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Abstract

Reversible stochastic attribute-value gram-
mars (de Kok et al., 2011) use one model
for parse disambiguation and fluency rank-
ing. Such a model encodes preferences with
respect to syntax, fluency, and appropriate-
ness of logical forms, as weighted features.
Reversible models are built on the premise
that syntactic preferences are shared between
parse disambiguation and fluency ranking.

Given that reversible models also use fea-
tures that are specific to parsing or genera-
tion, there is the possibility that the model is
trained to rely on these directional features. If
this is true, the premise that preferences are
shared between parse disambiguation and flu-
ency ranking does not hold.

In this work, we compare and apply feature se-
lection techniques to extract the most discrim-
inative features from directional and reversible
models. We then analyse the contributions of
different classes of features, and show that re-
versible models do rely on task-independent
features.

1 Introduction

Reversible stochastic attribute-value grammars (de
Kok et al., 2011) provide an elegant framework that
fully integrates parsing and generation. The most
important contribution of this framework is that it
uses one conditional maximum entropy model for
fluency ranking and parse disambiguation. In such
a model, the probability of a derivation d is con-
ditioned on a set of input constraints c that restrict

the set of derivations allowed by a grammar to those
corresponding to a particular sentence (parsing) or
logical form (generation):

p(d|c) =
1

Z(c)
exp

∑
i

wifi(c, d) (1)

Z(c) =
∑

d′∈Ω(c)

exp
∑

i

wifi(c, d
′) (2)

Here, Ω(c) is the set of derivations for input c,
fi(c, d) the value of feature fi in derivation d of c,
and wi is the weight of fi. Reversibility is opera-
tionalized during training by imposing a constraint
on a given feature fi with respect to the sentences
T in the parse disambiguation treebank and logical
forms L in the fluency ranking treebank. This con-
straint is:

∑
c∈C

∑
d∈Ω(c)

p̃(c)p(d|c)fi(c, d) − (3)

p̃(c, d)fi(c, d) = 0

Where C = T ∪ L, p̃(c) is the empirical proba-
bility of a set of constraints c, and p̃(c, d) the joint
probability of a set of constraints c and a derivation
d.

Reversible stochastic-attribute grammars rest on
the premise that preferences are shared between lan-
guage comprehension and production. For instance,
in Dutch, subject fronting is preferred over direct
object fronting. If models for parse disambiguation
and fluency ranking do not share preferences with
respect to fronting, it would be difficult for a parser
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to recover the logical form that was the input to a
generator.

Reversible models incorporate features that are
specific to parse disambiguation and fluency rank-
ing, as well as features that are used for both
tasks. Previous work (Cahill et al., 2007; de Kok,
2010) has shown through feature analysis that task-
independent features are indeed useful in directional
models. However, since reversible models assign
just one weight to each feature regardless the task,
one particular concern is that much of their discrim-
inatory power is provided by task-specific features.
If this is true, the premise that similar preferences
are used in parsing and generation does not hold.

In this work, we will isolate the most discrimina-
tive features of reversible models through feature se-
lection, and make a quantitative and qualitative anal-
ysis of these features. Our aim is to to verify that
reversible models do rely on features used both in
parsing and generation.

To find the most effective features of a model, we
need an effective feature selection method. Section 2
describes three such methods: grafting, grafting-
light, and gain-informed selection. These methods
are compared empirically in Section 4 using the ex-
perimental setup described in Section 3. We then use
the best feature selection method to perform quanti-
tative and qualitative analyses of reversible models
in Sections 5 and 6.

2 Feature selection

Feature selection is a procedure that attempts to ex-
tract a subset of discriminative features S ⊂ F
from a set of features F , such that a model using
S performs comparable to a model using F and
|S| � |F |.

As discussed in De Kok (2010), a good feature se-
lection method should handle three kinds of redun-
dancies in feature sets: features that rarely change
value; features that overlap; and noisy features.
Also, for a qualitative evaluation of fluency ranking,
it is necessary to have a ranking of features by dis-
criminative power.

