
Proceedings of SSST-6, Sixth Workshop on Syntax, Semantics and Structure in Statistical Translation, pages 76–85,
Jeju, Republic of Korea, 12 July 2012. c©2012 Association for Computational Linguistics

Towards Probabilistic Acceptors and Transducers for Feature Structures

Daniel Quernheim
Institute for Natural Language Processing

Universität Stuttgart, Germany
Pfaffenwaldring 5b, 70569 Stuttgart

daniel@ims.uni-stuttgart.de

Kevin Knight
University of Southern California

Information Sciences Institute
Marina del Rey, California 90292

knight@isi.edu

Abstract

Weighted finite-state acceptors and transduc-
ers (Pereira and Riley, 1997) are a critical
technology for NLP and speech systems. They
flexibly capture many kinds of stateful left-to-
right substitution, simple transducers can be
composed into more complex ones, and they
are EM- trainable. They are unable to han-
dle long-range syntactic movement, but tree
acceptors and transducers address this weak-
ness (Knight and Graehl, 2005). Tree au-
tomata have been profitably used in syntax-
based MT systems. Still, strings and trees are
both weak at representing linguistic structure
involving semantics and reference (“who did
what to whom”). Feature structures provide
an attractive, well-studied, standard format
(Shieber, 1986; Rounds and Kasper, 1986),
which we can view computationally as di-
rected acyclic graphs. In this paper, we de-
velop probabilistic acceptors and transducers
for feature structures, demonstrate them on
linguistic problems, and lay down a founda-
tion for semantics-based MT.

1 Introduction

Weighted finite-state acceptors and transducers
(Pereira and Riley, 1997) provide a clean and
practical knowledge representation for string-based
speech and language problems. Complex problems
can be broken down into cascades of simple trans-
ducers, and generic algorithms (best path, composi-
tion, EM, etc) can be re-used across problems.

String automata only have limited memory and
cannot handle complex transformations needed in

machine translation (MT). Weighted tree acceptors
and transducers (Gécseg and Steinby, 1984; Knight
and Graehl, 2005) have proven valuable in these sce-
narios. For example, systems that transduce source
strings into target syntactic trees performed well in
recent MT evaluations (NIST, 2009).

To build the next generation of language systems,
we would like to represent and transform deeper lin-
guistic structures, e.g., ones that explicitly capture
semantic “who does what to whom” relationships,
with syntactic sugar stripped away. Feature struc-
tures are a well-studied formalism for capturing nat-
ural language semantics; Shieber (1986) and Knight
(1989) provide overviews. A feature structure is de-
fined as a collection of unordered features, each of
which has a value. The value may be an atomic sym-
bol, or it may itself be another feature structure. Fur-
thermore, structures may be re-entrant, which means
that two feature paths may point to the same value.

Figure 1 shows a feature structure that captures
the meaning of a sample sentence. This seman-
tic structure provides much more information than
a typical parse, including semantic roles on both
nouns and verbs. Note how “Pascale” plays four
different semantic roles, even though it appears only
once overtly in the string. The feature structure also
makes clear which roles are unfilled (such as the
agent of the charging), by omitting them. For com-
putational purposes, feature structures are often rep-
resented as rooted, directed acyclic graphs with edge
and leaf labels.

While feature structures are widely used in hand-
built grammars, there has been no compelling pro-
posal for weighted acceptors and transducers for

76



INSTANCE charge

THEME 1

[
INSTANCE person
NAME “Pascale”

]

PRED



INSTANCE and

OP1


INSTANCE resist
AGENT 1

THEME

[
INSTANCE arrest
THEME 1

]


OP2


INSTANCE intoxicate
THEME 1

LOCATION
[

INSTANCE public
]






charge

and

resist

arrest

intoxicate

person Pascale

public

instance pred

theme

instance op1op2

instance theme

agent

instancetheme

instance

theme

location

instance name

instance

CHARGE

AND

RESIST INTOXICATE

ARREST

PERSON PUBLIC

PASCALE

CHARGE 7→ charge(theme, pred)

AND 7→ and(op1, op2)

RESIST 7→ resist(agent, theme)

ARREST 7→ arrest(theme)

INTOXICATE 7→ intoxicate(theme, location)

PUBLIC 7→ public()

PERSON 7→ person(name)

PASCALE 7→ ”Pascale”

Figure 1: A feature structure representing the semantics of “Pascale was charged with resisting arrest and public intox-
ication,” the corresponding dag, and the simplified dag with argument mapping. Dag edges always point downward.

