
Proceedings of the 15th Conference on Computational Natural Language Learning: Shared Task, pages 117–121,
Portland, Oregon, 23-24 June 2011. c©2011 Association for Computational Linguistics

A Machine Learning-Based Coreference Detection System ForOntoNotes

Yaqin Yang
Computer Science Department

Brandeis University
Waltham, Massachusetts, USA
yaqin@brandeis.edu

Nianwen Xue
Computer Science Department

Brandeis University
Waltham, Massachusetts, USA
xuen@brandeis.edu

Peter Anick
Computer Science Department

Brandeis University
Waltham, Massachusetts, USA
peter anick@yahoo.com

Abstract

In this paper, we describe the algorithms and
experimental results of Brandeis University
in the participation of the CoNLL Task 2011
closed track. We report the features used in
our system, and describe a novel cluster-based
chaining algorithm to improve performance of
coreference identification. We evaluate the
system using the OntoNotes data set and de-
scribe our results.

1 Introduction

This paper describes the algorithms designed and
experiments finished in the participation of the
CoNLL Task 2011. The goal of the Task is to design
efficient algorithms for detecting entity candidates
and identifying coreferences. Coreference identifi-
cation is an important technical problem. Its impor-
tance in NLP applications has been observed in pre-
vious work, such as that of Raghunathan et al., Prad-
han et al., Bergsma et al., Haghighi et al., and Ng et
al.. While most of the existing work has evaluated
their systems using the ACE data set, in this work
we present our experimental results based on the
OntoNotes data set used in the CoNLL 2011 Shared
Task. We detail a number of linguistic features
that are used during the experiments, and highlight
their contribution in improving coreference identi-
fication performance over the OntoNotes data set.
We also describe a cluster-based approach to multi-
entity chaining. Finally, we report experimental re-
sults and summarize our work.

2 Data Preparation

We divide the CoNLL Task into three steps. First,
we detect entities from both the training data and
the development data. Second, we group related en-
tities into entity-pairs. Finally, we use the gener-
ated entity-pairs in the machine learning-based clas-
sifier to identify coreferences. In this section, we
describe how we extract the entities and group them
into pairs.

2.1 Generating Entity Candidates

We use the syntactic parse tree to extract four types
of entities, including noun phrase, pronoun, pre-
modifier and verb (Pradhan et al., 2007). This
method achieves 94.0% (Recall) of detection accu-
racy for gold standard trees in the development data.
When using the automatic parses, not surprisingly,
the detection accuracy becomes lower, with a per-
formance drop of 5.3% (Recall) compared with that
of using the gold standard trees. Nevertheless, this
method can still cover 88.7% of all entities existing
in the development data, thus we used it in our algo-
rithm.

2.2 Generating Entity-Pairs From Individual
Entities

In the annotated training documents, an entity has
been marked in a coreference chain that includes all
coreferential entities. In our algorithm, we only de-
tect the closest antecedent for each entity, instead
of all coreferences, of each entity. Specifically, we
define each training and testing instance as a pair
of entities. During the training process, for each
entity encountered by the system, we create apos-
itive instance by pairing an entity with its closest
antecedent (Soon et al., 2001). In addition, a set
of negative instances are also created by pairing the
entity with any preceding entities that exist between
its closest antecedent and the entity itself (note that
the antecedent must be a coreference of the current
entity, whereas preceding entities may not be coref-
erential). For example, in the entity sequence “A,
B, C, D, E”, let us assume that “A” is the closest
antecedent of “D”. Then, for entity “D”, “A-D” is
considered a positive instance, whereas “B-D” and
“C-D” are two negative instances.

To generate testing data, every entity-pair within
the same sentence is considered to form positive or
negative instances, which are then used to form test-
ing data. Since occasionally the distance between an
entity and its closest antecedent can be far apart, we
handle considerably distant coreferences by consid-

117

ering each entity-pair that exists within the adjacent
N sentences. During our experiments, we observed
that the distance between an entity and its closest an-
tecedent could be as far as 23 sentences. Therefore,
in the classification process, we empirically setN as
23.

