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Abstract

The development of knowledge base creation
systems has mainly focused on information
extraction without considering how to effec-
tively reason over their databases of facts. One
reason for this is that the inference required
to learn a probabilistic knowledge base from
text at any realistic scale is intractable. In
this paper, we propose formulating the joint
problem of fact extraction and probabilistic
model learning in terms of Tractable Markov
Logic (TML), a subset of Markov logic in
which inference is low-order polynomial in
the size of the knowledge base. Using TML,
we can tractably extract new information from
text while simultaneously learning a proba-
bilistic knowledge base. We will also describe
a testbed for our proposal: creating a biomed-
ical knowledge base and making it available
for querying on the Web.

1 Introduction

While structured sources of information exist, so
much of human knowledge is found only in unstruc-
tured text that it is crucial we learn how to mine
these unstructured sources efficiently and accurately.
However, knowledge extraction is only half the bat-
tle. We develop knowledge bases not to be stan-
dalone structures but instead to be tools for applica-
tions such as decision making, question answering,
and literature-based discovery. Therefore, a knowl-
edge base should not be a static repository of facts;
it should be a probabilistic model of knowledge ex-
tracted from text over which we can infer new facts
not explicitly stated in the text.

Most current knowledge extraction systems ex-
tract a database of facts, not a true knowledge
base. ReVerb (Etzioni et al., 2011) and TextRun-
ner (Banko et al., 2007) are Web-scale knowledge
extraction systems, but provide no clear method for
reasoning over the extracted knowledge. Unsuper-
vised Semantic Parsing (USP) and its successor On-
tological USP (OntoUSP), learn more detailed on-
tological structure over information extracted from
text, but they too do not build a coherent probabilis-
tic knowledge base that can be reasoned with (Poon
and Domingos 2009, Poon and Domingos 2010).

Some knowledge extraction systems have inte-
grated rule learning. NELL learns rules to help ex-
tract more information, but the resulting knowledge
base is still just a collection of facts (Carlson et al.,
2010). The SHERLOCK system learns first-order
Horn clauses from open-domain Web text, but the
inferences allowed are not very deep and, like Re-
Verb and TextRunner, the database of facts is not
structured into any useful ontology (Schoenmackers
et al. 2008, Schoenmackers et al. 2010).

In this paper, we propose an unsupervised on-
line approach to knowledge base construction that
jointly extracts information from text and learns a
probabilistic model of that information. For each
input sentence, our approach will jointly learn the
best syntactic and semantic parse for the sentence
while using abductive reasoning to infer the changes
to our knowledge base that best explain the infor-
mation in the sentence. To keep this joint inference
procedure tractable we will formulate our entire pro-
cess in terms of Tractable Markov Logic. Tractable
Markov Logic (TML) is a subset of Markov logic in
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Name TML Syntax Comments Example

Rules
Subclass Is(C1,C2):w Is(Lion, Mammal)
Subpart Has(C1,C2,P,n) P, n optional Has(EatingEvent, Animal, Eater)
Relation R(C,P1, . . . ,Pn):w ¬R( . . .) allowed Eats(EatingEvent, Eater, Eaten)

Facts
Subclass Is(X,C) ¬Is(X,C) allowed Is(Simba, Lion)
Subpart Has(X1,X2,P) Has(TheLionKing, Simba, Protagonist)
Relation R(X,P1, . . . ,Pn) ¬R( . . .) allowed Defeats(TheLionKing, Simba, Scar)

Table 1: The TML language

which exact inference is low-order polynomial in the
size of the knowledge base (Domingos and Webb,
2012). TML is a surprisingly powerful language
that can easily represent both semantic relations and
facts and syntactic relations.

2 Tractable Markov Logic

Tractable Markov Logic (TML) (Domingos and
Webb, 2012), is a tractable, yet quite powerful, sub-
set of Markov logic, a first-order probabilistic lan-
guage. A Markov logic network (MLN) is a set of
weighted first-order logic clauses (Domingos and
Lowd, 2009). Given a set of constants, an MLN de-
fines a Markov network with one node per ground
atom and one feature per ground clause. The weight
of a feature is the weight of the first-order clause
that originated it. The probability of a state x is
given by P (x) = 1

Z exp (
∑

i wini(x)), where wi

is the weight of the ith clause, and ni is the num-
ber of satisfied groundings of that clause. Z =∑

x exp(
∑

i wini(x)) is the partition function. A
TML knowledge base (KB) is a set of rules with three
different forms, summarized in Table 1. A TML rule
F : w states that formula F has weight w. The con-
version from rules in TML syntax to clauses in MLN
syntax is straightforward. For details, see Webb and
Domingos 2012.

