
The 7th Workshop on the Innovative Use of NLP for Building Educational Applications, pages 233–241,
Montréal, Canada, June 3-8, 2012. c©2012 Association for Computational Linguistics

Precision Isn’t Everything:
A Hybrid Approach to Grammatical Error Detection

Michael Heilman and Aoife Cahill and Joel Tetreault
Educational Testing Service

660 Rosedale Road
Princeton, NJ 08541, USA

{mheilman,acahill,jtetreault}@ets.org

Abstract

Some grammatical error detection methods,
including the ones currently used by the Edu-
cational Testing Service’s e-rater system (At-
tali and Burstein, 2006), are tuned for pre-
cision because of the perceived high cost
of false positives (i.e., marking fluent En-
glish as ungrammatical). Precision, however,
is not optimal for all tasks, particularly the
HOO 2012 Shared Task on grammatical er-
rors, which uses F-score for evaluation. In this
paper, we extend e-rater’s preposition and de-
terminer error detection modules with a large-
scale n-gram method (Bergsma et al., 2009)
that complements the existing rule-based and
classifier-based methods. On the HOO 2012
Shared Task, the hybrid method performed
better than its component methods in terms of
F-score, and it was competitive with submis-
sions from other HOO 2012 participants.

1 Introduction

The detection of grammatical errors is a challenging
problem that, arguably, requires the use of both lin-
guistic knowledge (e.g., in the form of rules or com-
plex features) and large corpora for statistical learn-
ing. Additionally, grammatical error detection can
be applied in various scenarios (e.g., automated es-
say scoring, writing assistance, language learning),
many of which may benefit from task-specific adap-
tation or tuning. For example, one might want to
take a different approach when detecting errors for
the purpose of providing feedback than when de-
tecting errors to evaluate the quality of writing in
an essay. Thus, it seems desirable to take a flexible

approach to grammatical error detection that incor-
porates multiple, complementary techniques.

In this paper, we extend the preposition and de-
terminer error detection modules currently used in
the Educational Testing Service’s e-rater automated
essay scoring system (Attali and Burstein, 2006) for
the HOO 2012 Shared Task on grammatical errors
(§2). We refer to this set of modules from e-rater as
our “base system” (§3). While the base system uses
statistical methods to learn models of grammatical
English, it also leverages substantial amounts of lin-
guistic knowledge in the form of various hand-coded
filters and complex syntactic features. The base sys-
tem is also tuned for high precision at the expense
of recall in order to avoid a high rate of potentially
costly false positives (i.e., frequent marking of cor-
rect English sentences as ungrammatical).

We apply the pre-existing base system without
modifications but complement it with a large-scale
n-gram method (§5) based on work by Bergsma et
al. (2009). The n-gram method employs very little
linguistic knowledge and instead relies almost ex-
clusively upon corpus statistics. We also tune the
resulting hybrid system with labeled training data
in order to maximize the primary evaluation met-
ric used in the HOO 2012 Shared Task: balanced
F-score, or F1 (§6). We find that the tuned hybrid
system improves upon the recall and F-score of the
base system. Also, in the HOO 2012 Shared Task,
the hybrid system achieved results that were com-
petitive with other submitted grammatical error de-
tection systems (§7).

233

2 Task Definition

In this section, we provide a brief overview of the
HOO 2012 Shared Task (Dale et al., 2012). The
task focuses on prepositions and determiners only,
distinguishing the following error types: preposition
selection errors (coded “RT” in the data), extraneous
prepositions (“UT”), missing prepositions (“MT”),
determiner selection errors (“RD”), extraneous de-
terminers (“UD”), and missing determiners (“MD”).

