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Abstract

In spite of their well known limitations,
most notably their use of very local con-
texts, n-gram language models remain an es-
sential component of many Natural Language
Processing applications, such as Automatic
Speech Recognition or Statistical Machine
Translation. This paper investigates the po-
tential of language models using larger con-
text windows comprising up to the 9 previ-
ous words. This study is made possible by
the development of several novel Neural Net-
work Language Model architectures, which
can easily fare with such large context win-
dows. We experimentally observed that ex-
tending the context size yields clear gains in
terms of perplexity and that the n-gram as-
sumption is statistically reasonable as long as
n is sufficiently high, and that efforts should
be focused on improving the estimation pro-
cedures for such large models.

1 Introduction

Conventional n-gram Language Models (LMs) are a
cornerstone of modern language modeling for Natu-
ral Language Processing (NLP) systems such as sta-
tistical machine translation (SMT) and Automatic
Speech Recognition (ASR). After more than two
decades of experimenting with these models in a
variety of languages, genres, datasets and appli-
cations, the vexing conclusion is that these mod-
els are very difficult to improve upon. Many vari-
ants of the simple n-gram model have been dis-
cussed in the literature; yet, very few of these vari-
ants have shown to deliver consistent performance

gains. Among these, smoothing techniques, such as
Good-Turing, Witten-Bell and Kneser-Ney smooth-
ing schemes (see (Chen and Goodman, 1996) for an
empirical overview and (Teh, 2006) for a Bayesian
interpretation) are used to compute estimates for the
probability of unseen events, which are needed to
achieve state-of-the-art performance in large-scale
settings. This is because, even when using the sim-
plifying n-gram assumption, maximum likelihood
estimates remain unreliable and tend to overeresti-
mate the probability of those rare n-grams that are
actually observed, while the remaining lots receive
a too small (null) probability.

One of the most successful alternative to date is
to use distributed word representations (Bengio et
al., 2003) to estimate the n-gram models. In this
approach, the discrete representation of the vocabu-
lary, where each word is associated with an arbitrary
index, is replaced with a continuous representation,
where words that are distributionally similar are rep-
resented as neighbors. This turns n-gram distribu-
tions into smooth functions of the word representa-
tion. These representations and the associated esti-
mates are jointly computed using a multi-layer neu-
ral network architecture. The use of neural-networks
language models was originally introduced in (Ben-
gio et al., 2003) and successfully applied to large-
scale speech recognition (Schwenk and Gauvain,
2002; Schwenk, 2007) and machine translation
tasks (Allauzen et al., 2011). Following these ini-
tial successes, the neural approach has recently been
extended in several promising ways (Mikolov et al.,
2011a; Kuo et al., 2010; Liu et al., 2011).

Another difference between conventional and
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neural network language models (NNLMs) that has
often been overlooked is the ability of the latter to
fare with extended contexts (Schwenk and Koehn,
2008; Emami et al., 2008); in comparison, standard
n-gram LMs rarely use values of n above n = 4
or 5, mainly because of data sparsity issues and
the lack of generalization of the standard estimates,
notwithstanding the complexity of the computations
incurred by the smoothing procedures (see however
(Brants et al., 2007) for an attempt to build very
large models with a simple smoothing scheme).

The recent attempts of Mikolov et al. (2011b)
to resuscitate recurrent neural network architectures
goes one step further in that direction, as a recur-
rent network simulates an unbounded history size,
whereby the memory of all the previous words ac-
cumulates in the form of activation patterns on the
hidden layer. Significant improvements in ASR us-
ing these models were reported in (Mikolov et al.,
2011b; Mikolov et al., 2011a). It must however be
emphasized that the use of a recurrent structure im-
plies an increased complexity of the training and in-
ference procedures, as compared to a standard feed-
forward network. This means that this approach can-
not handle large training corpora as easily as n-gram
models, which makes it difficult to perform a fair
comparison between these two architectures and to
assess the real benefits of using very large contexts.

