognition, automatic generation, machine transla-
tion, etc.). Systems that are built on the output of
speech recognition can obviously take features like
prosody into account. In our case, we are deal-
ing only with written text. Gravano et al. (2009)
present an n-gram-based model for automatically
adding punctuation and capitalization to the output
of an ASR system, without taking any of the speech
signal information into account. They conclude that
more training data, rather than wider n-gram con-
texts leads to a greater improvement in accuracy.

3 Baselines

We implement three baseline systems which we will
later compare to our classification approach. The
first baseline is a naı̈ve heuristic that predicts a miss-
ing hyphen between bigrams that appear hyphenated
in the Collins Dictionary.1 As a somewhat less-
naı̈ve baseline, we implement a heuristic that pre-
dicts a missing hyphen between bigrams that occur
hyphenated more than 1,000 times in Wikipedia. A
third baseline is a heuristic that predicts a missing
hyphen between bigrams where the probability of
the hyphenated form as estimated from Wikipedia
is greater than 0.66, meaning that the hyphenated
bigram is twice as likely as the non-hyphenated bi-
gram. This baseline is similar to the approach taken
by Rozovskaya et al. (2011), except that the proba-
bilities are estimated from a much larger corpus.

4 System Description

Using the features in Table 1, we build a logis-
tic regression model which assigns a probability to
the likelihood of a hyphen occurring between two
words, wi and wi+1. As we are primarily interested
in using this system for giving feedback to language
learners, we require very high precision. Therefore,

1LDC catalog number LDC93T1

Tokens wi−1, wi, wi+1, wi+2

Stems si−1, si, si+1, si+2

Tags ti−1, ti, ti+1, ti+2

Bigrams wi–wi+1, si–si+1, ti–ti+1

Dict Does the hyphenated form appear in
the Collins dictionary?

Prob What is the probability of the word
bigram appearing hyphenated in
Wikipedia?

Distance Distance to following and preced-
ing verb, noun

Verb/Noun Is there a verb/noun preced-
ing/following this bigram

Table 1: Features used in all models. Positive in-
stances are those where there was a hyphen between
wi and wi+1 in the data. Stems are generated using
NLTK’s implementation of the Lancaster Stemmer,
and tags are obtained from the Stanford Parser.

we only predict a missing hyphen error when the
probability of the prediction is >0.99.

We experiment with two different sources of
training data, in addition to their combination. We
first train on well-edited text, using almost 1.8 mil-
lion sentences from the San Jose Mercury News cor-
pus.2 For training, hyphenated words are automati-
cally split (i.e. well-known becomes well known).
The positive examples for the classifier are all bi-
grams where a hyphen was removed. Negative ex-
amples consist of bigrams where there was no hy-
phen in the training data. Since this is over 99% of
the data, we randomly sample 3% of the negative
examples for training. We also restrict the negative
examples to only the most likely contexts, where a
context is defined as a part-of-speech bigram. A list
of possible contexts in which hyphens occur is ex-
tracted from the entire training set. Only contexts
that occur more than 20 times are selected during
training. All contexts are evaluated during testing.
Table 2 lists some of the most frequent contexts with
examples of when they should be hyphenated and
when they should remain unhyphenated.

The second data source for training the model
comes from pairs of revisions from Wikipedia ar-
ticles. Following Cahill et al. (2013), we automati-
cally extract a corpus of error annotations for miss-

2LDC catalog number LDC93T3A.
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Context Hyphenated Unhyphenated
NN NN terrific truck-stop

waitress
a quake insurance
surcharge

CD CD Twenty-two thou-
sand

the 126 million
Americans

JJ NN an early-morning
blaze

an entire practice
session

CD NN a two-year contract about 600 tank cars
NN VBN a court-ordered

program
a letter delivered to-
day

Table 2: Some frequent likely POS contexts for hy-
phenation, with examples from the Brown corpus.

ing hyphens. This is done by extracting the plain
text from every revision to every article and com-
paring adjacent pairs of revisions. For each article,
chains of errors are detected, using the surrounding
text to identify them. When a chain begins and ends
with the same form, it is ignored. Only the first and
last points in an error chain are retained for train-
ing. An example chain is the following: It has been
an ancient {focal point → location → focal point
→ focal-point} of trade and migration., where we
would extract the correction focal point → focal-
point. In total, we extract a corpus of 390,298 sen-
tences containing missing hyphen error annotations.