FSA
fstring→

nl-XTOPs−1

translate →
RTG

etree→
FSA

rank →
FSA

estring

fstring→ parse + understand → esem→ rank → esem→ generate → etree→ rank → estring

Figure 2: Pipelines for syntax-based and for semantics-based MT. Devices: FSA = finite string automaton;
ln-XTOPs = linear non-deleting extended top-down tree-to-string transducer; RTG = regular tree grammar.

77

string automata tree automata graph automata
k-best . . . paths through a WFSA

(Viterbi, 1967; Eppstein, 1998)
. . . trees in a weighted forest
(Jiménez and Marzal, 2000;
Huang and Chiang, 2005)

?

EM training Forward-backward EM (Baum
et al., 1970; Eisner, 2003)

Tree transducer EM training
(Graehl et al., 2008)

?

Determinization . . . of weighted string acceptors
(Mohri, 1997)

. . . of weighted tree acceptors
(Borchardt and Vogler, 2003;
May and Knight, 2006a)

?

Transducer com-
position

WFST composition (Pereira and
Riley, 1997)

Many transducers not closed un-
der composition (Maletti et al.,
2009)

?

General tools AT&T FSM (Mohri et al.,
2000), Carmel (Graehl, 1997),
OpenFST (Riley et al., 2009)

Tiburon (May and Knight,
2006b)

?

Table 1: General-purpose algorithms for strings, trees and feature structures.

them. Such automata would be of great use. For
example, a weighted graph acceptor could form the
basis of a semantic language model, and a weighted
graph-to-tree transducer could form the basis of a
natural language understanding (NLU) or genera-
tion (NLG) system, depending on which direction
it is employed. Putting NLU and NLG together,
we can also envision semantics-based MT systems
(Figure 2). A similar approach has been taken
by Graham et al. (2009) who incorporate LFG f-
structures, which are deep syntax feature structures,
into their (automatically acquired) transfer rules.
Feature structure graph acceptors and transducers
could themselves be learned from semantically-
annotated data, and their weights trained by EM.

However, there is some distance to be traveled.
Table 1 gives a snapshot of some efficient, generic
algorithms for string automata (mainly developed in
the last century), plus algorithms for tree automata
(mainly developed in the last ten years). These algo-
rithms have been packaged in general-purpose soft-
ware toolkits like AT&T FSM (Mohri et al., 2000),
OpenFST (Riley et al., 2009), and Tiburon (May
and Knight, 2006b). A research program for graphs
should hold similar value.

Formal graph manipulation has, fortunately, re-
ceived prior attention. A unification grammar
can specify semantic mappings for strings (Moore,
1989), effectively capturing an infinite set of
string/graph pairs. But unification grammars seem
too powerful to admit the efficient algorithms we

desire in Table 1, and weighted versions are not
popular. Hyperedge replacement grammars (Drewes
et al., 1997; Courcelle and Engelfriet, 1995)
are another natural candidate for graph acceptors,
and a synchronous hyperedge replacement gram-
mar might serve as a graph transducer. Finally,
Kamimura and Slutzki (1981, 1982) propose graph
acceptor and graph-to-tree transducer formalisms
for rooted directed acyclic graphs. Their model has
been extended to multi-rooted dags (Bossut et al.,
1988; Bossut and Warin, 1992; Bossut et al., 1995)
and arbitrary hypergraphs (Bozapalidis and Kalam-
pakas, 2006; Bozapalidis and Kalampakas, 2008);
however, these extensions seem too powerful for
NLP. Hence, we use the model of Kamimura and
Slutzki (1981, 1982) as a starting point for our def-
inition, then we give a natural language example,
followed by an initial set of generic algorithms for
graph automata.

2 Preliminaries

In this section, we will define directed acyclic graphs
which are our model for semantic structures.

Let us just define some basic notions: We will
write R for the real numbers. An alphabet is just
a finite set of symbols.

Intuitively, a rooted ordered directed acyclic
graph, or dag for short, can be seen as a tree that
allows sharing of subtrees. However, it is not nec-
essarily a maximally shared tree that has no isomor-
phic subtrees (consider the examples in Figure 3).