The contribution is this paper is two-fold. We
first analyze the results of various NNLMs to assess
whether long range dependencies are efficient in lan-
guage modeling, considering history sizes ranging
from 3 words to an unbounded number of words (re-
current architecture). A by-product of this study is a
slightly modified version of n-gram SOUL model
(Le et al., 2011a) that aims at quantitatively esti-
mating the influence of context words both in terms
of their position and their part-of-speech informa-
tion. The experimental set-up is based on a large
scale machine translation task. We then propose a
head to head comparison between the feed-forward
and recurrent NNLMs. To make this comparison
fair, we introduce an extension of the SOUL model
that approximates the recurrent architecture with a
limited history. While this extension achieves per-
formance that are similar to the recurrent model on
small datasets, the associated training procedure can
benefit from all the speed-ups and tricks of standard

feedforward NNLM (mini-batch and resampling),
which make it able to handle large training corpora.
Furthermore, we show that this approximation can
also be effectively used to bootstrap the training of a
“true” recurrent architecture.

The rest of this paper is organized as follows. We
first recollect, in Section 2, the basics of NNLMs ar-
chitectures. We then describe, in Section 3, a num-
ber of ways to speed up training for our “pseudo-
recurrent” model. We finally report, in Section 4,
various experimental results aimed at measuring the
impact of large contexts, first in terms of perplexity,
then on a realistic English to French translation task.

2 Language modeling in a continuous
space

Let V be a finite vocabulary, language models de-
fine distributions over sequences1 of tokens (typi-
cally words) wL

1 in V+ as follows:

P (wL
1 ) =

L∏
i=1

P (wi|wi−1
1 ) (1)

Modeling the joint distribution of several discrete
random variables (such as words in a sentence) is
difficult, especially in NLP applications where V
typically contains hundreds of thousands words. In
the n-gram model, the context is limited to the n−1
previous words, yielding the following factorization:

P (wL
1 ) =

L∏
i=1

P (wi|wi−1
i−n+1) (2)

Neural network language models (Bengio et al.,
2003) propose to represent words in a continuous
space and to estimate the probability distribution as
a smooth function of this representation. Figure 1
provides an overview of this approach. The context
words are first projected in a continuous space using
the shared matrix R. Denoting v the 1-of-V coding
vector of word v (all null except for the vth compo-
nent which is set to 1), its projection vector is the
vth line of R: RTv. The hidden layer h is then
computed as a non-linear function of these vectors.
Finally, the probability of all possible outcomes are
computed using one or several softmax layer(s).

1wj
i denotes a sequence of tokens wi . . . j when j ≥ i, or

the empty sequence otherwise.
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Figure 1: 4-gram model with SOUL at the output layer.

This architecture can be divided in two parts, with
the hidden layer in the middle: the input part (on the
left hand side of the graph) which aims at represent-
ing the context of the prediction; and the output part
(on the right hand side) which computes the proba-
bility of all possible successor words given the con-
text. In the remaining of this section, we describe
these two parts in more detail.

2.1 Input Layer Structure
The input part computes a continuous representation
of the context in the form of a context vector h to be
processed through the hidden layer.

2.1.1 N -gram Input Layer
Using the standard n-gram assumption of equa-

tion (2), the context is made up of the sole n−1 pre-
vious words. In a n-gram NNLM, these words are
projected in the shared continuous space and their
representations are then concatenated to form a sin-
gle vector i, as illustrated in the left part of Figure 1:

i = {RTv−(n−1);R
Tv−(n−2); . . . ;R

Tv−1}, (3)

where v−k is the kth previous word. A non-linear
transformation is then applied to compute the first
hidden layer h as follows:

h = sigm (Wi + b) , (4)

with sigm the sigmoid function. This kind of archi-
tecture will be referred to as a feed-forward NNLM.

