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Abstract

This paper first defines the conditions under
which copying and deletion processes are sub-
sequential: specifically this is the case when
the process is bounded in the right ways.
Then, if we analyze metathesis as the compo-
sition of copying and deletion, it can be shown
that the set of attested metathesis patterns fall
into the subsequential or reverse subsequential
classes. The implications of bounded copying
are extended to partial reduplication, which is
also shown to be either subsequential or re-
verse subsequential.

1 Introduction

This paper presents a computational analysis of
copying and deletion in metathesis and partial redu-
plication and establishes the necessary conditions
for such patterns to be subsequential. More specif-
ically, it is shown that such patterns fall into the
subsequential or reverse subsequential classes if the
copying (for both cases) and deletion (for the case of
metathesis only) are bounded in the right ways.

The classification of natural language patterns by
the Chomsky Hierarchy (Chomsky, 1956) is one
means of distinguishing the complexity of the pat-
terns found in various linguistic domains. Syn-
tactic patterns, for example, may be context-free
(e.g. English nested embedding, (Chomsky, 1956))
or context-sensitive (e.g. Swiss German crossing
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dependencies (Schieber, 1985)), while phonologi-
cal patterns (i.e. patterns that can be described
with rewrite rules of the form A ⇒ B / C D,
where A, B, C, and D are regular expressions) have
been shown by Johnson (1972) and Kaplan and Kay
(1994) to be regular.

The regular class of patterns, however, is in fact
too large to correspond exactly to phonology (Heinz,
2007; Heinz, 2009; Heinz, 2010). Rather, it seems
that phonological patterns fit into a subclass of the
regular patterns. Since the subsequential class is
a proper subset of the regular class (Oncina et al.,
1993; Mohri, 1997), it is therefore a useful candi-
date, especially because of its attractive computa-
tional properties (Mohri, 1997). Restricting the class
of phonological patterns in this way has implications
for learning, since the subsequential but not the reg-
ular class is identifiable in the limit from positive
data (Oncina et al., 1993).

Using the formalism of finite state transducers
(FSTs), we will show that metathesis and partial
reduplication patterns can be described with subse-
quential FSTs. Subsequential FSTs are determinis-
tic weighted transducers in which the weights are
strings and multiplication is concatenation.

The analysis defines generally the conditions nec-
essary for metathesis and partial reduplication to
be subsequential. Representative examples of the
empirical phenomena that can be so classified are
shown in (1). (1-a) is an example of local metathe-
sis, (1-b) is an example of metathesis around an in-
tervening segment, and (1-c) is an example of partial
reduplication.
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(1) a. Rotuman:
hosa⇒ hoas ‘flower’

b. Cuzco Quechua:
yuraq⇒ ruyaq ‘white’

c. Tagalog:
sulat⇒ susulat ‘will write’

This kind of analysis sheds light on the nature
of the relation itself independent of the particular
theory used to account for it. It does not matter
whether the metathesized or reduplicated forms ex-
emplified here are derived via a series of SPE-style
rules or with ranked constraints in OT. The mapping
(e.g. <hosa, hoas> for Rotuman) remains the same
in either case. Additionally, the analysis has im-
plications for any model beyond the phonological
domain that uses finite-state methodology, includ-
ing (but not limited to) artificial intelligence (Rus-
sell and Norvig, 2009), bioinformatics (Durbin et
al., 1998), natural language processing (Jurafsky and
Martin, 2008), and robotics (Belta et al., 2007; Tan-
ner et al., 2012).

The structure of the paper is as follows. Section
two provides the formal definitions necessary for the
analysis. Section three presents an analysis of subse-
quential copying, and section four presents an anal-
ysis of subsequential deletion. Section five turns
to the analysis of metathesis as the composition of
copying and deletion and proves the conditions for
metathesis to be subsequential. Section six extends
this analysis to partial reduplication. Section seven
discusses the implications of the distinctions drawn
by the computational analysis for both typology and
learning. Section eight concludes.

