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Abstract

Bilingual terminology dictionaries are resources of much practical importance in many
application of bilingual NLP. Because technical terminology can be both very specific
and rapidly evolving, it can however be difficult to obtain dictionaries with good coverage.
Mining automatically such terminology from technical documents is therefore an attractive
possibility. With this goal in mind, and following some previous works, we devise an
algorithm that is efficient at aligning the bilingual keyword list of scientific papers. Our
results show that our approach can extract bilingual terms with very good precision and
recall.
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1 Introduction

Bilingual terminology dictionaries can be critically useful for many practical tasks such
as Machine Translation of technical documents, cross-language Information Retrieval or
simply as a resource to human translators. Bilingual dictionaries of technical terms with
good coverage and quality can however be difficult to obtain, both due to the high domain-
specificity of most technical terms and the continuous creation of new terms as new research
is being conducted and new technics are being developed.

Because of this, some research has been done to extract automatically such bilingual dictio-
naries from technical documents. This paper will try to further this research, in particular
by following a previously proposed idea of aligning the keywords list of technical and sci-
entific documents.

We propose an approach to adapt existing word-alignment algorithm to the task of
keyword-list alignment. This is done by enforcing constraints on the keyword bound-
aries and by using a different distortion model for the keywords and the words within each
keyword. In particular, we show that our modified version of the HMM alignment algo-
rithm of (Vogel et al., 1996) perform better than both the original HMM algorithm and
the commonly used word-aligner GIZA++ for the keyword alignment task.

2 Related works

If one has a large amount of technical documents in the relevant domain that are written in
the two languages of interest, one can of course extract bilingual term pairs by running one
of the many word-alignment algorithm that have already been proposed (such as (Brown
et al., 1993) or (Vogel et al., 1996)). However, such bilingual collection of documents are
not easily obtained. Besides, the word-alignment algorithms will not by themselves indicate
which set of words represent a technical term. We will focus here on approaches that do
not require such large bilingual collection of technical documents.

(Lin et al., 2008) reported experiments of extracting term pairs from part of document
which contains parentheses. It is based on the fact that the English translation of a tech-
nical term is sometimes written inside a parenthesis next to it. Their method involves
building a kind of parallel corpus by extracting the English terms in parenthesis and the
words appearing before the parentheses, filtering the non-translation words, and then align-
ing the English terms with an unsupervised word alignment method.

(Nagata et al., 2001) extracted term pairs not only from parentheses, but also from glos-
saries and parallel paragraph. In their works, term pairs are filtered out if they are unlikely
translation of each other. The likeliness is calculated based on their locations. Foreign and
English terms which are appearing close to each other are considered to have higher trans-
lation likeliness. Their work is focused on extracting technical term pairs from Japanese
documents.

(Ren et al., 2010) extracted bilingual technical term pairs from keyword section of ab-
stracts of Chinese research papers. In their method, Chinese and English keywords are
aligned monotonically! based on their writing order if the lists contain the same number
of keywords. Otherwise, a seed bilingual dictionary is used to detect partial translation.

1Here and in the following, a monotonic alignment is one in which the first source keyword is aligned
with the first target keyword, the second source keyword with the second target one, etc.
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Keyword:  organic semiconductor laser, distributed feedback, organic light-
emitting diode, refractive index grating

Figure 1: An example of non-monotonic alignment. The second English keyword is a
translation of third Japanese and the third English keyword is a partial translation of
second Japanese keyword

Keywords which contain partial translation of each other are then aligned. Finally, key-
words are filtered based on their inverse-domain score. This step is done to make sure that
the keyword extracted are technical terms (not general term).

In this paper, we follow the idea of aligning keyword lists. However, instead of using a seed
bilingual dictionary and making a strong assumption of monotonicity for the keyword order,
we develop an unsupervised approach based on the adaptation of existing word-alignment
algorithms to the specificities of the keyword-alignment task.

3 Keyword Alignment Model
3.1 Keyword Alignment Problem and Constraint

Figure 1 gives an example of the type of keyword list one can find in the description of a
Japanese scientific paper. The keywords will often be written in the same order in both
languages, but this is far from being systematic. Some keywords might also be mentioned in
one language and not the other. For example, in our Japanese-English data (see section 4),
around one third of the keyword lists exhibit different writing order or non-symmetric use
of keywords.

