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ABSTRACT 

This paper presents an iterative approach to extracting Chinese terms. Unlike the traditional 

approach to extracting Chinese terms, which requires the assistance of a dictionary, the proposed 

approach exploits the Support Vector Machine classifier which learns the extraction rules from 

the occurrences of a single popular term in the corpus. Additionally, we have designed a very 

effective feature set and a systematic approach for selecting the positive and negative samples as 

the source of training. An ancient Chinese corpus, Chinese Buddhist Texts, was taken as the 

experiment corpus. According to our experiment results, the proposed approach can achieve a 

very competitive result in comparison with the Chinese Knowledge and Information Processing 

(CKIP) system from Academia Sinica. 

  

KEYWORDS : Chinese Term Extraction, Iterative Term Extraction, Support Vector Machine 

(SVM), Contextual Information, Single String Term Extraction. 
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1 Introduction 

Chinese Term Extraction (CTE) is a fundamental issue in Chinese natural language processing 

studies. Existing research on term extraction evolved from two different types of corpora: pure-

text corpora and labeled corpora (L.-F. Chien, 1997). In addition to the pure text, the labeled 

corpora contain an abundance of known information, such as terms, parts of speech, or even the 

syntactic tree structure. Grammar-based term extraction approaches are conventionally used with 

a labeled corpus (L.-F. Chien, 1997), and character-statistics-based term extraction approaches 

are usually used with pure-text corpora. However, both existing term extraction approaches need 

additional known information, prepared as supplements, which are independent from the corpus 

itself, and on principle, the more known information is prepared, the better the quality of the 

extracted terms. For instance, terms and part-of-speech labels within labeled corpora and 

dictionaries for verifying candidate terms found during the process of extracting terms from a 

pure-text corpus are usually additional prepared information. 

Because all existing studies require more known information, this paper proposes the design of a 

process that extracts terms from a pure-text corpus without any additional information, especially 

known terms. In order to extract terms without a dictionary or other supplemental information, 

we introduce an iterative machine-learning term-extraction process. In this process, a Support 

Vector Machine (SVM) is exploited as the core of our learning mechanism. In order to extract 

terms starting from one specified term, the first step of our proposed approach is to generate the 

positive and negative examples with the one specified term and train an optimized SVM 

classification model with the proposed “term features” from an experimental corpus. Then, we 

can use the model to extract terms from the same corpus. In the iterative process, the previous 

results of the SVM term extraction are prepared as the training samples for the next SVM term 

extraction iteration. In our experiment, we specified one popular term as the initial learning 

sample and revealed the increasing rate of extracted terms of each iteration. The performance 

evaluation of the proposed approach was achieved by comparing the terms extracted using the 

iterative process with the terms verified by experts in chosen paragraphs from the experimental 

corpus. 

In previous works, machine-learning algorithms have been used in many term-extraction studies. 

However, they have all extracted from labeled corpora with abundant known information (details 

are in the “Related Works” section). On the other hand, the concept of using an iterative process 

also has been proposed in other term-extraction research. For instance, the iterative model has 

been adopted by researchers studying the Sinica Corpus(Institute of Information Science and 

CKIP group in Academia Sinica, Since 1990). They used a segmentation tool to increase the term 

database, and then they further enhanced the segmentation tool with a larger term database. In 

our iterative approach, we have addressed a very extreme situation: starting from a single 

specified term. 

In order to focus on the proposed idea of generating a learning sample, adding a contextual 

information extension, and developing an iterative extraction process, we executed the bi-gram 

CTE on a Middle Ages Chinese corpus, because bi-gram terms are the major part of Chinese 

texts (A. Chen, He, Xu, Gey, & Meggs, 1997) and also of the corpus used in our experiment
1
. 

                                                           
1 The book index of the corpus we used for our experiment  [15] listed 404 uni-gram terms, 2678 bi-gram terms,  
2227 tri-gram terms, 2404 quadri-gram terms, and 3334 other terms.  
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From the perspective of the machine-learning approach, terms with different lengths in a CTE 

might have some unique features that provide better classification results, and we leave studying 

these to our future work. 

2 Related Works 

Existing CTE research developed from studies using two types of corpora: labeled corpora and 

pure-text corpora. Labeled corpora are word-segmented corpora and usually contain abundant 

grammar information, such as parts of speech and even syntactic structures. The major purpose of 

a labeled-corpus CTE is to identify unknown words, also called out-of-vocabulary (OOV) terms, 

and to solve word-segmentation mistakes caused by natural language ambiguity problems in a 

corpus. Because labeled corpora contain grammar information, labeled-corpus CTE studies 

usually applied the grammar-based approaches. Other studies conducted serial unknown word 

identification on the Sinica Corpus (Sinica, Since 1990) using morphology rules (K.-J. Chen & 

Bai, 1998; K.-J. Chen & Ma, 2002; Ma & Chen, 2003). 