78

(3a)

WANT

BELIEVE

BOY GIRL (3b)

WANT

BELIEVE

BOY BOY GIRL

Figure 3: Maximally shared tree (a) and not maximally
shared tree (b; note the two BOY nodes) can be distinct
dags. The dag in (a) means “The boy wants to believe the
girl,” while the dag in (b) means “The boy wants some
other boy to believe the girl.”

(4a)

>

BELIEVE

BOY GIRL (4b)

>

BOY GIRL

Figure 4: Subdag of dag (3a) and subdag of dag (3b) in
Figure 3.

More formally, we define a directed graph over an
alphabet Σ as a triple G = (V,E, `) of a finite set of
nodes V , a finite set of edgesE ⊂ V ×V connecting
two nodes each and a labeling function ` : V → Σ.
We say that (v, w) is an outgoing edge of v and an
incoming edge of w, and we say that w is a child of
v and v is a parent of w. A directed graph is a dag if
it is
• acyclic: V is totally ordered such that there is

no (v, w) ∈ E with v > w;
• ordered: for each V , there is a total order both

on the incoming edges and the outgoing edges;
• and rooted: min(V) is transitively connected

by to all other nodes.
This is a simplified account of the dags presented in
Section 1. Instead of edge-labels, we will assume
that this information is encoded explicitely in the
node-labels for the INSTANCE feature and implic-
itly in the node-labels and the order of the outgoing
edges for the remaining features. Figure 1 shows a
feature structure and its corresponding dag. Nodes
with differently-labeled outgoing edges can thus be
differentiated. Since the number of ingoing edges is
not fixed, a node can have arbitrary many parents.
For instance, the PERSON node in Figure 1 has four
parents. We call the number of incoming edges of a
given node its head rank, and the number of outgo-
ing edges its tail rank.

(left)

WANT

⊥ (right)

WANT

BOY GIRL

Figure 5: (left) Remainder of (3a) after removing (4a).
(right) Dag resulting from replacing (4a) by (4b) in (3a).

We also need incomplete dags in order to com-
pose larger dags from smaller ones. An incomplete
dag is a dag in which some edges does not nec-
essarily have to be connected to two nodes; they
can be “dangling” from one node. We represent
this by adding special nodes > and ⊥ to the dag.
If an incomplete dag has m edges (>, v) and n
edges (v,⊥), we call it an (m,n)-dag. An (m,n)-
dag G can be composed with an (n, o)-dag G′ by
identifying the n downward-dangling edges of G
with the n upward-dangling edges of G′ in the right
order; the result G ◦ G′ is a (m, o)-dag. Fur-
thermore, two dags H and H ′ of type (m,n) and
(m′, n′) can be composed horizontally by putting
their upward-dangling edges next to each other and
their downward-dangling edges next to each other,
resulting in a new (m + m′, n + n′) dag H ⊕ H ′.
If G1, . . . , G` can be composed (vertically and hor-
izontally) in such a way that we obtain G, then Gi

are called subdags of G.
An (m,n)-subdag H of a dag G can be replaced

by an (m,n)-subdag H ′, resulting in the dag G′,
written G[H → H ′] = G′. An example is depicted
in Figure 5, showing how a dag is split into two sub-
dags, of which one is replaced by another incom-
plete dag. Our account of dag replacement is a sim-
plified version of general hypergraph replacement
that has been formulated by Engelfriet and Vereijken
(1997) and axiomatized by Bozapalidis and Kalam-
pakas (2004).

Trees are dags where every node has at most one
incoming edge. Tree substitution is then just a spe-
cial case of dag composition. We will write the set of
dags over an alphabet Σ as DΣ and the set of trees
over Σ as TΣ, and TΣ(V) is the set of trees with
leaves labeled with variables from the set V .

3 Dag acceptors and transducers

The purpose of dag acceptors and dag transducers
is to compactly represent (i) a possibly-infinite set
of dags, (ii) a possibly-infinite set of (dag, tree)

79

pairs, and (iii) a possibly-infinite set of (graph, tree,
weight) triples.

