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Abstract
Logical metonymies (The student finished
the beer) represent a challenge to composi-
tionality since they involve semantic content
not overtly realized in the sentence (covert
events → drinking the beer). We present a
contrastive study of two classes of computa-
tional models for logical metonymy in German,
namely a probabilistic and a distributional,
similarity-based model. These are built using
the SDEWAC corpus and evaluated against a
dataset from a self-paced reading and a probe
recognition study for their sensitivity to the-
matic fit effects via their accuracy in predicting
the correct covert event in a metonymical con-
text. The similarity-based models allow for
better coverage while maintaining the accuracy
of the probabilistic models.

1 Introduction

Logical metonymies (The student finished the beer)
require the interpretation of a covert event which
is not overtly realized in the sentence (→ drinking
the beer). Logical metonymy has received much
attention as it raises issues that are relevant to both
theoretical as well as cognitive accounts of language.

On the theoretical side, logical metonymies consti-
tute a challenge for theories of compositionality (Par-
tee et al., 1993; Baggio et al., in press) since their in-
terpretation requires additional, inferred information.
There are two main accounts of logical metonymy:
According to the lexical account, a type clash be-
tween an event-subcategorizing verb (finish) and an
entity-denoting object (beer) triggers the recovery of
a covert event from complex lexical entries, such as

qualia structures (Pustejovsky, 1995). The pragmatic
account of logical metonymy suggests that covert
events are retrieved through post-lexical inferences
triggered by our world knowledge and communica-
tion principles (Fodor and Lepore, 1998; Cartson,
2002; De Almeida and Dwivedi, 2008).

On the experimental side, logical metonymy leads
to higher processing costs (Pylkkänen and McEl-
ree, 2006; Baggio et al., 2010). As to covert
event retrieval, it has been found that verbs cue
fillers with a high thematic fit for their argument
positions (e.g. arrest

agent−−−→ cop, (Ferretti et al.,
2001)) and that verbs and arguments combined cue
fillers with a high thematic fit for the remaining

argument slots (e.g. 〈journalist , check〉 patient−−−−→
spelling but 〈mechanic, check〉 patient−−−−→ car (Bick-
nell et al., 2010). The interpretation of logical
metonymy is also highly sensitive to context (e.g.
〈confectioner , begin, icing〉 covertevent−−−−−−−→ spread
but 〈child , begin, icing〉 covertevent−−−−−−−→ eat (Zarcone
and Padó, 2011; Zarcone et al., 2012). It thus pro-
vides an excellent test bed for cognitively plausible
computational models of language processing.

We evaluate two classes of computational mod-
els for logical metonymy. The classes represent the
two main current approaches in lexical semantics:
probabilistic and distributional models. Probabilistic
models view the interpretation as the assignment of
values to random variables. Their advantage is that
they provide a straightforward way to include con-
text, by simply including additional random variables.
However, practical estimation of complex models
typically involves independence assumptions, which
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may or may not be appropriate, and such models
only take first-order co-occurrence into account1. In
contrast, distributional models represent linguistic
entities as co-occurrence vectors and phrase interpre-
tation as a vector similarity maximization problem.
Distributional models typically do not require any
independence assumptions, and include second-order
co-occurrences. At the same time, how to integrate
context into the vector computation is essentially an
open research question (Mitchell and Lapata, 2010).

In this paper, we provide the first (to our knowl-
edge) distributional model of logical metonymy
by extending the context update of Lenci’s ECU
model (Lenci, 2011). We compare this model to
a previous probabilistic approach (Lapata and Las-
carides, 2003a; Lapata et al., 2003b). In contrast
to most experimental studies on logical metonymy,
which deal with English data (with the exception of
Lapata et al. (2003b)), we focus on German. We
estimate our models on a large web corpus and eval-
uate them on a psycholinguistic dataset (Zarcone
and Padó, 2011; Zarcone et al., 2012). The task
we use to evaluate our models is to distinguish
covert events with a high typicality / thematic fit
(e.g. The student finished the beer −→ drinking)
from low typicality / thematic fit covert events
(−→ brewing).

2 Probabilistic models of logical metonymy

Lapata et al. (2003b; 2003a) model the interpretation
of a logical metonymy (e.g. The student finished the
beer) as the joint distribution P (s, v, o, e) of the vari-
ables s (the subject, e.g. student), v (the metonymic
verb, e.g. finish), o (the object, e.g. beer), e (the
covert event, drinking).