3 Machine Learning-Based Classification

After labeling entity pairs, we formalize the corefer-
ence identification problem as a binary classification
problem. We derive a number of linguistic features
based on each entity-pair,i andj, wherei is the po-
tential antecedent andj the anaphor in the pair (Soon
et al., 2001). Generally, we select a set of features
that have been proved to be useful for the corefer-
ence classification tasks in previous work, includ-
ing gender, number, distance between the antecedent
and the anaphor, and WordNet (WordNet, 2010). In
addition, we design additional features that could
be obtained from the OntoNotes data, such as the
speaker or author information that is mainly avail-
able in Broadcast Conversation and Web Log data
(Pradhan et al., 2007). Moreover, we extract appo-
sition and copular structures and used them as fea-
tures. The features we used in the system are de-
tailed below.

• Independent feature: 1) if a noun phrase is defi-
nite; 2) if a noun phrase is demonstrative; 3) gender
information of each entity; 4) number information
of each entity; 5) the entity type of a noun phrase;
6) if an entity is a subject; 7) if an entity is an object;
8) if an noun phrase is a coordination, the number
of entities it has; 9) if a pronoun is preceded by a
preposition; 10) if a pronoun is “you” or “me”; 11)
if a pronoun is “you” and it is followed by the word
“know”.

• Name entity feature: 1) i-j-same-entity-type-
etype=True, ifi and j have the same entity type;
2) i-j-same-etype-subphrase=True, ifi andj have
the same entity type and one is the subphrase of the
other.

• Syntactic feature: 1) i-j-both-subject=True, ifi
andj are both subjects; 2) ifi andj are in the same
sentence, record the syntactic path betweeni andj,
e.g. i-j-syn-path=PRP∧NP!PRP; 3)i-j-same-sent-
diff-clause=True, ifi andj are in the same sentence
but in different clauses.

• Gender and number feature: 1) i-j-same-
gender=True/False, by comparing ifi andj have the
same gender; 2) i-j-same-num=True/False, by com-
paring ifi andj have the same number; 3)i-j-same-
num-modifier=True/False, by comparing ifi andj
have the same number modifier, e.g. “two coun-
tries” and “they both” have the same number mod-
ifier; 4) i-j-same-family=True/False, we designed

seven different families for pronouns, e.g. “it”, “its”
and “itself” are in one family while “he”, “him”,
“his” and “himself” are in another one.

• Distance feature: 1) i-j-sent-dist, if the sentence
distance betweeni andj is smaller than three, use
their sentence distance as a feature; 2)i-j-sent-
dist=medium/far: if the sentence distance is larger
than or equal to three, set the value ofi-j-sent-dist
to “medium”, otherwise set it to “far” combined
with the part-of-speech of the head word inj.

• String and head word match feature: 1) i-j-
same-string=True, ifi andj have the same string;
2) i-j-same-string-prp=True, ifi and j are the
same string and they are both pronouns; 3)i-j-sub-
string=True, if one is the sub string of the other,
and neither is a pronoun; 4)i-j-same-head=True,
if i andj have the same head word; 5)i-j-prefix-
head=True, if the head word ofi or j is the pre-
fix of the head word of the other; 6)i-j-loose-head,
the same asi-j-prefix-head, but comparing only the
first four letters of the head word.

• Apposition and copular feature: for each noun
phrase, if it has an apposition or is followed by
a copular verb, then the apposition or the subject
complement is used as an attribute of that noun
phrase. We also built up a dictionary where the
key is the noun phrase and the value is its apposi-
tion or the subject’s complement to define features.
1) i-appo-j-same-head=True, ifi’s apposition and
j have the same head word; 2)i-j-appo-same-
head=True, ifj’s apposition has the same head word
asi; we define the similar head match features for
the noun phrase and its complement; Also, if ani

or j is a key in the defined dictionary, we get the
head word of the corresponding value for that key
and compare it to the head word of the other entity.

• Alias feature: i-j-alias=True, if one entity is a
proper noun, then we extract the first letter of each
word in the other entity. (The extraction process
skips the first word if it’s a determiner and also skips
the last one if it is a possessive case). If the proper
noun is the same as the first-letter string, it is the
alias of the other entity.

• Wordnet feature: for each entity, we used Wordnet
to generate all synsets for its head word, and for
each synset, we get all hypernyms and hyponyms.
1) if i is a hypernym ofj, theni-hyper-j=True; 2)
if i is a hyponym ofj, theni-hypo-j=True.