Finally, we combine both data sources.

5 Evaluating on Artificial Data

Since there are large corpora of well-edited text
readily available, it is easy to evaluate on artifi-
cial data. For testing, we take 24,243 sentences
from the Brown corpus and automatically remove
hyphens from the 2,072 hyphenated words (but not
free-standing dashes). Each system makes a predic-
tion for all bigrams about whether a hyphen should
appear between the pair of words. We measure the
performance of each system in terms of precision, P,
(how many of the missing hyphen errors predicted
by the system were true errors), recall, R, (how many
of the artificially removed hyphens the system de-
tected as errors) and f-score, F, (the harmonic mean
of precision and recall). The results are given in
Table 3, and also include the raw number of true
positives, TP, detected by each system. The results
show that the baseline using Wikipedia probabilities
obtains the highest precision, however with low re-
call. The classifiers trained on newswire text and the

TP P R F
Baseline

Collins dict 397 40.5 19.2 26.0
Wiki Counts-1000 359 39.1 17.3 24.0
Wiki Probs-0.66 811 85.5 39.1 53.7

Classifier
SJM-trained 1097 82.0 52.9 64.3
Wiki-revision-trained 1061 72.8 51.2 60.1
Combined 1106 80.9 53.4 64.3

Table 3: Results of evaluating on the Brown Corpus
with hyphens removed

combined news and Wikipedia revision text achieve
the highest overall f-score. Figure (1a) shows the
Precision Recall curves for the Wikipedia baselines
and the three classifiers. The curves mirror the re-
sults in the table, showing that the classifier trained
on the newswire text, and the classifier trained on the
combined data perform best. The Wikipedia counts
baseline performs worst.

6 Evaluating on Learner Text

We carry out two evaluations of our system on
learner text. We first evaluate on the missing hyphen
errors contained in the CLC-FCE (Yannakoudakis et
al., 2011). This corpus contains 1,244 exam scripts
written by learners of English as part of the Cam-
bridge ESOL First Certificate in English. In total,
there are 173 instances of missing hyphen errors.
The results are given in Table 4, and the precision
recall curves are displayed in Figure (1b).

The results show that the classifiers consistently
achieve high precision on this data set. This is as
expected, given the high threshold set. Looking at
the curves, it seems that a slightly lower threshold in
this case may lead to better results. The curves show
that the combined classifier is performing slightly
better than the other two classifiers. The baselines
are clearly not performing as well on this dataset.

While the overall size of the CLC-FCE data set
is quite large, the low frequency of this kind of er-
ror means that the evaluation was carried out on a
relatively small number of examples. For this rea-
son, the reliability of the results may be called into
question. There is, for instance, a striking difference
between the f-scores for the Collins Dictionary base-
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Figure 1: Precision Recall curves for the Wikipedia baselines and the three classifiers.

TP P R F
Baseline

Collins dict 131 64.5 75.7 69.7
Wiki Counts-1000 141 73.1 81.5 77.0
Wiki Probs-0.66 36 92.3 20.8 34.0

Classifier
SJM-trained 60 84.5 34.7 49.2
Wiki-revision-trained 71 98.6 41.0 58.0
Combined 66 98.5 38.2 55.0

Table 4: Results of evaluating on the CLC-FCE
dataset

line on the Brown corpus (26.0) and on the learner
data (69.7). Inspection of the 131 true positives for
the learner data reveal that 87 of these are cases of a
single type, the word “make-up”, which students of-
ten wrote without a hyphen in response to a prompt
about a fashion and leisure show. Since the hyphen-
ated form was in the Collins Dictionary, the base-
line system was credited with detection of this error.
However, when the 87 occurrences of “make up” are
removed from the data set, the values of precision,
recall and f-score for the Collins Dictionary baseline
fall to 37.9, 51.2, and 42.9, respectively. This points
to a problem for system evaluation that is more gen-
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eral than the low frequency of an error type, such
as missing hyphens. The more general problem is
that of non-independence among errors, which oc-
curs when an individual writer contributes multiple
times to an error count or when a particular prompt
gives rise to many occurrences of the same error, as
in the current case of “make-up”.

Despite the problem of non-independent errors, a
more accurate picture of system performance may
nonetheless emerge with more evidence. Therefore,
we evaluate system precision on a data set of 1,000
student GRE and TOEFL essays written by both na-
tive and nonnative speakers, across a wide range of
proficiency levels and prompts. The essays, drawn
from 295 prompts, ranged in length from 1 to 50
sentences, with an average of 378 words per essay.

