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Abstract

Formal and distributional semantic models
offer complementary benefits in modeling
meaning. The categorical compositional dis-
tributional model of meaning of Coecke et al.
(2010) (abbreviated to DisCoCat in the title)
combines aspects of both to provide a gen-
eral framework in which meanings of words,
obtained distributionally, are composed using
methods from the logical setting to form sen-
tence meaning. Concrete consequences of
this general abstract setting and applications to
empirical data are under active study (Grefen-
stette et al., 2011; Grefenstette and Sadrzadeh,
2011). In this paper, we extend this study by
examining transitive verbs, represented as ma-
trices in a DisCoCat. We discuss three ways of
constructing such matrices, and evaluate each
method in a disambiguation task developed by
Grefenstette and Sadrzadeh (2011).

1 Background

The categorical distributional compositional model
of meaning of Coecke et al. (2010) combines the
modularity of formal semantic models with the em-
pirical nature of vector space models of lexical se-
mantics. The meaning of a sentence is defined to
be the application of its grammatical structure—
represented in a type-logical model—to the kro-
necker product of the meanings of its words, as
computed in a distributional model. The concrete
and experimental consequences of this setting, and
other models that aim to bring together the log-
ical and distributional approaches, are active top-
ics in current natural language semantics research,

e.g. see (Grefenstette et al., 2011; Grefenstette and
Sadrzadeh, 2011; Clark et al., 2010; Baroni and
Zamparelli, 2010; Guevara, 2010; Mitchell and La-
pata, 2008).

In this paper, we focus on our recent concrete Dis-
CoCat model (Grefenstette and Sadrzadeh, 2011)
and in particular on nouns composed with transitive
verbs. Whereby the meaning of a transitive sentence
‘sub tverb obj’ is obtained by taking the component-
wise multiplication of the matrix of the verb with
the kronecker product of the vectors of subject and
object:

−−−−−−−−→
sub tverb obj = tverb� (

−→
sub⊗−→obj) (1)

In most logical models, transitive verbs are modeled
as relations; in the categorical model the relational
nature of such verbs gets manifested in their ma-
trix representation: if subject and object are each r-
dimensional row vectors in some space N , the verb
will be a r × r matrix in the space N ⊗ N . There
are different ways of learning the weights of this ma-
trix. In (Grefenstette and Sadrzadeh, 2011), we de-
veloped and implemented one such method on the
data from the British National Corpus. The matrix of
each verb was constructed by taking the sum of the
kronecker products of all of the subject/object pairs
linked to that verb in the corpus. We refer to this
method as the indirect method. This is because the
weight cij is obtained from the weights of the sub-
ject and object vectors (computed via co-occurrence
with bases −→n i and −→n j respectively), rather than di-
rectly from the context of the verb itself, as would
be the case in lexical distributional models. This
construction method was evaluated against an exten-
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sion of Mitchell and Lapata (2008)’s disambiguation
task from intransitive to transitive sentences. We
showed and discussed how and why our method,
which is moreover scalable and respects the gram-
matical structure of the sentence, resulted in better
results than other known models of semantic vector
composition.

As a motivation for the current paper, note that
there are at least two different factors at work in
Equation (1): one is the matrix of the verb, denoted
by tverb, and the other is the kronecker product of
subject and object vectors

−→
sub ⊗ −→obj. Our model’s

mathematical formulation of composition prohibits
us from changing the latter kronecker product, but
the ‘content’ of the verb matrices can be built
through different procedures.

In recent work we used a standard lexical distri-
butional model for nouns and engineered our verbs
to have a more sophisticated structure because of
the higher dimensional space they occupy. In par-
ticular, we argued that the resulting matrix of the
verb should represent ‘the extent according to which
the verb has related the properties of subjects to the
properties of its objects’, developed a general proce-
dure to build such matrices, then studied their em-
pirical consequences. One question remained open:
what would be the consequence of starting from the
standard lexical vector of the verb, then encoding
it into the higher dimensional space using different
(possibly ad-hoc but nonetheless interesting) mathe-
matically inspired methods.