2 Preliminaries

If Σ is a fixed finite set of symbols (an alphabet),
then Σ* is the set of all finite length strings formed
over this alphabet, and Σ≤k is the set of all strings of
length less than or equal to k. A language is a subset
of Σ∗. ε is the empty string. The length of a string s
is |s|; thus |ε| = 0. The prefixes of a string s, written
Pr(s), are {u ∈ Σ∗ : ∃v ∈ Σ∗ such that s = uv}. The
suffixes of a string s, written Suf (s), are {u ∈ Σ∗ :
∃v ∈ Σ∗ such that s = vu}. Sufn(s) is a suffix of s of
length n. The nonempty, proper prefixes of a string
s is written Prprop(s).

If L is a language then the prefixes of L are

Pr(L) =
⋃
s∈L Pr(s) and the nonempty proper

prefixes of L are Prprop(L) =
⋃
s∈L Prprop(s). A

language L is finite iff there exists some k such that
L ⊆ Σ≤k. For any w ∈ Σ∗, the good tails of w
in L is TL(w) = {v ∈ Σ∗|wv ∈ L}. Two pre-
fixes u1 and u2 are Nerode equivalent with respect
to some language L iff they share the same good
tails: u1 ∼L u2 ⇔ TL(u1) = TL(u2). In fact, a lan-
guage L is regular iff the partition induced over Σ∗

by ∼L has finite cardinality. Note that every finite
language is regular. If L1 and L2 are languages then
L1L2 = {uv | u ∈ L1 and v ∈ L2}.
Definition 1. (Oncina et al., 1993) A subsequential
finite state transducer (SFST) is a six-tuple (Q, Σ,
∆, q0, δ, σ), where Q is a finite set of states, Σ is the
input alphabet, ∆ is the output alphabet, q0 ∈ Q is
the initial state, δ ⊂ (Q ×Σ×∆∗× Q) is the transi-
tion function, and σ: Q⇒ ∆∗ is a partial function
that assigns strings to the states in Q. The edges, E,
of the SFST are a finite subset of (Q×Σ∗×∆∗× Q).
SFSTs are deterministic, meaning they are subject to
the condition (q,a,u,r),(q,a,v,s) ∈ E⇒ (u=v ∧ r=s).

Definition 2. (Oncina et al., 1993) A path in
an SFST τ is a sequence of edges in τ , π =
(q0, x1, y1, q1)(q1, x2, y2, q2) · · · (qn−1, xn, yn, qn).
Πτ is the set of all possible paths over τ . A path
π can also be expressed as (q0, x, y, qn) where x
= x1x2...xn and y = y1y2 · · · yn. The transduction
τ realizes is the function t: Σ∗ ⇒ ∆∗ such that
∃(q0,x,y,q)∈Πτ and t(x) = yσ(q).

A relation describable with an SFST is a subse-
quential relation. If f and g are relations, ◦ denotes
the composition, where (g ◦ f )(x) = g(f (x)). Subse-
quential relations are closed under composition:

Theorem 1 ((Mohri, 1997) Theorem 1). Let f : Σ∗

⇒ ∆∗ and g : ∆∗ ⇒ Ω∗ be subsequential functions,
then g ◦ f is subsequential.

Let R be a relation. The reverse relation Rr =
{<xr,yr>: <x,y> ∈ R }. A relation is reverse sub-
sequential if its reverse relation is subsequential.

3 Subsequential copying

This paper will ultimately prove the conditions un-
der which metathesis and partial reduplication, two
processes which can be analyzed as involving copy-
ing, are subsequential relations. To do this it is
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first necessary to define a copy relation in gen-
eral. A copy can be place either before or after the
original—these two processes can be distinguished
as pre-pivot or post-pivot copying (where the pivot
is an intervening string from the set U).

Definition 3. Let L,U,X,R be languages.

1. The rule ∅ ⇒ X / LXU R is a post-pivot copy
relation.

2. The rule ∅ ⇒ X / L UXR is a pre-pivot copy
relation.

Kaplan and Kay (1994) show that if L,X,U, and
R are regular languages, then the copy relations
above are regular relations. One goal of this paper is
to identify the conditions on L,X,U, and R which
make the above relations subsequential.

Further distinctions can be drawn among regu-
lar copy relations based on which of the surround-
ing contexts of the copy and original are of bounded
length.

Definition 4. Let L,X,U, and R be regular lan-
guages.