For training and testing data, the shared task uses
short essays from an examination for speakers of En-
glish as a foreign language. The data includes gold
standard human annotations identifying preposition
and determiner errors. These errors are represented
as edits that transform an ungrammatical text into
a grammatical one. Edits consist of start and end
offsets into the original text and a correction string
that should replace the original text at the speci-
fied offsets. The offsets differ by error type: word
selection errors include just the word, extraneous
word errors include an extra space after the word so
that a blank will result in an appropriate amount of
whitespace, and missing word errors specify spans
of length zero.1

There are three subtasks: detection, recognition,
and correction. Each is evaluated according to pre-
cision, recall, and F-score according to a set of
gold standard edits produced by human annotation.
While the correction subtask requires both correct
character offsets and appropriate corrections, the de-
tection and recognition subtasks only consider the
offsets. Detection and recognition are essentially the
same, except that detection allows for loose match-
ing of offsets, which permits mismatches between
the extraneous use (e.g., UT) and word selection
(e.g., RT) error types. For our submission to the
shared task, we chose to tune for the detection sub-
task, and we also chose to avoid the correction task
entirely since the interface to the pre-existing base
system did not give us access to possible corrections.

1The offsets for extraneous word errors prior to punctuation,
a relatively rare occurrence, include a space before the word
rather than after it. Our script for converting our system’s output
into the HOO 2012 format did not account for this, which may
have decreased recognition performance slightly.

3 Base System

As our base system, we repurpose a complex sys-
tem designed to automatically score student essays
(both native and non-native and across a wide range
of competency levels). The system is also used to
give feedback to essay writers, so precision is fa-
vored over recall. There are three main modules in
the essay-scoring system whose purpose it is to de-
tect preposition and determiner errors (as they are
defined in that system). Many of the details have
been reported previously (Chodorow and Leacock,
2000; Han et al., 2004; Han et al., 2006; Chodorow
et al., 2007; Tetreault and Chodorow, 2008), so here
we will only give brief summaries of these modules.

It is important to note that this system was run
without modification. That is, no training of new
models or tuning was carried out specifically for the
shared task. In addition, for the two statistical mod-
ules, we only had access to the final, boolean deci-
sions about whether an error is present or not at a
particular location in text. That is, we did not have
access to confidence scores, and so task-specific tun-
ing for F-score was not an option.

3.1 Preposition Error Detection

The base system detects incorrect and extraneous
prepositions (Chodorow et al., 2007; Tetreault and
Chodorow, 2008). Tetreault and Chodorow (2008)
reports approximately 84% precision and 19% re-
call on both error types combined when evaluating
the system on manually annotated non-native text.

3.1.1 Incorrect Prepositions
The module to detect incorrectly used preposi-

tions consists of a multiclass logistic regression (i.e.,
“Maximum Entropy”) model of grammatical usage,
along with heuristic pre- and post- filters. The mod-
ule works by extracting a set of features from the
“context” around a preposition, generating a distri-
bution over possible prepositions using the model of
grammatical usage, and then flagging an error if the
difference in probability between the text’s original
preposition and an alternative preposition exceeds a
certain threshold. The probability for any correction
also needs to exceed another minimum threshold.
For this work, we used the pre-existing, manually-
set thresholds.

234

A pre-filter prevents any contexts that contain
spelling errors from being submitted to the logistic
regression model. The motivation for this is that the
NLP components that provide the features for the
model are unreliable on such data, and since the sys-
tems favors precision over recall, no attempt is made
to correct prepositions where the system cannot rely
on the accuracy of those features.

The logistic regression model of correct preposi-
tion usage is trained on approximately 82 million
words from the San Jose Mercury News2 and texts
for 11th to 12th grade reading levels from the Meta-
Metrics Lexile corpus, resulting in 7 million prepo-
sition contexts. The model uses 25 types of features:
words and part-of-speech tags around the existing
preposition, head verb (or noun) in the preceding
VP (or NP), head noun in the following NP, among
others. NPs and VPs were detected using chunking
rather than full parsing, as the performance of statis-
tical parsers on erroneous text was deemed to be too
poor.

A post-filter rules out certain candidates based on
the following heuristics: (1) if the suggested correc-
tion is an antonym of the original preposition (e.g.,
from vs to), it is discarded; (2) any correction of the
benefactive for is discarded when the head noun of
the following NP is human (detected as a WordNet
hyponym of person or group).

3.1.2 Extraneous Prepositions

Heuristics are applied to detect common occur-
rences of extraneous prepositions in two scenar-
ios: (1) accidentally repeated prepositions (e.g., with
with) and (2) insertion of unnecessary prepositions
in plural quantifier constructions (e.g., some of peo-
ple).