De Kok (2010) compares frequency-based selec-
tion, correlation selection, and a gain-informed se-
lection method. In that work, it was found that
the gain-informed selection method outperforms

frequency-based and correlation selection. For this
reason we exclude the latter two methods from our
experiments. Other commonly used selection meth-
ods for maximum entropy models include `1 regu-
larization (Tibshirani, 1996), grafting (Perkins et al.,
2003; Riezler and Vasserman, 2004), and grafting-
light (Zhu et al., 2010). In the following sections,
we will give a description of these selection meth-
ods.

2.1 `1 regularization

During the training of maximum entropy mod-
els, regularization is often applied to avoid uncon-
strained feature weights and overfitting. If L(w) is
the objective function that is minimized during train-
ing, a regularizer Ωq(w) is added as a penalty for
extreme weights (Tibshirani, 1996):

C(w) = L(w) + Ωq(w) (4)

Given that the maximum entropy training pro-
cedure attempts to minimize the negative log-
likelihood of the model, the penalized objective
function is:

C(w) = −
∑
c,d

p̃(c, d)log(p(d|c)) + Ωq(w) (5)

The regularizer has the following form:

Ωq(w) = λ
n∑

i=1

|wi|q

Setting q = 1 in the regularizer function gives a
so-called `1 regularizer and amounts to applying a
double-exponential prior distribution with µ = 0.
Since the double-exponential puts much of its prob-
ability mass near its mean, the `1 regularizer has a
tendency to force weights towards zero, providing
integral feature selection and avoiding unbounded
weights. Increasing λ strengthens the regularizer,
and forces more feature weights to be zero.

Given an appropriate value for λ, `1 regulariza-
tion can exclude features that change value infre-
quently, as well as noisy features. However, it does
not guarantee to exclude overlapping features, since

55



the weight mass can be distributed among overlap-
ping features. `1 regularization also does not fulfill a
necessary characteristic for the present task, in that
it does not provide a ranking based on the discrimi-
native power of features.

2.2 Grafting
Grafting (Perkins et al., 2003) adds incremental fea-
ture selection during the training of a maximum en-
tropy model. The selection process is a repetition of
two steps: 1. a gradient-based heuristic selects the
most promising feature from the set of unselected
features Z, adding it to the set of selected features
S, and 2. a full optimization of weights is performed
over all features in S. These steps are repeated until
a stopping condition is triggered.

During the first step, the gradient of each unse-
lected feature fi ∈ Z is calculated with respect to
the model pS , that was trained with the set of se-
lected features, S:∣∣∣∣∂L(wS)

∂wi

∣∣∣∣ = pS(fi)− p̃(fi) (6)

The feature with the largest gradient is removed
from Z and added to S.

The stopping condition for grafting integrates the
`1 regularizer in the grafting method. Note that
when `1 regularization is applied, a feature is only
included (has a non-zero weight) if its penalty is out-
weighted by its contribution to the reduction of the
objective function. Consequently, only features for
which

∣∣∣∂L(wS)
∂wi

∣∣∣ > λ holds are eligible for selection.
This is enforced by stopping selection if for all fi in
Z ∣∣∣∣∂L(wS)

∂wi

∣∣∣∣ ≤ λ (7)

Although grafting uses `1 regularization, its iter-
ative nature avoids selecting overlapping features.
For instance, if f1 and f2 are identical, and f1 is
added to the model pS ,

∣∣∣∂L(wS)
∂w2

∣∣∣will amount to zero.
Performing a full optimization after each selected

feature is computationally expensive. Riezler and
Vasserman (2004) observe that during the feature
step selection a larger number of features can be
added to the model (n-best selection) without a loss
of accuracy in the resulting model. However, this

so-called n-best grafting may introduce overlapping
features.

2.3 Grafting-light

The grafting-light method (Zhu et al., 2010) oper-
ates using the same selection step as grafting, but
improves performance over grafting by applying one
iteration of gradient-descent during the optimization
step rather than performing a full gradient-descent.
As such, grafting-light gradually works towards the
optimal weights, while grafting always finds the op-
timal weights for the features in S during each iter-
ation.

Since grafting-light does not perform a full
gradient-descent, an additional stopping condition is
required, since the model may still not be optimal
even though no more features can be selected. This
additional condition requires that change in value of
the objective function incurred by the last gradient-
descent is smaller than a predefined threshold.