1. A pre-pivot or post-pivot copy relation is I-
bounded iff U is a finite language (I is for ‘in-
tervening’).

2. A pre-pivot copy relation is L-bounded iff L is
a finite language (L is for ‘left-context’).

3. A post-pivot copy relation is R-bounded iff R is
a finite language (R is for ‘right-context’).

4. A copy relation is T-bounded iff X is a finite
language (T is for ‘target’).

Theorem 2 below states that a pre-pivot, T-
bounded, I-bounded, and R-bounded copy relation
is subsequential. To understand the idea behind
the proof, consider the abstract pre-pivot relation
schematized in the following SFST for a particular
l ∈ L, u ∈ U , x ∈ X , and r ∈ R.1 Note that each

1Following (Beesley and Karttunen, 2003), in this and all
other FSTs in the paper, ‘?’ represents any symbol or string
except for those for which other transitions out of that state are
defined. The states of the machine are labeled with the string
mapped to them by the σ function.

transition in the figure represents a series of tran-
sitions and states (depending on the lengths of the
strings involved).

ε

?
εl

?

u

u:ε

?:u?

ux

x:ε?:ux?

r:xuxr

Figure 1: An SFST schematizing a pre-pivot T-bounded,
I-bounded, and R-bounded copy relation.

The transitions for which the output is the empty
string can be thought of as the machine withhold-
ing the output until it verifies that it has found the
context for copying. Thus, out of the state labelled
‘ux’ the output on ‘r’ is ‘xuxr’, which is the copy fol-
lowed by the segments for which there was no output
(i.e. the segments in u and x that were being ‘held’).
This mechanism of holding is why the bounds on the
lengths of the strings are necessary. If there were
no upper bound on the length of the words in U,X,
or R, the machine would have to hold a potentially
infinite number of strings, which would in turn re-
quire infinitely many states. Without these bounds,
no SFST can be constructed.

Theorem 2. A regular pre-pivot copy relation that
is T-bounded, I-bounded, and R-bounded is subse-
quential.

Proof. Let C be a pre-pivot, T-bounded, I-bounded,
and R-bounded regular copy relation. Then there ex-
ists a regular language L and finite languages U , X ,
and R such that C is described by the rewrite rule
∅ ⇒ X / L UXR.

An SFST is constructed for C as follows. The
states Q are the set of good tails of L and the non-
empty proper prefixes of UXR. Formally, let πL =
{TL(w) | w ∈ Pr(L)}. Then

Q = (πL ∪ Prprop(UXR))

SinceL is a regular language, there are finitely many
elements of πL. Since U,X, and R are finite lan-
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guages, Prprop(UXR) is also finite. Therefore Q is
finite.

The initial state q0 = TL(ε).
The sigma function is defined as follows. ∀q ∈ Q,

σ(q) =

{
ε iff q ∈ πL
q otherwise

The transition function is defined in two parts.
First, for all s ∈ Pr(L) and a ∈ Σ:

(TL(s), a, a, TL(sa)) ∈ E iff s, sa ∈ Pr(L)
and s 6∈ L

(TL(s), a, ε, a) ∈ E iff s ∈ L and a ∈ Pr(UXR)
(TL(s), a, a, TL(ε)) ∈ E otherwise

Second, for all s in the nonempty proper prefixes
of UXR and a ∈ Σ:

(s, a, ε, sa) ∈ E iff s, sa ∈ Prprop(UXR)
(s, a, xuxra, TL(ε)) ∈ E iff (∃x ∈ X)
(∃u ∈ U)(∃r ∈ Prprop(R))[s = uxr, ra ∈ R]
(s, a, σ(s)a, TL(ε)) ∈ E otherwise

It follows directly from this construction that the
SFST recognizes the specified copy relation.

Theorem 3 below states that a post-pivot copy re-
lation need only be T- and R-bounded to be subse-
quential. The idea behind the proof is demonstrated
by the abstract post-pivot copy relation schematized
in the following SFST for a particular x, u, and r.

ε

?
εl

?

ε

x

?

ε

u?

r:xr

Figure 2: An SFST for a post-pivot T-bounded and R-
bounded copy relation.

Since the machine finds the original x before it has
to produce the copy, the segments in u do not have to
be held. The bounding is only necessary for x itself,
and for the right context of the copy r. Thus when
the original precedes the copy, the bounding on u is
no longer a necessary condition for subsequentiality.