This model requires independence assumptions
for estimation. We present two models with different
independence assumptions.

1This statement refers to the simple probabilistic models we
consider, which are estimated directly from corpus co-occurrence
frequencies. The situation is different for more complex prob-
abilistic models, for example generative models that introduce
latent variables, which can amount to clustering based on higher-
order co-occurrences, as in, e.g., Prescher et al. (2000).

2.1 The SOVp model

Lapata et al. develop a model which we will refer
to as the SOVp model.2 It assumes a generative pro-
cess which first generates the covert event e and then
generates all other variables based on the choice of e:

P (s, v, o, e) ≈ P (e) P (o|e) P (v|e) P (s|e)

They predict that the selected covert event ê for
a given context is the event which maximizes
P (s, v, o, e):

ê = arg max
e
P (e) P (o|e) P (v|e) P (s|e)

These distributions are estimated as follows:

P̂ (e) =
f(e)
N

, P̂ (o|e) =
f(e o←− o)
f(e o←− ·)

,

P̂ (v|e) =
f(v c←− e)
f(· c←− e)

, P̂ (s|e) =
f(e s←− s)
f(e s←− ·)

,

where N is the number of occurrences of full verbs
in the corpus; f(e) is the frequency of the verb e;
f(e o←− ·) and f(e s←− ·) are the frequencies of e
with a direct object and subject, respectively; and
f(e c←− ·) is number of times e is the complement of
another full verb.

2.2 The SOp model

In Lapata et al.’s covert event model, v, the
metonymic verb, was used to prime different choices
of e for the same object (begin book−→ writing;
enjoy book−→ reading). In our dataset (Sec. 4), we
keep v constant and consider e only as a function of
s and o. Thus, the second model we consider is the
SOp model which does not consider v:

P (s, v, o, e) ≈ P (s, o, e) ≈ P (e) P (o|e) P (s|e)

Again, the preferred interpretation ê is the one that
maximizes P (s, v, o, e):

ê = arg max
e
P (e) P (o|e) P (s|e)

2In Lapata et al. (2003b; 2003a), this model is called the
simplified model to distinguish it from a full model. Since the full
model performs worse, we do not include it into consideration
and use a more neutral name for the simplified model.
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3 Similarity-based models
3.1 Distributional semantics
Distributional or vector space semantics (Turney and
Pantel, 2010) is a framework for representing word
meaning. It builds on the Distributional Hypothe-
sis (Harris, 1954; Miller and Charles, 1991) which
states that words occurring in similar contexts are
semantically similar. In distributional models, the
meaning of a word is represented as a vector whose
dimensions represent features of its linguistic con-
text. These features can be chosen in different ways;
popular choices are simple words (Schütze, 1992) or
lexicalized dependency relations (Lin, 1998; Padó
and Lapata, 2007). Semantic similarity can then be
approximated by vector similarity using a wide range
of similarity metrics (Lee, 1999).

3.1.1 Distributional Memory
A recent multi-purpose framework in distribu-

tional semantics is Distributional Memory (DM, Ba-
roni and Lenci (2010)). DM does not immedi-
ately construct vectors for words. Instead, it ex-
tracts a three-dimensional tensor of weighted word-
link-word tuples each of which is mapped onto a
score by a function σ : 〈w1 l w2〉 → R+. For ex-
ample, 〈pencil obj use〉 has a higher weight than
〈elephant obj use〉. The set of links can be defined in
different ways, yielding various DM instances. Ba-
roni and Lenci present DepDM (mainly syntactic
links such as subj_tr ), LexDM (strongly lexicalized
links, e.g., such_as), or TypeDM (syntactic and lexi-
calized links).3

The benefit of the tensor-based representation is
that it is general, being applicable to many tasks.
Once a task is selected, a dedicated semantic space
for this task can be generated efficiently from the
tensor. For example, the word by link-word space
(W1 × LW2) contains vectors for the words w1

whose dimensions are labeled with 〈l, w2〉 pairs. The
word-word by link space (W1W2 × L) contains co-
occurrence vectors for word pairs 〈w1, w2〉 whose
dimensions are labeled with l.

