
Proceedings of the 2nd Workshop on Speech and Language Processing for Assistive Technologies, pages 43–51,
Edinburgh, Scotland, UK, July 30, 2011. c©2011 Association for Computational Linguistics

Asynchronous fixed-grid scanning with dynamic codes

Russ Beckley and Brian Roark
Center for Spoken Language Understanding, Oregon Health & Science University

{beckleyr,roark}@cslu.ogi.edu

Abstract
In this paper, we examine several methods
for including dynamic, contextually-sensitive
binary codes within indirect selection typing
methods using a grid with fixed symbol posi-
tions. Using Huffman codes derived from a
character n-gram model, we investigate both
synchronous (fixed latency highlighting) and
asynchronous (self-paced using long versus
short press) scanning. Additionally, we look
at methods that allow for scanning past a tar-
get and returning to it versus methods that re-
move unselected items from consideration. Fi-
nally, we investigate a novel method for dis-
playing the binary codes for each symbol to
the user, rather than using cell highlighting, as
the means for identifying the required input
sequence for the target symbol. We demon-
strate that dynamic coding methods for fixed
position grids can be tailored for very diverse
user requirements.

1 Introduction
For many years, a key focus in Augmentative and
Alternative Communication (AAC) has been provid-
ing text processing capabilities to those for whom
direct selection of symbols on a keyboard (virtual or
otherwise) is not a viable option. In lieu of direct
selection, a binary (yes/no) response can be given
through any number of switches, including buttons
or pads that are pressed with hand, head, or foot,
eyeblink detectors, or other switches that can lever-
age whatever reliable movement is available. These
indirect selection methods typically involve system-
atically scanning through options and eliciting the
binary yes/no response at each step of scanning. For
example, row/column scanning is a very common
approach for indirect selection. Auto row/column
scanning on a square grid, such as that shown in Fig-
ure 1, will highlight each row in turn for some fixed
duration (dwell time); if the binary switch is trig-

gered before the dwell time expires, the row is se-
lected; otherwise the next row is highlighted. Once
a row is selected, cells in this row are then individu-
ally highlighted in turn, until one is selected, which
identifies the intended character.

This sort of indirect selection method amounts to
assigning a binary code to every symbol in the grid.
If triggering the switch (e.g., pressing a button or
blinking) is taken as a ‘yes’ or 1, then its absence is
taken as a ‘no’ or 0. In such a way, every letter in the
grid has a binary code based on the scanning strat-
egy. For example, in Figure 1, the letter ‘n’ is in the
third row and fourth column; if row scanning starts
at the top, it takes two ‘no’s and a ’yes’ to select the
correct row; and then three ‘no’s and a ‘yes’ to select
the correct column. This translates to a binary code
of ‘0010001’.

In the preceding example, the codes for all sym-
bols are determined by their position in the alpha-
ordered grid. However, faster input can be achieved
by assigning shorter codes to likely symbols. For ex-
ample, imagine a user has just typed ‘perso’ and is
ready to type the next letter. In this context, the let-
ter ‘n’ is quite likely in English, hence if a very short
code is assigned to that letter (e.g., ‘01’), then the
user requires only two actions (a ‘no’ and a ‘yes’)
to produce the letter, rather than the 7 actions re-

Figure 1: Spelling grid in rough alpha order.

43

quired by the row/column code given above. There
are methods for assigning codes that minimize the
expected code length for a given probability model
(Huffman, 1952). The quality of the probability
model used for deriving codes can make a large dif-
ference in the code length and hence in the efficiency
of the input method. When the model can accurately
assign probabilities to symbols, the shortest binary
codes can be assigned to the likeliest symbols, which
thus require the fewest inputs (either yes or no) from
the user. The best probabilistic models will take into
account what has already been typed to assign prob-
ability to each symbol. The probabilities are contex-
tually dependent, and therefore so are the optimal
binary code assignments. This was illustrated in the
‘person’ example provided earlier. To provide an-
other example, the probability of the letter ‘u’ is not
particularly high overall in English (less than 0.02),
but if the previously typed symbol is ‘q’, its proba-
bility is very high. Thus, in many contexts, there are
other letters that should get the shortest code, but
in that particular context, following ‘q’, ‘u’ is very
likely, hence it should receive the shortest code.