Conventional n-gram LMs are usually limited to
small values of n, and using n greater that 4 or 5
does not seem to be of much use. Indeed, previ-
ous experiments using very large speech recognition
systems indicated that the gain obtained by increas-
ing the n-gram order from 4 to 5 is almost negli-
gible, whereas the model size increases drastically.
While using large context seems to be very imprac-
tical with back-off LMs, the situation is quite dif-
ferent for NNLMs due to their specific architecture.
In fact, increasing the context length for a NNLM
mainly implies to expend the projection layer with
one supplementary projection vector, which can fur-
thermore be computed very easily through a sim-
ple look-up operation. The overall complexity of
NNLMs thus only grows linearly with n in the worst
case (Schwenk, 2007).

In order to better investigate the impact of each
context position in the prediction, we introduce a
slight modification of this architecture in a man-
ner analog to the proposal of Collobert and Weston
(2008). In this variation, the computation of the hid-
den layer defined by equation (4) is replaced by:

h = sigm
(

max
k

[
WkRTv−k

]
+ b

)
, (5)

where Wk is the sub-matrix of W comprising the
columns related to the kth history word, and the max
is to be understood component-wise. The product
WkRT can then be considered as defining the pro-
jection matrix for the kth position. After the projec-
tion of all the context words, the max function se-
lects, for each dimension l, among the n − 1 values
([WkRTv−k]l) the most active one, which we also
assume to be the most relevant for the prediction.

2.1.2 Recurrent Layer
Recurrent networks are based on a more complex

architecture designed to recursively handle an arbi-
trary number of context words. Recurrent NNLMs
are described in (Mikolov et al., 2010; Mikolov et
al., 2011b) and are experimentally shown to outper-
form both standard back-off LMs and feed-forward
NNLMs in terms of perplexity on a small task. The
key aspect of this architecture is that the input layer
for predicting the ith word wi in a text contains both
a numeric representation vi−1 of the previous word
and the hidden layer for the previous prediction.
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The hidden layer thus acts as a representation of the
context history that iteratively accumulates an un-
bounded number of previous words representations.

Our reimplementation of recurrent NNLMs
slightly differs from the feed-forward architecture
mainly by its input part.We use the same deep archi-
tecture to model the relation between the input word
presentations and the input layer as in the recurrent
model. However, we explicitly restrict the context to
the n−1 previous words. Note that this architecture
is just a convenient intermediate model that is used
to efficiently train a recurrent model, as described in
Section 3. In the recurrent model, the input layer is
estimated as a recursive function of both the current
input word and the past input layer.

i = sigm(Wi−1 + RTv−1) (6)

As in the standard model, RTv−k associates each
context word v−k to one feature vector (the corre-
sponding row in R). This vector plays the role of
a bias at subsequent input layers. The input part is
thus structured in a series of layers, the relation be-
tween the input layer and the first previous word be-
ing at level 1, the second previous word is at level 2
and so on. In (Mikolov et al., 2010; Mikolov et al.,
2011b), recurrent models make use of the entire con-
text, from the current word position all the way back
to the beginning of the document. This greatly in-
creases the complexity of training, as each document
must be considered as a whole and processed posi-
tion per position. By comparison, our reimplemen-
tation only considers a fixed context length, which
can be increased at will, thus simulating a true recur-
rent architecture; this enables us to take advantage
of several techniques during training that speed up
learning (see Section 3). Furthermore, as discussed
below, our preliminary results show that restricting
the context to the current sentence is sufficient to at-
tain optimal performance 2.

2.2 Structured Output Layer

A major difficulty with the neural network approach
is the complexity of inference and training, which
largely depends on the size of the output vocabu-

2The test sets used in MT experiments are made of various
News extracts. Their content is thus not homogeneous and us-
ing words from previous sentences doesn’t seem to be relevant.

lary ,i.e. of the number of words that have to be pre-
dicted. To overcome this problem, Le et al. (2011a)
have proposed the structured Output Layer (SOUL)
architecture. Following (Mnih and Hinton, 2008),
the SOUL model combines the neural network ap-
proach with a class-based LM (Brown et al., 1992).
Structuring the output layer and using word class in-
formation makes the estimation of distribution over
large output vocabulary computationally feasible.