The task of automatically aligning keyword lists presents some differences with the more
common word-alignment of sentences. These differences can limit the efficiency of directly
applying existing word alignment algorithm. Indeed, using such word-alignment algorithm
lead to the question of what should be the elementary alignment unit (i.e. the "word” for
the algorithm). It is natural to consider each individual word in the keyword list to be
an alignment unit. But then, the alignment algorithm might produce alignments breaking
the keyword boundaries: two words of the same source keywords might be aligned with
two words in different target keywords. If on the other hand, one consider each keyword
to be an alignment unit, data sparseness problem will appear: if "maximum entropy” is
considered as a single unit, we cannot use the knowledge we may have of the translation
of "maximum” or "entropy” to find the alignment.

An additional issue that will appear when using words as the alignment unit is that the
order of the words in the keyword list is the result of two effects: the word order inside
a keyword (that will follow the source or target language grammar), and the order of the
keywords themselves (that will often -but not always- be similar between the source and
target keyword list). Classic word-alignment algorithm are usually not designed to handle
efficiently this kind of two-factor word distortion.

In the following, we will try to define an alignment model that address these issues. Many
well-known word alignment algorithms ((Vogel et al., 1996), (Brown et al., 1993)) make
use of a probabilistic distortion model that is estimating the probability of source and
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target words to be aligned depending on their position. We propose to augment these
models with a 2-level distortion probability: a word-level distortion and a keyword-level
distortion. This will serve two purpose: ensuring that the keyword boundaries are respected
by the word-alignment, and modeling the two-factor word distortion.

We chose to focus on the HMM alignment model of (Vogel et al., 1996), as it is both simple
(and thus easy to adapt) and efficient. However, the idea we develop here could be applied
to most alignment model.

3.2 Standard HMM alignment

We briefly review the classic HMM alignment model of (Vogel et al., 1996). It is an
asymmetric 1-to-n alignment model. e represents a source (or English) sentence, with e;
being the word at position i. Likewise, f is a target (or Foreign) sentence. The alignment
variable a assign an English word (or a special Null word) to each foreign word: a; = j
means that f; is aligned with e;. The probability of P(a, f |e) is expressed as an HMM, where
the hidden states are the source words e;, the observed sequence is the target sentence f,
and a specify a possible sequence of hidden states generating f:

|f]
P(a, fle) = [ Paise(@;laj1) - Perans(fileq,) (1)
j=1

Py (k|1), the state transition probability (or distortion probability), specify the probability
of the alignment of two adjacent foreign words jumping from e; to ex. Pirans(fjleg,), the
emission probability (or translation probability), specify the probability that f; is the trans-
lation of e, . This model can be trained on parallel sentences using the classic Baum-Welch
algorithm.

3.3 Constrained HMM alignment

In the context of keyword lists, the position of a word is better represented as a pair of
integer i.j, meaning that the word is at position j in keyword i. q; ; = k.l means that the
source word at position i.j is aligned with the target word at position k.I. Each keyword
in both languages is augmented at the end with a special EOK (End of Keyword) word
(we note i.EOK the position of the EOK of keyword i). Each English keyword is also
augmented with a special Null keyword.

‘We modify the HMM alignment model in order to solve the problems mentioned in section
3.1. We call this modified model constrained HMM since we enforce a constraint on the
state transition so that every word alignment will respect the keyword boundaries. The
constraint is expressed as the following: State transition to any arbitrary state is allowed
only in the very beginning or after the aligner reach the end of a keyword (EOK) on the
target side. In any other time, state transition is only allowed from the current state to
another state that corresponds to the same keyword than the current state. In other words,
we set P,(a;nla;,) =0 if m# EOK and i # j.

We decompose the state transition model into a keyword transition probability Py x and
a word transition probability Pg;w. The initial probability of the first keyword and the
first word of a keyword are given, respectively, by Pk and P -
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The final state transition probability can then be expressed as follow (note the j.n subscript
of P; , that shows that this transition probability will change depending on the position in
a target keyword). :

[ Piniek (K) - Priew (1) if j=1and n=1
Py, =klla;, = K1) ={ Pyiserc(klk") - Prpyew (D) ifn=1 (2)
Paisew (") - 8340 otherwise

In this formula, &y is a Kronecker delta (equal to 1 if k = k/, else 0). i.m is always the
position in the target keyword list just before j.n.

With this expression of the distortion, we have solved the issues we describes: the word
alignment will respect keywords boundaries, and we model separately the keyword order
and the word order inside the keywords. This lead to better alignment results, as we will see
in section 4. The improvement can also be seen in the light of (Roweis, 2000), that shows
that constraining a HMM in a way consistent with a task will lead to better a training.
Note also that this model can be seen as aligning both words and keywords: although
it gives a word alignment, the keyword boundary constraint means that this 1-to-n word
alignment define unambiguously a 1-to-n keyword alignment.