3.2 Determiner Error Detection

There are two separate components that detect er-
rors related to determiners. The first is a filter-based
model that detects determiner errors involving num-
ber and person agreement. The second is a statistical
system that supplements the rule-based system and
detects article errors.

2The San Jose Mercury News is available from the Linguis-
tic Data Consortium (catalog number LDC93T3A).

3.2.1 Filter-based system
The filter-based system combines unsupervised

detection of a set of possible errors (Chodorow and
Leacock, 2000) with hand-crafted filters designed
to reduce this set to the largest subset of correctly
flagged errors and the smallest possible number
of false positives. Chodorow and Leacock (2000)
found that low-frequency bigrams (sequences of two
lexical categories with a negative log-likelihood) are
quite reliable predictors of grammatical errors. Text
is tagged and chunked, and filters that detect likely
cases of NP-internal agreement violations are ap-
plied. These filters will mark, for example, a sin-
gular determiner followed by a plural noun head and
vice versa, or a number disagreement between a nu-
meral and the noun it modifies. This system has
the ability to take advantage of linguistic knowledge,
which contributes to its ability to detect errors with
high precision.

3.2.2 Statistical model
In addition to the hand-crafted filters described

above, there is a statistical component that detects
incorrect, missing and extraneous articles (Han et
al., 2004; Han et al., 2006). This component con-
sists of a multiclass logistic regression that selects
an appropriate article for every NP from a, an, the,
or ε. This model is trained on 31.5 million words
of diverse genres from the MetaMetrics Lexile cor-
pus (from 10th to 12th grade reading levels), or 8
million NP contexts. Again, NPs were determined
by chunking. The model includes various features:
words and POS tags around and within the NP, NP
head information including the countability of the
head noun (estimated automatically from large cor-
pora), etc.

In a cross-validation experiment, the model
achieved approximately 83% accuracy on well-
edited text. In an experiment evaluated on non-
native learner text, the model achieved approxi-
mately 85% agreement with human annotators.

4 Task-Specific Heuristic Filtering

There is not a one-to-one mapping between the def-
initions of determiner and preposition errors as used
in the HOO data set and the definitions used in our
base system. For example, our base system marks

235

errors involving every, many and other quantifiers as
determiner errors, while these are not marked in the
current HOO 2012 Shared Task data.

To ensure that our system was aligned with the
HOO 2012 Shared Task, we automatically extracted
lists of the most frequently occurring determiners
and prepositions in the HOO training data. Any RT,
UT, RD or UD edit predicted for a word not in those
lists is automatically discarded. In the training data,
this resulted in the removal of 4 of the 463 RT errors
and 98 of the 361 RD errors detected by the base
system.

5 Large-scale n-Gram Models

In order to complement the high-precision base sys-
tem and increase recall, we incorporate a large
scale n-gram model into our full system. Specifi-
cally, we adapt the SUMLM method from Bergsma
et al. (2009). SUMLM creates confusion sets for
each preposition token in an input text and uses the
Google Web 1T 5-gram Corpus to score each item
in the confusion set.3 We extend SUMLM to sup-
port determiners, extraneous use errors, and missing
word errors.

Consider the case of preposition selection errors.
For a preposition token at position i in an input sen-
tence w, we compute the following score for each
possible alternative v, using Eq. 1.4

s(w, i, v) =

∑
n=2...5

∑
x∈G(w,i,n,v)

log(count(x))

|G(w, i, n, v)|
(1)

The function G(w, i, n, v) returns the set of n-
grams in w that include the word at position i and

3The Google Web 1T 5-gram Corpus is available from the
Linguistic Data Consortium (catalog number LDC2006T13).
We plan to test other corpora for n-gram counts in future work.