In the SOUL LM, the output vocabulary is struc-
tured in a clustering tree, where every word is asso-
ciated to a unique path from the root node to a leaf
node. Denoting wi the ith word in a sentence, the se-
quence c1:D(wi) = c1, . . . , cD encodes the path for
word wi in this tree, with D the tree depth, cd(wi)
the class or sub-class assigned to wi, and cD(wi) the
leaf associated with wi, comprising just the word it-
self. The probability of wi given its history h can
then be computed as:

P (wi|h) =P (c1(wi)|h)

×
D∏

d=2

P (cd(wi)|h, c1:d−1).
(7)

There is a softmax function at each level of the
tree and each word ends up forming its own class
(a leaf). The SOUL architecture is represented in
the right part of Figure 1. The first (class layer)
estimates the class probability P (c1(wi)|h), while
sub-class layers estimate the sub-class probabili-
ties P (cd(wi)|h, c1:d−1), d = 2 . . . (D − 1). Fi-
nally, the word layer estimates the word probabili-
ties P (cD(wi)|h, c1:D−1). As in (Schwenk, 2007),
words in the short-list remain special, as each of
them represents a (final) class on its own right.

3 Efficiency issues

Training a SOUL model can be achieved by maxi-
mizing the log-likelihood of the parameters on some
training corpus. Following (Bengio et al., 2003),
this optimization is performed by Stochastic Back-
Propagation (SBP). Recurrent models are usually
trained using a variant of SBP called the Back-
Propagation Through Time (BPTT) (Rumelhart et
al., 1986; Mikolov et al., 2011a).

Following (Schwenk, 2007), it is possible to
greatly speed up the training of NNLMs using,
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for instance, n-gram level resampling and bunch
mode training with parallelization (see below); these
methods can drastically reduce the overall training
time, from weeks to days. Adapting these meth-
ods to recurrent models are not straightforward. The
same goes with the SOUL extension: its training
scheme requires to first consider a restricted output
vocabulary (the shortlist), that is then extended to in-
clude the complete prediction vocabulary (Le et al.,
2011b). This technique is too time consuming, in
practice, to be used when training recurrent mod-
els. By bounding the recurrence to a dozen or so
previous words, we obtain a recurrent-like n-gram
model that can benefit from a variety of speed-up
techniques, as explained in the next sections.

Note that the bounded-memory approximation is
only used for training: once training is complete, we
derive a true recurrent network using the parameters
trained on its approximation. This recurrent archi-
tecture is then used for inference.

3.1 Reducing the training data

Our usual approach for training large scale models
is based on n-gram level resampling a subset of the
training data at each epoch. This is not directly com-
patible with the recurrent model, which requires to
iterate over the training data sentence-by-sentence in
the same order as they occur in the document. How-
ever, by restricting the context to sentences, data re-
sampling can be carried out at the sentence level.
This means that the input layer is reinitialized at
the beginning of each sentence so as to “forget”, as
it were, the memory of the previous sentences. A
similar proposal is made in (Mikolov et al., 2011b),
where the temporal dependencies are limited to the
level of paragraph. Another useful trick, which is
also adopted here, is to use different sampling rates
for the various subparts of the data, thus boosting the
use of in-domain versus out-of-domain data.

3.2 Bunch mode

Bunch mode training processes sentences by batches
of several examples, thus enabling matrix operation
that are performed very efficiently by the existing
BLAS library. After resampling, the training data is
divided into several sentence flows which are pro-
cessed simultaneously. While the number of exam-
ples per batch can be as high as 128 without any

visible loss of performance for n-gram NNLM, we
found, after some preliminary experiments, that the
value of 32 seems to yield a good tradeoff between
the computing time and the performance for recur-
rent models. Using such batches, the training time
can be speeded up by a factor of 8 at the price of a
slight loss (less than 2%) in perplexity.