• Speaker information features: In a conversation,
a speaker usually uses “I” to refer to himself/herself,
and most likely uses “you” to refer to the next
speaker. Since speaker or author name informa-
tion is given in Broadcast Conversation and Web
Log data, we use such information to design fea-
tures that represent relations between pronouns and

118

speakers. 1)i-PRP1-j-PRP2-same-speaker=True,
if both i andj are pronouns, and they have the same
speaker; 2)i-I-j-I-same-speaker=True, if bothi and
j are “I”, and they have the same speaker; 3)i-I-j-
you-same-speaker=True, ifi is “I” and j is “you”,
and they have the same speaker; 4) ifi is “I”, j

is “you” and the speaker ofj is right after that of
i, then we have featurei-I-j-you&itarget=jspeaker;
5) if i is “you”, j is “I” and the speaker ofj is
right after that ofi, then we have featurei-you-
j-I-itarget=jspeaker; 6) if bothi and j are “you”,
and they followed by the same speaker, we consider
“you” as a general term, and this information is used
as a negative feature.

• Other feature: i-j-both-prp=True, if bothi andj
are pronouns.

4 Chaining by Using Clusters

After the classifier detects coreferential entities,
coreference detection systems usually need to chain
multiple coreferential entity-pairs together, forming
a coreference chain. A conventional approach is
to chain all entities in multiple coreferential entity-
pairs if they share the same entities. For example, if
“A-B”, “B-C”, and “C-D” are coreferential entity-
pairs, then A, B, C, and D would be chained to-
gether, forming a coreference chain “A-B-C-D”.

One significant disadvantage of this approach is
that it is likely to put different coreference chains to-
gether in the case of erroneous classifications. For
example, suppose in the previous case, “B-C” is ac-
tually a wrong coreference detection, then the coref-
erence chain created above will cause A and D to be
mistakenly linked together. This error can propagate
as coreference chains become larger.

To mitigate this issue, we design a cluster-based
chaining approach. This approach is based on the
observation that some linguistic rules are capable of
detecting coreferential entities with high detection
precision. This allows us to leverage these rules to
double-check the coreference identifications, and re-
ject chaining entities that are incompatible with rule-
based results.

To be specific, we design two lightweight yet ef-
ficient rules to cluster entities.

• Rule One. For the first noun phrase (NP) encoun-
tered by the system, if 1) this NP has a name entity
on its head word position or 2) it has a name en-
tity inside and the span of this entity includes the
head word position, a cluster is created for this NP.
The name entity of this NP is also recorded. For
each following NP with a name entity on its head

word position, if there is a cluster that has the same
name entity, this NP is considered as a coreference
to other NPs in that cluster, and is put into that clus-
ter. If the system cannot find such a cluster, a new
cluster is created for the current NP.

• Rule Two. In Broadcast Conversation or Web Log
data, a speaker or author would most likely use “I”
to refer to himself/herself. Therefore, we used it
as the other rule to cluster all “I” pronouns and the
same speaker information together.

Given the labeled entity pairs, we then link them in
different coreference chains by using the cluster in-
formation. As the Maximum Entropy classifier not
only labels each entity-pair but also returns a con-
fidence score of that label, we sort all positive pairs
using their possibilities. For each positive entity-pair
in the sorted list, if the two entities are in different
clusters, we consider this to be a conflict, and with-
draw this positive entity-pair; if one entity belongs to
one cluster whereas the other does not belong to any
cluster, the two entities will be both included in that
cluster. This process is repeated until no more enti-
ties can be included in a cluster. Finally, we chain
the rest of entity pairs together.

5 Results and Discussion

To evaluate the features and the chaining approach
described in this paper, we design experiments de-
scribed as follows. Since there are five different
data types in the provided OntoNotes coreference
data set, we create five different classifiers to pro-
cess each of the data types. We used the features
described in Section 3 to train the classifiers, and
did the experiments using a Maximum Entropy clas-
sifier trained with the Mallet package (McCallum,
2002). We use the gold-standard data in the training
set to train the five classifiers and test the classifiers
on both gold and automatically-parsed data in the
development data set. The MUC metric provided by
the Task is used to evaluate the results.