We manually inspect a random sample of 100 in-
stances where each system detected a missing hy-
phen. Two native-English speakers judged the cor-
rectness of the predictions using the Chicago Man-
ual of Style as a guide.3 Inter-annotator agreement
on the binary classification task for 600 items was
0.79κ, showing high agreement. The results are
given in Table 5.

Total Judge-1 Judge 2
Predictions Precision Precision

Baseline
Collins dict 416 11 8
Wiki Counts 2185 20 21
Wiki Probs 224 54 52

Classifier
SJM-trained 421 62 69
Wiki-revision 577 43 41
Combined 450 60 62

Table 5: Precision results on 1000 student responses,
estimated by randomly sampling 100 hyphen predic-
tions of each system and manually evaluating them.

The results show that the first two baseline sys-
tems do not perform well on this essay data. This
is mainly because they do not take context into ac-
count. Many of the errors made by these systems in-
volved verb + preposition bigrams, as in Examples
(4) and (5). Restricting the detection by probability
clearly improves precision, but at the cost of recall

3http://www.chicagomanualofstyle.org

(only 224 total instances of missing hyphen errors
detected, the lowest of all 6 systems). In the man-
ual evaluation, the system trained on the SJM corpus
achieves the highest precision, though all precision
figures are lower than the previous evaluations. Ex-
ample (6) is a typical example of the kinds of false
positives made by the classifier models.

(4) If these men were required to step-down after a
limited number of years, the damage would be
contained.

(5) These families may even choose to eat at-home
than outside.

(6) The wellness program will save money in the
long-term.

Future work will explore additional features that
may help improve performance. A more thorough
study will also be carried out to fully understand the
differences in performance of the classifiers across
corpora. Another direction to explore in future work
is the related task of identifying extraneous hyphens
in learner text. These are even less frequent than
missing hyphens (87 annotated cases in the CLC-
FCE corpus), but we believe a similar classification
approach could be successful.

7 Conclusion

In this paper we presented a model for automatically
detecting missing hyphen errors in learner text. We
experimented with two kinds of training data, one
well-edited text, and the other an automatically ex-
tracted corpus of error annotations. When evaluat-
ing on artificially generated errors in otherwise well-
edited text, the classifiers generally performed bet-
ter than the baseline systems. When evaluating on
the small number of missing hyphen errors in the
CLC-FCE corpus, the word-based models did well,
though the classifiers also achieved consistently high
precision. A precision-only evaluation on a sample
of learner essays resulted in overall lower scores, but
the classifier trained on well-edited text performed
best. In general, the classifiers outperform the base-
line, especially in terms of precision, showing that
taking context into account when detecting these
kinds of errors is important.
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Abstract

This paper discusses preliminary work investi-
gating the application of Machine Translation
(MT) metrics toward the evaluation of transla-
tions written by human novice (student) trans-
lators. We describe a study in which we ap-
ply the metric TERp (Translation Edit Rate
Plus) to a corpus of student-written transla-
tions from Spanish to English and compare the
judgments of TERp against assessments pro-
vided by a translation instructor.

1 Introduction

Extensive work in the field of Computational Lin-
guistics has focused on the development of gold-
standard metrics to automatically judge the accuracy
of machine-generated translations. We are exploring
whether these metrics, or a modified version thereof,
may be applied to the translations generated by hu-
man novices.

While Machine Translation (MT) metrics have
been shown to perform poorly when evaluating
human-written translations due to their lack of toler-
ance for the high level of variation in human-written
work, it is our belief that novice student translators
keep much closer to the source text, and therefore
will be easier to assess using automatic metrics.

Initial motivation for this work comes from de-
veloping the King Alfred translation environment
(Michaud, 2008) supporting students of Anglo-
Saxon English translating sentences into Modern
English. Criticisms of the application of compu-
tational tools toward language learning have often
highlighted the reality that the mainstays of modern

language teaching—dialogue and a focus on com-
municative goals over syntactic perfectionism—
parallel the shortcomings of a computational envi-
ronment. While efforts continue to extend the state
of the art toward making the computer a conver-
sational partner, they nevertheless often fall short
of providing the language learner with learning as-
sistance in the task of communicative competence
that can make a real difference within or without
the classroom. The modern learner of ancient or
“dead” languages, however, has fundamentally dif-
ferent needs; the focus is on translation from source
texts into the learner’s L1. An initial goal, therefore,
was to provide the King Alfred system with ability
to automatically judge and respond to student trans-
lations given a single instructor-provided reference.