The other type of corpora is pure-text corpora, which are growing with increased usage of text 

digitization and the World-Wide Web. The purpose of conducting a CTE on pure-text corpora is 

to recognize keywords, key phrases (L.-F. Chien, 1997; L. Chien, 1999), or domain-specific 

terms in a specific corpus. Because pure-text corpora are not accompanied by additional known 

information, character statistic-based approaches were usually used for CTEs of pure-text corpora. 

Therefore, many statistical patterns of Chinese terms have been proposed. For example, Chien’s 

“Completed Lexicon Pattern” (L.-F. Chien, 1997) is a simple and effective design of Chinese 

terms in context, in which association and left and right context dependency were included. 

2.1 Existing Machine-Learning Algorithms Used for Term Extraction 

Many machine-learning algorithms are used in the study of CTE. The Hidden Markov Model 

(HMM) was used widely, because it is effective for modeling natural languages. Yu et al. (Yu, 

Zhang, Liu, Lv, & Shi, 2006) used different layers of HMMs to identify names of people, 

locations, and organizations in the ICTCLAS (Institute of Computing Technology Chinese 

Academy of Sciences, Since 2002) corpus. Cen et al. trained dual HMMs—a POS labeling model 

and a term boundary labeling model—to extract domain-specific terms (Cen, Han, & Ji, 2008). 

Xie et al. used a lexical chain of semantic relationships to extract key phrases from news-oriented 

Web pages (Xie, Wu, Hu, & Wang, 2008). However, all of the existing CTE research applied 

HMMs on labeled corpora, because labeled corpora have additional information, such as parts of 

speech or semantic relationships, which correspond to node-state patterns in the HMM. 

Another popular machine learning algorithm used for CTE is the Support Vector Machine (SVM). 

Different from an HMM, the SVM is a multi-vector classification algorithm (Boser, Guyon, & 

Vapnik, 1992), and it is also a 2-phrase algorithm that employs a model-training phrase and a 

model-using (predicting) phrase. The major task of using the SVM is selecting a learning sample 

and a sample feature. Several researchers have used the SVM for CTE with the CoNLL-2000 

Chunking Corpus (Sang & Buchholz, 2000): Goh used the SVM for recognizing person’s names 

(Ling, Asahara, & Matsumoto, 2003). It used family names, contextual chunked marks and parts 

of speech as sample features. Li et al. extracted bi-gram and tri-gram terms using the SVM (Li, 

Huang, Gao, & Fan, 2005). The sample features they used were in-word probability of a 

character (IWP), analogy to new words, anti-word list, and frequency. The previously mentioned 
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CTE research studies still conducted extraction with a labeled corpus. However, this paper 

proposes a process to extract terms in a pure-text corpus using the SVM, and it also proposes a 

method of selecting a learning sample and a feature without additional known information. 

3 Iterative Machine-Learning Term Extraction 

Under the precondition of performing extraction without known information other than texts, the 

first problem in this machine-learning extraction process is how to generate sufficient number of 

good representational learning samples and sample features from a closed corpus. This section 

introduces a “negative sample selection” process, which fulfills the need to have a high capacity 

of differentiation in the known information. Also, a sufficient number of contextual lexicon 

parameters were added into the sample features in order to heighten the differentiation ability of 

the known information.  

When considering the iterative process, we designed the process to increase the number of 

learning samples by filtering the extraction results during each iteration of the process. Therefore, 

this section will discuss three iterative issues: initial learning sample selection, iterative learning 

sample filtering, and the last convergence conditions of the entire iterative process.  

3.1 Structure of the Iterative Machine-Learning Term-Extraction Process 

There are six steps within the three phases of the iterative machine-learning term extraction 

process (see numbers 1 through 6 in the chart below). The first phase, also Step 1, is the initial 

selection of known information, the one known term. The second phase, the SVM machine-

learning term extraction, includes Steps 2, 3, and 4. In Step 2, the SVM input dataset, in which 

data is in the form of positive/negative sample-features, is transformed and generated from the 

known information. The output of Step 3, SVM model training, is a sample classification model, 

which is used in step 4, SVM predicting, to extract terms from unknown strings in the corpus. 