4The n-gram approach considers all of the following words
to be prepositions: to, of, in, for, on, with, at, by, as, from, about,
up, over, into, down, between, off, during, under, through,
around, among, until, without, along, within, outside, toward,
inside, upon, except, onto, towards, besides, beside, and under-
neath. It considers all of the following words to be determiners:
a, an, and the. The sets of possible prepositions and determiners
for the base system are not exactly the same. Part of speech tags
are not used in the n-gram system except to identify insertion
points for missing prepositions and determiners.

replace that word, wi, with v. For example, if w =
Mary and John went at the store to buy milk, n = 4,
i = 4, and v = to, then G(w, i, n, v) returns the
following 4-grams:

• and John went to

• John went to the

• went to the store

• to the store to

The expression log(count(x)) is the natural loga-
rithm of the number of times the n-gram x occurred
in the corpus.5 |G(w, i, n, v)| is the number of n-
gram count lookups, used to normalize the scores.
Note that this normalization factor is not included in
the original SumLM. When v is an alternative prepo-
sition not near the beginning or end of a sentence,
|G(w, i, n, v)| = 14 since there are 14 n-gram count
lookups in the numerator. Or, for example, if i = 0,
indicating that the preposition occurs at the begin-
ning of the sentence, |G(w, i, n, v)| = 4.6

Next, we compute the ratio of the score of each
alternative to the score for the original, using Eq. 2.

r(w, i, v) =
s(w, i, v)
s(w, i, wi)

(2)

We then identify the best scoring alternative, re-
quiring that its score be higher than the original (i.e.,
r(w, i, v) > 1). The procedure is the same for deter-
miners, except, of course, that the set of alternatives
includes determiners rather than prepositions.

To extend the method from Bergsma et al. (2009)
for extraneous prepositions and determiners, we
simply set v to be a blank and sum over j = 3 . . . 5
instead. |G(w, i, n, v)|will then be 12 instead of 14,
since bigrams from the original sentence, which be-
come unigrams when replacing wi with a blank, are
excluded.

To identify positions at which to flag selection or
extraneous use errors, we simply scan for words that
match an item in our sets of possible prepositions
and determiners. To extend the method for missing

5We use the TrendStream system (Flor, 2012) to retrieve n-
gram counts efficiently.

6Our n-gram counts do not include start- or end-of-sentence
symbols. Also, all n-grams are case-normalized with numbers
replaced by a special symbol.

236

Algorithm 1 tune(W, y, ŷ α, αmin):
The hill-climbing algorithm for optimizing the n-
gram method’s penalty parameters q. W consists
of the training set texts. ŷ is a set of candidate edits.
y is a set of gold standard edits. α is an initial step
size, and αmin is a minimum step size.

qallbest ← 0
scoreallbest ← eval(qallbest,W,y, ŷ)
while α > αmin do

scorebest ← −∞
qbest ← qallbest

for qtmp ∈ perturb(qbest, α) do
scoretmp ← eval(qtmp,W,y, ŷ)
if scoretmp > scorebest then

qbest ← qtmp

scorebest ← scoretmp

end if
end for
if scorebest > scoreallbest then

qallbest ← qbest
scoreallbest ← scorebest

else
α← 0.5 ∗ α

end if
end while
return qallbest

word errors, however, we apply a set of heuristics to
identify potential insertion points.7

6 Tuning

The n-gram approach in §5 generates a large num-
ber of possible edits of different types. In this sec-
tion, we describe how we filter edits using their
scores and how we combine them with edits from
the base system (§3).

As described above, for an alternative v to be con-
sidered as a candidate edit, the value of r(w, i, v) in
Eq. 2 must be greater than a threshold of 1, indicat-
ing that the alternative scores higher than the origi-
nal word. However, we observed low precision dur-
ing development when including all candidate ed-
its and decided to penalize the ratios. Bergsma et
al. (2009) discuss raising the threshold, which has

7The heuristics are based on those used in Gamon (2010)
(personal communication).

a similar effect. Preliminary experiments indicated
that different edits (e.g., extraneous preposition edits
and preposition selection edits) should have differ-
ent penalties, and we also want to avoid edits with
overlapping spans. Thus, for each location with one
or more candidate edits, we select the best according
to Equation 3 and filter out the rest.

v∗ = arg max
v

r(w, i, v)− penalty(wi, v) (3)

penalty(wi, v) is a function that takes the current
word wi and the alternative v and returns one of 6
values: qRT for preposition selection, qUT for extra-
neous prepositions, qMT for missing prepositions,
qRD for determiner selection, qUD for extraneous
determiners, and qMD for missing determiners.