Dag acceptors and dag transducers are a gener-
alization of tree acceptors and transducers (Comon
et al., 2007). Our model is a variant of the dag
acceptors defined by Kamimura and Slutzki (1981)
and the dag-to-tree transducers by Kamimura and
Slutzki (1982). The original definition imposed
stricter constraints on the class of dags. Their
devices operated on graphs called derivation dags
(short: d-dags) which are always planar. In particu-
lar, the authors required all the parents and children
of a given node to be adjacent, which was due to the
fact that they were interested in derivation graphs
of unrestricted phrase-structure grammar. (While
the derivation structures of context-free grammar are
trees, the derivation structures of type-0 grammars
are d-dags.) We dropped this constraint since it
would render the class of dags unsuitable for linguis-
tic purposes. Also, we do not require planarity.

Kamimura and Slutzki (1981, 1982) defined three
devices: (i) the bottom-up dag acceptor, (ii) the top-
down dag acceptor (both accepting d-dags) and (iii)
the bottom-up dag-to-tree transducer (transforming
d-dags into trees). We demonstrate the application
of a slightly extended version of (ii) to unrestricted
dags (semantic dags) and describe a top-down dag-
to-tree transducer model, which they did not investi-
gate. Furthermore, we add weights to the models.

A (weighted) finite dag acceptor is a structure
M = (Q, q0,Σ, R,w) where Q is a finite set of
states and q0 the start state, Σ is an alphabet of
node labels, and R is a set of rules of the form
r : α → β, where r is the (unique) rule identifier
and (i) α ∈ Qm(σ) and β ∈ r(Qn) for m,n ∈ N
and some σ ∈ Σ (an explicit rule of type (m,n)) or
(ii) α ∈ Qm and β ∈ r(Q) (an implicit rule of type
(m, 1)). The function w : R → R assigns a weight
to each rule.

Intuitively, explicit rules consume input, while
implicit rules are used for state changes and joining
edges only. The devices introduced by Kamimura
and Slutzki (1981) only had explicit rules.

We define the derivation relation of M by rewrit-
ing of configurations. A configuration of M is a dag
over Σ ∪R ∪Q with the restriction that every state-
labeled node has head and tail rank 1. Let c be a
configuration of M and r : α → β an explicit rule

(q)WANT → 1(r, q) 〈0.3〉 (1)

(q)BELIEVE → 2(r, q) 〈0.2〉 (2)

(r)BOY → 3 〈0.3〉 (3)

(r)GIRL → 4 〈0.3〉 (4)

(r)∅ → 5 〈0.1〉 (5)

(q)∅ → 6 〈0.1〉 (6)

(q)→ 7(r) 〈0.4〉 (7)

Figure 7: Ruleset of the dag acceptor in Example 1.

of type (m,n). Then c =⇒r c
′ if α matches a sub-

dag of c, and c′ = c[α→ β].
Now let c be a configuration of M and r : α→ β

an implicit rule of type (m, 1). If a configuration
c′ can be obtained by replacing m nodes labeled α
such that all tails lead to the same node and are in the
right order, by the single state-node β, then we say
c =⇒r c

′. Example derivation steps are shown in
Figure 6 (see Example 1). We denote the transitive
and reflexive closure of =⇒ by =⇒∗.

A dag G is accepted by M if there is a deriva-
tion q0(G) =⇒∗ G′, where G′ is a dag over σ(R).
Note that the derivation steps of a given derivation
are partially ordered; many derivations can share the
same partial order. In order to avoid spurious deriva-
tions, recall that the nodes of G are ordered, and as-
sume that nodes are rewritten according to this or-
der: the resulting derivation is called a canonical
derivation. The set of all canonical derivations for
a given graph G is D(G). The set of all dags ac-
cepted byM is the dag language L(M). The weight
w(d) of a derivation dag (represented by its canon-
ical derivation) d = G =⇒r1 G1 =⇒r2 . . . =⇒rn

Gn is
∏n

i=1w(rn), and the weight of a dag G is∑
d∈D(G)w(d). The weighted language L(N) is a

function that maps every dag to its weight in N .