3.2 Compositional Distributional Semantics
Probabilistic models can account for composition-
ality by estimating conditional probabilities. Com-

3l−1 is used to denote the inverse link of l (i.e., exchanging
the positions of w1 and w2).

positionality is less straightforward in a similarity-
based distributional model, because similarity-based
distributional models traditionally model meaning
at word level. Nevertheless, the last years have
seen a wave of distributional models which make
progress at building compositional representations
of higher-level structures such as noun-adjective or
verb-argument combinations (Mitchell and Lapata,
2010; Guevara, 2011; Reddy et al., 2011).

3.2.1 Expectation Composition and Update
Lenci (2011) presents a model to predict the degree

of thematic fit for verb-argument combinations: the
Expectation Composition and Update (ECU) model.
More specifically, the goal of ECU is explain how the
choice of a specific subject for a given verb impacts
the semantic expectation for possible objects. For
example, the verb draw alone might have fair, but not
very high, expectations for the two possible objects
landscape and card. When it is combined with the
subject painter, the resulting phrase painter draw the
expectation for the object landscape should increase,
while it should drop for card.

The idea behind ECU is to first compute the verb’s
own expectations for the object from a TypeDM
W1 × LW2 matrix and then update it with the sub-
ject’s expectations for the object, as mediated by the
TypeDM verb link type.4 More formally, the verb’s
expectations for the object are defined as

EXV (v) = λo. σ(
〈
v obj−1 o

〉
)

The subject’s expectations for the object are

EXS(s) = λo. σ(〈s verb o〉)

And the updated expectation is

EXSV (s, v) = λo.EXV (v)(o) ◦ EXS(s)(o)

where ◦ is a composition operation which Lenci in-
stantiates as sum and product, following common
practice in compositional distributional semantics
(Mitchell and Lapata, 2010). The product composi-
tion approximates a conjunction, promoting objects
that are strongly preferred by both verb and subject.
It is, however, also prone to sparsity problems as well

4In DM, verb directly connects the subject and the object of
transitive verb instances, e.g 〈marine verb gun〉.
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shortcomings of the scoring function σ. The sum
composition is more akin to a disjunction where it
suffices that an object is strongly preferred by either
the verb or the subject.

It would be possible to use these scores as direct
estimates of expectations, however, sinceEXSV con-
tains three lexical variables, sparsity is a major issue.
ECU thus introduces a distributional generalization
step. It only uses the updated expectations to identify
the 20 most expected nouns for the object position.
It then determines the prototype of the updated ex-
pectations as the centroid of their W1×LW2 vectors.
Now, the thematic fit for any noun can be computed
as the similarity of its vector to the prototype.

Lenci evaluates ECU against a dataset from Bick-
nell et al. (2010), where objects (e.g. spelling) are
matched with a high-typicality subject-verb combi-
nations (e.g. 〈journalist, check〉 - high thematic fit)
and with a low-typicality subject-verb combination
(e.g. 〈mechanic, check〉 - low thematic fit). ECU is
in fact able to correctly distinguish between the two
contexts differing in thematic fit with the object.

3.3 Cognitive relevance
Similarity-based models build upon the Distribu-
tional Hypothesis, which, in its strong version, is
a cognitive hypothesis about the form of semantic
representations (Lenci, 2008): the distributional be-
havior of a word reflects its semantic behavior but
is also a direct correlate of its semantic content at
the cognitive level. Also, similarity-based models
are highly compatible with known features of hu-
man cognition, such as graded category member-
ship (Rosch, 1975) or multiple sense activation (Erk,
2010). Their cognitive relevance for language has
been supported by studies of child lexical devel-
opment (Li et al., 2004), category-related deficits
(Vigliocco et al., 2004), selectional preferences (Erk,
2007), event types (Zarcone and Lenci, 2008) and
more (see Landauer et al. (2007) and Baroni and
Lenci (2010) for a review).