If the value for r(w, i, v∗)−penalty(wi, v
∗) does

not exceed 1, we exclude it from the output.
We tune the vector q of all the penalties to op-

timize our objective function (F-score, see §7) on
the training set using the hill-climbing approach de-
scribed in Algorithm 1. The algorithm initializes
the parameter vector to all zeros, and then itera-
tively evaluates candidate parameter vectors that re-
sult from taking positive and negative steps of size
α in each direction (steps with negative penalties
are skipped). The best step is taken if it improves
the current score, according to the eval function,
which returns the training set F-score after filtering
based on the current parameters.8 This process pro-
ceeds until there is no improvement. Then, the step
size α is halved, and the whole process is repeated.
The algorithm proceeds as such until the step size
becomes lower than a specified minimum αmin.

When merging edits from the base system and the
n-gram approach, the hybrid system always prefers
edits from the base system if any edit spans overlap,
equivalent to including them in Eq. 3 and assigning
them a penalty of −∞.9 Note that the set of pre-
dicted edits y passed as input to the tune algorithm

8Our implementation of the tuning algorithm uses the HOO
2012 Shared Task’s evalfrag.py module to evaluate the F-
score for the error detection subtask.

9If the base system produces overlapping edits, we keep
them all. If there are overlapping edits from the n-gram sys-
tem that have the same highest value for the penalized score in
Equation 3 and do not overlap with any base system edits, we
keep them all.

237

texts

edits

edits

edits

parameters

parameters

gold edits

base system -gram systemn

filteringtuning

heuristic filtering

training testing

Figure 1: The architecture of the hybrid system. Different
steps are discussed in different parts of the paper: “base
system” in §3, “n-gram system” in §5, “heuristic filter-
ing” in §4, and “tuning” and “filtering” in §6.

includes edits from both the base and n-gram meth-
ods.

Figure 1 illustrates the processes of training and
of producing test output from the hybrid system.

7 Results

Table 1 presents results for the HOO 2012 detec-
tion subtask, including errors of all types. The re-
sults here, reproduced from Dale et al. (2012), are
prior to applying participant-suggested revisions to
the set of gold standard edits.10 We include four
variations of our approach: the base system (§3, la-
beled “base”); the n-gram system (§5, labeled “n-
gram”) by itself, tuned without edits from the base
system; the hybrid system, tuned with edits from the
base system (“hybrid”); and a variation of the hy-

10After submitting our predictions for the shared task, we
noticed a few minor implementation mistakes in our code re-
lated to the conversion of edits from the base system (§3) and
the task-specific heuristic filtering (§4). We corrected them and
retrained our system. The detection F-scores for the original
and corrected implementations were as follows: 26.45% (orig-
inal) versus 26.23% (corrected) for the base system, 30.70%
(original) versus 30.45% (corrected) for the n-gram system,
35.65% (original) versus 35.24% (corrected) for the hybrid sys-
tem, and 31.82% (original) versus 31.45% (corrected) for the
hybridindep system. Except for this footnote, all results in this
paper are for the original system.

run P R F
base 0 52.63 17.66 26.45
n-gram – 25.87 37.75 30.70
hybrid 1 33.59 37.97 35.65
hybridindep 2 24.88 44.15 31.82
UI 8 37.22 43.71 40.20

Table 1: Precision, recall, and F-score for the combined
preposition and determiner error detection subtask for
various methods, before participant-suggested revisions
to the gold standard were applied. All values are percent-
ages. Official run numbers are shown in the “run” col-
umn. The “n-gram” run was not part of our official sub-
mission. For comparison, “UI” is the submission, from
another team, that achieved the highest detection F-score
in the HOO 2012 Shared Task.

brid system (“hybridindep”) with the penalties tuned
independently, rather than jointly, to maximize F-
score for detection of each error type. For compari-
son, we also include the best performing run for the
detection subtask in terms of F-score (labeled “UI”).