Common scanning methods, however, present a
problem when trying to leverage contextually sen-
sitive language models for efficient scanning. In
particular, methods of scanning that rely on high-
lighting contiguous regions – such as widely used
row/column scanning – define their codes in terms
of location in the grid, e.g., upper left-hand cor-
ner requires fewer keystrokes to select than lower
right-hand corner using row/column scanning. To
improve the coding in such an approach requires
moving characters to short-code regions of the grid.
In other words, with row/column scanning meth-
ods, the symbol needing the shortest code must
move into the upper left-hand corner of the grid.
Yet the cognitive overhead of dealing with frequent
grid reorganization is typically thought to outweigh
any speedup that is achieved through more efficient
coding (Baletsa et al., 1976; Lesher et al., 1998).
If one assumes a fixed grid, i.e., no dynamic re-
organization of the symbols, then row/column scan-
ning can gain efficiency by placing frequent char-
acters in the upper left-hand corner, but cannot use
contextually informed models. This is akin to Morse
code, which assigns fixed codes to symbols based on
overall frequency, without considering context.

Figure 2: Scanning of non-contiguous sets of cells

Roark et al. (2010) presented a new approach
which dropped the requirement of contiguous high-
lighting, thus allowing the use of variable codes on a
fixed grid. For example, consider the grid in Figure
2, where two symbols in different rows and columns
are jointly highlighted. This approach, which we
will term “Huffman scanning”, allowed the binary
codes to be optimized using Huffman coding meth-
ods (see Section 2.2) with respect to contextually
sensitive language models without dynamic reorga-
nization of the grid. The method resulted in typing
speedups over conventional row/column scanning.

One downside to the variable scanning that results
from Huffman scanning is that users cannot antici-
pate their target symbol’s binary code in any given
context. In row/column scanning, the binary code
of each symbol is immediately obvious from its lo-
cation in the grid, hence users can anticipate when
they will need to trigger the switch. In Huffman
scanning, users must continuously monitor and react
when their target cells light up. The time required to
allow for this motor reaction means that scan rates
are typically slower than in row/column scanning;
and stress levels – due to the demands of immediate
response to highlighting – higher.

Huffman scanning is not the only way to allow
variable coding on a fixed grid. In this paper, we in-
vestigate alternatives to Huffman scanning that also
allow for efficient coding on a fixed grid. The three
alternative methods that we investigate are asyn-
chronous methods, i.e., all of the scanning is self-
paced; there is no scan rate that must be matched by
the user. Rather than ‘yes’ being a button press and
‘no’ a timeout, these approaches, like Morse code,
differentiate between short and long presses1. There
are several benefits of this sort of asynchronous ap-

1Alternatively, two switches can be used.

44

proach: individuals who struggle with the timing re-
quirements of auto, step or directed scanning can
proceed without having to synchronize their move-
ments to the interface; individuals can interrupt their
communication – e.g., for side talk – for an arbitrary
amount of time and come back to it in exactly the
same state; and it reduces the stress of constantly
monitoring the scanning sequence and reacting to it
within the time limits of the interface.

The last of our alternative methods is a novel ap-
proach that displays the code for each symbol at
once as a series of dots and dashes underneath the
symbol – as used in Morse code – rather than us-
ing cell highlighting to prompt the user as in the
other conditions. Unlike Morse code, these codes
are derived using Huffman coding based on n-gram
language models, thus change with every context.
Since they are displayed for the user, no code mem-
orization is required. This novel interface differs
from Huffman scanning in several ways, so we also
present intermediate methods that differ in only one
or another dimension, so that we can assess the im-
pact of each characteristic.

Our results show that displaying entire codes at
once for asynchronous scanning was a popular and
effective method for indirect selection, despite the
fact that it shared certain dis-preferred characteris-
tics with the least popular of our methods. This
points the way to future work investigating methods
to combine the preferred characteristics from our set
of alternatives into a yet more effective interface.