Theorem 3. A regular post-pivot copy relation that
is T-bounded and R-bounded is subsequential.

The proof of the Theorem 3 (omitted) is similar to
the one for Theorem 2 but slightly more complicated
by the fact that U can be any regular language.

The reverse of the relation in the proof of The-
orem 3 would be a pre-pivot copy relation that is
T-bounded and L-bounded. This would reverse the
pattern in Figure 2, except the left context and not
the right context would be bounded. Such a pattern
is not subsequential, but it is reverse subsequential.

Corollary 1. A regular pre-pivot copy relation that
is T-bounded and L-bounded is reverse subsequen-
tial.

4 Subsequential deletion

As with copying, the deletion relations relevant
for metathesis come in two flavors, depending on
whether the deleted string precedes or follows the
one that remains.

Definition 5. Let L,U,X,R be languages.

1. The rule X⇒ ∅ / LXU R is a post-pivot dele-
tion relation.

2. The rule X⇒ ∅ / L UXR is a pre-pivot dele-
tion relation.

Kaplan and Kay (1994) show that if L,X,U, and
R are regular languages, then the deletion relations
above are regular relations. Another goal of this pa-
per is to identify the conditions on L,X,U, and R
which make the relations above subsequential.

We can thus provide parallel definitions for T-
bounded, I-bounded, and R-bounded deletion rela-
tions.

Definition 6. Let L,X,U,R be regular languages.

1. A pre-pivot or post-pivot deletion relation is I-
bounded iff U is a finite language.

2. A pre-pivot deletion relation is L-bounded iff L
is a finite language.

3. A post-pivot deletion relation is R-bounded iff
R is a finite language.

4. A deletion relation is T-bounded iff X is a finite
language.
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Figure 3 schematizes a pre-pivot regular dele-
tion relation that is T-bounded, I-bounded, and R-
bounded.

ε

?

εl

?

x

x:ε

?:x?

xu

u:ε
?:xu?

xux

x:ε

?:xux?

r:uxr

Figure 3: An SFST for a pre-pivot T-bounded, I-bounded,
and R-bounded deletion relation.

As with the copying, due to the need for ε-
transitions, the possibility of constructing this ma-
chine depends on the bounding of the length of the
deleted string, the intervening string, and the string
that makes up the right context.

Theorem 4. A regular pre-pivot deletion relation
that is T-bounded, I-bounded, and R-bounded is sub-
sequential.

Proof. Let D be a pre-pivot, T-bounded, I-bounded,
and R-bounded regular deletion relation. Then there
exists a regular language L and finite languages X ,
R, and U such that D is defined by the rewrite rule
X⇒ ∅ / L UXR.

An SFST is constructed for D as follows. The
states Q are the set of good tails of L and the non-
empty proper prefixes of XUXR. Formally, let πL =
{TL(w) | w ∈ Pr(L)}. Then

Q = (πL ∪ Prprop(XUXR))

Since L is regular, πL is finite. Since U,X, and R
are finite languages, Prprop(XUXR) is also finite.
Therefore Q is finite.

The initial state q0 = TL(ε). The sigma function
is defined as in Theorem 2.

Also as in Theorem 2, the transition function is
defined in two parts. The first part, where all s ∈
Pr(L) and a ∈ Σ are considered, is the same as in
Theorem 2 except for one case below.

(TL(s), a, ε, a) ∈ E iff s ∈ L and
a ∈ Pr(XUXR)

The second part, where all s in the nonempty
proper prefixes of XUXR and a ∈ Σ are considered,
is constructed as follows.

(s, a, ε, sa) ∈ E iff s, sa ∈ Prprop(XUXR)
(s, a, uxra, TL(ε)) ∈ E iff(∃x, x′ ∈ X)
(∃u ∈ U)(∃r ∈ Prprop(R))[s = xux′r, ra ∈ R]
(s, a, σ(s)a, TL(ε)) ∈ E otherwise

It follows directly from this construction that the
SFST recognizes the deletion relation D.

As for a post-pivot deletion relation, the proper-
ties of T-bounding and R-bounding are sufficient for
subsequentiality since the intervening set U occurs
before the deletion. As with Theorem 3, the proof of
Theorem 5 is omitted.

Theorem 5. A regular post-pivot deletion relation
that is T-bounded and R-bounded is subsequential.