In a nutshell, the lexical vector of the verb is de-
noted by

−−→
tverb and similar to vectors of subject and

object, it is an r-dimensional row vector. Since the
kronecker product of subject and object (

−→
sub⊗−→obj)

is r × r, in order to make
−−→
tverb applicable in Equa-

tion 1, i.e. to be able to substitute it for tverb, we
need to encode it into a r × r matrix in the N ⊗ N
space. In what follows, we investigate the empirical
consequences of three different encodings methods.

2 From Vectors to Matrices

In this section, we discuss three different ways of en-
coding r dimensional lexical verb vectors into r× r
verb matrices, and present empirical results for each.
We use the additional structure that the kronecker
product provides to represent the relational nature

of transitive verbs. The results are an indication that
the extra information contained in this larger space
contributes to higher quality composition.

One way to encode an r-dimensional vector as a
r × r matrix is to embed it as the diagonal of that
matrix. It remains open to decide what the non-
diagonal values should be. We experimented with
0s and 1s as padding values. If the vector of the verb
is [c1, c2, · · · , cr] then for the 0 case (referred to as
0-diag) we obtain the following matrix:

tverb =


c1 0 · · · 0
0 c2 · · · 0
...

...
. . .

...
0 0 . . . cr


For the 1 case (referred to as 1-diag) we obtain the
following matrix:

tverb =


c1 1 · · · 1
1 c2 · · · 1
...

...
. . .

...
1 1 . . . cr


We also considered a third case where the vector is
encoded into a matrix by taking the kronecker prod-
uct of the verb vector with itself:

tverb =
−−→
tverb⊗−−→tverb

So for
−−→
tverb = [c1, c2, · · · , cr] we obtain the follow-

ing matrix:

tverb =


c1c1 c1c2 · · · c1cr

c2c1 c2c2 · · · c2cr
...

...
. . .

...
crc1 crc2 · · · crcr


3 Degrees of synonymity for sentences

The degree of synonymity between meanings of
two sentences is computed by measuring their ge-
ometric distance. In this work, we used the co-
sine measure. For two sentences ‘sub1 tverb1 obj1’
and ‘sub2 tverb2 obj2’, this is obtained by taking
the Frobenius inner product of

−−−−−−−−−−→
sub1 tverb1 obj1 and−−−−−−−−−−→

sub2 tverb2 obj2. The use of Frobenius product
rather than the dot product is because the calcula-
tion in Equation (1) produces matrices rather than
row vectors. We normalized the outputs by the mul-
tiplication of the lengths of their corresponding ma-
trices.
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4 Experiment

In this section, we describe the experiment used to
evaluate and compare these three methods. The ex-
periment is on the dataset developed in (Grefenstette
and Sadrzadeh, 2011).

Parameters We used the parameters described by
Mitchell and Lapata (2008) for the noun and verb
vectors. All vectors were built from a lemmatised
version of the BNC. The noun basis was the 2000
most common context words, basis weights were
the probability of context words given the target
word divided by the overall probability of the con-
text word. These features were chosen to enable
easy comparison of our experimental results with
those of Mitchell and Lapata’s original experiment,
in spite of the fact that there may be more sophisti-
cated lexical distributional models available.

Task This is an extension of Mitchell and Lap-
ata (2008)’s disambiguation task from intransitive
to transitive sentences. The general idea behind
the transitive case (similar to the intransitive one) is
as follows: meanings of ambiguous transitive verbs
vary based on their subject-object context. For in-
stance the verb ‘meet’ means ‘satisfied’ in the con-
text ‘the system met the criterion’ and it means
‘visit’, in the context ‘the child met the house’.
Hence if we build meaning vectors for these sen-
tences compositionally, the degrees of synonymity
of the sentences can be used to disambiguate the
meanings of the verbs in them.

Suppose a verb has two meanings a and b and
that it has occurred in two sentences. Then if in
both of these sentences it has its meaning a, the two
sentences will have a high degree of synonymity,
whereas if in one sentence the verb has meaning a
and in the other meaning b, the sentences will have
a lower degree of synonymity. For instance ‘the sys-
tem met the criterion’ and ‘the system satisfied the
criterion’ have a high degree of semantic similarity,
and similarly for ‘the child met the house’ and ‘the
child visited the house’. This degree decreases for
the pair ‘the child met the house’ and ‘the child sat-
isfied the house’.