2 Background and Related Work
2.1 Indirect selection
Some of the key issues influencing the work in this
paper have already been mentioned above, such as
the tradeoffs between fixed versus dynamic grids.
For a full presentation of the range of indirect selec-
tion methods commonly in use, we refer the read-
ers to Beukelman and Mirenda (1998). But in this
section we will highlight several key distinctions of
particular relevance to this work.

As mentioned in the previous section, indirect se-
lection strategies allow users to select target sym-
bols through a sequence of simpler operations, typi-
cally a yes/no indication. This is achieved by scan-
ning through options displayed in the user inter-
face. Beukelman and Mirenda (1998) mention cir-

cular scanning (around a circular interface), linear
scanning (one at a time), and group-item scanning
(e.g., row/column scanning to find the desired cell).
Another variable in scanning is the speed of scan-
ning – e.g., how long does the highlighting linger
on the options before advancing. Finally, there are
differences in selection control strategy. Beukel-
man and Mirenda (1998) mention automatic scan-
ning, where highlighted options are selected by ac-
tivating a switch, and advance automatically if the
switch is not activated within the specified dwell
time; step scanning, where highlighted options are
selected when the switch is not activated within the
specified dwell time, and advance only if the switch
is activated; and directed scanning, where the high-
lighting moves while the switch is activated and se-
lection occurs when the switch is released. In all of
these methods, synchrony with the scan rate of the
interface is paramount.

Speech and language pathologists working with
AAC users must assess the specific capabilities of
the individual to determine their best interface op-
tion. For example, an individual who has difficulty
precisely timing short duration switch activation but
can hold a switch more easily might do better with
directed scanning.

Morse code, with its dots and dashes, is also an in-
direct selection method that has been used in AAC,
but it is far less common than the above mentioned
approaches due to the overhead of memorizing the
codes. Once learned, however, this approach can
be an effective communication strategy, as discussed
with specific examples in Beukelman and Mirenda
(1998). Often the codes are entered with switches
that allow for easy entry of both dots and dashes,
e.g., using two switches, one for dot and one for
dash. In this study, we have one condition that
is similar to Morse code in using dots and dashes,
but without requiring code memorization2. The in-
terface used for the experiments identifies dots and
dashes with short and long keypresses.

2Thanks to a reviewer for pointing out that DynaVox Series
5 displays dynamically-assigned codes for non-letter buttons in
their Morse code interface, much as we do for the entire symbol
set. In contrast to our approach, their codes are not assigned
using probabilistic models, rather to contrast with the standard
Morse codes, which are used for the letters. Further, the cursor
that we use to identify position within the code (see Section 3.5)
is not used in the Dynavox interface.

45

2.2 Binary codes

In indirect selection, the series of actions required to
select a given character is determined by the binary
code. As mentioned in Section 1, row/column scan-
ning assigns binary codes based on location within
the grid. Ordering the symbols so that frequent
characters are located in the upper left-hand cor-
ner of the grid will provide those frequent charac-
ters with short codes with a row/column scanning
approach, though not the minimal possible binary
codes. Given a probability distribution over sym-
bols, there are known algorithms for building a bi-
nary code that has the minimum expected bits ac-
cording to the distribution, i.e., codes will be op-
timally short (Huffman, 1952). The quality of the
codes, however, depends on the quality of the prob-
ability model, i.e., whether the model fits the actual
distribution in that context.

Roark et al. (2010) presented a scanning approach
for a fixed grid that used Huffman codes derived
from n-gram language models (see Section 2.3).
The approach leveraged better probability models to
achieve shorter code lengths, and achieved an over-
all speedup over row/column scanning for the 10
subjects in the trial, despite the method being closely
tied to reaction time. The method requires monitor-
ing of the target cell in the grid and reaction when it
is highlighted, since the pattern of highlighting is not
predictable from symbol position in the grid, unlike
row/column scanning.