2.4 Gain-informed selection

Gain-informed feature selection methods calculate
the gain ∆L(S, fi) of adding a feature fi ∈ Z to
the model. If L(wS) is the negative log-likelihood
of pS , ∆L(S, fi) is defined as:

∆L(S, fi) ≡ L(wS)− L(wS∪fi
) (8)

During each selection step, the feature that gives
the highest gain is selected. The calculation
of L(pS∪fi

) requires a full optimization over the
weights of the features in S ∪ fi. Since it is com-
putationally intractable to do this for every fi in Z,
Berger et al. (1996) propose to estimate the weight
wi of the candidate feature fi, while assuming that
the weights of features in S stay constant. Under
this assumption, wi can be estimated using a simple
line search method.

However, Zhou et al. (2003) observe that, de-
spite this simplification, the gain-informed selection
method proposed by Berger et al. (1996) still recal-
culates the weights of all the candidate features dur-
ing every cycle. They observe that the gains of can-
didate features rarely increase. If it is assumed that
the gain of adding a feature does indeed never in-
crease as a result of adding another feature, the gains
of features during the previous iteration can be kept.
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To account for features that become ineffective, the
gain of the highest ranked feature is recalculated.
The highest ranked feature is selected if it remains
the best feature after this recalculation. Otherwise,
the same procedure is repeated for the next best fea-
ture.

De Kok (2010) modifies the method of Zhou et
al. (2003) for ranking tasks. In the present work, we
also apply this method, but perform a full optimiza-
tion of feature weights in pS every n cycles.

Since this selection method uses the gain of a fea-
ture in its selection criterion, it excludes noisy and
redundant features. Overlapping features are also
excluded since their gain diminishes after selecting
one of the overlapping features.

3 Experimental setup and evaluation

3.1 Treebanks

We carry out our experiments using the Alpino de-
pendency parser and generator for Dutch (van No-
ord, 2006; de Kok and van Noord, 2010). Two
newspaper corpora are used in the experiments.
The training data consists of the cdbl part of the
Eindhoven corpus1 (7,154 sentences). Syntactic
annotations are available from the Alpino Tree-
bank2 (van der Beek et al., 2002). Part of the Trouw
newspaper of 2001 is used for evaluation3. Syntac-
tic annotations are part of LASSY4 (van Noord et
al., 2010), part WR-P-P-H (2,267 sentences).

3.2 Features

In our experiments, we use the features described in
De Kok et al. (2011). In this section, we provide a
short summarization of the types of features that are
used.

Word adjacency. Word and Alpino part-of-
speech tag trigram models are used as auxiliary dis-
tributions (Johnson and Riezler, 2000). In both
models, linear interpolation smoothing is applied to
handle unknown trigrams, and Laplacian smoothing
for unknown unigrams. The trigram models have

1http://www.inl.nl/corpora/
eindhoven-corpus

2http://www.let.rug.nl/vannoord/trees/
3http://hmi.ewi.utwente.nl/TwNC
4http://www.inl.nl/corpora/lassy-corpus

been trained on the Twente Nieuws Corpus (approx-
imately 100 million words), excluding the Trouw
2001 corpus. In parsing, the value of the word tri-
gram model is constant across derivations of a given
input sentence.

Lexical frames. The parser applies lexical analy-
sis to find all possible subcategorization frames for
tokens in the input sentence. Since some frames oc-
cur more frequently in good parses than others, two
feature templates record the use of frames in deriva-
tions. An additional feature implements an auxil-
iary distribution of frames, trained on a large cor-
pus of automatically annotated sentences (436 mil-
lion words). The values of lexical frame features
are constant for all derivations in sentence realiza-
tion, unless the frame is underspecified in the logical
form.

Dependency relations. Several templates de-
scribe aspects of the dependency structure. For each
dependency relation multiple dependency features
are extracted. These features list the dependency
relation, and characteristics of the head and depen-
dent, such as their roots or part of speech tags. Ad-
ditionally, features are used to implement auxiliary
distributions for selectional preferences (van Noord,
2007). In generation, the values of these features are
constant across derivations corresponding to a given
logical form.