5.1 Performance without Clustering

First, we evaluate the system by turning the clus-
tering technique off during the process of creating
coreference chains. For entity detection, we ob-
serve that for all five data types, i.e. Broadcast
(BC), Broad news (BN), Newswire (NW), Magazine
(MZ), and Web blog (WB), the NW and WB data
types achieve relatively lower F1-scores, whereas
the BC, BN, and MZ data types achieve higher per-

119

BC BN NW MZ WB

Without Clustering
Gold 57.40 (64.92/51.44) 59.45 (63.53/55.86) 52.01 (59.71/46.07) 55.59 (62.90/49.80) 49.53 (61.16/41.62)
Auto 54.00 (61.28/48.26) 55.40 (59.05/52.17) 48.44 (55.32/43.09) 52.21 (59.78/46.33) 47.02 (58.33/39.39)

With Clustering
Gold 57.44 (64.12/52.03) 56.56 (58.10/55.09) 51.37 (56.64/46.99) 54.26 (60.07/49.47) 49.00 (60.09/41.36)
Auto 54.19 (60.82/48.87) 52.69 (54.07/51.37) 48.01 (52.74/44.05) 50.82 (56.76/46.01) 46.86 (57.49/39.55)

Table 1: Performance comparison of coreference identification between using and without using the clustering tech-
nique in chaining. Note that the results are listed in sequence of F1-scores (Recalls/Precisions). The results shown are
based on MUC.

formance. Due to limited space, the performance
table of entity detection is not included in this paper.

For coreference identification, as shown in Ta-
ble 1, we observe pretty similar performance gaps
among different data types. The NW and WB data
types achieve the lowest F1-scores (i.e. 52.01%
and 49.53% for gold standard data, and 48.44% and
47.02% for automatically-parsed data) among all the
five data types. This can be explained by seeing that
the entity detection performance of these two data
types are also relatively low. The other three types
achieves more than 55% and 52% F1-scores for gold
and auto data, respectively.

These experiments that are done without using
clustering techniques tend to indicate that the perfor-
mance of entity detection has a positive correlation
with that of coreference identification. Therefore, in
the other set of experiments, we enable the cluster-
ing technique to improve coreference identification
performance by increasing entity detection accuracy.

Metric Recall Precision F1

MUC 59.94 45.38 51.65
BCUBED 72.07 53.65 61.51
CEAF (M) 45.67 45.67 45.67
CEAF (E) 29.43 42.54 34.79
BLANC 70.86 60.55 63.37

Table 2: Official results of our system in the CoNLL Task
2011. Official score is 49.32. ((MUC + BCUBED +
CEAF (E))/3)

5.2 Performance with Clustering

After enabling the clustering technique, we observe
an improvement in entity detection performance.
This improvement occurs mainly in the cases of the
NW and WB data types, which show low entity

detection performance when not using the cluster-
ing technique. To be specific, the performance of
the NW type on both the gold standard and auto-
matic data improves by about 0.5%, and the perfor-
mance of the WB type on the automatic data im-
proves about 0.1%. In addition, the performance of
the BC type on both the gold standard and automatic
data also increases about 0.2% to 0.6%.

Although the clustering technique succeeds in im-
proving entity detection performance for multiple
data types, there is no obvious improvement gained
with respect to coreference identification. This is
quite incompatible with our observation in the ex-
periments that do not utilize the clustering tech-
nique. Currently, we attribute this issue to the low
accuracy rates of the clustering operation. For ex-
ample, “H. D. Ye.” and “Ye” can be estimated cor-
rectly to be coreferential by the Maxtent classifier,
but the clustering algorithm puts them into different
clusters since “H. D. Ye.” is a PERSON type name
entity while “Ye” is a ORG type name entity. There-
fore, the system erroneously considers them to be a
conflict and rejects them. We plan to investigate this
issue further in our future work.

The official results of our system in the CoNLL
Task 2011 are summarized in Table 2.

6 Conclusion

In this paper, we described the algorithm design and
experimental results of Brandeis University in the
CoNLL Task 2011. We show that several linguistic
features perform well in the OntoNotes data set.

References

Andrew Kachites McCallum. 2002. Mal-
let: A machine learning for language toolkit.
http://mallet.cs.umass.edu.

120

Sameer S. Pradhan, Lance Ramshaw, Ralph Weischedel,
Jessica MacBride, and Linnea Micciulla. 2007. Unre-
stricted Coreference: Identifying Entities and Events
in OntoNotes.International Conference on Semantic
Computing (ICSC 2007), pages 446–453, September.

W.M. Soon, H.T. Ng, and D.C.Y. Lim. 2001. A ma-

chine learning approach to coreference resolution of
noun phrases.Computational Linguistics, 27(4):521–
544.

WordNet. 2010. Princeton University ”About
WordNet.” WordNet. Princeton University. 2010.
http://wordnet.princeton.edu.

121