2.3 Language modeling

Language models assign probabilities to strings in
the language being modeled, which has broad utility
for many tasks in speech and language processing.
The most common language modeling approach is
the n-gram model, which estimates probabilities of
strings as the product of the conditional probability
of each symbol given previous symbols in the string,
under a Markov assumption. That is, for a string
S = s1 . . . sn of n symbols, a k+1-gram model is
defined as

P(S) = P(s1)
n∏

i=2

P(si | s1 . . . si−1)

≈ P(s1)
n∏

i=2

P(si | si−k . . . si−1)

where the approximation is made by imposing the
Markov assumption. Note that the probability of the
first symbol s1 is typically conditioned on the fact
that it is first in the string. Each of the conditional
probabilities in such a model is a multinomial dis-
tribution over the symbols in a vocabulary Σ, and
the models are typically regularized (or smoothed)
to avoid assigning zero probability to strings in Σ∗.
See Chen and Goodman (1998) for an excellent
overview of modeling and regularization methods.

For the current application, the conditional prob-
ability P(si | si−k . . . si−1) can be used to as-
sign probabilities to all possible next symbols, and
these probabilities can be used to assign Huff-
man codes. For example, if the user has typed
‘the perso’ and is preparing to type the next letter,
we estimate P(n | t h e p e r s o) as well as
P(m | t h e p e r s o) and every other possi-
ble next symbol, from a large corpus. Note that
smoothing methods mentioned above ensure that ev-
ery symbol receives non-zero probability mass. Also
note that the space character (represented above as
‘ ’) is a symbol in the model, hence the models take
into account context across word boundaries. Given
these estimated probabilities, known algorithms for
assigning Huffman codes are used to assign short
codes to the most likely next symbols, in a way that
minimizes expected code length.

3 Methods

Since this paper aims to compare new methods with
Huffman scanning presented in Roark et al. (2010),
we follow that paper in many key respects, including
training data, test protocol, and evaluation measures.
For all trials we use a 6×6 grid, as shown in Fig-
ures 1 and 2, which includes the 26 characters in the
English alphabet, 8 punctuation characters (comma,
period, double quote, single quote, dash, dollar sign,
colon and semi-colon), a white space delimiter (de-
noted with underscore) and a delete symbol (de-
noted with ←). Unlike Roark et al. (2010), our
grid is in rough alphabetic order rather than in fre-
quency order. In that paper, they compared Huffman
scanning with row/column scanning, which would
have been put at a disadvantage with alphabetic or-
der, since frequent characters would have received
longer codes than they do in a frequency ordered
grid. In this paper, however, all of the approaches

46

are using Huffman codes and scanning of possibly
non-contiguous subsets of characters, so the code
efficiency does not depend on location in the grid.
Thus for ease of visual scanning, we chose in this
study to use alphabetic ordering.

3.1 Language models and binary codes

We follow Roark et al. (2010) and build character-
based smoothed 8-gram language models from a
normalized 42M character subset of the English gi-
gaword corpus and the CMU pronunciation dictio-
nary. This latter lexicon is used to increase coverage
of words that are unobserved in the corpus, and is in-
cluded in training as one observation per word in the
lexicon. Smoothing is performed with a generalized
version of Witten-Bell smoothing (Witten and Bell,
1991) as presented in Carpenter (2005). Text nor-
malization and smoothing parameterizations were as
presented in Roark et al. (2010). Probability of the
delete symbol ← was taken to be 0.05 in all trials
(the same as the probability of an error, see Sec-
tion 3.2), and all other probabilities derived from the
trained n-gram language model.

3.2 Huffman scanning

Our first scanning condition replicates the Huffman
scanning from Roark et al. (2010), with two differ-
ences. First, as stated above, we use an alphabetic
ordering of the grid as shown in Figure 2, in place
of their frequency ordered grid. Second, rather than
calibrating the scan rate of each individual, we fixed
the scan rate at 600 ms across all subjects.

One key aspect of their method is dealing with
errors of omission and commission, i.e., what hap-
pens when a subject misses their target symbol. In
standard row/column scanning, rows are highlighted
starting from the top of the grid, incrementing down-
wards one row at a time. If no row has been selected
after iterating through all rows, the scanning begins
again at the top. In such a way, if the subject mistak-
enly neglects to select their intended row, they can
just wait until it is highlighted again. Similarly, if the
wrong row is selected, there is usually a mechanism
whereby the columns are scanned for some number
of iterations, at which point row scanning resumes.
The upshot of this is that users can make an error and
still manage to select their intended symbol after the
scanning system returns to it.