3.3 SOUL training scheme

The SOUL training scheme integrates several steps
aimed at dealing with the fact that the output vocab-
ulary is split in two sub-parts: very frequent words
are in the so-called short-list and are treated differ-
ently from the less frequent ones. This setting can
not be easily reproduced with recurrent models. By
contrast, using the pseudo-recurrent n-gram NNLM,
the SOUL training scheme can be adopted; the re-
sulting parameter values are then plugged in into a
truly recurrent architecture. In the light of the results
reported below, we content ourselves with values of
n in the range 8-10.

4 Experimental Results

We now turn to the experimental part, starting with a
description of the experimental setup. We will then
present an attempt to quantify the relative impor-
tance of history words, followed by a head to head
comparison of the various NNLM architectures dis-
cussed in the previous sections.

4.1 Experimental setup

The tasks considered in our experiments are derived
from the shared translation track of WMT 2011
(translation from English to French). We only pro-
vide here a short overview of the task; all the neces-
sary details regarding this evaluation campaign are
available on the official Web site3 and our system
is described in (Allauzen et al., 2011). Simply note
that our parallel training data includes a large Web
corpus, referred to as the GigaWord parallel cor-
pus. After various preprocessing and filtering steps,
the total amount of training data is approximately
12 million sentence pairs for the bilingual part, and
about 2.5 billion of words for the monolingual part.

To built the target language models, the mono-
lingual corpus was first split into several sub-parts

3http://www.statmt.org/wmt11
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based on date and genre information. For each of
these sub-corpora, a standard 4-gram LM was then
estimated with interpolated Kneser-Ney smoothing
(Chen and Goodman, 1996). All models were cre-
ated without any pruning nor cutoff. The baseline
back-off n-gram LM was finally built as a linear
combination of several these models, where the in-
terpolation coefficients are chosen so as to minimize
the perplexity of a development set.

All NNLMs are trained following the prescrip-
tions of Le et al. (2011b), and they all share the
same inner structure: the dimension of the projec-
tion word space is 500; the size of two hidden lay-
ers are respectively 1000 and 500; the short-list con-
tains 2000 words; and the non-linearity is introduced
with the sigmoid function. For the recurrent model,
the parameter that limits the back-propagation of er-
rors through time is set to 9 (see (Mikolov et al.,
2010) for details). This parameter can be considered
to play a role that is similar to the history size in
our pseudo-recurrent n-gram model: a value of 9 in
the recurrent setting is equivalent to n = 10. All
NNLMs are trained with the following resampling
strategy: 75% of in-domain data (monolingual News
data 2008-2011) and 25% of the other data. At each
epoch, the parameters are updated using approxi-
mately 50 millions words for the last training step
and about 140 millions words for the previous ones.

4.2 The usefulness of remote words

In this section, we analyze the influence of each con-
text word with respect to their distance from the pre-
dicted word and to their POS tag. The quantitative
analysis relies on the variant of the n-gram architec-
ture based on (5) (see Section 2.1), which enables
us to keep track of the most important context word
for each prediction. Throughout this study, we will
consider 10-gram NNLMs.

Figure 2 represents the selection rate with respect
to the word position and displays the percentage of
coordinates in the input layer that are selected for
each position. As expected, close words are the most
important, with the previous word accounting for
more than 35% of the components. Remote words
(at a distance between 7 and 9) have almost the
same, weak, influence, with a selection rate close to
2.5%. This is consistent with the perplexity results
of n-gram NNLMs as a function of n, reported in

Tag Meaning Example
ABR abreviation etc FC FMI
ABK other abreviation ONG BCE CE
ADJ adjective officielles alimentaire mondial
ADV adverb contrairement assez alors
DET article; une les la

possessive pronoun ma ta
INT interjection oui adieu tic-tac
KON conjunction que et comme
NAM proper name Javier Mercure Pauline
NOM noun surprise inflation crise
NUM numeral deux cent premier
PRO pronoun cette il je
PRP preposition; de en dans

preposition plus article au du aux des
PUN punctuation; : , -

punctuation citation ”
SENT sentence tag ? . !
SYM symbol %
VER verb ont fasse parlent
<s> start of sentence

Table 1: List of grouped tags from TreeTagger.