Lastly, if u is not bounded in a pre-pivot deletion
relation, but l and x are, the relation is reverse sub-
sequential.

Corollary 2. A regular pre-pivot deletion relation
that is T-bounded and L-bounded is reverse subse-
quential.

5 Metathesis as the composition of copying
and deletion

Metathesis has traditionally been viewed as an op-
eration of transposition, in which segments switch
positions. Under another view, metathesis can be
considered as the result of two separate processes,
a copy process followed by deletion of the original
segment the copy was made from (Blevins and Gar-
rett, 1998; Blevins and Garrett, 2004). Take, for ex-
ample, the metathesis process in Najdi Arabic (Ab-
boud, 1979) in which a word with a CaCCat tem-
plate surfaces as CCaCat:

(2) /naQéat/⇒ [nQaéat] ‘ewe’

An independent process of deletion (CaCaC ⇒
CCaC) is also observed in Arabic dialects. So the
change in (2) could be achieved via the two pro-
cesses in (3). The result after both processes cor-
responds to metathesis (4).

(3) a. Copy: CV1CC⇒ CV1CV1C
b. Delete: CV1CV1C⇒ CCV1C
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(4) Metathesis: CV1CC⇒ CCV1C

This analysis provides a way of classifying attested
patterns according to the type of copying and dele-
tion involved. Cross-linguistic surveys (Blevins and
Garrett, 1998; Blevins and Garrett, 2004; Hume,
2000; Buckley, 2011; Chandlee et al., to appear) re-
veal that in a large number of metathesis patterns
there is some bound on the length of the string that
intervenes between the copied segment and its orig-
inal. A classic example is found in the Rotuman
language, in which the incomplete form of a word
is derived from the complete form via word-final
consonant-vowel metathesis (Churchward, 1940).
The general rule for the example in (5-a) is in (5-b).

(5) a. hosa⇒ hoas ‘flower’
b. CV⇒ VC / V #

If we decompose this metathesis into its compo-
nent copy and deletion operations, the copy portion
would be as in (6):2

(6) V1CV2#⇒ V1V2CV2#

Applying Definitions 3 and 4 to this example, we
first classify the Rotuman pattern as pre-pivot copy-
ing. Since the length of the string between the orig-
inal segment and the copy (u = C) is bounded by
1, the copying is I-bounded. The copying is also T-
bounded, since a single vowel is copied (x = V2).
And it is R-bounded, since the original vowel is
word-final (r = ε). An FST for this pattern is shown
in Figure 4. Note that when the right context is the
empty string, the copying is achieved via the σ func-
tion rather than a transition.

!

C !
V

V

C

C:!

C:CC VCVV:!

C:CVC

V:CVV

Figure 4: An SFST for the copy process of Rotuman CV-
metathesis.

2This analysis assumes that it is the vowel that metathesizes.
The same surface form would obtain if the consonant metathe-
sized (C1V⇒C1VC1⇒VC1). For evidence that the vowel is in-
deed the segment involved in CV metathesis, see (Heinz, 2005).

Another example of I-bounded copying is in an
optional metathesis process in Cuzco Quechua, in
which sonorants metathesize across an intervening
vowel (Davidson, 1977):

(7) yuraq⇒ ruyaq ‘white’

Under a copy+deletion analysis of metathesis, this
pattern would involve two copy processes followed
by two deletions, one for the ‘r’ and one for the ‘y’.
Schematizing just the process for ‘r’, we can see in
(8) that the length of the intervening string is again
bounded by 1 (the ‘y’ is removed for clarity).3 The
copied string x (the liquid) is also bound by 1.

(8) uraq⇒ ruraq

L-bounded copying is exemplified in a diachronic
metathesis pattern found in a South Italian dialect of
Greek (Rohlfs, 1950):

(9) Classical South Italian Greek
gambros⇒ grambo4 ‘son-in-law’

In this pattern, a non-initial liquid surfaces in the ini-
tial onset cluster. The original position of the liquid
varies, which means there is no bound on the length
of the intervening string. However, the location of
the copy is always the initial cluster, which means
the left context of the copy is bounded by the length
of the maximum onset.

The copying in metathesis is only the first step -
the second is deletion of the original. The deletion
rule must be complementary to the copying, in the
sense that if the copying is pre-pivot, the deletion
will be post-pivot (10), and vice versa (11).