Example 1. Let

Σ = {GIRL, BOY, BELIEVE,WANT, ∅}

and consider the top-down dag acceptor M =
({q, r}, q,Σ, R,w) which has a ruleset containing
the explicit and implicit (1, 1) rules given in Fig-
ure 7. The weights defined by w have been written
directly after the rules in angle brackets. This ac-

80

q

WANT

BELIEVE

BOY GIRL

=⇒1

1

r q

BELIEVE

BOY GIRL

=⇒2

1

r 2

r q

BOY GIRL

=⇒8

1

2

8 q

r GIRL

BOY

=⇒3

1

2

8 q

3 GIRL

=⇒7

1

2

8 7

3 r

GIRL

=⇒4

1

2

8 7

3 4

Figure 6: Derivation of a dag using the dag acceptor of Example 1. The weight of the derivation is w(1) ·w(2) ·w(8) ·
w(3) · w(7) · w(4) = 0.3 · 0.2 · 0.2 · 0.3 · 0.4 · 0.3 = 0.000432.

ceptor can accept dags that involve boys and girls
believing and wanting. One of them is given in Fig-
ure 3b. To obtain dags that are not trees, let us add
the following implicit (2, 1) and (3, 1) rules:

(r, r)→ 8(r) 〈0.2〉 (8)

(r, r, r)→ 9(r) 〈0.1〉 (9)

A non-treelike dag is given in Figure 3a, while its
derivation is given in Figure 6. Note that the effect
of rule (8) could be simulated by rule (9).

Let us now define dag-to-tree transducers. Con-
trarily to Kamimura and Slutzki (1982), who defined
only the bottom-up case and were skeptical of an el-
egant top-down formulation, we only consider top-
down devices.

A (weighted) top-down dag-to-tree transducer is
a machine T = (Q, q0,Σ,∆, R,w) which is defined
in the same way as a finite dag acceptor, except for
the additional output alphabet ∆ and the rules’ right-
hand side. A dag-to-tree transducer explicit rule
has the form r : α → β where α ∈ Qm(Σ) and
β ∈ (T∆(Q(Xn)))m for m,n ∈ N. Intuitively, this
means that the left-hand side still consists of a sym-
bol and m “incoming states”, while the right-hand
side now are m trees over ∆ with states and n vari-
ables used to process the n child subdags. Implicit
(m, 1) rules are defined in the same way, having m
output trees over one variable. The dag-to-tree trans-
ducer T defines a relation L(T) ⊆ DΣ × T∆ × R.

A derivation step of T is defined analogously to
the acceptor case by replacement of α by β. How-
ever, copying rules (those that use a variable more
than once in a right-hand side) and deleting rules
(those that do not use a rule at all) are problematic in
the dag case. In the tree world, every tree can be bro-
ken up into a root symbol and independent subtrees.

This is not true in the dag world, where there is shar-
ing between subdags. Therefore, if an edge reach-
ing a given symbol σ is not followed at all (deleting
rule), the transducer is going to choke if not every
edge entering σ is ignored. In the case of copying
rules, the part of the input dag that has not yet been
processed must be copied, and the configuration is
split into two sub-configurations which must both
be derived in parallel. We will therefore restrict our-
selves to linear (non-copying) non-deleting rules in
this paper.

4 NLP example

Recall the example dag acceptor from Example 1.
This acceptor generates an sentences about boys and
girls wanting and believing. Figure 3 shows some
sample graphs from this language.

Next, we build a transducer that relates these
graphs to corresponding English. This is quite chal-
lenging, as BOY may be referred to in many ways
(“the boy”, “he”, “him”, ”himself”, “his”, or zero),
and of course, there are many syntactic devices for
representing semantic role clusters. Because of am-
biguity, the mapping between graphs and English is
many-to-many. Figure 8 is a fragment of our trans-
ducer, and Figure 9 shows a sample derivation.

Passives are useful for realizing graphs with
empty roles (“the girl is wanted” or “the girl wants
to be believed”). Note that we can remove syntactic
0 (zero) elements with a standard tree-to-tree trans-
ducer, should we desire.

(qs)WANT(x, y)→ S(qnomg(x), is wanted, qzero(y))

(qinfg)BELIEVE(x, y)→ INF(qzero(y), to be believed, qzerog(y))

(qzero)∅ → 0

81

(qs)WANT(x, y)→ S(qnomb(x),wants, qinfb(y)) (10)

(qinfb)BELIEVE(x, y)→ INF(qaccg(x), to believe, qaccb(y)) (11)

(qaccg)GIRL → NP(the girl) (12)

(qnomb, qaccb)BOY → NP(the boy), NP(him) (13)

Figure 8: Transducer rules mapping semantic graphs to syntactic trees.

q

WANT

BELIEVE

BOY GIRL

=⇒10

S

qnomb wants qinfb

BELIEVE

BOY GIRL

=⇒11

S

qnomb wants INF

qaccg to believe qaccb

BOY GIRL

=⇒12,13

S

INF

NP NP NP

the boy wants the girl to believe him

Figure 9: Derivation from graph to tree “the boy wants the girl to believe him”.