Table 2: the difference between all orders from 4-
gram to 8-gram are significant, while the difference
between 8-gram and 10-gram is negligible.

POS tags were computed using the TreeTag-
ger (Schmid, 1994); sub-types of a main tag are
pooled to reduce the total number of categories. For
example, all the tags for verbs are merged into the
same VER class. Adding the token <s> (sentence
start), our tagset contains 17 tags (see Table 1).

The average selection rates for each tag are shown
in Figure 3: for each category, we display (in bars)
the average number of components that correspond
to a word in that category when this word is in pre-
vious position. Rare tags (INT, ABK , ABR and
SENT) seem to provide a very useful information
and have very high selection rates. Conversely, DET,
PUN and PRP words occur relatively frequently and
belong to the less selective group. The two most
frequent tags (NOM and VER ) have a medium se-
lection rate (approximately 0.5).

4.3 Translation experiments
The integration of NNLMs for large SMT tasks is
far from easy, given the computational cost of com-
puting n-gram probabilities, a task that is performed
repeatedly during the search of the best translation.
Our solution was to resort to a two-pass approach:
the first pass uses a conventional back-off n-gram
model to produce a list of the k most likely trans-
lations; in the second pass, the NNLMs probability
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Figure 2: Average selection rate per word position for the
max-based NNLM, computed on newstest2009-2011. On
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Figure 3: Average selection rate of max function of the
first previous word in terms of word POS-tag information,
computed on newstest2009-2011. The green line repre-
sents the distribution of occurrences of each tag.

of each hypothesis is computed and the k-best list is
accordingly reordered. The NNLM weights are op-
timized as the other feature weights using Minimum
Error Rate Training (MERT) (Och, 2003). For all
our experiments, we used the value k = 300.

To clarify the impact of the language model or-
der in translation performance, we considered three
different ways to use NNLMs. In the first setting,
the NNLM is used alone and all the scores provided
by the MT system are ignored. In the second set-
ting (replace), the NNLM score replaces the score
of the standard back-off LM. Finally, the score of
the NNLM can be added in the linear combination
(add). In the last two settings, the weights used for

Model Perplexity BLEU
alone replace add

Baseline 90 29.4 31.3 -
4-gram 92 29.8 31.1 31.5
6-gram 82 30.2 31.6 31.8
8-gram 78 30.6 31.6 31.8
10-gram 77 30.5 31.7 31.8
recurrent 81 30.4 31.6 31.8

Table 2: Results for the English to French task obtained
with the baseline system and with various NNLMs. Per-
plexity is computed on newstest2009-2011 while BLEU is
on the test set (newstest2010).

n-best reranking are re-tuned with MERT.
Table 2 summarizes the BLEU scores obtained on

the newstest2010 test set. BLEU improvements are
observed with feed-forward NNLMs using a value
of n = 8 with respect to the baseline (n = 4).
Further increase from 8 to 10 only provides a very
small BLEU improvement. These results strengthen
the assumption made in Section 3.3: there seem to
be very little information in remote words (above
n = 7-8). It is also interesting to see that the 4-gram
NNLM achieves a comparable perplexity to the con-
ventional 4-gram model, yet delivers a small BLEU
increase in the alone condition.

Surprisingly4, on this task, recurrent models seem
to be comparable with 8-gram NNLMs. The rea-
son may be the deep architecture of recurrent model
that makes it hard to be trained in a large scale task.
With the recurrent-like n-gram model described in
Section 2.1.2, it is feasible to train a recurrent model
on a large task. With 10% of perplexity reduction as
compared to a backoff model, its yields comparable
performances as reported in (Mikolov et al., 2011a).
To the best of our knowledge, it is the first recurrent
NNLM trained on a such large dataset (2.5 billion
words) in a reasonable time (about 11 days).