Roark et al. (2010) present a method for allow-
ing the same kind of robustness to error in Huff-
man scanning, by recomputing the Huffman code
after every bit. If the probability that the bit was
correct is p, then the probability that it was incor-
rect is 1−p. In Huffman scanning, a subset is high-
lighted and the user indicates yes or no – yes, the
target symbol is in the set; or no, the target symbol
is not in the set. If the answer is ‘yes’ and the set
includes exactly one symbol, it is typed. Otherwise,
for all symbols in the selected set (highlighted sym-
bols if ‘yes’; non-highlighted if ‘no’), their proba-
bilities are multiplied by p (the probability of being
correct), while the probabilities of the other set of
symbols are multiplied by 1−p. The probabilities
are then re-normalized and a new Huffman code is
generated, the first bit of which drives which sym-
bols are highlighted at the next step. In such a way,
even if the target symbol is in the highlighted set
when it is not selected (or vice versa), it is not elim-
inated from consideration; rather its probability is
diminished (by multiplying by 1−p, which in this
paper is set to 0.05) and scanning continues. Even-
tually the symbol will be highlighted again, much
as is the case in row/column scanning. We also use
this method within the Huffman scanning condition
reported in this paper.

3.3 Asynchronous scanning

Our second condition replaces the scan rate of 600
ms from the Huffman scanning approach outlined
in Section 3.2 with an asynchronous approach that
does not rely upon a scan rate. The grid and scan-
ning method remain identical, but instead of switch
versus no switch, we use short switch (rapid release)
versus long switch (slower release). This is similar
to the dot/dash distinction in Morse code. For this
paper, we used a threshold of 200 ms to distinguish
a short versus a long switch, i.e., if the button press
is released within 200 ms it is short; otherwise long.
Since Huffman scanning already has switch activa-
tion as ‘yes’, this could be thought of as having the
long press replace no-press in the interface.

With this change, the scanning does not automat-
ically advance to the next set, but waits indefinitely
for the user to enter the next bit of the code. The
same method for dealing with errors as with Huff-
man scanning is employed in this condition, i.e., re-

47

Figure 3: Scanning of non-contiguous sets of cells, with
symbols that have been eliminated from consideration
deemphasized (a, b, c, e, o, t)

computing the Huffman code after every bit and tak-
ing into account the probability of the bit being in
error. One might see this as a self-paced version of
Huffman scanning.

One benefit of this approach is that it does not re-
quire the user to synchronize their movements to a
particular scan rate of the interface. One potential
downside for some users is that it does require more
active keypresses than auto scanning. In auto scan-
ning, only the ‘1’ bits of the code require switch ac-
tivation; the ‘0’ bits are produced passively by wait-
ing for the dwell time to expire. In contrast, all bits
in the asynchronous approaches require one of two
kinds of switch activation.

3.4 Not returning to non-selected symbols

Our third condition is just like the second except
it does not recompute the Huffman codes after ev-
ery bit, changing the way in which user errors are
handled. At the start of the string or immediately
after a letter has been typed, the Huffman codes
are calculated in exactly the same way as the pre-
vious two conditions, based on the n-gram language
model given the history of what has been typed so
far. However, after each bit is entered for the cur-
rent symbol, rather than multiplying by p and 1−p as
detailed in Section 3.2, symbols that have not been
selected are eliminated from consideration and will
not be highlighted again, i.e., will not be returned to
for subsequent selection. For example, in Figure 3
we see that there is a set of highlighted characters,
but also a set of characters that have been eliminated
from consideration and are deemphasized in the in-
terface to indicate that they can no longer be selected
(specifically: a, b, c, e, o and t). Those are symbols

that were not selected in previous steps of the scan-
ning, and are no longer available to be typed in this
position. If the user makes a mistake in the input,
eliminating the actual target symbol, the only way
to fix it is to type another symbol, delete it, and re-
type the intended symbol.