Syntactic features. Syntactic features include fea-
tures that record the application of grammar rules,
as well as the application of a rule in the context
of another rule. Additionally, there are features de-
scribing more complex syntactic patterns, such as
fronting of subjects and other noun phrases, order-
ings in the middle field, long-distance dependencies,
and parallelism of conjuncts in coordinations.

3.3 Parse disambiguation

To create training and evaluation data for parse dis-
ambiguation, the treebanks described in section 3.1
are parsed, extracting the first 3000 derivations. On
average, there are about 649 derivations for the sen-
tences in the training data, and 402 derivations for
the sentences in the test data.

Since the parser does not always yield the cor-
rect parse, the concept accuracy (CA) (van Noord,
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2006) of each derivation is calculated to estimate its
quality. The highest scoring derivations for each in-
put are marked as correct, all other derivations are
marked as incorrect. Features are then extracted
from each derivation.

The concept accuracy is calculated based on the
named dependency relations of the candidate and
correct parses. If Dp(t) is the bag of dependen-
cies produced by the parser for sentence t andDg(t)
is the bag of dependencies of the correct (gold-
standard) parse, concept accuracy is defined as:

CA =

∑
t∈T |Dp(t) ∩Dg(t)|∑

t∈T max(|Dp(t)|, |Dg(t)|)
(9)

The procedure outlined above gives examples of
correct and incorrect derivations to train the model,
and derivations to test the resulting model.

3.4 Fluency ranking
For training and evaluation of the fluency ranker, we
use the same treebanks as in parse disambiguation.
We assume that the sentence that corresponds to a
dependency structure in the treebank is the correct
realization of that dependency structure. We parse
each sentence in the treebank, extracting the depen-
dency structure that is the most similar to that in
the treebank. We perform this step to assure that it
is possible to generate from the given dependency
structure. We then use the Alpino chart genera-
tor to make all possible derivations and realizations
conforming to that dependency structure. Due to a
limit on generation time, some longer sentences and
corresponding dependency structures are excluded
from the data. The average sentence length was 15.7
tokens, with a maximum of 26 tokens.

Since the sentence in the treebank cannot always
be produced exactly, we estimate the quality of each
realization using the General Text Matcher (GTM)
method (Melamed et al., 2003). The best-scoring
derivations are marked as correct, the other deriva-
tions are marked as incorrect. Finally, features are
extracted from these derivations.

The General Text Matcher method marks all cor-
responding tokens of a candidate realization and the
correct realization in a grid, and finds the maximum
matching (the largest subset of marks, such that no
marks are in the same row or column). The size of
the matchingM is then determined using the lengths

of runs r in the matching (a run is a diagonal of
marks), rewarding longer runs:

size(M) =

√∑
r∈M

length(r)2 (10)

This method has been shown to have the highest
correlation with human judgments in a related lan-
guage (German), using a comparable system (Cahill,
2009).

3.5 Training

Models are trained by extracting an informative
sample of Ω(c) for each c in the training data (Os-
borne, 2000). This informative sample consists of at
most 100 randomly selected derivations.

We then apply feature selection on the training
data. We let each method select 1711 features. This
number is derived from the number of non-zero fea-
tures that training a model with a `1 norm coefficient
of 0.0002 gives. Grafting and grafting-light selec-
tion are applied using TinyEst5. For gain-informed
selection, we use FeatureSqueeze6. For all three
methods, we add 10 features to the model during
each selection step.

3.6 Evaluation

We evaluate each selection method stepwise. We
train and evaluate a model on the best-n features ac-
cording to each selection method, for n = [0..1711].
In each case, the feature weights are estimated with
TinyEst using a `1 norm coefficient of 0.0002. This
stepwise evaluation allows us to capture the effec-
tiveness of each method.

Parse disambiguation and fluency ranking models
are evaluated on the WR-P-P-H corpus that was de-
scribed in Section 3.1, using CA and GTM scores
respectively.