3.4 Time-homogeneous implementation

This HMM model is not time homogeneous: the transition probability matrix is not the
same depending on if we are in the middle or at the end of a target keyword. The Viterbi
algorithm and the Baum-Welch training algorithm can perfectly be applied to such a HMM.
However, many existing HMM library assume time homogeneity. If one want to use such
library, it can be convenient to cast our model as a time-homogeneous HMM. This can be
done at the price of doubling the number of states.

Firstly we want to know whether the current state corresponds to the same keyword than
the previous state in the sequence. For this purpose, the number of hidden states is doubled.
The originals are marked as e[" and their duplicates are marked as e{"*. State e[*" is used
if current state corresponds to different keyword than what the previous state corresponds
to, otherwise ef*™" is used.

By having these states, state sequence can be controlled easily by applying the following
rules to the state transition model: 1) if current state is e!” then only transition to e{*"
is allowed; 2) if current state is ef°"", then transition to any e{®" or EOK is allowed; 3) if
current state is EOK, then only transition to e/*" is allowed. For state emission model, the
following rule are applied: visible state fj gox of foreign keyword f; can only be emitted by
hidden state e; gox-

3.5 Variants

The natural way of finding the best alignment according to a trained HMM model is to
use Viterbi decoding. However, (Liang et al., 2006) reports that one can get better results
by computing the expected probability of each link and keeping those above a certain
threshold. We can apply this idea here, although in our case we will want to use the
expected probability of two keyword being aligned (easily computed from the expected
probabilities of the word links).
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Our HMM model is, like the original one, a 1-to-n alignment model. As is often done in
such case, we can align each keyword list twice, with each language taken alternatively as
the source language. We then combine the resulting alignments by intersecting their set of
keyword links.

Although it is possible to start the training of the HMM model from some random model,
it can also be beneficial to initialize the translation probabilities with those obtained from
the simpler IBM Model 1 (Brown et al., 1993).

(Liang et al., 2006) show that it is beneficial for the final alignment quality to also train
jointly the parameters of the HMM for each direction. We tried to do this, but did not
observe any improvement in our results. We are not sure at this stage if this is due to the
specificities of the task and the data, or to a subtle problem in our use of the training by
agreement method.

Observing that more than half of all authors choose to write the keyword lists in both
language in a perfectly parallel way (same keywords and same order), we also considered
a model that would be a mixture of two HMM models: one such as the one we described
in the previous section, and one that constrain the keyword order to be monotonic. We
were thus hoping to model the idea that our data was actually generated by a mix of
two sources: "organized” authors, that write perfectly parallel pairs of keywords lists,
and “disorganized” authors, that take more freedom when they write these keyword lists.
Unfortunately, this approach did not yield any improvement either. We are still unsure if
the problem is with the basic assumptions or the way we designed and implemented the
model.

Because the training by agreement and the mixture of model idea did not improve the
results while complexifying the model and the implementation, we do not mention them
in the experiment section.

4 Experiment

4.1 Data description

‘We conduct some experiments for extracting Japanese-English keyword pairs from Japanese
research paper. We could obtain around 4 millions abstract of Japanese scientific papers,
originating from CiNii? web portal. Only about 720k of them contain both English and
Japanese keyword lists. We use these lists as the dataset for all experiments.

We create two sets of annotated keyword lists pairs to be used as test set and tuning set
respectively. The main use of the tuning set is to set the threshold of alignment when we
use the expected probability of each link instead of the Viterbi alignment (see section 3.5).
Each set contains 100 keyword lists pairs taken randomly from the dataset. These pairs
are aligned manually by two native Japanese speakers who are also fluent in English.

Segmentation for Japanese words is done using JUMAN (Kurohashi et al.). A keyword list
usually contains about 2 to 20 keywords with average of 8 keywords. There are a total of
807 Japanese keywords in the test set.

2http://ci.nii.ac.jp
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4.2 Baseline and Setup

Three different methods are used for baseline. As the first baseline, keywords are aligned
monotonically in a way similar to (Ren et al., 2010) except we did not do the partial
translation alignment as we want to consider unsupervised methods with no seed dictionary
available. This baseline is called mono-all when we apply it to all keyword list, and
mono-same when we apply it only to keyword list with the same length.