The potential applications of this work extend be-
yond the learning of dead languages, however; trans-
lation skills in modern languages (until the field of
MT reaches its full potential) are still needed for pro-
viding readers with access to cross-lingual informa-
tion. The ability to assist translation instruction via a
tutoring system outside of the classroom, or to assess
translator skill automatically, is therefore greatly de-
sirable.

The study described in this paper therefore fo-
cuses on a corpus of learner-written translations
from a Spanish-English translation course; in Sec-
tion 6 we discuss how these results may compare
to those using a corpus of translations from Anglo-
Saxon, which is one of our future tasks.
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Figure 1: Output from the TERp system.

2 Evaluating Student-Written
Translations Using TERp

A primary challenge facing the assessment of trans-
lation fitness is the abstract nature of the definition
of fitness with respect to the translating task. Most
people approach this definition with two major foci:
fluency (is it well-formed?) and fidelity (does it con-
vey original meaning?) (Hovy et al., 2002). There
are also stylistic concerns; translation can be defined
as “rendering the meaning of a text into another lan-
guage in the way the author intended the text” (New-
mark, 1988)—and intention is difficult to precisely
define. None of these viewpoints dictates that there
exists only one way to write a translation.

We were drawn to the TERp (Translation Edit
Rate Plus) translation metric (Snover et al., 2009)
for our initial study because of its particular ap-
proach toward capturing this multiplicity of correct
translations. Other metrics have addressed this is-
sue; BLEU (Papineni et al., 2002), for example, uses
multiple reference translations, in the hopes of cap-
turing diversity through using diverse sources. The
creators of TERp, however, create an alignment be-
tween reference and hypothesis strings in which di-
rect matches are not required; they acknowledge
synonymy by leveraging WordNet synsets (Fell-
baum, 1998; Princeton University, 2010), in addi-
tion to using a stemmer, and a phrase table to handle
probabilistic phrasal substitution. TERp also allows
for words or phrases to be shifted into a different po-
sition, which nicely accounts for flexibility in terms
of prepositional phrase or adverb placement or to
handle modifiers that can take multiple forms.

There has been some dismissal of the appropri-
ateness of MT metrics for Computer-Aided Lan-
guage Learning (CALL) applications (cf. (Mc-
Carthy, 2006)) due to the fact that they often provide
a holistic score comparing the hypothesis translation
to one or more reference translations without identi-
fying the source and nature of the differences. How-
ever, the output of TERp also includes more than a

holistic score; there is complete documentation of
the alignments, with tags identifying the “edits” re-
quired to line up the hypothesis with the reference,
as seen in Figure 1. This is an excellent resource
from the perspective of translation pedagogy. While
the METEOR system (Agarwal and Lavie, 2008)
also uses WordNet synonymy and a stemmer to sim-
ilar purpose, we believe that TERp comes the clos-
est to embracing the multiplicity of translation paths
while at the same time flagging issues of fundamen-
tal concern in a pedagogical application of MT met-
rics.

3 Related Work

Other environments seeking to support student
translations have addressed the issue of auto-
matically determining translation accuracy. A
English-Chinese translation environment described
by (Wang and Seneff, 2007; Xu and Seneff, 2008)
presents students with L1 sentences to translate into
L2 speech. Because many of its L1 sentences are
automatically generated, there is no possibility of
prestored reference translations, so the system uses
speech recognition to obtain the L2 sentence, and
then parses both the English and Chinese sentences
into a common interlingual representation in order
to compare for accuracy. The authors report a high
level of agreement between the system’s judgments
on translation acceptability compared to that of a
human expert, but unfortunately, the system can-
not give a finer-grained judgment on student perfor-
mance than accept or reject.

Another English-Chinese system is described by
(Shei and Pain, 2002), creators of TMT, the Trans-
lation Method Tutor. In this case, students are trans-
lating from their L2 (English) into their L1 (Chi-
nese) using source sentences from Jane Austen’s
Pride and Prejudice, each selected to practice a par-
ticular linguistic structure. Students’ translations
are matched against four possible reference trans-
lations: word-to-word (MT generated), literal (MT-
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generated and then post-processed to obey word or-
der rules), semantic (professional translations), and
communicative (done by the authors), and the feed-
back provided to the student includes which trans-
lation she matched most closely and a lesson on
how to deal with the structure at hand. Comparisons
between the student translation and the references
look at strict similarity and are heavily influenced
by word selection rather than structure.