Events can be realized with nouns as well as verbs
(“his desire for her, to believe, him”):

(qnp)WANT(x, y)→ NP(qpossb(x), ’s desire, qinfb(y))

We note that transducer rules can be applied in ei-
ther direction, semantics-to-English or English-to-
semantics. Though this microworld is small, it cer-
tainly presents interesting challenges for any graph
transduction framework. For example, given “the
boy’s desire is to be believed by the girl,” the trans-
ducer’s graph must make BOY the theme of BE-
LIEVE.

5 Generic dag acceptor and transducer
algorithms

In this section we give algorithms for standard tasks.

5.1 Membership checking
Membership checking is the task of determining, for
a given finite dag acceptor M and an input dag G,
whether G ∈ L(M), or in the weighted case, com-
pute the weight of G. Recall that the set of nodes
of G is ordered. We can therefore walk through G
according to this order and process each node on its
own. A very simple algorithm can be given in the
framework of “parsing as deduction” (Shieber et al.,
1995):
Items: configurations, i.e. dags over Σ ∪Q ∪R

Axiom: G, a dag over Σ
Goal: dag over R
Inference rule: if an item has only ancestors from

Q, apply a matching rule from R to obtain a
new item

This algorithm is correct and complete and can be
implemented in time O(2|G|) since there are expo-
nentially many configurations. Moreover, the set of
derivation dags is the result of this parser, and a fi-
nite dag acceptor representing the derivation dags
can be constructed on the fly. It can be easily ex-
tended to check membership of (dag, tree) pairs in a
dag-to-tree transducer and to generate all the trees
that are obtained from a given dag (“forward ap-
plication”). In order to compute weights, the tech-
niques by Goodman (1999) can be used.

5.2 1-best and k-best generation
The k-best algorithm finds the highest-weighted k
derivations (not dags) in a given (weighted) dag ac-
ceptor. If no weights are available, other measures
can be used (e.g. the number of derivation steps or
symbol frequencies). We can implement the k-best
algorithm (of which 1-best is a special case) by gen-
erating graphs and putting incomplete graphs on a
priority queue sorted by weight. If rule weights are
probabilities between 0 and 1, monotonicity ensures
that the k-best graphs are found, as the weights of
incomplete hypotheses never increase.

82

q

⊥

=⇒1

WANT

r q

⊥

=⇒8

WANT

> q

r

r

⊥

=⇒2

WANT

BELIEVE

r q

⊥

=⇒3

WANT

BELIEVE

q

BOY ⊥

=⇒7

WANT

BELIEVE

r

BOY ⊥

=⇒4

WANT

BELIEVE

BOY GIRL

Figure 10: Example derivation in “generation mode”.

Dags are generated by taking the basic incomplete
dags (rule dags) defined by each rule and concate-
nating them using the dangling edges. Every dan-
gling edge of the rule dag can be identified with a
dangling edge of the current hypothesis (if the orien-
tation matches) or be left unconnected for later con-
nection. In that way, all children and parents for a
given node are eventually created. Strictly speaking,
the resulting structures are not dags anymore as they
can contain multiple > and ⊥ symbols. A sample
generation is shown in Figure 10. Note how the or-
der of rules applied is different from the example in
Figure 6.

Using the dag acceptor as a generating device in
this way is unproblematic, but poses two challenges.
First, we have to avoid cyclicity, which is easily con-
firmed by keeping nodes topologically sorted.

Second, to avoid spurious ambiguity (where
derivations describe the same derivation dag, but
only differ by the order of rule application), spe-
cial care is needed. A simple solution is to sort the
edges in each incomplete dag to obtain a canonical
(“leftmost”) derivation. We start with the start state
(which has head rank 0). This is the first incomplete
dag that is pushed on the dag queue. Then we repeat-
edly pop an incomplete dag G from the dag queue.
The first unused edge e of G is then attached to a
new node v by identifying e with one of v’s edges
if the states are compatible. Remaining edges of the
new node (incoming or outgoing) can be identified
with other unused edges of G or left for later attach-
ment. The resulting dags are pushed onto the queue.