Dataset The dataset is built using the same guide-
lines as Mitchell and Lapata (2008), using transi-

tive verbs obtained from CELEX1 paired with sub-
jects and objects. We first picked 10 transitive verbs
from the most frequent verbs of the BNC. For each
verb, two different non-overlapping meanings were
retrieved, by using the JCN (Jiang Conrath) infor-
mation content synonymity measure of WordNet to
select maximally different synsets. For instance for
‘meet’ we obtained ‘visit’ and ‘satisfy’. For each
original verb, ten sentences containing that verb with
the same role were retrieved from the BNC. Exam-
ples of such sentences are ‘the system met the crite-
rion’ and ‘the child met the house’. For each such
sentence, we generated two other related sentences
by substituting their verbs by each of their two syn-
onyms. For instance, we obtained ‘the system sat-
isfied the criterion’ and ‘the system visited the cri-
terion’ for the first meaning and ‘the child satisfied
the house’ and ‘the child visited the house’ for the
second meaning . This procedure provided us with
200 pairs of sentences.

The dataset was split into four non-identical sec-
tions of 100 entries such that each sentence appears
in exactly two sections. Each section was given to
a group of evaluators who were asked to assign a
similarity score to simple transitive sentence pairs
formed from the verb, subject, and object provided
in each entry (e.g. ‘the system met the criterion’
from ‘system meet criterion’). The scoring scale for
human judgement was [1, 7], where 1 was most dis-
similar and 7 most identical.

Separately from the group annotation, each pair in
the dataset was given the additional arbitrary classi-
fication of HIGH or LOW similarity by the authors.

Evaluation Method To evaluate our methods, we
first applied our formulae to compute the similar-
ity of each phrase pair on a scale of [0, 1] and then
compared it with human judgement of the same
pair. The comparison was performed by measuring
Spearman’s ρ, a rank correlation coefficient ranging
from -1 to 1. This provided us with the degree of
correlation between the similarities as computed by
our model and as judged by human evaluators.

Following Mitchell and Lapata (2008), we also
computed the mean of HIGH and LOW scores.
However, these scores were solely based on the au-
thors’ personal judgements and as such (and on their

1http://celex.mpi.nl/
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own) do not provide a very reliable measure. There-
fore, like Mitchell and Lapata (2008), the models
were ultimately judged by Spearman’s ρ.

The results are presented in table 4. The additive
and multiplicative rows have, as composition oper-
ation, vector addition and component-wise multipli-
cation. The Baseline is from a non-compositional
approach; it is obtained by comparing the verb vec-
tors of each pair directly and ignoring their subjects
and objects. The UpperBound is set to be inter-
annotator agreement.

Model High Low ρ

Baseline 0.47 0.44 0.16
Add 0.90 0.90 0.05
Multiply 0.67 0.59 0.17
Categorical
Indirect matrix 0.73 0.72 0.21
0-diag matrix 0.67 0.59 0.17
1-diag matrix 0.86 0.85 0.08
v ⊗ v matrix 0.34 0.26 0.28
UpperBound 4.80 2.49 0.62

Table 1: Results of compositional disambiguation.

The indirect matrix performed better than the
vectors encoded in diagonal matrices padded with
0 and 1. However, surprisingly, the kronecker prod-
uct of this vector with itself provided better results
than all the above. The results were statistically sig-
nificant with p < 0.05.

5 Analysis of the Results

Suppose the vector of subject is [s1, s2, · · · , sr] and
the vector of object is

−→
obj = [o1, o2, · · · , or], then

the matrix of
−→
sub⊗−→obj is:
s1o1 s1o2 · · · s1or

s2o1 s2o2 · · · s2or
...

sro1 sro2 · · · sror


After computing Equation (1) for each generation
method of tverb, we obtain the following three ma-

trices for the meaning of a transitive sentence:

0-diag :


c1s1o1 0 · · · 0

0 c2s2o2 · · · 0
...

...
. . .

...
0 0 · · · crsror


This method discards all of the non-diagonal infor-
mation about the subject and object, for example
there is no occurrence of s1o2, s2o1, etc.

1-diag :


c1s1o1 s1o2 · · · s1or

s2o1 c2s2o2 · · · s2or
...