Subclass rules define the hierarchy of classes in
the TML KB. Subpart rules define decompositions
of the part classes in the TML KB into their sub-
part classes. Relation rules define arbitrary rela-
tions between the subparts of a given class. There
are three types of corresponding facts in TML that
provide information about objects instead of classes:
the classes of objects, the objects that are subparts of
other objects, and relations between objects. Natu-
rally, the facts in TML must be consistent with the
structure set by the TML rules for the KB to be valid.

For example, a fact can not define a subpart relation
between two objects if that subpart relation does not
exist as a rule between the classes of those objects.

There are a number of constraints on a set of TML
rules for it to be a valid TML KB. The class hier-
archy must be a forest, and subclasses of the same
class are mutually exclusive. Also, the polarity of
ground literals must be consistent among the descen-
dants of an object’s subparts under the same class.
However, given these restrictions on the form of the
TML KB, Theorem 1 of Domingos and Webb 2012
states that the partition function of a TML KB can
be computed in time and space polynomial in the
size of the knowledge base. The intuition behind
this theorem is that traversing structure of the class
hierarchy and part decomposition of the TML KB is
isomorphic to the computation of the partition func-
tion of the corresponding MLN. Since the probabil-
ity of a query can be computed as a ratio of partition
functions, computing it is also tractable.

At first glance, it may seem that TML is a very
restrictive language. However, TML is surprisingly
flexible; it can compactly represent arbitrary junc-
tion trees and many high-treewidth models. The cost
of using TML is that it cannot tractably represent all
arbitrary networks, especially those with many de-
pendencies between related objects (Domingos and
Webb, 2012). However, when a network contains
hierarchical structure, with bounds on the number of
links between objects in different classes, the TML
KB remains tractable. As shown in the success of
OntoUSP, many statements in natural language can
be semantically parsed into a hierarchical part/class
structure. Syntax also has this kind of structure;
smaller syntactic components form the subparts for
larger components. We will now briefly describe
how TML is a very natural fit for both the syntac-
tic and semantic realms.
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2.1 TML for syntactic parsing

Non-recursive probabilistic context-free grammars
(PCFGs) (Chi, 1999) can be compactly encoded in
TML. Non-terminals have class-subclass relation-
ships to their set of productions. Each production
is split into subparts based on the symbols appear-
ing on its right-hand side. It is straightforward to
show how to transform one of these grammars into
a TML KB. (For a proof sketch see Domingos and
Webb 2012.) Natural language is recursive, but fix-
ing the number of recursive levels will allow for a
grammar flexible enough for virtually all real sen-
tences. Once we have the PCFG encoded in TML,
we can find the most likely parse of a sentence using
the standard TML inference algorithm.

2.2 TML for semantic parsing

TML closely mirrors the ontological structure of ob-
jects in the world. Objects are defined by class struc-
ture (e.g., monkeys are mammals), part decomposi-
tions (e.g., monkeys have a tail, legs, etc.), and rela-
tions (e.g., a monkey’s tail is between its legs).

Text also frequently contains relations occurring
between objects. These relations and constructs in
natural language contain rich ontological structure;
we hypothesize that this structure allows TML to
compactly represent semantic information about re-
lations and events. For example, to describe the food
chain, we define a class for the eating relation with
two subparts: the eater of the animal class and the
eaten of the living thing class. This eating relation
class would have subclasses to define carnivorous
and vegetarian eating events and so on, refining the
subpart classes as needed. Since animals tend to
only eat things of one other class, the number of eat-
ing relation classes will be low, and the TML can
tractably represent these relations. This approach
can be easily extended to a hierarchy of narrative
classes, which each contain up to a fixed number of
events as subparts.

TML can also be used to deal with other types of
phenomena in natural language. (Space precludes us
from going into detail for many here.) For example,
adding place markers to a TML KB is straightfor-
ward. A class can have a location subpart whose
class is selected from a hierarchy of places.

3 TML for knowledge base construction

To create a knowledge base from unstructured text,
we propose a joint inference procedure that takes
as input a corpus of unstructured text and creates
a TML knowledge base from information extracted
from the text. For each sentence, this inference pro-
cedure will jointly find the maximum a posteriori
(MAP) syntactic and semantic parse and abduce the
best changes to the TML KB that explain the knowl-
edge contained in the sentence. Unlike previous
pipeline-based approaches to knowledge base con-
struction where a sentence is parsed, facts are ex-
tracted, and a knowledge base is then induced, we
propose to do the whole process jointly and online.
As we infer the best parses of sentences, we are si-
multaneously learning a probabilistic model of the
world, in terms of both structure and parameters.

We plan to develop our approach in stages. At
first, we will take advantage of existing syntactic
and semantic parsers (e.g., an existing PCFG parser
+ USP) to parse the text before converting to TML.
We may also bootstrap our KB from existing ontolo-
gies. However, we will steadily integrate more of the
parsing into the joint framework by replacing USP
with a semantic parser that parses text straight into
TML, and eventually replacing the syntactic parser
with one formulated entirely in TML.