3.4 Modeling Logical Metonymy with ECU
3.4.1 Logical Metonymy as Thematic Fit

The hypothesis that we follow in this paper is that
the ECU model can also be used, with modifications,
to predict the interpretation of logical metonymy.
The underlying assumption is that the interpretation

of logical metonymy is essentially the recovery of
a covert event with a maximal thematic fit (high-
typicality) and can thus make use of ECU’s mech-
anisms to treat verb-argument composition. Strong
evidence for this assumption has been found in psy-
cholinguistic studies, which have established that
thematic fit dynamically affects processing, with on-
line updates of expectations for typical fillers during
the incremental processing of linguistic input (see
McRae and Matsuki (2009) for a review). Thus, we
can hope to transfer the benefits of similarity-based
models (notably, high coverage) to the interpretation
of logical metonymy.

3.4.2 Extending ECU
The ECU model nevertheless requires some modi-

fications to be applicable to logical metonymy. Both
the entity of interest and the knowledge sources
change. The entity of interest used to be the ob-
ject of the sentence; now it is the covert event, which
we will denote with e. As for knowledge sources,
there are three sources in logical metonymy. These
are (a), the subject (compare the author began the
beer and the reader began the book)); (b), the object
the reader began the book vs. the reader began the
sandwich); and (c), the metonymic verb (compare
Peter began the report vs. Peter enjoyed the report).

The basic equations of ECU can be applied to this
new scenario as follows. We first formulate three
basic equations that express the expectations of the
covert event given the subject, object, and metonymic
verb individually. They are all derived from direct de-
pendency relations in the DM tensor (e.g., the novel
metonymic verb–covert event relation from the ver-
bal complement relation):

EXS(s) = λe. σ(〈s subj e〉)
EXO(o) = λe. σ(〈o obj e〉)
EXV (v) = λe. σ(

〈
v comp−1 e

〉
)

To combine (or update) these basic expectations into
a final expectation, we propose two variants:

ECU SOV In this model, we compose all three
expectations:

EXSOV (s, v, o) = λe.EXS(s)(e) ◦
EXO(o)(e) ◦ EXV (v)(e)
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CE

high thematic fit low thematic fit

Der
The

Konditor
baker

begann,
started

die
the

Glasur
icing

aufzutragen.
to spread.

zu essen.
to eat.

Das
The

Kind
child

begann,
started

die
the

Glasur
icing

zu essen.
to eat.

aufzutragen.
to spread.

Table 1: Example materials for the self-paced reading and probe recognition studies

We will refer to this model as SOVΣ when the
composition function is sum, and as the SOVΠ model
when the composition function is product.

ECU SO Analogous to the SO probabilistic model,
this model abstracts away from the metonymic verb.
We assume most information about an event to be
determined by the subject and object:

EXSO(n, n′) = λe.EXS(n)(e) ◦ EXO(n′)(e)

After the update, the prototype computation proceeds
as defined in the original ECU.

We will refer to this model as SOΣ when the com-
position function is sum, and as the SOΠ model when
the composition function is product.

4 Experimental Setup

We evaluate the probabilistic models (Sec. 2) and the
similarity-based models (Sec. 3) on a dataset con-
structed from two German psycholinguistic studies
on logical metonymy. One study used self-paced
reading and the second one probe recognition.

Dataset The dataset we use is composed of 96 sen-
tences. There are 24 sets of four 〈s, v, o, e〉 tuples,
where s is the object, v the metonymic verb, o the
object and e the covert event. The materials are illus-
trated in Table 1. As can be seen, all tuples within
a set share the same metonymic verb and the same
object. Each of the two subject e is matched once
with a high-typicality covert event and once with a
low-typicality covert event. This results in 2 high-
typicality tuples and 2 low-typicality tuples in each
set. Typical events (e) were elicited by 20 partici-
pants given the corresponding object o, subjects were
elicited by 10 participants as the prototypical agents
subjects for each e, o combination.

The experiments yielded a main effect of typicality
on self-paced reading times (Zarcone and Padó, 2011)

and on probe recognition latencies (Zarcone et al.,
2012): typical events involved in logical metonymy
interpretation are read faster and take longer to be
rejected as probe words after sentences which evoke
them. The effect is seen early on (after the patient
position in the self-paced reading and at short ISI for
the probe recognition), suggesting that knowledge
of typical events is quickly integrated in processing
and that participants access a broader pool of knowl-
edge than what has traditionally been argued to be
in the lexical entries of nouns (Pustejovsky, 1995).
The finding is in agreement with results of psycholin-
guistic studies which challenge the very distinction
between world knowledge and linguistic knowledge
(Hagoort et al., 2004; McRae and Matsuki, 2009).