4 Evaluation of feature selection methods

4.1 Incremental feature selection

Figure 1 shows the performance of the feature selec-
tion methods for parse disambiguation. This graph
shows that that both grafting methods are far more

5http://github.com/danieldk/tinyest
6https://github.com/rug-compling/

featuresqueeze
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effective than gain-informed selection. We can also
see that only a small number of features is required
to construct a competitive model. Selecting more
features improves the model only gradually.

Figure 2 shows the performance of the feature
selection methods in fluency ranking. Again, we
see the same trend as in parse disambiguation.
The grafting and grafting-light methods outperform
gain-informed selection, with the grafting method
coming out on top. In feature selection, even a
smaller number of features is required to train an
effective model. After selecting more than approx-
imately 50 features, adding features only improves
the model very gradually.

Figure 1: Application of feature selection methods to
parse disambiguation

4.2 Selection using an `1 prior
During our experiments, we also evaluated the effect
of using an `1 prior in Alpino to see if it is worthwile
to replace feature selection using a frequency cut-
off (Malouf and van Noord, 2004). Using Alpino’s
default configuration with a frequency cut-off of 2
and an `2 prior with σ2 = 1000 the system had a
CA-score of 90.94% using 25237 features. We then
trained a model, applying an `1 prior with a norm
coefficient of 0.0002. With this model, the system
had a CA-score of 90.90% using 2346 features.

In generation, Alpino uses a model with the same
frequency cut-off and `2 prior. This model has
1734 features features and achieves a GTM score of
0.7187. Applying the `1 prior reduces the number

Figure 2: Effectiveness of feature selection methods in
fluency ranking. Both grafting methods outperform gain-
based ranking

of features to 607, while mildly increasing the GTM
score to 0.7188.

These experiments show that the use of `1 priors
can compress models enormously, even compared
to frequency-based feature selection, while retaining
the same levels of accuracy.

5 Quantitative analysis of reversible
models

For a quantitative analysis of highly discriminative
features, we extract the 300 most effective features
of the fluency ranking, parse disambiguation, and re-
versible models using grafting. We then divide fea-
tures into five classes: dependency (enumeration of
dependency triples), lexical (readings of words), n-
gram (word and tag trigram auxiliary distributions),
rule (identifiers of grammar rules), and syntactic
(abstract syntactic features). Of these classes, rule
and syntactic features are active during both parse
disambiguation and fluency ranking.

In the quantitative analyses, we train a model for
each selection step. The models contain the 1 to 300
best features. Using these models, we can calculate
the contribution of feature fi to the improvement ac-
cording to some evaluation function e

c(fi) =
e(p0..i)− e(p0..i−1)

e(p0..n)− e(p0)
(11)

where p0..i is a model trained with the i most dis-
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criminative features, p0 is the uniform model, and
n = 300.

5.1 Parse disambiguation
Table 1 provides class-based counts of the 300 most
discriminative features for the parse disambiguation
and reversible models. Since the n-gram features are
not active during parse disambiguation, they are not
selected for the parse disambiguation model. All
other classes of features are used in the parse dis-
ambiguation model. The reversible model uses all
classes of features.

Class Directional Reversible
Dependency 93 84
Lexical 24 24
N-gram 0 2
Rule 156 154
Syntactic 27 36

Table 1: Per-class counts of the best 300 features accord-
ing to the grafting method.

Contributions per feature class in parse disam-
biguation are shown in table 2. In the directional
parse disambiguation model, parsing-specific fea-
tures (dependency and lexical) account for 55% of
the improvement over the uniform model.

In the reversible model, there is a shift of con-
tribution towards task-independent features. When
applying this model, the contribution of parsing-
specific features to the improvement over the uni-
form model is reduced to 45.79%.

We can conclude from the per-class feature con-
tributions in the directional parse disambiguation
model and the reversible model, that the reversible
model does not put more emphasis on parsing-
specific features. Instead, the opposite is true: task-
independent features are more important in the re-
versible model than the directional model.

5.2 Fluency ranking
Table 3 provides class-based counts of the 300 most
discriminative features of the fluency ranking and
reversible models. During fluency ranking, depen-
dency features and lexical features are not active.