(10) a. Copy: ∅ ⇒ x / v uxw
b. Delete: x⇒ ∅ / vxu w

(11) a. Copy: ∅ ⇒ x / vxu w
b. Delete: x⇒ ∅ / v uxw

As stated in section 2, if two relations are subse-
quential, then the composition of these relations will
also be subsequential. Thus, whether or not the
metathesis is subsequential depends on its compo-
nent copy and deletion processes. This result is es-

3This assumes the two copy-deletions occur simultaneously.
If one were to precede the other, then the bound would be 2.

4The [s] is deleted in an unrelated process.
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tablished in the following theorem.

Theorem 6. If a copy relation f is either (1)
post-pivot, T-bounded, I-bounded and R-bounded
or (2) pre-pivot, T-bounded, and R-bounded, and
a deletion relation g is either (1) post-pivot, T-
bounded, I-bounded and R-bounded or (2) pre-pivot,
T-bounded, and R-bounded, then the metathesis re-
lation g ◦ f is subsequential.

Proof. By Theorems 2 and 3, f is subsequential. By
Theorems 4 and 5, g is subsequential. By Theorem
1, g ◦ f is subsequential.

6 Partial Reduplication

Unlike metathesis, reduplication is analyzed by pho-
nologists of all stripes as involving copying. Tradi-
tionally, two categories of reduplication have been
described: full (or total) and partial. Full reduplica-
tion involves copying the entire string and affixing
it to the original. A classic example is found in In-
donesian (Sneddon, 1996), to express the plural:

(12) a. buku ‘book’
b. buku-buku ‘books’

In contrast, partial reduplication involves copying a
designated portion of the string and affixing it as ei-
ther a prefix, suffix, or infix. These options can be
schematized as in (13)(Riggle, 2003), in which local
means the reduplicant attaches adjacent to the ma-
terial it copies and nonlocal means the reduplicant
copies a non-adjacent portion of the string:5

(13) a. local prefixation: CV-CVZ
b. nonlocal prefixation: CV-ZCV
c. local suffixation: ZCV-CV
d. nonlocal suffixation: CVZ-CV
e. infixation: C1VC1Z

An example of local prefixation is found in Tagalog,
in which the future of a verb is derived from the stem
with a CV reduplicative prefix (Blake, 1917):

(14) sulat⇒ susulat ‘will write’

An example of the infixation shown in (13-e) can
be found in Pima, in which the plural is derived by

5These schemas assume CV reduplication, but the analy-
sis would proceed the same for any reduplicant template, CC,
CVC, etc.

infixing a copy of the initial consonant after the first
vowel (Riggle, 2006):

(15) sipuk⇒ sispuk ‘cardinals’

Since under the current analysis of metathesis as
copy+delete, the only difference between a metathe-
sis pattern and partial reduplication is that the latter
does not involve the second process of deletion, we
should predict that partial reduplication patterns will
also be subsequential if the copying is bounded as
per the definitions given above. We can clearly see
that in the local patterns (13-a) and (13-c), the orig-
inal and the copy are adjacent and therefore (vac-
uously) they are I-bounded. For the infixation, the
copy likewise appears at a fixed distance from the
original. In all three cases, the amount of material
to be copied fits a template and is thus bounded by
the length of the template (i.e. they are T-bounded).
Therefore by Theorem 2, these partial reduplication
patterns are subsequential. The SFST for local pre-
fixation (13-a) is shown in Figure 5.

!

!C
!

V

V:VCV

C

?

Figure 5: An SFST for CV-CVZ partial reduplication.
The SFST for local suffixation (13-c) is shown in
Figure 6.

!

V
!C

C CV

V

V
C

Figure 6: An SFST for ZCV-CV partial reduplication.
And the SFST for infixation (13-e) is shown in Fig-
ure 7.

!

!C
!

V

V:VC
C

?

Figure 7: An SFST for C1VC1Z partial reduplication.

As for the nonlocal patterns, first consider the case
of suffixation, (13-d). The string represented by Z
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is not bounded, and therefore this pattern is not I-
bounded. It is, however, R-bounded, since the copy
is always affixed to the end of the word. The right
context is the empty string, which is (vacuously)
bounded. Thus, by Theorem 3 this pattern is also
subsequential; the FST is presented in Figure 8.