This condition is included in the study because
recalculation of codes after every bit becomes prob-
lematic when the codes are explicitly displayed (the
next condition). By including these results, we can
tease apart the impact of not recalculating codes af-
ter every bit versus the impact of displaying codes in
the next condition. Later, in the discussion, we will
return to this characteristic of the interface and dis-
cuss some alternatives that may allow for different
error recovery strategies.

This change to the interface has a couple of impli-
cations. First, the optimal codes are slightly shorter
than with the previous Huffman scanning methods,
since no probability mass is reserved for errors. In
other words, the perfect user that never makes a mis-
take would be able to type somewhat faster with
this method, which is not surprising, since reserv-
ing probability for returning to something that was
rejected is of no utility if no mistakes are ever made.
The experimental results presented later in the pa-
per will show explicitly how much shorter the codes
are for our particular test set. Second, it is possi-
ble to type a symbol without ever actively selecting
it, if all other symbols in the grid have been elimi-
nated. For example, if there are two symbols left and
the system highlights one symbol, which is rejected,
then the other symbol is typed. This contrasts with
the previous methods that only type when a single
character set is actively selected.

3.5 Displaying codes

Our final condition also does not recompute codes
after every bit, but in addition does away with high-
lighting of cells as the mechanism for scanning, and
instead displays dots and dashes directly beneath
each letter in the fixed grid. For example, Figure
4 shows the dots and dashes required for each let-
ter directly below that letter in the grid, and Figure
5 shows a portion of that grid magnified for easier
detailed viewing. Each code includes the dots and
dashes required to input that symbol, plus a cursor
‘|’ that indicates how much of the code has already

48

Figure 4: Scanning of non-contiguous sets of cells, dis-
playing dots and dashes rather than highlighting

Figure 5: A magnification of part of the above grid

been entered. For example, to type the letter ‘s’ us-
ing the code in Figure 5 , one must input: long, short,
short, long, short.

Since these codes are displayed, there is no mem-
orization required to input the target symbol. Like
row/column scanning, once the target symbol has
been found in the grid, the input sequence is known
in entirety by the user, which can facilitate planning
of sequences of actions rather than simply reacting
to updates in the interface. The cursor helps the user
know where they are in the code, which can be help-
ful for long codes. Figure 6 shows a magnification
of the interface when there are only two options re-
maining – a dot selects ‘l’ and a dash selects ‘u’.

4 Experiments
We recruited 10 native English speaking subjects be-
tween the ages of 26 and 50 years, who are not users

Figure 6: Cursor shows how much of code has been en-
tered

of scanning interfaces for typing and have typical
motor function. Following Roark et al. (2010), we
use the phrase set from MacKenzie and Soukoreff
(2003) to measure typing performance, and the same
five strings from that set were used as evaluation
strings in this study as in Roark et al. (2010). Prac-
tice strings were randomly selected from the rest of
the phrase set. Subjects used an Ablenet Jellybean R©

button as the binary switch. The error rate parameter
was fixed at 5% error rate.

The task in all conditions was to type the pre-
sented phrase exactly as it is presented. Symbols
that are typed in error – as shown in Figure 7 – must
be repaired by selecting the delete symbol (←) to
delete the incorrect symbol, followed by the correct
symbol. The reported times and bits take into ac-
count the extra work required to repair errors.

We tested subjects under four conditions. All four
conditions made use of 8-gram character language
models and Huffman coding, as described in Sec-
tion 3.1, and an alpha-ordered grid. The first condi-
tion is a replication of the Huffman scanning condi-
tion from Roark et al. (2010), with the difference in
scan rate (600ms versus mean 475ms in their paper)
and the grid layout. This is an auto scan approach,
where the highlighting advances at the end of the
dwell time, as described in Section 3.2. The second
condition is asynchronous scanning, i.e., replacing
the dwell time with a long button press as described
in Section 3.3, but otherwise identical to condition 1.
The third condition was also asynchronous, but did
not recompute the binary code after every bit, so that
there is no return to characters eliminated from con-
sideration, as described in Section 3.4, but otherwise
identical to condition 2. Finally, the fourth condition