We observe that the base and n-gram systems ap-
pear to complement each other well for this task: the
base system achieved 26.45% F-score, and the n-
gram system achieved 30.70%, while the hybrid sys-
tem, with penalties tuned jointly, achieved 35.65%.
Table 2 shows further evidence that the two systems
have complementary performance. We calculate the
overlap between each system’s edits and the gold
standard. We see that only a small number of edits
are predicted by both systems (38 in total, 18 cor-
rect and 20 incorrect), and that the base system pre-
dicts 62 correct edits that the n-gram method does
not predict, and similarly the n-gram method pre-
dicts 92 correct edits that the base system does not
predict. The table also verifies that the base system
exhibits high precision (only 68 false positives in to-
tal) while the n-gram system is tuned for higher re-
call (286 false positives).

Not surprisingly, when the n-gram method’s
penalties were tuned independently (“hybridindep”)
rather than jointly, the overall score was lower, at
31.82% F-score. However, tuning independently
might be desirable if one were concerned with
performance on specific error types or if macro-
averaged F-score were the objective.

The hybrid system performed quite competitively

238

(1) All models had a UD very strange long shoes made from black skin . . .

(2) I think it is a great idea to organise this sort of festival because most of UT people enjoy it.

Figure 2: Examples of errors detected by the base system and missed by the n-gram models.

(3) We have to buy for UT some thing.

(4) I am ε MD good diffender.

Figure 3: Examples of errors detected by the n-gram system and missed by the base model.

∈ gold /∈ gold
∈ base /∈ base ∈ base /∈ base

∈ n-gram 18 92 20 266
/∈ n-gram 62 276 48 —

Table 2: The numbers of edits that overlap in the hybrid
system’s output and the gold standard for the test set. The
hybrid system’s output is broken down by whether edits
came from the base system (§3) or the n-gram method
(§5). The empty cell corresponds to hypothetical edits
that were in neither the gold standard or the system’s out-
put (e.g., edits missed by annotators), which we cannot
count.

compared to the other HOO 2012 submissions,
achieving the 3rd best results out of 14 teams for
the detection and recognition subtasks. The per-
formance of the “UI” system was somewhat higher,
however, at 40.20% F-score compared to the hybrid
system’s 35.65%. We speculate that our hybrid sys-
tem’s performance could be improved somewhat if
we also tuned the base system for the task.

8 Error Analysis

It is illustrative to look at some examples of edits
that the base system correctly detects but the n-gram
model does not, and vice versa. Figure 2 shows ex-
amples of errors detected by the base system, but
missed by the n-gram system. Example (1) illus-
trates that the n-gram model has no concept of syn-
tactic structure. The base system, on the other hand,
carries out simple processing including POS tagging
and chunking, and is therefore aware of at least some
longer-distance dependencies (e.g., a . . . shoes). Ex-

ample (2) shows the effectiveness of the heuris-
tics based on quantifier constructions mentioned in
§3.1.2. These heuristics were developed by devel-
opers familiar with the kinds of errors that language
learners frequently make, and are therefore more tar-
geted than the general n-gram method.

Figure 3 shows examples of errors detected by the
n-gram system but missed by the base system. Ex-
ample (3) shows an example of where the base sys-
tem does not detect the extraneous preposition be-
cause it only searches for these in certain quantifier
constructions. Example (4) contains a spelling error,
which confuses the determiner error detection sys-
tem. It has not seen the misspelling often enough to
be able to reliably judge whether it needs an article
or not before it, and so errs on the side of caution.
When diffender is correctly spelled as defender, the
base system does detect that there is a missing article
in the sentence.

There were a small number of cases where dialect
caused a mismatch between our system’s error pre-
dictions and the gold standard. For example, an ho-
tel is not marked as an error in the gold standard
since it is correct in many dialects. However, it was
always corrected to a hotel by our system. Our sys-
tem also often corrected determiners before the noun
camp, since in American Standard English it is more
usual to talk about going to Summer Camp rather
than going to a/the Summer Camp.