Whenever a dag has no unused edges, it is com-
plete and the corresponding derivation can be re-
turned. The generation process stops when k com-
plete derivations have been produced. This k-best
algorithm can also be used to generate tree output

for a dag-to-tree transducer, and by restricting the
shape of the output tree, for “backward application”
(given a tree, which dags map to it?).

6 Future work

The work presented in this paper is being imple-
mented in a toolkit that will be made publicly avail-
able. Of course, there is a lot of room for improve-
ment, both from the theoretical and the practical
viewpoint. This is a brief list of items for future re-
search:
• Complexity analysis of the algorithms.
• Closure properties of dag acceptors and dag-

to-tree transducers as well as composition with
tree transducers.
• Investigate a reasonable probabilistic model

and training procedures.
• Extended left-hand sides to condition on a

larger semantic context, just like extended top-
down tree transducers (Maletti et al., 2009).
• Handling flat, unordered, sparse sets of rela-

tions that are typical of feature structures. Cur-
rently, rules are very specific to the number of
children and parents. A first step in this direc-
tion is given by implicit rules that can handle a
potentially arbitrary number of parents.
• Hand-annotated resources such as (dag, tree)

pairs, similar to treebanks for syntactic repre-
sentations.

Acknowledgements

This research was supported in part by ARO grant
W911NF-10-1-0533. The first author was supported
by the German Research Foundation (DFG) grant
MA 4959/1–1.

83

References

L. E. Baum, T. Petrie, G. Soules, and N. Weiss. 1970.
A maximization technique occurring in the statistical
analysis of probabilistic functions of Markov chains.
Ann. Math. Statist., 41(1):164171.

Björn Borchardt and Heiko Vogler. 2003. Determiniza-
tion of finite state weighted tree automata. J. Autom.
Lang. Comb., 8(3):417–463.

Francis Bossut and Bruno Warin. 1992. Automata and
pattern matching in planar directed acyclic graphs.
In Imre Simon, editor, Proc. LATIN, volume 583 of
LNCS, pages 76–86. Springer.

Francis Bossut, Max Dauchet, and Bruno Warin. 1988.
Automata and rational expressions on planar graphs.
In Michal Chytil, Ladislav Janiga, and Václav Koubek,
editors, Proc. MFCS, volume 324 of LNCS, pages
190–200. Springer.

Francis Bossut, Max Dauchet, and Bruno Warin. 1995.
A kleene theorem for a class of planar acyclic graphs.
Inf. Comput., 117(2):251–265.

Symeon Bozapalidis and Antonios Kalampakas. 2004.
An axiomatization of graphs. Acta Inf., 41(1):19–61.

Symeon Bozapalidis and Antonios Kalampakas. 2006.
Recognizability of graph and pattern languages. Acta
Inf., 42(8-9):553–581.

Symeon Bozapalidis and Antonios Kalampakas. 2008.
Graph automata. Theor. Comput. Sci., 393(1-3):147–
165.

H. Comon, M. Dauchet, R. Gilleron, C. Löding,
F. Jacquemard, D. Lugiez, S. Tison, and M. Tom-
masi. 2007. Tree automata techniques and appli-
cations. Available on: http://www.grappa.
univ-lille3.fr/tata. release October, 12th
2007.

Bruno Courcelle and Joost Engelfriet. 1995. A logical
characterization of the sets of hypergraphs defined by
hyperedge replacement grammars. Math. Syst. The-
ory, 28(6):515–552.

Frank Drewes, Hans-Jörg Kreowski, and Annegret Ha-
bel. 1997. Hyperedge replacement, graph grammars.
In Grzegorz Rozenberg, editor, Handbook of Graph
Grammars, pages 95–162. World Scientific.

Jason Eisner. 2003. Learning non-isomorphic tree map-
pings for machine translation. In Proc. ACL, pages
205–208. ACL.

Joost Engelfriet and Jan Joris Vereijken. 1997. Context-
free graph grammars and concatenation of graphs.
Acta Inf., 34(10):773–803.