Figure 7: After an incorrect symbol is typed, it must be
deleted and the correct symbol typed in its place

49

Speed (cpm) Bits per character Error rate Long code rate
Scanning condition mean (std) mean (std) opt. mean (std) mean (std)
1.Huffman Roark et al. (2010) 23.4 (3.7) 4.3 (1.1) 2.6 4.1 (2.2) 19.3 (14.2)

synchronous This paper 25.5 (3.2) 3.3 (0.4) 2.6 1.8 (1.1) 7.3 (4.1)
2. Huffman asynchronous 20.0 (3.7) 3.1 (0.2) 2.6 3.1 (2.5) 3.8 (1.2)
3. Huffman asynch, no return 17.2 (3.2) 3.1 (0.3) 2.4 7.7 (2.7) 0 (0)
4. Huffman asynch, display codes 18.7 (3.9) 3.0 (0.3) 2.4 6.9 (2.5) 0 (0)

Table 1: Typing results for 10 users on 5 test strings (total 31 words, 145 characters) under 4 conditions.

displays the codes for each character as described in
Section 3.5, without highlighting, but is otherwise
identical to condition 3.

Subjects were given a brief demo of the four con-
ditions by an author, then proceeded to a practice
phase. Practice phrases were given in each of the
four conditions, until subjects reached sufficient pro-
ficiency in the method to type a phrase with fewer
than 10% errors. After the practice phases in all four
conditions were completed, the test phases com-
menced. The ordering of the conditions in the test
phase was random. Subjects again practiced in a
condition until they typed a phrase with fewer than
10% errors, and then were presented with the five
test strings in that condition. After completion of
the test phase for a condition, they were prompted to
fill out a short survey about the condition.

Table 1 presents means and standard deviations
across our subjects for characters per minute, bits
per character, error rate and what Roark et al. (2010)
termed “long code rate”, i.e., percentage of sym-
bols that were correctly selected after being scanned
past. For condition 1, we also present the result for
the same condition reported in Roark et al. (2010).
Comparing the first two rows of that table, we can
see that our subjects typed slightly faster than those
reported in Roark et al. (2010) in condition 1, with
fewer bits per character, mainly due to lower error
rates and less scanning past targets. This can be at-
tributed to either the slower scanning speed or the al-
phabetic ordering of the grid (or both). In any case,
even with the slower scan rate, the overall speed is
faster in this condition than what was reported in that
paper.

The other three conditions are novel to this paper.
Moving from synchronous to asynchronous (with
long press) but leaving everything else the same

Survey Huffman Huffman No Display
Question synch asynch return codes
Fatigued 2.1 3.2 3.4 2.5
Stressed 1.9 2.2 2.9 2.0
Liked it 3.8 3.0 2.3 3.5
Frustrated 1.9 2.8 4.0 2.4

Table 2: Mean Likert scores to survey questions (5 = a
lot; 1 = not at all)

(condition 2) leads to slower typing speed but fewer
bits per character. The error rate is higher than in
the synchronous condition 1, but there is less scan-
ning past the target symbol. In discussion with sub-
jects, the higher error rate might be attributed to los-
ing track of which button press (short or long) goes
with highlighting, or also to intended short presses
being registered by the system as long.

The final two conditions allow no return to char-
acters once they have been scanned past, hence the
“long code rates” go to zero, and the error rates in-
crease. Note that the optimal bits per character are
slightly better than in the other trials, as mentioned
in Section 3.4, yet the subject bits per character stay
mostly the same as with condition 2. Typing speed
is slower in these two conditions, though slightly
higher when the codes are displayed versus the use
of highlighting.

In Table 2 we present the mean Likert scores from
the survey. The four statements that subjects as-
sessed were:

1. I was fatigued by the end of the trial
2. I was stressed by the end of the trial
3. I liked this trial
4. I was frustrated by this trial

The scores were: 1 (not at all); 2 (a little); 3 (not
sure); 4 (somewhat) and 5 (a lot).