!

!C

!
V

C

CV
V

?

?

Figure 8: An SFST for a CVZ-CV pattern.

As for the last pattern, nonlocal prefixation, we
have the opposite situation: the machine does have
to hold a potentially infinite number of segments
while it searches for the original, which means the
pattern is not subsequential. However, this par-
tial reduplication pattern is reverse subsequential
by Corollary 1: reversing the string CV-ZCV gives
VCZ-VC, which is R-bounded and identical to the
nonlocal suffixation that was already argued to be
subsequential.

To summarize, the attested partial reduplication
patterns all appear to be subsequential or reverse
subsequential.

This leaves us with full reduplication. Full redu-
plication is non-regular—although the position of
the copy is fixed, the amount of material that is
copied is not: full reduplication is not T-bounded.
Again, with no principled upper limit on the length
of words, a machine that copies an entire string can-
not be finite state, much less subsequential. This
distinction separates full and partial reduplication
in terms of computational complexity—the implica-
tion being that these processes may be better viewed
as distinct phenomena rather than subclasses of a
single process.

7 Discussion

The analyses of subsequential copying and deletion
presented above have revealed the conditions under
which metathesis and partial reduplication patterns

are subsequential. Under a copy+deletion analysis
of metathesis, all metathesis patterns are T-bounded,
since only one segment is copied (and then deleted)
at a time. Partial reduplication is also T-bounded, as-
suming what is copied fits a certain template. Thus
the T-bounded requirement on subsequential copy-
ing excludes only full reduplication from the subse-
quential class.

The analysis of metathesis relied on generalized
representations of such patterns that appear to be
typologically justified. A large number of attested
metathesis patterns are considered ‘local’, which
amounts to being I-bounded by 1. Metathesis pat-
terns described as ‘long distance’ are also either I-
bounded or else L-bounded - patterns such as Ro-
mance liquid movement (Vennemann, 1988) and
Romani aspiration displacement (Matras, 2002) are
striking in that they all affect the initial onset of the
word.6 A type of logically possible pattern that ap-
pears to be unattested is one in which no context of
the copying - left, right, or intervening - is bounded.
Such a pattern would not be subsequential, and in
fact could not be described with any FST (i.e. it is
non-regular). In this way the restriction of metathe-
sis to the subsequential class finds support in the ty-
pological evidence. Also (apparently) unattested is
an R-bounded metathesis pattern - one which targets
the end of the word - though this is readily found in
the typology of partial reduplication. It remains for
future work whether such a metathesis pattern does
exist, and if not, whether further distinctions need
to be drawn to account for why R-bounded copying
only appears as partial reduplication.

Narrowing the computational bound of possible
phonological patterns from the regular class to the
subsequential class also has implications for learn-
ing. It is known that the class of regular languages is
not identifiable in the limit from positive data (Gold,
1967), but the subsequential class is: Oncina et al.
(1993) have shown this class to be learnable by the
OSTIA algorithm. Although (without modification)
OSTIA does not do so well in practice on real data
sets (Gildea and Jurafsky, 1996), future work may
reveal algorithms that fare better if the hypothesis
space can be restricted even further (i.e. to a sub-

6The L-bounded patterns also appear to be restricted to the
diachronic domain. See (Chandlee et al., to appear)
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class of the subsequential relations).

8 Conclusion

This paper has argued for an analysis of metathesis
as the composition of copying and deletion. Such
an analysis provides a computational link between
metathesis and partial reduplication, which extends
into a classification of these patterns as subsequen-
tial based on the bounded nature of the copying and
(in the case of metathesis) deletion. The typology
of attested patterns aligns well with the classifica-
tions proposed here, suggesting a tighter computa-
tional bound on phonological patterns than the one
established by Johnson (1972) and Kaplan and Kay
(1994).

Thus we can add metathesis and partial redupli-
cation to the phonological processes that have previ-
ously been shown to be subsequential - see (Koirala,
2010) for substitution, insertion, and deletion, and
Gainor et al. (to appear) for vowel harmony. It
will be interesting to see to what extent morpholog-
ical processes, including templatic morphology, and
prosodic circumscription, also fit into this class.
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