Table 4 shows the per-class contribution to the
improvement in accuracy for the directional and re-
versible models. Since the dependency and lexical

Class Directional Reversible
Dependency 21.53 13.35
Lexical 33.68 32.62
N-gram 0.00 0.00
Rule 37.61 47.35
Syntactic 7.04 6.26

Table 2: Per-class contribution to the improvement of the
model over the base baseline in parse disambiguation.

Class Directional Reversible
Dependency 0 84
Lexical 0 24
N-gram 2 2
Rule 181 154
Syntactic 117 36

Table 3: Per-class counts of the best 300 features accord-
ing to the grafting method.

features are not active during fluency ranking, it may
come as a surprise that their contribution is nega-
tive in the reversible model. Since they are used for
parse disambiguation, they have an effect on weights
of task-independent features. This phenomenon did
not occur when using the reversible model for parse
disambiguation, because the features specific to flu-
ency ranking (n-gram features) were selected as the
most discriminative features in the reversible model.
Consequently, the reversible models with one and
two features were uniform models from the perspec-
tive of parse disambiguation.

Class Directional Reversible
Dependency 0.00 -4.21
Lexical 0.00 -1.49
N-gram 81.39 83.41
Rule 14.15 16.45
Syntactic 3.66 4.59

Table 4: Per-class contribution to the improvement of the
model over the baseline in fluency ranking.

Since active features compensate for this loss in
the reversible model, we cannot directly compare
per-class contributions. To this end, we normalize
the contribution of all positively contributing fea-
tures, leading to table 5. Here, we can see that the
reversible model does not shift more weight towards
task-specific features. On the contrary, there is a
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mild effect in the opposite direction here as well.

Class Directional Reversible
N-gram 81.39 79.89
Rule 14.15 15.75
Syntactic 3.66 4.39

Table 5: Classes giving a net positive distribution, with
normalized contributions.

6 Qualitative analysis of reversible models

While the quantitative evaluation shows that task-
independent features remain important in reversible
models, we also want to get an insight into the ac-
tual features that were used. Since it is unfeasible to
study the 300 best features in detail, we extract the
20 best features.

Grafting-10 is too course-grained for this task,
since it selects the first 10 features solely by their
gradients, while there may be overlap in those fea-
tures. To get the most accurate list possible, we per-
form grafting-1 selection to extract the 20 most ef-
fective features. We show these features in table 6
with their polarities. The polarity indicates whether
a feature is an indicator for a good (+) or bad (-)
derivation.

We now provide a description of these features by
category.

Word/tag trigrams. The most effective features
in fluency ranking are the n-gram auxiliary distribu-
tions (1, 3). The word n-gram model settles prefer-
ences with respect to fixed expressions and common
word orders. It also functions as a (probabilistic)
filter of archaic inflections and incorrect inflections
that are not known to the Alpino lexicon. The tag
n-gram model help picking a sequence of part-of-
speech tags that is plausible.

Frame selection. Various features assist in the
selection of proper subcategorization frames for
words. This currently affects parse disambiguation
mostly. There is virtually no ambiguity of frames
during generation, and a stem/frame combination
normally only selects one inflection. The most ef-
fective feature for frame selection is (2), which is
an auxiliary distribution of words and correspond-
ing frames based on a large automatically annotated

Rank Polarity Feature
1 + ngram lm
2 + z f2
3 + ngram tag
4 - r1(np n)
5 + r2(np det n,2,n n pps)
6 - p1(pardepth)
7 + r2(vp mod v,3,vproj vc)
8 - r2(vp arg v(np),2,vproj vc)
9 - f1(adj)
10 + r2(vp mod v,2,optpunct(e))
11 - s1(non subj np topic)
12 + r1(n adj n)
13 + dep23(prep,hd/pc,verb)
14 + r1(optpunct(e))
15 + dep34(van,prep,hd/mod,noun)
16 + dep23(noun,hd/su,verb)
17 + p1(par)
18 - r1(vp v mod)
19 + dep23(prep,hd/mod,verb)
20 - f1(verb(intransitive))

Table 6: The twenty most discriminative features of the
reversible model, and their polarities.

corpus. Other effective features indicate that read-
ings as an adjective (9) and as an intransitive verb
(20) are not preferred.