Unknown strings, in the bi-gram extraction process, are all bi-gram strings in the corpus, and all 

unknown strings also need to be translated into a sample-features dataset for SVM predicting. 

The iterative process stops when the increase of the term sizes between two subsequent SVM 

outputs is less than 2%, and it is checked in Step 5. For the next round of the iterative extraction 

process, Step 6 filters out initial known terms from the SVM output terms. The third phrase, 

evaluation, starts when the iterative process stops. The evaluation method compares the extracted 

terms from the iterative process with verified terms by experts and judges their precision, recall 

rate, and f-measure. The iterative processing chart is depicted in Figure 1. 

3.2 Initial Known Information Selection 

In Step 1, initial selection, the most frequent term in the corpus used in the experiment was 

selected as the initial known term. Although there was only one initial term, the available number 

of actual learning samples is the same as the word frequency of the initial term, because learning 

samples are contextually dependent. In this way, we were able to ensure the appropriate size of 

the initial learning samples. 
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FIGURE 1 – The iterative machine-learning term-extraction process 

3.3 Sample-feature Generation 

Sample-feature Generation, step 2, generates learning samples from the initial known term(s) and 

feature parameters from each learning sample. There are three main components of sample-

feature generation: (1) positive and negative learning sample generation, (2) lexicon features 

selection, and (3) contextual information extension. 

3.3.1 Positive and Negative Sample Selection. 

In this term extraction process, learning samples include positive samples and negative samples. 

Positive samples are the strings in which selected initial term(s) are located in a corpus. Negative 

samples are the new strings produced from shifting one character to the right or to the left in the 

context of the positive samples. In this way, every positive sample typically comes with two 

negative samples, and this can increase the number of learning samples, which is beneficial for 

the processing of the SVM classification algorithm. More importantly, shifting one character in 

context can break the lexicon pattern of the original sample, and this fulfills the need to have a 

high capacity of differentiation within the learning samples. Figure 2 shows a positive sample 

and its two negative sample selections. 

A B R1 R2L1L2

A BA bi-gram term ->

Two Negative Samples ->

The context of a match ->

One Positive Sample -> A B R1 R2L1L2

A B R1L1L2

A B R1 R2L1

L3

R3

 

FIGURE 2 – Positive and negative sample selection 
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3.3.2 Features Selection  

There are 10 types of features chosen for a learning sample in this extraction process, including 

frequency, the number of distinct characters to the left and right of the learning sample, the 

number of breaking symbols (non-Chinese characters and paragraph marks) to the left and right 

of the learning sample, association, and the usage of freedom to the left and right of the learning 

sample. Among these features, association and the usage of freedom (also called left and right 

context dependency) refer to the “estimation of complete lexical patterns” proposed by Chien (L.-

F. Chien, 1997), as shown in Figure 3.  

 

FIGURE 3 – The estimation of complete lexical patterns (L.-F. Chien, 1997) 

Each of the lexical patterns is estimated using Equations 1, 2, and 3, as described below: 

 Association (AEc) = f(x) / ( f(y) + f(z) – f(x) )     (1) 

Where x is the lexical pattern to be estimated; x = x1, x2, …, xn, y and z are the two longest 

composed substrings of x with length n–1; y = x1, …, xn–1, z = x2, …, xn. Then, f(x) is the 

frequency of x, f(y) is the frequency of y and f(z) is the frequecny of z. 

 Left Context Dependency (LCD) = f(max_xL) / f(x)       (2)  

f(max_xL) is the maximum frequency  of the occurrence of distinct characters to the left of the 

lexical pattern x.  

 Right Context Dependency (RCD) = f(max_xR) / f(x)    (3)  

f(max_xR) is the maximum frequency of the occurrence of distinct characters to the right of the 

lexical pattern x.  

The list of the 10 types of features are shown in Table 1. 

1. Frequency 

2. The number of distinct character to the left 

3. The maximum occurrence frequency of distinct character to the left 

4. The number of breaking symbols to the left 

5. The number of distinct character to the right 

6. The maximum occurrence frequency of distinct character to the right 

7. The number of breaking symbols to the right 

8. Association: AEc 

9. Left-context dependency (LCD) 

10. Right-context dependency (RCD) 

TABLE 1 – Feature list 
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3.3.3 Contextual Feature Extension  

The concept of contextual information has often been used in information extraction research as 

well as in existing CTE research for entity identification (Ji, Sum, Lu, Li, & Chen, 2007; Ling et 

al., 2003). In order to enhance the effect of contextual information on the classification results, in 

our study, the initial learning samples (also called original samples) were designed to extend into 

longer learning samples. Then, the features of every bi-gram within the new samples, as shown in 

Table 1, are collected as the contextual information of the original samples. According to the 

result of the experiments, not included in this paper, the best length of the longer learning 

samples was two characters on both the left and right sides. For instance, an original bi-gram 

learning sample will extend to become a 6-gram learning sample, and the feature parameter will 

become five times larger than before, because there will be 5 bi-grams within the new sample. 