3.1 Inference

The probability of a joint syntactic parse T and se-
mantic parse L for a sentence S using a TML KB K
is Pr(T, L|S) ∝ exp(

∑
i wini(T, L, S)), where the

sum is indexed over the clauses in the MLN created
from converting K into Markov logic. Exact MAP
inference is possible in MLNs formed from TML
KBs. Therefore, finding the joint MAP syntactic and
semantic parse for a sentence with a parser formu-
lated as a TML KB is tractable. The tractability of
inference is vital since the MAP parse of a sentence
given a current state of the TML KB will need to be
found frequently during learning.

Inference in a TML KB is low-order polynomial
in the size of the KB. However, if the size becomes
exponential, inference will no longer be tractable.
In this case, we can utilize variational inference
to approximate the intractable KB with the closest
tractable one (Lowd and Domingos, 2010). How-
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ever, in general, even if the full KB is intractable,
the subset required to answer a particular query may
be tractable, or at least easier to approximate.

3.2 Learning

As we parse sentences, we simultaneously learn the
best TML KB that explains the information in the
sentences. Given the MAP parse, the weights for
the KB can be re-estimated in closed form by stor-
ing counts from previously-parsed knowledge and
by using m-estimation for smoothing among the
classes. However, we also need to search over pos-
sible changes to the part and class structure of the
KB to find the state of the KB that best explains
the parse of the sentence. Developing this structure
search will be a key focus of our research.

We plan to take advantage of the fact that sen-
tences tend to either state general rules (e.g., “Pen-
guins are flightless birds”) or facts about particular
objects (e.g., “Tux can’t fly”). When parsing a sen-
tence that states a general rule, the structure learn-
ing focuses on how best to alter the class hierarchy
or part decomposition to include the new rule and
maintain a coherent structure. For example, parsing
the sentence about penguins might involve adding
penguins as a class of birds and updating the weight
of the CanFly(c) relation for penguins, which in
turn changes the weight of that relation for birds.
For sentences that state properties or relations on
objects, learning will involve identifying (or creat-
ing) the best classes for the objects and updating the
weight of the property or relation involved. When
learning, we will have to ensure that no constraints
of the TML KB are violated (e.g., the class hierarchy
must remain a forest).

3.3 Querying the database

Inferring the answer of a yes/no query is simply a
matter of parsing a query, adding its semantic parse
to the KB, and recomputing the partition function
(which is tractable in TML). The probability of the
query is the value of the new partition function di-
vided by the old. For more substantive queries (e.g.,
“What does IL-13 enhance?”), the naı̈ve approach
would look at each possible answer in turn. How-
ever, we can greatly speed up this process using
coarse-to-fine inference utilizing the class structure
of the TML KB (Kiddon and Domingos, 2011).

4 Proposed testbed

As an initial testbed, we plan to use our approach to
build a knowledge base from the text of PubMed1

and PubMed Central2, companion repositories of
21 million abstracts and 2.4 million full texts of
biomedical articles respectively. PubMed is a good
basis for an initial investigation of our methods for a
number of reasons. A biomedical knowledge base
is of real use and importance for biomedical re-
searchers. PubMed is a good size: large and rich, but
not Web-scale, which would require parallelization
techniques beyond our proposal’s scope. Also, since
the repositories contain both abstracts and full-text
articles, we can incrementally scale up our approach
from abstracts to full text articles, until eventually
extracting from both repositories. The biomedical
domain is also a good since shallow understanding
is attainable without requiring much domain knowl-
edge. However, if needed, we can seed the knowl-
edge base with information extracted from biology
textbooks, biology ontologies, etc.

There will be many questions our KB cannot an-
swer, but even if we are far from solving the knowl-
edge extraction problem, we can do much better than
the existing keyword-based retrieval offered by the
repositories. We also plan to go further with our
proposal and make our knowledge base available for
querying on the Web to allow for peer evaluation.

5 Conclusion

We propose an approach to automatic knowledge
base construction based on using tractable joint in-
ference formulated in terms of Tractable Markov
Logic. Using TML is a promising avenue for ex-
tracting and reasoning over knowledge from text,
since it can easily represent many kinds of syntactic
and semantic information. We do not expect TML to
be good at everything, and a key part of our research
agenda is discovering which language extraction and
understanding tasks it is good at and which may
need additional methods. We plan to use biomedical
texts as a testbed so we may see how a knowledge
base created using our approach performs in a large,
real-world domain.

1http://www.ncbi.nlm.nih.gov/pubmed/
2http://www.ncbi.nlm.nih.gov/pmc/
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