DM for German Since DM exists only for English,
we constructed a German analog using the 884M
word SDEWAC web corpus (Faaß et al., 2010) parsed
with the MATE German dependency parser (Bohnet,
2010).

From this corpus, we extract 55M instances of
simple syntactic relations (subj_tr, subj_intr, obj,
iobj, comp, nmod) and 104M instances of lexicalized
patterns such as noun–prep–noun e.g. 〈Recht auf
Auskunft〉 (〈right to information〉), or adj–noun-(of)-
noun such as 〈strittig Entscheidung Schiedsrichter〉
(〈contested decision referee〉). These lexicalized pat-
terns make our model roughly similar to the English
TypeDM model (Sec. 3.1.1).

As for σ, we used local mutual information (LMI)
as proposed by Baroni and Lenci (2010). The LMI
of a triple is defined as Ow1lw2 log(Ow1lw2/Ew1lw2),
where Ow1lw2 is the observed co-occurrence fre-
quency of the triple and Ew1lw2 its expected co-
occurrence frequency (under the assumption of inde-
pendence). Like standard MI, LMI measures the
informativity or surprisal of a co-occurrence, but
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weighs it by the observed frequency to avoid the
overestimation for low-probability events.

4.1 Task

We evaluate the models using a binary selection
task, similar to Lenci (2011). Given a triple 〈s, v, o〉
and a pair of covert events e, e′ (cf. rows in
Tab. 1), the task is to pick the high-typicality covert
event for the given triple: 〈Chauffeur, vermeiden,
Auto〉 → fahren/reparieren (〈driver, avoid, car〉 →
drive/repair). Since our dataset consists of 96 sen-
tences, we have 48 such contexts.

With the probabilistic models, we compare the
probabilities P (s, v, o, e) and P (s, v, o, e′) (ignoring
v in the SO model). Analogously, for the similarity-
based models, we compute the similarities of the
vectors for e and e′ to the prototype vectors for the ex-
pectations EXSOV (s, v, o) and predict the one with
higher similarity. For the simplified ECU SO model,
we use EXSO(s, o) as the point of comparison.

4.2 Baseline

Following the baseline choice in Lapata et al.
(2003b), we evaluated the probabilistic models
against a baseline (Bp) which, given a 〈s, v, o〉
triplet (e.g. 〈Chauffeur, vermeiden, Auto〉), scores
a “hit” if the P̂ (e|o) for the high-typicality e is
higher than the P̂ (e|o) for the low-typicality e. The
similarity-based models were evaluated against a
baseline (Bs) which, given an 〈s, v, o〉 triplet (e.g.
〈Chauffeur, vermeiden, Auto〉), makes a correct pre-
diction if the prototypical event vector for o has a
higher thematic fit (i.e. similarity) with the high-
typicality e than with the low-typicality e.

Since our dataset is counterbalanced – that is, each
covert event appears once as the high-typicality event
for a given object (with a congruent subject) and once
as the low-typicality event – the baseline predicts
the correct covert event in exactly 50% of the cases.
Note, however, that this is not a random baseline: the
choice of the covert event is made deterministically
on the basis of the input parameters.

4.3 Evaluation measures

We evaluate the output of the model with the stan-
dard measures coverage and accuracy. Coverage is
defined as the percentage of datapoints for which
a model can make a prediction. Lack of coverage

arises primarily from sparsity, that is, zero counts for
co-occurrences that are necessary in the estimation
of a model. Accuracy is computed on the covered
contexts only, as the ratio of correct predictions to
the number of predictions of the model. This allows
us to judge the quality of the model’s predictions
independent of its coverage.

We also consider a measure that combines cov-
erage and accuracy, Backoff Accuracy, defined as:
coverage×accuracy+((1−coverage)×0.5). Back-
off Accuracy emulates a backoff procedure: the
model’s predictions are adopted where they are avail-
able; for the remaining datapoints, it assumes base-
line performance (in the current setup, 50%). The
Backoff Accuracy of low-coverage models tends to
degrade towards baseline performance.

We determine the significance of differences be-
tween models with a χ2 test, applied to a 2×2 contin-
gency matrix containing the number of correct and
incorrect answers. Datapoints outside a model’s cov-
erage count half for each category, which corresponds
exactly to the definition of Backoff Accuracy.