Table 2 shows the differences of sample lengths and feature parameters before and after the 

contextual extension. 

Before After 

Original n-gram learning sample: 

 

Extended learning sample: 

 

Contextual bi-gram set: 0 Contextual bi-gram set: 4 

 

Number of original features: 10 

10 features (see Table 1) for . 

Number of original features: 10 

10 features (see Table 1) for . 

 

extend 

 

Number of contextual info. features: 40 

10 features (see Table 1) for each extended bi-gram, 

 

TABLE 2 – Contextual feature extension 

In addition to the features in Table 2, to increase the number of features of the contextual 

information, we also added into the feature set all uni-gram frequencies within an extended 

learning sample. Therefore, an extended bi-gram learning sample, a 6-gram string, will actually 

have a total of 56 features, including six uni-gram frequencies and 50 features coming from five 

bi-gram feature sets. 

3.4 SVM Machine-Learning Term Extraction 

The Support Vector Machine (SVM) algorithm constructs a hyper-plane in a high-dimensional 

space for classification or other tasks. A good separation is achieved by the hyper-plane farthest 

from the nearest training data point of any class. 
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FIGURE 4 – Support Vector Machine (SVM) 

In Figure 4, W is the good separation (the classification hyper-plane) of the two classes—white 

spots and black spots—and H1 and H2 are support hyper-planes. 
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In our study, libsvm tools (Chang & Lin, 2011) were used to execute the SVM algorithm during 

the term-extraction process. The SVM algorithm includes two phases: model training and 

unknown-term predicting. In the model-training phase, the input data is the sample-feature 

dataset of learning samples generated from the sample feature generation step, and the output 

data is a classification model file. Meanwhile, all strings (not distinct) with the same length as the 

learning samples in the corpus are considered unknown samples. Unknown samples will convert 

to the sample-feature dataset in the exactly same way learning samples generation converts to its 

dataset. In the unknown-term-predicting phase, the input data is the sample-feature dataset of 

unknown samples and the classification model file output from the earlier phase, and the output 

data are unknown strings that are predicted as terms. The predicted output data are the term 

extraction results. 

3.5 Iterative Convergence Condition 

The stop condition of the iterative extraction process occurs when the increase between the term 

sizes from two subsequent extraction results is less than 2%.  

3.6 Iterative Learning Sample Selection 

Step 6, filtering, in Figure 1, filters the extracted terms, which will become learning samples for 

the next extraction round. The libsvm tools provide the function of probability estimation, 

predicting the probability of each unknown sample being classified into a certain category. In this 

step, the rate of probability is then adjusted to filter out the learning samples for the next round. 

According to the default setting in libsvm, an unknown sample is considered a term when its 

predicted probability rate is greater than or equal to 50%. Also, in this iterative extraction process, 

the learning samples for the next round are chosen when the predicted probability rate is greater 

than or equal to 90%. 
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3.7 Evaluation of the Term Extraction Results 

In this paper, precision, recall, and f-measure were used to evaluate the effectiveness of the term 

extraction results. The correct answers were pre-decided by experts for a chosen paragraph in the 

corpus and then compared with the extraction results. The experts did not examine the extracted 

results directly. The evaluation results are shown in the next section. 

4 The Experiment 

As part of a Chinese text archive from the Middle Ages provided by the Chinese Buddhist 

Electronic Text Association (CBETA), the collection of Saddharma Puṇḍarīka (Lotus of the true 

Dharma) was used as the experimental corpus, which consists of 16 sutras labeled from T0262 to 

T0277 in the Taisho Revised Tripitaka. This corpus contains 514,722 Chinese characters, among 

which are 3,041 distinct uni-grams, 82,688 distinct bi-grams, and 202,187 distinct tri-grams. 

Generally, ancient Chinese corpora are rarely used in term extraction research due to the 

difficulty of collecting known information. However, for our study, the design of the initial 

known information selection and the contextual sample-features generation in the iterative 

learning process produced good extraction results regarding the ancient Chinese corpus. 