The Translator Choice Program (McCarthy, 2006)
focuses on French-English translation for native En-
glish speakers. It presents passages in the L2
(French) and asks students to look at five candidate
English translations written by students in previous
years. Students either pick the best translation or
rank them, and are scored in how similar their judg-
ment is to that of their instructor. This system does
not attempt, therefore, to handle novel translations
performed by the student.

4 A Corpus of Student-Written
Translations

In Spring 2012, we solicited participation from stu-
dents of a Spanish-English translation course. In this
course, students are asked to translate a sequence
of articles in both Spanish and English, typically
alternating the source language. The articles ad-
dress varied topics from financial advice to current
news. Thirteen students (both native English speak-
ers and native Spanish speakers) opted to have their
semester’s work collected as part of our study. Ref-
erence translations were provided for the entire cor-
pus by the instructor of the course.

For our initial study, we have focused on only
the Spanish-to-English translations, as many aspects
of the metric we used focus on comparing an En-
glish hypothesis sentence against an English refer-
ence sentence. This yielded a total of 2,982 sen-
tences. They are described in Table 1.

Table 1: Our Student-Written Translation Corpus.
Number of Subjects 13
Native English Speakers 3
Native Spanish Speakers 10
Number of Articles Translated 11
Average Number of Sentences per Article 28
Total Translated Sentences 2982

5 Comparing Human Judgments to TERp

Before analyzing the translations with the MT met-
ric, we post-processed the corpus to create an align-
ment between student translations, source sentences,
and the instructor reference. One of the challenges
we faced in this step is that these students, unlike
an MT system, are actively encouraged to recog-
nize the stylistic differences between English and
Spanish native writing in terms of sentence brevity.
The students therefore sometimes create translations
that do not always perfectly match sentence bound-
aries of the source text; in some cases a single
Spanish sentence has been split into multiple En-
glish sentences (following a general principle that
English native speakers typically use more concise
utterances), but sometimes also the opposite occurs,
where two source sentences are combined into one
translated sentence. While most translations (more
than 99%) did obey source sentence boundaries, for
alignment purposes whenever a sentence was split
both target sentences were concatenated into a single
string (including the end-of-sentence punctuation,
which is ignored by TERp)1 for comparison against
the reference. Where the student had merged two
sentences, the clauses were separated at an appro-
priate boundary and treated as separate utterances.
The instructor-provided references obeyed a 1:1 cor-
respondence between source and target sentences.

Our entire corpus has been graded using the
TERp-A variant, with unchanged parameters2. The
TERp system scores sentences on an interval of
[0,100], where a lower score indicates closer agree-
ment to the reference translation, and 100 indicates
no agreement; for the ease of our human grader, we
normalized the TERp scores to invert the scale and
better match a human-intuitive scale of 100 for ex-
cellence and 0 for no agreement.

Figure 2 illustrates for those subjects submitting
more than three assignments to the study the longitu-
dinal progress of the average TERp score (inverted)
across the sentences in each assignment given over

1The insertion of a connector, such as ’and,’ to form a uni-
fied sentence could be penalized by TERp, so it was avoided;
the alternative to avoid penalty would be to include whatever
connector the original author used, but this would not be avail-
able during automated analysis later.

2As will be discussed in Section 6, a future goal is to tune
the parameters for performance on this data.

308



Figure 2: TERp scores across development.

the term. Although there were clearly a couple
of assignments that were very challenging to all of
the students, the trend line shown indicates that the
scores were rising over the course of the semester.

We have also collected instructor-assigned scores
on a portion of our corpus in order to compare them
against these TERp scores. An example of the rubric
used by the instructor as part of her regular grading
practices in the course is shown in Table 2. Each
of these categories receive a score from 0-10 with
10 being excellent, 9 good, 8 satisfactory, and 0-7
deficient.