Although the task was to detect preposition and
determiner errors in isolation, there was sometimes
interference from other errors in the sentence. This
impacted the task in two ways. Firstly, in a sentence

239

with multiple errors, it was sometimes possible to
correct it in multiple ways, not all of which involved
preposition or determiner errors. For example, you
could correct the phrase a women by either chang-
ing the a to the, deleting the a entirely or replacing
women with woman. The last change would not fall
under the category of determiner error, and so there
was sometimes a mismatch between the corrections
predicted by the system and the gold standard cor-
rections. Secondly, the presence of multiple errors
impacted the task when a gold standard correction
depended on another error in the same sentence be-
ing corrected in a particular way. For example, you
could correct I’m really excited to read the book. as
I’m really excited about reading the book., however
if you add the preposition about without correcting
to read this correction results in the sentence becom-
ing even more ungrammatical than the original.11

9 Conclusion

In this paper, we have described a hybrid system
for grammatical error detection that combines a pre-
existing base system, which leverages detailed lin-
guistic knowledge and produces high-precision out-
put, with a large-scale n-gram approach, which re-
lies almost exclusively on simple counting of n-
grams in a massive corpus. Though the base system
was not tuned at all for the HOO 2012 Shared Task,
it performed well in the official evaluation. The two
methods also complemented each other well: many
of the predictions from one did not appear in the out-
put of the other, and the F-score of the hybrid system
was considerably higher than the scores for the indi-
vidual methods.

Acknowledgments

We thank Martin Chodorow for discussions about
the base system, Daniel Blanchard for help with run-
ning the base system, Nitin Madnani for discussions
about the paper and for its title, and Michael Flor for
the TrendStream system.

11Many of these cases were addressed in the revised version
of the gold standard data, however we feel that the issue is a
more general one and deserves consideration in the design of
future tasks.

References

Yigal Attali and Jill Burstein. 2006. Automated Es-
say Scoring with e-rater V.2. Journal of Technol-
ogy, Learning, and Assessment, 4(3). Available from
http://www.jtla.org.

Shane Bergsma, Dekang Lin, and Randy Goebel. 2009.
Web-Scale N-gram Models for Lexical Disambigua-
tion. In Proceedings of the 21st international joint
conference on Artifical intelligence, IJCAI’09, pages
1507–1512, Pasadena, California. Morgan Kaufmann
Publishers Inc.

Martin Chodorow and Claudia Leacock. 2000. An Un-
supervised Method for Detecting Grammatical Errors.
In Proceedings of the First Meeting of the North Amer-
ican Chapter of the Association for Computational
Linguistics (NAACL), pages 140–147, Seattle, Wash-
ington. Association for Computational Linguistics.

Martin Chodorow, Joel Tetreault, and Na-Rae Han. 2007.
Detection of Grammatical Errors Involving Preposi-
tions. In Proceedings of the Fourth ACL-SIGSEM
Workshop on Prepositions, pages 25–30, Prague,
Czech Republic. Association for Computational Lin-
guistics.

Robert Dale, Ilya Anisimoff, and George Narroway.
2012. HOO 2012: A Report on the Preposition and
Determiner Error Correction Shared Task. In Proceed-
ings of the Seventh Workshop on Innovative Use of
NLP for Building Educational Applications, Montreal,
Canada. Association for Computational Linguistics.

Michael Flor. 2012. A fast and flexible archi-
tecture for very large word n-gram datasets.
Natural Language Engineering, pages 1–33.
doi:10.1017/S135132491100034.

Michael Gamon. 2010. Using Mostly Native Data to
Correct Errors in Learners’ Writing. In Human Lan-
guage Technologies: The 2010 Annual Conference of
the North American Chapter of the Association for
Computational Linguistics, pages 163–171, Los An-
geles, California. Association for Computational Lin-
guistics.

Na-Rae Han, Martin Chodorow, and Claudia Leacock.
2004. Detecting Errors in English Article Usage with
a Maximum Entropy Classifier Trained on a Large, Di-
verse Corpus. In Proceedings of the 4th International
Conference on Language Resources and Evaluation
(LREC 2004), pages 1625–1628, Lisbon, Portugal.

Na-Rae Han, Martin Chodorow, and Claudia Leacock.
2006. Detecting errors in English article usage by
non-native speakers. Natural Language Engineering,
12:115–129. doi:10.1017/S1351324906004190.

Joel R. Tetreault and Martin Chodorow. 2008. The
Ups and Downs of Preposition Error Detection in

240

ESL Writing. In Proceedings of the 22nd Interna-
tional Conference on Computational Linguistics (Col-
ing 2008), pages 865–872, Manchester, UK. Coling
2008 Organizing Committee.

241