Another reason for using Buddhist texts is that the Middle Age Chinese literature, of which the 

Buddhist canon is representative, is mainly composed by bi-gram terms, the same as is current 

Chinese literature (梁曉虹, 2005). So, theoretically this iterative term extraction process can be 

directly applied to other forms of current Chinese texts as well. The experiment in this section 

focuses on bi-gram term extraction from the collection of Saddharma Puṇḍarīka (CBETA) to list 

the iterative experiment results and further compares them with the results of other term 

extraction algorithms. 

In the corpus, Sàtánfēntuólìjīng, a sutra (T0265) from the collection of Saddharma Puṇḍarīka, 

was chosen to be the evaluation text. In Sàtánfēntuólìjīng, there are 1,430 non-distinct bi-grams 

which have been prepared with experts’ judgments of true bi-gram terms. The ratio size of the 

evaluation text is 0.32% of the entire corpus, which consists of 442,513 non-distinct bi-grams.  

4.1 Iterative Term Extraction 

This section shows the experimental results of the iterative extraction process. The size of the 

experimental corpus is 2,058,888 bytes. There are a total of 514722 symbols encoded by UTF-32, 

and 442513 non-distinct Chinese bi-grams in the corpus. The initial selected bi-gram term is 一
切 and the number of initial learning samples are 2387, with the term frequency of 一切 in the 

corpus. 

Table 3 shows the results of numbers of initial learning samples and SVM extraction terms, and 

increasing ratios of total and unique extraction terms in 8 rounds. 

In Table 3, values in the “Extraction ratio” row are determined by the following equation:  

 
 experimentour for  used corpus in the grams-bi  totalofnumber  the 442513

 terms"extraction SVM" ofnumber  
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Iterative Rounds 1 2 3 4 5 6 7 8 

Initial learning samples 2387 18259 55360 120826 148781 160849 166583 169777 

SVM extraction terms 18259 55360 120826 148781 160849 166583 169777 171570 

Extraction ratio 4.126% 12.51% 27.30% 33.62% 36.34% 37.64% 38.36% 38.77% 

Subsequent increasing ratio  +8.39% +14.79% +6.32% +2.72% +1.30% 

(<2.00%) 

+0.72% 

(<2.00%) 

+0.41% 

(<2.00%) 

Unique extraction terms 15 1044 8148 12287 14679 16422 17520 18174 

Unique terms  increasing times  *69.60 *7.80 *1.50 *1.19 *1.12 *1.06 *1.04 

TABLE 3 – The extraction convergence table 

The “Subsequent increasing ratio” row shows increasing ratios of the “Extraction ratio” row. The 

“Unique extraction terms” row indicates the distinct number of “SVM extraction terms,” and the 

“Unique terms increasing times” row shows the number of times the number of extracted distinct 

terms increased when compared to the previous round. 

Based on the iterative experiment results, the sixth round should be the final extraction result in 

this experiment, because the saturation condition is set when the increase in the number of terms 

from one SVM to the next is less than 2%. Meanwhile, the states of the increase in number of the 

SVM extraction terms, the total bi-gram terms, and the Unique extraction terms are different. The 

increase of unique terms is about to saturate in the third round, which is two or three rounds 

before the saturation of the increase of total extraction terms. 

4.2 Evaluation 

In the corpus, Sàtánfēntuólìjīng (Tripitaka sutra number T0265) was chosen to be the texting data. 

There are 1,430 non-distinct Chinese bi-grams in Sàtánfēntuólìjīng, and the ratio size of the 

texting data is 0.32% of the entire corpus. In the testing data, the number of positive samples 

(expert verified bi-gram terms) is 332, and the number of negative samples (expert verified non-

bi-gram terms) is 1098. The evaluation indices are listed below. 

RecallPrecision

RecallPrecision2
F-measure

ative False Negtive  True Posi

iveTrue Posit
Recall

itive False Postive  True Posi

iveTrue Posit
Precision












 

Iterative Rounds True Positive False Positive False Negative True Negative 

1 26 3 306 1095 

2 85 24 247 1074 

3 201 128 131 970 

4 235 188 97 910 

5 251 219 81 879 

6 255 228 77 870 

7 256 234 76 864 

8 257 238 75 860 

TABLE 4 – Table of the classifier prediction compared to the experts’ judgments 
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Iterative Rounds Accuracy Precision Recall F-measure 