For the second baseline, alignment is done using GIZA++ alignment tool (Och and Ney,
2003) with its default setting. Alignment was done both way then merged by intersec-
tion®. With this method we conduct two experiments: using word (wGIZA-i) and keyword
(kGIZA-1i) as the alignment unit. When using word as the alignment unit, a keyword links
is created for each word link. The wGIZA-i approach will tend to produce more links and
possibly many-to-many keyword alignments, resulting in higher recall but lower precision
than the kGIZA-1i approach. For the third baseline, standard HMM (sHMM) is used for the
alignment, with keyword as the alignment unit.

For the implementation of our constrained HMM, we conducted 4 experiments. First
we applied constrained HMM in only one direction, with setup similar to sHMM, with and
without initializing with the IBM Modell parameters (cHMM and cHMM-ibm, see section 3.5).
We then used bidirectional alignments using intersect method (cHMM-ibm-1).

Finally, we tried to create the alignment not by Viterbi decoding, but by thresholding
the expected probability of the keyword links (cHMM-ibm-i-t, see section 3.5). Optimum
threshold is determined using a separate tuning set.

4.3 Result
Method Test set Recall Precision F-score
mono-same test-set 0.861 0.968 0.911
mono-all test-set 0.890 0.742 0.809
wGIZA-i test-set 0.970 0.867 0.915
kGIZA-i test-set 0.922 0.906 0.914
sHMM test-set 0.928 0.603 0.731
cHMM test-set 0.968 0.629 0.763
cHMM-ibm test-set 0.977 0.636 0.770
cHMM-ibm-i test-set 0.956 0.898 0.926
cHMM-ibm-i-t test-set 0.954 0.918 0.936
mono-same test-set-equal-length  (0.983 0.977 0.980

cHMM-ibm-i-t test-set-equal-length 0.998 0.998 0.998

Table 1: Recall, Precision, and F-score of each method
The result of our experiments is shown in Table 1. They show several interesting things.
One is that our modification to the HMM model yield improvement in both precision and
recall over the standard version (sHMM vs cHMM). This appears to validate our view that
modeling the specificities of the keywords lists is beneficial to alignment.

3The "grow-diag-final” heuristic is often used instead of a simple intersection. However, we found that
in the case of keyword list, it was not performing better than a simple intersection.
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Another interesting point is that the best version of our algorithm (cHMM-ibm-i-t) out-
perform all our baselines in term of F-measure by at least 2% absolute (corresponding
to a relative error? reduction of 25%). It also gives the second best precision, behind
the somewhat conservative heuristic mono-same. However, tuning the threshold used in
cHMM-ibm-i-t for optimal precision rather than for optimal F-score would change that (see
also section 4.4).

4.4 Closer comparison with the monotonic heuristics

Given the very good performance of mono-same and mono-all (with respect to their sim-
plicity), we tried to compare the performance of our algorithm on the subset of data for
which these heuristics should perform the best (and for which they are used in (Ren et al.,
2010)): keyword lists with the same length.

We selected the 68 list pairs of our test set having the same number of English and Japanese
keywords (test-set-equal-length). Of these, 63 are actually perfectly parallel keyword
lists. The result (Table 1) shows that the monotonic heuristics are outperformed by our
algorithm: it can not only detect all of the perfectly aligned pairs, but also correctly align
4 of the 5 non-monotonic lists.

4.5 Chinese-English

We intend to conduct a similar experiment for Chinese-English keyword list pairs. However
we have so far only collected 70,000 such keyword lists. We report however our preliminary
result on this smaller data set. Our alignment algorithm is still performing better than
standard word-aligners such as Giza++ (by around 3.6% absolute F-score). However, it
turns out that the simpler baseline of aligning monotonically each keywords (mono-all)
gives even better results (2.4% absolute F-score difference) . This appears to be due to
two reasons. One is that the smaller training data size has a negative impact on statistical
aligners. The other is that there is much more perfectly parallel keyword lists in this
dataset (more than 90%). The idea of a mixture of models (section 3.5) could therefore be
effective on such data set.

Conclusion and perspectives

We considered the problem of aligning the bilingual keyword lists of scientific papers, with
the goal of automatic bilingual terms extraction. We proposed to modify existing word-
alignment algorithms in order to better take into account the specificities of this task. Our
method show significant improvement over previous approaches and general word aligner,
achieving better results than the often used Giza++ word aligner while having much less
complexity. Besides the modifications we proposed could be applied to more complex
alignment algorithm as well.

We need to investigate more, however, why some of our other tentative improvements
(such as the training by agreement or the mixture of models) did not yield better results.
We are also in the process of gathering additional Chinese-English data to perform more
experiments in this language pair, and ultimately plan to combine and filter the two data
sources to create a Japanese-Chinese dictionary of technical terms.

4Where we compute the error as 1 minus the F-score.
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