Modifiers. Feature 5 indicates the preference to
attach prepositional phrases to noun phrases. How-
ever, if a modifier is attached to a verb, we prefer
readings and realizations where the modifier is left-
adjoining rather than right-adjoining (7, 18, 19). For
instance, zij heeft met de hond gelopen (she has with
the dog walked) is more fluent than zij heeft gelopen
met de hond (she has walked with the dog). Finally,
feature 15 gives preference to analyses where the
preposition van is a modifier of a noun.

Conjunctions. Two of the twenty most discrimi-
native features involve conjunctions. The first (6)
is a dispreference for conjunctions where conjuncts
have a varying depth. In conjunctions, the model
prefers derivations where all conjuncts in a con-
junctions have an equal depth. The other feature
(17) gives a preferences to conjunctions with paral-
lel conjuncts — conjunctions where every conjunct
is constructed using the same grammar rule.
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Punctuation. The Alpino grammar is very gen-
erous in allowing optional punctuation. An empty
punctuation sign is used to fill grammar rule slots
when no punctuation is used or realized. Two fea-
tures indicate preferences with respect to optional
punctuation. The first (10) gives preference to filling
the second daughter slot of the vp mod v with the
empty punctuation sign. This implies that deriva-
tions are preferred where a modifier and a verb are
not separated by punctuation. The second feature
(14) indicates a general preference for the occur-
rence of empty optional punctuation in the deriva-
tion tree.

Subjects/objects. In Dutch, subject fronting is
preferred over object fronting. For instance, Spanje
won de wereldbeker (Spain won the World Cup)
is preferred over de wereldbeker won Spanje (the
World Cup won spain). Feature 8 will in many cases
contribute to the preference of having topicalized
noun phrase subjects. It disprefers having a noun
phrase left of the verb. For example, zij heeft met de
hond gelopen (she has with the dog walked) is pre-
ferred over met de hond heeft zij gelopen (with the
dog she has walked). Feature 11 encodes the prefer-
ence for subject fronting, by penalizing derivations
where the topic is a non-subject noun phrase.

Other syntactic preferences. The remaining
features are syntactic preferences that do not
belong to any of the previous categories. Feature
4 indicates a dispreference for derivations where
bare nouns occur. Feature 12 indicates a preference
for derivations where a noun occurs along with
an adjective. Finally, feature 13 gives preference
to the prepositional complement (pc) relation if a
preposition is a dependent of a verb and lexical
analysis shows that the verb can combine with that
prepositional complement.

We can conclude from this description of fea-
tures that many of the features that are paramount
to parse disambiguation and fluency ranking are
task-independent, modeling phenomena such as
subject/object fronting, modifier adjoining, paral-
lelism and depth in conjunctions, and the use of
punctuation.

7 Conclusion

In this work we have used feature selection tech-
niques for maximum entropy modeling to analyze
the hypothesis that the models in reversible stochas-
tic attribute-value grammars use task-independent
features. To this end, we have first compared
three feature selection techniques, namely gain-
informed selection, grafting, and grafting-light. In
this comparison we see that grafting outperforms
both grafting-light and gain-informed selection in
parse disambiguation and fluency ranking tasks.

We then used grafting to select the most effective
features for parse disambiguation, fluency ranking,
and reversible models. In the quantitative analysis
we have shown that the reversible model does not
put more emphasis on task-specific features. In fact,
the opposite is true: in the reversible model task-
independent features become more defining than in
the directional models.

We have also provided a qualitative analysis of the
twenty most effective features, showing that many of
these features are relevant to both parsing and gener-
ation. Effective task-independent features for Dutch
model phenomena such as subject/object fronting,
modifier adjoining, parallelism and depth in con-
junctions, and the use of punctuation.

8 Future work

An approach for testing the reversibility of mod-
els that we have not touched upon in this work, is
to evaluate such models using tasks that combine
parsing and generation. For instance, a good word
graph parser should choose a fluent sentence with a
syntactically plausible reading. If reversible models
integrate parsing-specific, generation-specific, and
task-independent features properly, they should be
competitive to models specifically trained for that
task. In the future, we hope to evaluate reversible
stochastic attribute-value grammars in the light of
such tasks.
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