Table 2: Instructor rubric for assigning sentence grades.
Conveys original meaning 55%
Written in natural language 20%
Uses appropriate vocabulary 10%
Written in accurate language 15%

Our preliminary study has yielded some interest-
ing results. The Pearson correlation between the
two sets of scores is r=0.232236, which on a [-1,1]
interval indicates weak positive correlation. But if
TERp does not have significant agreement with the
students’ instructor, what is the source of the dis-
agreement? One illustration of this disagreement is
the distribution of the grades; Figure 3 shows that
the instructor’s grades are heavily slanted toward the
high end of the scale, with 42% of the sentences

scored receiving a grade of 90 or higher; TERp,
by contrast, gave very few sentences higher normal-
ized accuracy scores. This is most likely due to the
instructor’s heavy emphasis placed on communica-
tive rather than syntactic accuracy, as shown in the
rubric. We are in the process of rescoring the corpus
with a revised rubric that places stronger emphasis
on syntactic accuracy.

Figure 3: TERp score distribution compared against the
human expert.

While TERp has already been evaluated in terms
of its correlation to human judgment, this has not
been done before with learner-written sentences3.
We also performed an analysis of a randomized sam-
ple of individual sentences with a particular focus
on the four edits designed to accommodate diver-
gence but equivalence (or near equivalence): phrase
equivalency, stemming, synonymy, and shifts. Our
pilot study results indicate that TERp’s identified ed-
its have very high precision: 100% for the stemmer,
which is to be expected, but also 92% for appropri-
ate shifts, 89% for synonymy, and 83% for phrase
equivalency. In recall, the edits performed less well;
for example, synonymy achieved a recall of only
65%. This is possibly a limitation of the synset re-
source.

6 Conclusion and Future Work

We have seen that TERp’s identification of the
source and nature of divergences between a student

3The word learner here refers to the fact that the writer is a
student of translation, not to whether he or she is writing in an
L2.
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translation and a teacher’s reference translation is
reliable; it correctly identifies the nature of the di-
vergence from the reference in a high percentage
of cases. This can provide a tutoring environment
with sufficient information to address the transla-
tion’s problems in feedback to the student, and in-
dicates that holistic scores will be much more corre-
lated with human scores that place equal emphasis
on syntactic quality. A future version of the King
Alfred system will use these error identifications to
drive its feedback.

Once the rescoring of the corpus with an empha-
sis on syntactic accuracy is complete, further work
will include tuning the TERp parameters for higher
performance on the student corpus, with the aim of
greatly improving the correlation of the scores.

We are also looking at post-processing TERp’s
scores so that certain divergences are not penalized.
There is a cost associated with the edits that repre-
sent mismatches between the reference and hypoth-
esis texts. While the idea of flexible phrase order,
and the equality of synonym choice or phrase choice
is captured by the metric, the application of such
edits worsens the grade of the translation. We be-
lieve that stemming and substitution, deletion, or
insertion should be penalized, but that synonymy,
phrase matches, and shifts should be free of charge;
those costs will therefore be added back into the fi-
nal score.

As part of our larger investigation, we will con-
tinue to evaluate the applicability of machine trans-
lation metrics in general to the learner translation
problem. The Mult-Eval suite of metrics (Clark et
al., 2011) is a short term target, and iBLEU (Mad-
nani, 2011) may provide useful data for a pedagogi-
cal context.

With a recent addition of 14 more subjects, we
would also like to do an investigation of whether
the performance of an MT metric is affected by
whether the novice translator is translating L1→L2,
or L2→L1. English native speakers are a minority
in our subject pool, but with doubling the size of our
corpus, we may be able to explore this more reliably.

One of our other interests going forward is to ac-
commodate the distinct errors made by a very novice
human translator. One such error is a tendency
to fall prey to false cognates or faux amis–false
friends, words that look similar (like Spanish em-

barazada and English embarrassed) that have sig-
nificantly different meanings (embarazada, for ex-
ample, meaning “pregnant”). We have a working
hypothesis that student translators are often misled
by these similar-looking words. We are currently
working to automatically extract potential faux amis
from parallel Spanish/English dictionaries with the
hope of augmenting TERp’s ability to align parallel
elements between the student and reference trans-
lation. We are leveraging the spellcheck algorithm
Hunspell to identify the similarly-spelled words.

Finally, it is our intention to do a comparative
study between evaluating learner translations from
modern languages and learner translations from an-
cient languages such as Anglo-Saxon. One chal-
lenge that may arise is that many ancient languages
such as Anglo-Saxon are morphologically rich and
therefore not strict word order languages; the source
text will be fluid with its own order and this may
introduce more diversity than in a modern language
translation even among novice translators.
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