5 Results

The results are shown in Table 2. Looking at the
probabilistic models, we find SOp yields better cov-
erage and better accuracy than SOVp (Lapata’s sim-
plified model). It is worth noting the large differ-
ence in coverage, namely .75 as opposed to .44: The
SOVp model is unable to make a prediction for more
than half of all contexts. This is due to the fact that
many 〈o, v〉 combinations are unattested in the cor-
pus. Even on those contexts for which the proba-
bilistic SOVp model can make a prediction, it is less
reliable than the more general SOp model (0.62 ver-
sus 0.75 accuracy). This indicates that, at least on our
dataset, the metonymic verb does not systematically
help to predict the covert event; it rather harms perfor-
mance by introducing noisy estimates. As the lower
half of the Table shows, the SOVp model does not
significantly outperform any other model (including
both baselines Bp and Bs).

The distributional models do not have such cover-
age issues. The main problematic combination for
the similarity model is 〈Pizzabote hassen Pizza〉 (i.e.
〈Pizza delivery man hate pizza〉) which is paired
with the covert events liefern (deliver) and backen
(bake). The computation of ECU predictions for
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Probabilistic Models Similarity-based Models

Bp SOVp SOp Bs SOVΣ SOVΠ SOΣ SOΠ

Accuracy 0.50 0.62 0.75 0.50 0.68 0.56 0.68 0.70
Coverage 1.00 0.44 0.75 1.00 0.98 0.94 0.98 0.98

Backoff Accuracy 0.50 0.55 0.69 0.50 0.68 0.56 0.68 0.70

Probabilistic Models Similarity-based Models

Bp SOVp SOp Bs SOVΣ SOVΠ SOΣ SOΠ

Bp

Pr
ob

.

SOVp -
SOp * -

Bs - - *
SOVΣ * - - *

Si
m

ila
ri

ty

SOVΠ - - - - -
SOΣ * - - * - -
SOΠ ** ∗† - ** - ∗† -

Table 2: Results (above) and significance levels for difference in backoff accuracy determined by χ2-test (below)
for all probabilistic and similarity-based models (**: p<0.01, *: p≤0.05, -: p>0.05). For ∗† (SOΠ − SOVp and
SOΠ − SOVΠ) p was just above 0.05 (p=0.053).

this combination requires corpus transitive corpus
constructions for Pizzabote, in the corpus it is only
attested once as the subject of the intransitive verb
kommen (come).

Among distributional models, the difference be-
tween SO and SOV is not as clear-cut as on the
probabilistic side. We observe an interaction with the
composition operation. Sum is less sensitive to com-
plexity of updating: for sum models, the inclusion
of the metonymic verb (SOVΣ vs. SOVΠ) does not
make any difference. On the side of the product mod-
els, there is a major difference similar to the one for
the probabilistic models: SOVΠ is the worst model
at near-baseline performance, and SOΠ is the best
one. This supports our interpretation from above that
the metonymic model introduces noisy expectations
which, in the product model, have the potential of
disrupting the update process.

Comparing the best models from the probabilistic
and similarity-based classes (SOp and SOΠ), we find
that both significantly outperform the baselines. This
shows that the subject contributes to the models with
a significant improvement over the baseline models,
which are only informed by the object. Their back-
off accuracies do not significantly differ from one
another, which is not surprising given the small size

of our dataset, however, the similarity-based model
outperforms the probabilistic model by 1% Backoff
Accuracy. The two models have substantially differ-
ent profiles: the accuracy of the probabilistic model
is 5% higher (0.70 vs. 0.75); at the same time, its
coverage is much lower. It covers only 75% of the
contexts, while the distributional model SOΠ covers
all but one (98%).

6 Discussion

As mentioned above, the main issue with the proba-
bilistic models is coverage. This is due to the reliance
of these models on first-order co-occurrence.

For example, probabilistic models cannot
assign a probability to any of the triples
〈Dieb/Juwelier schmuggeln/schleifen Diamant〉
(〈thief/jeweler smuggle/cut diamond〉), since the
subjects do not occur with either of the verbs in
corpus, even though Diamant does occur as the
object of both.