David Eppstein. 1998. Finding the k shortest paths.
SIAM J. Comput., 28(2):652–673.

Ferenc Gécseg and Magnus Steinby. 1984. Tree Au-
tomata. Akadémiai Kiadó, Budapest, Hungary.

Joshua Goodman. 1999. Semiring parsing. Comput.
Linguist., 25:573–605.

Jonathan Graehl, Kevin Knight, and Jonathan May.
2008. Training tree transducers. Comput. Linguist.,
34(3):391–427.

Jonathan Graehl. 1997. Carmel finite-state toolkit.
http://www.isi.edu/licensed-sw/
carmel.

Yvette Graham, Josef van Genabith, and Anton Bryl.
2009. F-structure transfer-based statistical machine
translation. In Proc. LFG.

Liang Huang and David Chiang. 2005. Better k-best
parsing. In Proc. IWPT.

Vı́ctor M. Jiménez and Andrés Marzal. 2000. Computa-
tion of the n best parse trees for weighted and stochas-
tic context-free grammars. In Proc. SSPR/SPR, vol-
ume 1876 of LNCS, pages 183–192. Springer.

Tsutomu Kamimura and Giora Slutzki. 1981. Paral-
lel and two-way automata on directed ordered acyclic
graphs. Inf. Control, 49(1):10–51.

Tsutomu Kamimura and Giora Slutzki. 1982. Transduc-
tions of dags and trees. Math. Syst. Theory, 15(3):225–
249.

Kevin Knight and Jonathan Graehl. 2005. An overview
of probabilistic tree transducers for natural language
processing. In Proc. CICLing, volume 3406 of LNCS,
pages 1–24. Springer.

Kevin Knight. 1989. Unification: A multidisciplinary
survey. ACM Comput. Surv., 21(1):93–124.

Andreas Maletti, Jonathan Graehl, Mark Hopkins, and
Kevin Knight. 2009. The power of extended top-down
tree transducers. SIAM J. Comput., 39(2):410–430.

Jonathan May and Kevin Knight. 2006a. A better n-best
list: Practical determinization of weighted finite tree
automata. In Proc. HLT-NAACL. ACL.

Jonathan May and Kevin Knight. 2006b. Tiburon: A
weighted tree automata toolkit. In Oscar H. Ibarra and
Hsu-Chun Yen, editors, Proc. CIAA, volume 4094 of
LNCS, pages 102–113. Springer.

Mehryar Mohri, Fernando C. N. Pereira, and Michael
Riley. 2000. The design principles of a weighted
finite-state transducer library. Theor. Comput. Sci.,
231(1):17–32.

Mehryar Mohri. 1997. Finite-state transducers in lan-
guage and speech processing. Computational Linguis-
tics, 23(2):269–311.

Robert C. Moore. 1989. Unification-based semantic in-
terpretation. In Proc. ACL, pages 33–41. ACL.

NIST. 2009. NIST Open Machine Translation 2009
Evaluation (MT09). http://www.itl.nist.
gov/iad/mig/tests/mt/2009/.

84

Fernando Pereira and Michael Riley. 1997. Speech
recognition by composition of weighted finite au-
tomata. In Finite-State Language Processing, pages
431–453. MIT Press.

Michael Riley, Cyril Allauzen, and Martin Jansche.
2009. OpenFST: An open-source, weighted finite-
state transducer library and its applications to speech
and language. In Ciprian Chelba, Paul B. Kantor, and
Brian Roark, editors, Proc. HLT-NAACL (Tutorial Ab-
stracts), pages 9–10. ACL.

William C. Rounds and Robert T. Kasper. 1986. A com-
plete logical calculus for record structures representing
linguistic information. In Proc. LICS, pages 38–43.
IEEE Computer Society.

Stuart M. Shieber, Yves Schabes, and Fernando C. N.
Pereira. 1995. Principles and implementation of de-
ductive parsing. J. Log. Program., 24(1&2):3–36.

Stuart M. Shieber. 1986. An Introduction to Unification-
Based Approaches to Grammar, volume 4 of CSLI
Lecture Notes. CSLI Publications, Stanford, CA.

Andrew Viterbi. 1967. Error bounds for convolutional
codes and an asymptotically optimum decoding al-
gorithm. IEEE Transactions on Information Theory,
13(2):260–269.

85