1 78.4% 89.7% 7.8% 14.35% 

2 81.0% 78.0% 25.6% 38.54% 

3 81.9% 61.1% 60.5% 60.79% 

4 80.1% 55.6% 70.8% 62.28% 

5 79.0% 53.4% 75.6% 62.58% 

6 78.7% 52.8% 76.8% 62.57% 

7 78.3% 52.2% 77.1% 62.25% 

8 78.1% 51.9% 77.4% 62.13% 

TABLE 5 – The evaluation calculation 

Extended learning sample:    

One initial / original bi-gram:    

Four contextual bi-gram units:   

FIGURE 5 – The contextual bi-gram set 

No. Feature Explanation F-source 

1 RCD of   0.4420 

2 LCD of   0.3304 

3 LCD of   0.3281 

4 RCD of   0.3144 

5 The number of distinct character to the left of   0.2284 

6 The number of distinct character to the right of   0.2199 

7 AEc of   0.2108 

8 The number of distinct character to the left of   0.1598 

9 RCD of   0.1513 

10 The number of breaking symbols to the left of   0.1480 

11 LCD of   0.1390 

12 The number of distinct character to the right of   0.1338 

13 The number of distinct character to the right of   0.1295 

14 Frequency of   0.1256 

15 The number of distinct character to the left of   0.1123 

TABLE 6 – Top 15 features sorted by f-score 

105



4.3 Features Selection Analysis 

This section analyzes the importance of features used in the SVM extraction process. A total of 

56 features were calculated and sorted by the f-score algorithm proposed by Chen and Lin’s 

SVM feature-selected research (Y.-W. Chen & Lin, 2006).  

Figure 5 shows that one extended learning sample is represented by 5 bi-grams, including one 

original bi-gram and 4 contextual bi-grams. And Table 6, the top 15 features of training dataset, 

shows that the learning sample and contextual features extension has a great influence on the 

SVM classification extraction. 

5 Comparison 

This section discusses the comparison of the bi-gram term extraction results from three different 

term extraction algorithms with the verification answers by experts using the same corpus. The 

first set of results come from the iterative machine learning extraction process proposed by this 

paper. The second set is the control group using the same process with two controlled conditions: 

(1) using 2,678 known terms from the book index of the corpus (大藏經學術用語研究會, 198-?) 

as the initial known terms and (2) using no iterative extraction and executing the SVM extraction 

process only once. With this control group, we can compare the extraction differences between 

using known terms outside of the corpus and known terms trained iteratively inside of the corpus. 

The third extraction algorithm used for comparison is the Sinica CKIP system (Chinese 

Knowledge Information Processing Group), which represents the term segmentation and 

extraction algorithms based on a “term database.” 

In Table 7, the “MLTE iterative” row using the sixth round extraction results from the previous 

experiment, and the “MLTE_dic” row is the extraction result of the dictionary control group. The 

comparison table shows that the SVM algorithm with dictionary-known terms more effectively 

extracted terms, but the iterative SVM algorithm extraction had the highest recall rate, and both 

extraction results from the SVM algorithm had a higher F-measure values than the CKIP 

recognition results on bi-gram. 

 Precision Recall F-measure 

MLTE_dic 65.8%(202/307) 60.8%(202/332) 63.20 % 

MLTE_iterative 52.8%(255/483) 76.8%(255/332) 62.58 % 

CKIP 62.5%(203/325) 61.1%(203/332) 61.80 % 

TABLE 7 – Comparison of 3 extraction results 

6 Discussions 

For this study, we proposed an iterative machine-learning term-extraction process that does not 

use known information other than the pure-text corpus itself. In this process, the effective 

selection of learning samples and sample features were designed specifically for two classes of 

SVM machine-learning algorithms. Based on the experimental results of this iterative extraction 

process, there are some issues and problems deserving further discussions: 

1. The design of the process to extract n-gram terms of any given length. The current iterative 

process in this paper can only extract fixed-length n-gram terms. In order to extract terms of 
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any length and integrate the extraction results of terms of varied lengths, it is more ideal to 

directly design a method to extract samples and sample feature parameters for terms of any 

given length and to establish the extraction model. 

2. The testing and discussion of the applicability of this iterative extraction process with 

different types of corpora, such as current Chinese texts or Web messages. 

3. The discussion of the initial learning sample selection, which is a changeable parameter in 

the initial learning sample in this extraction process. Besides the most frequent terms in the 

corpus, if we use other high frequency terms or if we take into account other factors, such as 

parts of speech the process might provide different extraction results and issues for further 

discussion. 
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