In contrast, the similarity-based models are able to
compute expectations for these triples from second-
order co-occurrences by taking into account other
verbs that co-occur with Diamant. The ECU model
is not punished by the extra context, as both Dieb and
Diamant are associated with the verbs: stehlen (steal),
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EXSO(〈Chauffeur, Auto〉) EXSO(〈Mechaniker, Auto〉)

fahren (drive) bauen (build)
parken (park) lassen (let/leave)
lassen (let/leave) besitzen (own)
geben (give) reparieren (repair)
sehen (see) brauchen (need)
bringen (bring) sehen (see)
steuern (steer) benutzen (use)
halten (keep/hold) stellen (put)

Table 3: Updated expectations in SOΠ for Chauffeur
(chauffeur), Mechaniker (mechanic) and Auto (car).

rauben (thieve), holen (get), entwenden (purloin),
erbeuten (snatch), verkaufen (sell), nehmen (take),
klauen (swipe). We also note that these are typical
events for a thief, which fits the intuition that Dieb is
more predictive of the event than Diamant.

For both 〈Chauffeur Auto〉 and 〈Mechaniker Auto〉
the probabilistic model predicts fahren due to the
high overall frequency of fahren.5 The distributional
model, however, takes the mutual information into
account and is thus able to determine events that
are more strongly associated with Mechaniker (e.g.
bauen, reparieren, etc.) while at the same time dis-
counting the uninformative verb fahren.

There are, however, items that all models have dif-
ficulty with. Three such cases are due to a frequency
disparity between the high and low-typicality event.
E.g. for 〈Lehrerin Klausur benoten/schreiben〉
(〈teacher exam grade/take〉), schreiben occurs much
more frequently than benoten. In the case
of 〈Schüler Geschichte lernen/schreiben〉 (〈student
story learn/write〉), none of the models or baselines
correctly assigned lernen. The probabilistic mod-
els are influenced by the very frequent Geschichte
schreiben which is part of an idiomatic expression (to
write history). On the other hand, the distributional
models judge the story and history sense of the word
to have the most informative events, e.g. erzählen
(tell), lesen (read), hören (hear), erfinden (invent),
and studieren (study), lehren (teach).

The baselines were able to correctly choose
auspacken (unwrap) over einpacken (wrap) for
〈Geburtstagskind Geschenk〉 (〈birthday-boy/girl
present〉) while the models were not. The prob-

5The combination Mechaniker fahren was seen once more
often than Mechaniker reparieren.

abilistic models lacked coverage and were not
able to make a prediction. For the distributional
models, while both auspacken and verpacken (wrap)
are highly associated with Geschenk, the most
strongly associated actions of Geburtstagskind are
extraordinarily diverse, e.g.: bekommen (receive),
sagen (say), auffuttern (eat up), herumkommandieren
(boss around), ausblasen (blow out). Neither of the
events of interest though were highly associated.

7 Future Work

We see a possible improvement in the choice of the
number of fillers, with which we construct the pro-
totype vectors. A smaller number might lead to less
noisy prototypes.

It has been shown (Bergsma et al., 2010) that the
meaning of the prefix verb can be accurately pre-
dicted using the stem’s vector, when compositional-
ity applies. We suspect covert events that are prefix
verbs to suffer from sparser representations than the
vectors of their stem. E.g., absaugen (vacuum off )
is much less frequent than the semantically nearly
identical saugen (vacuum). Thus, by leveraging the
richer representation of the stem, our distributional
models could more likely assign the correct event.

8 Conclusions

We have presented a contrastive study of two classes
of computational models, probabilistic and distribu-
tional similarity-based ones, for the prediction of
covert events for German logical metonymies.

We found that while both model classes models
outperform baselines which only take into account
information coming from the object, similarity-based
models rival and even outperform probabilistic mod-
els. The reason is that probabilistic models have to
rely on first-order co-occurrence information which
suffers from sparsity issues even in large web corpora.
This is particularly true for languages like German
that have a complex morphology, which tends to ag-
gravate sparsity (e.g., through compound nouns).

In contrast, similarity-based models can take ad-
vantage of higher-order co-occurrences. Provided
that some care is taken to identify reasonable vec-
tor composition strategies, they can maintain the ac-
curacy of probabilistic models while guaranteeing
higher coverage.
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