5 Related work

There have been many attempts to increase the
context beyond a couple of history words (see eg.
(Rosenfeld, 2000)), for example: by modeling syn-

4Pers. com. with T. Mikolov: on the ”small” WSJ data
set, the recurrent model described in (Mikolov et al., 2011b)
outperforms the 10-gram NNLM.
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tactic information, that better reflects the “distance”
between words (Chelba and Jelinek, 2000; Collins
et al., 2005; Schwartz et al., 2011); with a unigram
model of the whole history (Kuhn and Mori, 1990);
by using trigger models (Lau et al., 1993); or by try-
ing to model document topics (Seymore and Rosen-
feld, 1997). One interesting proposal avoids the n-
gram assumption by estimating the probability of a
sentence (Rosenfeld et al., 2001). This approach
relies on a maximum entropy model which incor-
porates arbitrary features. No significant improve-
ments were however observed with this model, a fact
that can be attributed to two main causes: first, the
partition function can not be computed exactly as it
involves a sum over all the possible sentences; sec-
ond, it seems that data sparsity issues for this model
are also adversely affecting the performance.

The recurrent network architecture for LMs was
proposed in (Mikolov et al., 2010) and then ex-
tended in (Mikolov et al., 2011b). The authors pro-
pose a hierarchical architecture similar to the SOUL
model, based however on a simple unigram clus-
tering. For large scale tasks (≈ 400M training
words), advanced training strategies were investi-
gated in (Mikolov et al., 2011a). Instead of resam-
pling, the data was divided into paragraphs, filtered
and then sorted: the most in-domain data was thus
placed at the end of each epoch. On the other hand,
the hidden layer size was decreased by simulating a
maximum entropy model using a hash function on
n-grams. This part represents direct connections be-
tween input and output layers. By sharing the pre-
diction task, the work of the hidden layer is made
simpler, and can thus be handled with a smaller
number of hidden units. This approach reintroduces
into the model discrete features which are somehow
one main weakness of conventional backoff LMs as
compared to NNLMs. In fact, this strategy can be
viewed as an effort to directly combine the two ap-
proaches (backoff-model and neural network), in-
stead of using a traditional way, through interpola-
tion. Training simultaneously two different models
is computationally very demanding for large vocab-
ularies, even with help of hashing technique; in com-
parison, our approach keeps the model architecture
simple, making it possible to use the efficient tech-
niques developed for n-gram NNLMs.

The use the max, rather than a sum, on the hid-

den layer of neural network is not new. Within the
context of language modeling, it was first proposed
in (Collobert et al., 2011) with the goal to model a
variable number of input features. Our motivation
for using this variant was different, and was mostly
aimed at analyzing the influence of context words
based on the selection rates of this function.

6 Conclusion

In this paper, we have investigated several types
of NNLMs, along with conventional LMs, in or-
der to assess the influence of long range dependen-
cies within sentences in the language modeling task:
from recurrent models that can recursively handle
an arbitrary number of context words to n-gram
NNLMs with n varying between 4 and 10. Our con-
tribution is two-fold.

First, experimental results showed that the influ-
ence of word further than 9 can be neglected for the
statistical machine translation task 5. Therefore, the
n-gram assumption with n ≈ 10 appears to be well-
founded to handle most sentence internal dependen-
cies. Another interesting conclusion of this study
is that the main issue of the conventional n-gram
model is not its conditional independence assump-
tions, but the use of too small values for n.

Second, by restricting the context of recurrent net-
works, the model can benefit of the advanced train-
ing schemes and its training time can be divided by
a factor 8 without loss on the performances. To the
best of our knowledge, it is the first time that a re-
current NNLM is trained on a such large dataset in
a reasonable time. Finally, we compared these mod-
els within a large scale MT task, with monolingual
data that contains 2.5 billion words. Experimental
results showed that using long range dependencies
(n = 10) with a SOUL language model significantly
outperforms conventional LMs. In this setting, the
use of a recurrent architecture does not yield any im-
provements, both in terms of perplexity and BLEU.
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