...
. . .

...
sro1 sro2 · · · crsror


This method conserves the information about the
subject and object, but only applies the information
of the verb to the diagonals: s1 and o2, s2 and o1,
etc. are never related to each other via the verb.

v ⊗ v :


c1c1s1o1 c1c2s1o2 · · · c1crs1or

c2c1s2o1 c2c2s2o2 · · · c2crs2or
...

...
. . .

...
crc1sro1 crc2sro2 · · · crcrsror


This method not only conserves the information

of the subject and object, but also applies to them
all of the information encoded in the verb. These
data propagate to Frobenius products when comput-
ing the semantic similarity of sentences and justify
the empirical results.

The unexpectedly good performance of the v ⊗ v
matrix relative to the more complex indirect method
is surprising, and certainly demands further inves-
tigation. What is sure is that they each draw upon
different aspects of semantic composition to provide
better results. There is certainly room for improve-
ment and empirical optimisation in both of these
relation-matrix construction methods.

Furthermore, the success of both of these meth-
ods relative to the others examined in Table 1 shows
that it is the extra information provided in the matrix
(rather than just the diagonal, representing the lexi-
cal vector) that encodes the relational nature of tran-
sitive verbs, thereby validating in part the require-
ment suggested in Coecke et al. (2010) and Grefen-
stette and Sadrzadeh (2011) that relational word vec-
tors live in a space the dimensionality of which be a
function of the arity of the relation.
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G. Frege 1892. Über Sinn und Bedeutung. Zeitschrift
für Philosophie und philosophische Kritik 100.

J. R. Firth. 1957. A synopsis of linguistic theory 1930-
1955. Studies in Linguistic Analysis.

E. Grefenstette, M. Sadrzadeh, S. Clark, B. Coecke,
S. Pulman. 2011. Concrete Compositional Sentence
Spaces for a Compositional Distributional Model of
Meaning. International Conference on Computational
Semantics (IWCS’11). Oxford.

E. Grefenstette, M. Sadrzadeh. 2011. Experimental Sup-
port for a Categorical Compositional Distributional
Model of Meaning. Proceedings of the 2011 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing.

G. Grefenstette. 1994. Explorations in Automatic The-
saurus Discovery. Kluwer.

E. Guevara. 2010. A Regression Model of Adjective-
Noun Compositionality in Distributional Semantics.
Proceedings of the ACL GEMS Workshop.

Z. S. Harris. 1966. A Cycling Cancellation-Automaton
for Sentence Well-Formedness. International Compu-
tation Centre Bulletin 5, 69–94.

R. Hudson. 1984. Word Grammar. Blackwell.
J. Lambek. 2008. From Word to Sentence. Polimetrica,

Milan.

T. Landauer, and S. Dumais. 2008. A solution to Platos
problem: The latent semantic analysis theory of ac-
quisition, induction, and representation of knowledge.
Psychological review.

C. D. Manning, P. Raghavan, and H. Schütze. 2008. In-
troduction to information retrieval. Cambridge Uni-
versity Press.

J. Mitchell and M. Lapata. 2008. Vector-based mod-
els of semantic composition. Proceedings of the 46th
Annual Meeting of the Association for Computational
Linguistics, 236–244.

R. Montague. 1974. English as a formal language. For-
mal Philosophy, 189–223.

J. Nivre 2003. An efficient algorithm for projective
dependency parsing. Proceedings of the 8th Interna-
tional Workshop on Parsing Technologies (IWPT).

J. Saffron, E. Newport, R. Asling. 1999. Word Segmenta-
tion: The role of distributional cues. Journal of Mem-
ory and Language 35, 606–621.

H. Schuetze. 1998. Automatic Word Sense Discrimina-
tion. Computational Linguistics 24, 97–123.

P. Smolensky. 1990. Tensor product variable binding
and the representation of symbolic structures in con-
nectionist systems. Computational Linguistics 46, 1–
2, 159–216.

M. Steedman. 2000. The Syntactic Process. MIT Press.
D. Widdows. 2005. Geometry and Meaning. University

of Chicago Press.
L. Wittgenstein. 1953. Philosophical Investigations.

Blackwell.

66