50

The results in Table 2 show high frustration and
stress with condition 3, and much lower fatigue,
stress and frustration (hence higher ‘liking’) for con-
dition 4, where the codes are displayed. Overall,
there seemed to be a preference for Huffman syn-
chronous, followed by displaying the codes.

5 Discussion
There are several take-away lessons from this ex-
periment. First, the frustration and slowdown that
result from the increased error rates in condition 3
make this a dispreferred solution, even though dis-
allowing returning to symbols that have been ruled
out in scanning reduced the bits per character (opti-
mal and in practice). Yet in order to display a stable
code in condition 4 (which was popular), recalcula-
tion of codes after every bit (as is done in the first
two conditions) is not an option. To make condi-
tion 4 more effective, some effective means for al-
lowing scanning to return to symbols that have been
scanned past must be devised.

Second, asynchronous scanning does seem to be
a viable alternative to auto scanning, which may be
of utility for certain AAC users. Such an approach
may be well suited to individuals using two switches
for asynchronous row/column scanning. Other users
may find the increased level of switch activation re-
quired for scanning in these conditions too demand-
ing. One statistic not shown in Table 1 is number
of keypresses required. In condition 1, some of the
“bits” required to type the character are produced by
not pressing the button. In the other three conditions,
all “bits” result from either a short or long press, so
the button is pressed for every bit. In condition 1,
the mean number of key presses per character was
1.5, which is approximately half of the total button
presses required per character in the other methods.

Future directions include investigations into
methods that combine some of the strengths of the
various approaches. In particular, we are interested
in methods that allow for the direct display of codes
for either synchronous or asynchronous scanning,
but which also allow for scanning past and return to
target characters that were mistakenly not selected.
The benefit of displaying codes – allowing for an-
ticipation and planning in scanning – are quite high,
and this paper has not exhausted the exploration of
such approaches. Among the alternatives being con-

sidered are: requiring all codes to have a short press
(confirmation) bit as the last bit of the code; having
a “reset” symbol or gesture; and recalculating codes
after some number of bits, greater than one. Each
of these methods would somewhat increase the op-
timal bits per character, but may result in superior
user performance. Finally, we intend to include ac-
tive AAC users in subsequent studies of these meth-
ods.

References
G. Baletsa, R. Foulds, and W. Crochetiere. 1976. Design

parameters of an intelligent communication device. In
Proceedings of the 29th Annual Conference on Engi-
neering in Medicine and Biology, page 371.

D. Beukelman and P. Mirenda. 1998. Augmentative and
Alternative Communication: Management of Severe
Communication Disorders in Children and Adults.
Paul H. Brookes, Baltimore, MD, second edition.

B. Carpenter. 2005. Scaling high-order character lan-
guage models to gigabytes. In Proceedings of the ACL
Workshop on Software, pages 86–99.

Stanley Chen and Joshua Goodman. 1998. An empirical
study of smoothing techniques for language modeling.
Technical Report, TR-10-98, Harvard University.

D.A. Huffman. 1952. A method for the construction of
minimum redundancy codes. In Proceedings of the
IRE, volume 40(9), pages 1098–1101.

G.W. Lesher, B.J. Moulton, and D.J. Higginbotham.
1998. Techniques for augmenting scanning commu-
nication. Augmentative and Alternative Communica-
tion, 14:81–101.

I.S. MacKenzie and R.W. Soukoreff. 2003. Phrase sets
for evaluating text entry techniques. In Proceedings of
the ACM Conference on Human Factors in Computing
Systems (CHI), pages 754–755.

B. Roark, J. de Villiers, C. Gibbons, and M. Fried-Oken.
2010. Scanning methods and language modeling for
binary switch typing. In Proceedings of the NAACL-
HLT Workshop on Speech and Language Processing
for Assistive Technologies (SLPAT), pages 28–36.

I.H. Witten and T.C. Bell. 1991. The zero-frequency
problem: Estimating the probabilities of novel events
in adaptive text compression. IEEE Transactions on
Information Theory, 37(4):1085–1094.

51

